1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/TinyPtrVector.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/IR/Argument.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/CFG.h" 41 #include "llvm/IR/CallSite.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DIBuilder.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalObject.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InstrTypes.h" 56 #include "llvm/IR/Instruction.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/Metadata.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/Operator.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/KnownBits.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/ValueMapper.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <climits> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <utility> 84 85 using namespace llvm; 86 using namespace llvm::PatternMatch; 87 88 #define DEBUG_TYPE "local" 89 90 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 91 92 //===----------------------------------------------------------------------===// 93 // Local constant propagation. 94 // 95 96 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 97 /// constant value, convert it into an unconditional branch to the constant 98 /// destination. This is a nontrivial operation because the successors of this 99 /// basic block must have their PHI nodes updated. 100 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 101 /// conditions and indirectbr addresses this might make dead if 102 /// DeleteDeadConditions is true. 103 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 104 const TargetLibraryInfo *TLI, 105 DeferredDominance *DDT) { 106 TerminatorInst *T = BB->getTerminator(); 107 IRBuilder<> Builder(T); 108 109 // Branch - See if we are conditional jumping on constant 110 if (auto *BI = dyn_cast<BranchInst>(T)) { 111 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 112 BasicBlock *Dest1 = BI->getSuccessor(0); 113 BasicBlock *Dest2 = BI->getSuccessor(1); 114 115 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 116 // Are we branching on constant? 117 // YES. Change to unconditional branch... 118 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 119 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 120 121 // Let the basic block know that we are letting go of it. Based on this, 122 // it will adjust it's PHI nodes. 123 OldDest->removePredecessor(BB); 124 125 // Replace the conditional branch with an unconditional one. 126 Builder.CreateBr(Destination); 127 BI->eraseFromParent(); 128 if (DDT) 129 DDT->deleteEdge(BB, OldDest); 130 return true; 131 } 132 133 if (Dest2 == Dest1) { // Conditional branch to same location? 134 // This branch matches something like this: 135 // br bool %cond, label %Dest, label %Dest 136 // and changes it into: br label %Dest 137 138 // Let the basic block know that we are letting go of one copy of it. 139 assert(BI->getParent() && "Terminator not inserted in block!"); 140 Dest1->removePredecessor(BI->getParent()); 141 142 // Replace the conditional branch with an unconditional one. 143 Builder.CreateBr(Dest1); 144 Value *Cond = BI->getCondition(); 145 BI->eraseFromParent(); 146 if (DeleteDeadConditions) 147 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 148 return true; 149 } 150 return false; 151 } 152 153 if (auto *SI = dyn_cast<SwitchInst>(T)) { 154 // If we are switching on a constant, we can convert the switch to an 155 // unconditional branch. 156 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 157 BasicBlock *DefaultDest = SI->getDefaultDest(); 158 BasicBlock *TheOnlyDest = DefaultDest; 159 160 // If the default is unreachable, ignore it when searching for TheOnlyDest. 161 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 162 SI->getNumCases() > 0) { 163 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 164 } 165 166 // Figure out which case it goes to. 167 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 168 // Found case matching a constant operand? 169 if (i->getCaseValue() == CI) { 170 TheOnlyDest = i->getCaseSuccessor(); 171 break; 172 } 173 174 // Check to see if this branch is going to the same place as the default 175 // dest. If so, eliminate it as an explicit compare. 176 if (i->getCaseSuccessor() == DefaultDest) { 177 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 178 unsigned NCases = SI->getNumCases(); 179 // Fold the case metadata into the default if there will be any branches 180 // left, unless the metadata doesn't match the switch. 181 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 182 // Collect branch weights into a vector. 183 SmallVector<uint32_t, 8> Weights; 184 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 185 ++MD_i) { 186 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 187 Weights.push_back(CI->getValue().getZExtValue()); 188 } 189 // Merge weight of this case to the default weight. 190 unsigned idx = i->getCaseIndex(); 191 Weights[0] += Weights[idx+1]; 192 // Remove weight for this case. 193 std::swap(Weights[idx+1], Weights.back()); 194 Weights.pop_back(); 195 SI->setMetadata(LLVMContext::MD_prof, 196 MDBuilder(BB->getContext()). 197 createBranchWeights(Weights)); 198 } 199 // Remove this entry. 200 BasicBlock *ParentBB = SI->getParent(); 201 DefaultDest->removePredecessor(ParentBB); 202 i = SI->removeCase(i); 203 e = SI->case_end(); 204 if (DDT) 205 DDT->deleteEdge(ParentBB, DefaultDest); 206 continue; 207 } 208 209 // Otherwise, check to see if the switch only branches to one destination. 210 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 211 // destinations. 212 if (i->getCaseSuccessor() != TheOnlyDest) 213 TheOnlyDest = nullptr; 214 215 // Increment this iterator as we haven't removed the case. 216 ++i; 217 } 218 219 if (CI && !TheOnlyDest) { 220 // Branching on a constant, but not any of the cases, go to the default 221 // successor. 222 TheOnlyDest = SI->getDefaultDest(); 223 } 224 225 // If we found a single destination that we can fold the switch into, do so 226 // now. 227 if (TheOnlyDest) { 228 // Insert the new branch. 229 Builder.CreateBr(TheOnlyDest); 230 BasicBlock *BB = SI->getParent(); 231 std::vector <DominatorTree::UpdateType> Updates; 232 if (DDT) 233 Updates.reserve(SI->getNumSuccessors() - 1); 234 235 // Remove entries from PHI nodes which we no longer branch to... 236 for (BasicBlock *Succ : SI->successors()) { 237 // Found case matching a constant operand? 238 if (Succ == TheOnlyDest) { 239 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 240 } else { 241 Succ->removePredecessor(BB); 242 if (DDT) 243 Updates.push_back({DominatorTree::Delete, BB, Succ}); 244 } 245 } 246 247 // Delete the old switch. 248 Value *Cond = SI->getCondition(); 249 SI->eraseFromParent(); 250 if (DeleteDeadConditions) 251 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 252 if (DDT) 253 DDT->applyUpdates(Updates); 254 return true; 255 } 256 257 if (SI->getNumCases() == 1) { 258 // Otherwise, we can fold this switch into a conditional branch 259 // instruction if it has only one non-default destination. 260 auto FirstCase = *SI->case_begin(); 261 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 262 FirstCase.getCaseValue(), "cond"); 263 264 // Insert the new branch. 265 BranchInst *NewBr = Builder.CreateCondBr(Cond, 266 FirstCase.getCaseSuccessor(), 267 SI->getDefaultDest()); 268 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 269 if (MD && MD->getNumOperands() == 3) { 270 ConstantInt *SICase = 271 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 272 ConstantInt *SIDef = 273 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 274 assert(SICase && SIDef); 275 // The TrueWeight should be the weight for the single case of SI. 276 NewBr->setMetadata(LLVMContext::MD_prof, 277 MDBuilder(BB->getContext()). 278 createBranchWeights(SICase->getValue().getZExtValue(), 279 SIDef->getValue().getZExtValue())); 280 } 281 282 // Update make.implicit metadata to the newly-created conditional branch. 283 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 284 if (MakeImplicitMD) 285 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 286 287 // Delete the old switch. 288 SI->eraseFromParent(); 289 return true; 290 } 291 return false; 292 } 293 294 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 295 // indirectbr blockaddress(@F, @BB) -> br label @BB 296 if (auto *BA = 297 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 298 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 299 std::vector <DominatorTree::UpdateType> Updates; 300 if (DDT) 301 Updates.reserve(IBI->getNumDestinations() - 1); 302 303 // Insert the new branch. 304 Builder.CreateBr(TheOnlyDest); 305 306 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 307 if (IBI->getDestination(i) == TheOnlyDest) { 308 TheOnlyDest = nullptr; 309 } else { 310 BasicBlock *ParentBB = IBI->getParent(); 311 BasicBlock *DestBB = IBI->getDestination(i); 312 DestBB->removePredecessor(ParentBB); 313 if (DDT) 314 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 315 } 316 } 317 Value *Address = IBI->getAddress(); 318 IBI->eraseFromParent(); 319 if (DeleteDeadConditions) 320 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 321 322 // If we didn't find our destination in the IBI successor list, then we 323 // have undefined behavior. Replace the unconditional branch with an 324 // 'unreachable' instruction. 325 if (TheOnlyDest) { 326 BB->getTerminator()->eraseFromParent(); 327 new UnreachableInst(BB->getContext(), BB); 328 } 329 330 if (DDT) 331 DDT->applyUpdates(Updates); 332 return true; 333 } 334 } 335 336 return false; 337 } 338 339 //===----------------------------------------------------------------------===// 340 // Local dead code elimination. 341 // 342 343 /// isInstructionTriviallyDead - Return true if the result produced by the 344 /// instruction is not used, and the instruction has no side effects. 345 /// 346 bool llvm::isInstructionTriviallyDead(Instruction *I, 347 const TargetLibraryInfo *TLI) { 348 if (!I->use_empty()) 349 return false; 350 return wouldInstructionBeTriviallyDead(I, TLI); 351 } 352 353 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 354 const TargetLibraryInfo *TLI) { 355 if (isa<TerminatorInst>(I)) 356 return false; 357 358 // We don't want the landingpad-like instructions removed by anything this 359 // general. 360 if (I->isEHPad()) 361 return false; 362 363 // We don't want debug info removed by anything this general, unless 364 // debug info is empty. 365 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 366 if (DDI->getAddress()) 367 return false; 368 return true; 369 } 370 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 371 if (DVI->getValue()) 372 return false; 373 return true; 374 } 375 376 if (!I->mayHaveSideEffects()) 377 return true; 378 379 // Special case intrinsics that "may have side effects" but can be deleted 380 // when dead. 381 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 382 // Safe to delete llvm.stacksave if dead. 383 if (II->getIntrinsicID() == Intrinsic::stacksave) 384 return true; 385 386 // Lifetime intrinsics are dead when their right-hand is undef. 387 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 388 II->getIntrinsicID() == Intrinsic::lifetime_end) 389 return isa<UndefValue>(II->getArgOperand(1)); 390 391 // Assumptions are dead if their condition is trivially true. Guards on 392 // true are operationally no-ops. In the future we can consider more 393 // sophisticated tradeoffs for guards considering potential for check 394 // widening, but for now we keep things simple. 395 if (II->getIntrinsicID() == Intrinsic::assume || 396 II->getIntrinsicID() == Intrinsic::experimental_guard) { 397 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 398 return !Cond->isZero(); 399 400 return false; 401 } 402 } 403 404 if (isAllocLikeFn(I, TLI)) 405 return true; 406 407 if (CallInst *CI = isFreeCall(I, TLI)) 408 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 409 return C->isNullValue() || isa<UndefValue>(C); 410 411 if (CallSite CS = CallSite(I)) 412 if (isMathLibCallNoop(CS, TLI)) 413 return true; 414 415 return false; 416 } 417 418 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 419 /// trivially dead instruction, delete it. If that makes any of its operands 420 /// trivially dead, delete them too, recursively. Return true if any 421 /// instructions were deleted. 422 bool 423 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 424 const TargetLibraryInfo *TLI) { 425 Instruction *I = dyn_cast<Instruction>(V); 426 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 427 return false; 428 429 SmallVector<Instruction*, 16> DeadInsts; 430 DeadInsts.push_back(I); 431 432 do { 433 I = DeadInsts.pop_back_val(); 434 salvageDebugInfo(*I); 435 436 // Null out all of the instruction's operands to see if any operand becomes 437 // dead as we go. 438 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 439 Value *OpV = I->getOperand(i); 440 I->setOperand(i, nullptr); 441 442 if (!OpV->use_empty()) continue; 443 444 // If the operand is an instruction that became dead as we nulled out the 445 // operand, and if it is 'trivially' dead, delete it in a future loop 446 // iteration. 447 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 448 if (isInstructionTriviallyDead(OpI, TLI)) 449 DeadInsts.push_back(OpI); 450 } 451 452 I->eraseFromParent(); 453 } while (!DeadInsts.empty()); 454 455 return true; 456 } 457 458 /// areAllUsesEqual - Check whether the uses of a value are all the same. 459 /// This is similar to Instruction::hasOneUse() except this will also return 460 /// true when there are no uses or multiple uses that all refer to the same 461 /// value. 462 static bool areAllUsesEqual(Instruction *I) { 463 Value::user_iterator UI = I->user_begin(); 464 Value::user_iterator UE = I->user_end(); 465 if (UI == UE) 466 return true; 467 468 User *TheUse = *UI; 469 for (++UI; UI != UE; ++UI) { 470 if (*UI != TheUse) 471 return false; 472 } 473 return true; 474 } 475 476 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 477 /// dead PHI node, due to being a def-use chain of single-use nodes that 478 /// either forms a cycle or is terminated by a trivially dead instruction, 479 /// delete it. If that makes any of its operands trivially dead, delete them 480 /// too, recursively. Return true if a change was made. 481 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 482 const TargetLibraryInfo *TLI) { 483 SmallPtrSet<Instruction*, 4> Visited; 484 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 485 I = cast<Instruction>(*I->user_begin())) { 486 if (I->use_empty()) 487 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 488 489 // If we find an instruction more than once, we're on a cycle that 490 // won't prove fruitful. 491 if (!Visited.insert(I).second) { 492 // Break the cycle and delete the instruction and its operands. 493 I->replaceAllUsesWith(UndefValue::get(I->getType())); 494 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 495 return true; 496 } 497 } 498 return false; 499 } 500 501 static bool 502 simplifyAndDCEInstruction(Instruction *I, 503 SmallSetVector<Instruction *, 16> &WorkList, 504 const DataLayout &DL, 505 const TargetLibraryInfo *TLI) { 506 if (isInstructionTriviallyDead(I, TLI)) { 507 salvageDebugInfo(*I); 508 509 // Null out all of the instruction's operands to see if any operand becomes 510 // dead as we go. 511 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 512 Value *OpV = I->getOperand(i); 513 I->setOperand(i, nullptr); 514 515 if (!OpV->use_empty() || I == OpV) 516 continue; 517 518 // If the operand is an instruction that became dead as we nulled out the 519 // operand, and if it is 'trivially' dead, delete it in a future loop 520 // iteration. 521 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 522 if (isInstructionTriviallyDead(OpI, TLI)) 523 WorkList.insert(OpI); 524 } 525 526 I->eraseFromParent(); 527 528 return true; 529 } 530 531 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 532 // Add the users to the worklist. CAREFUL: an instruction can use itself, 533 // in the case of a phi node. 534 for (User *U : I->users()) { 535 if (U != I) { 536 WorkList.insert(cast<Instruction>(U)); 537 } 538 } 539 540 // Replace the instruction with its simplified value. 541 bool Changed = false; 542 if (!I->use_empty()) { 543 I->replaceAllUsesWith(SimpleV); 544 Changed = true; 545 } 546 if (isInstructionTriviallyDead(I, TLI)) { 547 I->eraseFromParent(); 548 Changed = true; 549 } 550 return Changed; 551 } 552 return false; 553 } 554 555 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 556 /// simplify any instructions in it and recursively delete dead instructions. 557 /// 558 /// This returns true if it changed the code, note that it can delete 559 /// instructions in other blocks as well in this block. 560 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 561 const TargetLibraryInfo *TLI) { 562 bool MadeChange = false; 563 const DataLayout &DL = BB->getModule()->getDataLayout(); 564 565 #ifndef NDEBUG 566 // In debug builds, ensure that the terminator of the block is never replaced 567 // or deleted by these simplifications. The idea of simplification is that it 568 // cannot introduce new instructions, and there is no way to replace the 569 // terminator of a block without introducing a new instruction. 570 AssertingVH<Instruction> TerminatorVH(&BB->back()); 571 #endif 572 573 SmallSetVector<Instruction *, 16> WorkList; 574 // Iterate over the original function, only adding insts to the worklist 575 // if they actually need to be revisited. This avoids having to pre-init 576 // the worklist with the entire function's worth of instructions. 577 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 578 BI != E;) { 579 assert(!BI->isTerminator()); 580 Instruction *I = &*BI; 581 ++BI; 582 583 // We're visiting this instruction now, so make sure it's not in the 584 // worklist from an earlier visit. 585 if (!WorkList.count(I)) 586 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 587 } 588 589 while (!WorkList.empty()) { 590 Instruction *I = WorkList.pop_back_val(); 591 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 592 } 593 return MadeChange; 594 } 595 596 //===----------------------------------------------------------------------===// 597 // Control Flow Graph Restructuring. 598 // 599 600 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 601 /// method is called when we're about to delete Pred as a predecessor of BB. If 602 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 603 /// 604 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 605 /// nodes that collapse into identity values. For example, if we have: 606 /// x = phi(1, 0, 0, 0) 607 /// y = and x, z 608 /// 609 /// .. and delete the predecessor corresponding to the '1', this will attempt to 610 /// recursively fold the and to 0. 611 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 612 DeferredDominance *DDT) { 613 // This only adjusts blocks with PHI nodes. 614 if (!isa<PHINode>(BB->begin())) 615 return; 616 617 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 618 // them down. This will leave us with single entry phi nodes and other phis 619 // that can be removed. 620 BB->removePredecessor(Pred, true); 621 622 WeakTrackingVH PhiIt = &BB->front(); 623 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 624 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 625 Value *OldPhiIt = PhiIt; 626 627 if (!recursivelySimplifyInstruction(PN)) 628 continue; 629 630 // If recursive simplification ended up deleting the next PHI node we would 631 // iterate to, then our iterator is invalid, restart scanning from the top 632 // of the block. 633 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 634 } 635 if (DDT) 636 DDT->deleteEdge(Pred, BB); 637 } 638 639 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 640 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 641 /// between them, moving the instructions in the predecessor into DestBB and 642 /// deleting the predecessor block. 643 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT, 644 DeferredDominance *DDT) { 645 assert(!(DT && DDT) && "Cannot call with both DT and DDT."); 646 647 // If BB has single-entry PHI nodes, fold them. 648 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 649 Value *NewVal = PN->getIncomingValue(0); 650 // Replace self referencing PHI with undef, it must be dead. 651 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 652 PN->replaceAllUsesWith(NewVal); 653 PN->eraseFromParent(); 654 } 655 656 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 657 assert(PredBB && "Block doesn't have a single predecessor!"); 658 659 bool ReplaceEntryBB = false; 660 if (PredBB == &DestBB->getParent()->getEntryBlock()) 661 ReplaceEntryBB = true; 662 663 // Deferred DT update: Collect all the edges that enter PredBB. These 664 // dominator edges will be redirected to DestBB. 665 std::vector <DominatorTree::UpdateType> Updates; 666 if (DDT && !ReplaceEntryBB) { 667 Updates.reserve(1 + 668 (2 * std::distance(pred_begin(PredBB), pred_end(PredBB)))); 669 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 670 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 671 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 672 // This predecessor of PredBB may already have DestBB as a successor. 673 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 674 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 675 } 676 } 677 678 // Zap anything that took the address of DestBB. Not doing this will give the 679 // address an invalid value. 680 if (DestBB->hasAddressTaken()) { 681 BlockAddress *BA = BlockAddress::get(DestBB); 682 Constant *Replacement = 683 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 684 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 685 BA->getType())); 686 BA->destroyConstant(); 687 } 688 689 // Anything that branched to PredBB now branches to DestBB. 690 PredBB->replaceAllUsesWith(DestBB); 691 692 // Splice all the instructions from PredBB to DestBB. 693 PredBB->getTerminator()->eraseFromParent(); 694 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 695 696 // If the PredBB is the entry block of the function, move DestBB up to 697 // become the entry block after we erase PredBB. 698 if (ReplaceEntryBB) 699 DestBB->moveAfter(PredBB); 700 701 if (DT) { 702 // For some irreducible CFG we end up having forward-unreachable blocks 703 // so check if getNode returns a valid node before updating the domtree. 704 if (DomTreeNode *DTN = DT->getNode(PredBB)) { 705 BasicBlock *PredBBIDom = DTN->getIDom()->getBlock(); 706 DT->changeImmediateDominator(DestBB, PredBBIDom); 707 DT->eraseNode(PredBB); 708 } 709 } 710 711 if (DDT) { 712 DDT->deleteBB(PredBB); // Deferred deletion of BB. 713 if (ReplaceEntryBB) 714 // The entry block was removed and there is no external interface for the 715 // dominator tree to be notified of this change. In this corner-case we 716 // recalculate the entire tree. 717 DDT->recalculate(*(DestBB->getParent())); 718 else 719 DDT->applyUpdates(Updates); 720 } else { 721 PredBB->eraseFromParent(); // Nuke BB. 722 } 723 } 724 725 /// CanMergeValues - Return true if we can choose one of these values to use 726 /// in place of the other. Note that we will always choose the non-undef 727 /// value to keep. 728 static bool CanMergeValues(Value *First, Value *Second) { 729 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 730 } 731 732 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 733 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 734 /// 735 /// Assumption: Succ is the single successor for BB. 736 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 737 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 738 739 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 740 << Succ->getName() << "\n"); 741 // Shortcut, if there is only a single predecessor it must be BB and merging 742 // is always safe 743 if (Succ->getSinglePredecessor()) return true; 744 745 // Make a list of the predecessors of BB 746 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 747 748 // Look at all the phi nodes in Succ, to see if they present a conflict when 749 // merging these blocks 750 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 751 PHINode *PN = cast<PHINode>(I); 752 753 // If the incoming value from BB is again a PHINode in 754 // BB which has the same incoming value for *PI as PN does, we can 755 // merge the phi nodes and then the blocks can still be merged 756 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 757 if (BBPN && BBPN->getParent() == BB) { 758 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 759 BasicBlock *IBB = PN->getIncomingBlock(PI); 760 if (BBPreds.count(IBB) && 761 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 762 PN->getIncomingValue(PI))) { 763 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 764 << Succ->getName() << " is conflicting with " 765 << BBPN->getName() << " with regard to common predecessor " 766 << IBB->getName() << "\n"); 767 return false; 768 } 769 } 770 } else { 771 Value* Val = PN->getIncomingValueForBlock(BB); 772 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 773 // See if the incoming value for the common predecessor is equal to the 774 // one for BB, in which case this phi node will not prevent the merging 775 // of the block. 776 BasicBlock *IBB = PN->getIncomingBlock(PI); 777 if (BBPreds.count(IBB) && 778 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 779 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 780 << Succ->getName() << " is conflicting with regard to common " 781 << "predecessor " << IBB->getName() << "\n"); 782 return false; 783 } 784 } 785 } 786 } 787 788 return true; 789 } 790 791 using PredBlockVector = SmallVector<BasicBlock *, 16>; 792 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 793 794 /// \brief Determines the value to use as the phi node input for a block. 795 /// 796 /// Select between \p OldVal any value that we know flows from \p BB 797 /// to a particular phi on the basis of which one (if either) is not 798 /// undef. Update IncomingValues based on the selected value. 799 /// 800 /// \param OldVal The value we are considering selecting. 801 /// \param BB The block that the value flows in from. 802 /// \param IncomingValues A map from block-to-value for other phi inputs 803 /// that we have examined. 804 /// 805 /// \returns the selected value. 806 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 807 IncomingValueMap &IncomingValues) { 808 if (!isa<UndefValue>(OldVal)) { 809 assert((!IncomingValues.count(BB) || 810 IncomingValues.find(BB)->second == OldVal) && 811 "Expected OldVal to match incoming value from BB!"); 812 813 IncomingValues.insert(std::make_pair(BB, OldVal)); 814 return OldVal; 815 } 816 817 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 818 if (It != IncomingValues.end()) return It->second; 819 820 return OldVal; 821 } 822 823 /// \brief Create a map from block to value for the operands of a 824 /// given phi. 825 /// 826 /// Create a map from block to value for each non-undef value flowing 827 /// into \p PN. 828 /// 829 /// \param PN The phi we are collecting the map for. 830 /// \param IncomingValues [out] The map from block to value for this phi. 831 static void gatherIncomingValuesToPhi(PHINode *PN, 832 IncomingValueMap &IncomingValues) { 833 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 834 BasicBlock *BB = PN->getIncomingBlock(i); 835 Value *V = PN->getIncomingValue(i); 836 837 if (!isa<UndefValue>(V)) 838 IncomingValues.insert(std::make_pair(BB, V)); 839 } 840 } 841 842 /// \brief Replace the incoming undef values to a phi with the values 843 /// from a block-to-value map. 844 /// 845 /// \param PN The phi we are replacing the undefs in. 846 /// \param IncomingValues A map from block to value. 847 static void replaceUndefValuesInPhi(PHINode *PN, 848 const IncomingValueMap &IncomingValues) { 849 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 850 Value *V = PN->getIncomingValue(i); 851 852 if (!isa<UndefValue>(V)) continue; 853 854 BasicBlock *BB = PN->getIncomingBlock(i); 855 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 856 if (It == IncomingValues.end()) continue; 857 858 PN->setIncomingValue(i, It->second); 859 } 860 } 861 862 /// \brief Replace a value flowing from a block to a phi with 863 /// potentially multiple instances of that value flowing from the 864 /// block's predecessors to the phi. 865 /// 866 /// \param BB The block with the value flowing into the phi. 867 /// \param BBPreds The predecessors of BB. 868 /// \param PN The phi that we are updating. 869 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 870 const PredBlockVector &BBPreds, 871 PHINode *PN) { 872 Value *OldVal = PN->removeIncomingValue(BB, false); 873 assert(OldVal && "No entry in PHI for Pred BB!"); 874 875 IncomingValueMap IncomingValues; 876 877 // We are merging two blocks - BB, and the block containing PN - and 878 // as a result we need to redirect edges from the predecessors of BB 879 // to go to the block containing PN, and update PN 880 // accordingly. Since we allow merging blocks in the case where the 881 // predecessor and successor blocks both share some predecessors, 882 // and where some of those common predecessors might have undef 883 // values flowing into PN, we want to rewrite those values to be 884 // consistent with the non-undef values. 885 886 gatherIncomingValuesToPhi(PN, IncomingValues); 887 888 // If this incoming value is one of the PHI nodes in BB, the new entries 889 // in the PHI node are the entries from the old PHI. 890 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 891 PHINode *OldValPN = cast<PHINode>(OldVal); 892 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 893 // Note that, since we are merging phi nodes and BB and Succ might 894 // have common predecessors, we could end up with a phi node with 895 // identical incoming branches. This will be cleaned up later (and 896 // will trigger asserts if we try to clean it up now, without also 897 // simplifying the corresponding conditional branch). 898 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 899 Value *PredVal = OldValPN->getIncomingValue(i); 900 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 901 IncomingValues); 902 903 // And add a new incoming value for this predecessor for the 904 // newly retargeted branch. 905 PN->addIncoming(Selected, PredBB); 906 } 907 } else { 908 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 909 // Update existing incoming values in PN for this 910 // predecessor of BB. 911 BasicBlock *PredBB = BBPreds[i]; 912 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 913 IncomingValues); 914 915 // And add a new incoming value for this predecessor for the 916 // newly retargeted branch. 917 PN->addIncoming(Selected, PredBB); 918 } 919 } 920 921 replaceUndefValuesInPhi(PN, IncomingValues); 922 } 923 924 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 925 /// unconditional branch, and contains no instructions other than PHI nodes, 926 /// potential side-effect free intrinsics and the branch. If possible, 927 /// eliminate BB by rewriting all the predecessors to branch to the successor 928 /// block and return true. If we can't transform, return false. 929 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 930 DeferredDominance *DDT) { 931 assert(BB != &BB->getParent()->getEntryBlock() && 932 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 933 934 // We can't eliminate infinite loops. 935 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 936 if (BB == Succ) return false; 937 938 // Check to see if merging these blocks would cause conflicts for any of the 939 // phi nodes in BB or Succ. If not, we can safely merge. 940 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 941 942 // Check for cases where Succ has multiple predecessors and a PHI node in BB 943 // has uses which will not disappear when the PHI nodes are merged. It is 944 // possible to handle such cases, but difficult: it requires checking whether 945 // BB dominates Succ, which is non-trivial to calculate in the case where 946 // Succ has multiple predecessors. Also, it requires checking whether 947 // constructing the necessary self-referential PHI node doesn't introduce any 948 // conflicts; this isn't too difficult, but the previous code for doing this 949 // was incorrect. 950 // 951 // Note that if this check finds a live use, BB dominates Succ, so BB is 952 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 953 // folding the branch isn't profitable in that case anyway. 954 if (!Succ->getSinglePredecessor()) { 955 BasicBlock::iterator BBI = BB->begin(); 956 while (isa<PHINode>(*BBI)) { 957 for (Use &U : BBI->uses()) { 958 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 959 if (PN->getIncomingBlock(U) != BB) 960 return false; 961 } else { 962 return false; 963 } 964 } 965 ++BBI; 966 } 967 } 968 969 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 970 971 std::vector<DominatorTree::UpdateType> Updates; 972 if (DDT) { 973 Updates.reserve(1 + (2 * std::distance(pred_begin(BB), pred_end(BB)))); 974 Updates.push_back({DominatorTree::Delete, BB, Succ}); 975 // All predecessors of BB will be moved to Succ. 976 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 977 Updates.push_back({DominatorTree::Delete, *I, BB}); 978 // This predecessor of BB may already have Succ as a successor. 979 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 980 Updates.push_back({DominatorTree::Insert, *I, Succ}); 981 } 982 } 983 984 if (isa<PHINode>(Succ->begin())) { 985 // If there is more than one pred of succ, and there are PHI nodes in 986 // the successor, then we need to add incoming edges for the PHI nodes 987 // 988 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 989 990 // Loop over all of the PHI nodes in the successor of BB. 991 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 992 PHINode *PN = cast<PHINode>(I); 993 994 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 995 } 996 } 997 998 if (Succ->getSinglePredecessor()) { 999 // BB is the only predecessor of Succ, so Succ will end up with exactly 1000 // the same predecessors BB had. 1001 1002 // Copy over any phi, debug or lifetime instruction. 1003 BB->getTerminator()->eraseFromParent(); 1004 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1005 BB->getInstList()); 1006 } else { 1007 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1008 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1009 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1010 PN->eraseFromParent(); 1011 } 1012 } 1013 1014 // If the unconditional branch we replaced contains llvm.loop metadata, we 1015 // add the metadata to the branch instructions in the predecessors. 1016 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1017 Instruction *TI = BB->getTerminator(); 1018 if (TI) 1019 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1020 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1021 BasicBlock *Pred = *PI; 1022 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1023 } 1024 1025 // Everything that jumped to BB now goes to Succ. 1026 BB->replaceAllUsesWith(Succ); 1027 if (!Succ->hasName()) Succ->takeName(BB); 1028 1029 if (DDT) { 1030 DDT->deleteBB(BB); // Deferred deletion of the old basic block. 1031 DDT->applyUpdates(Updates); 1032 } else { 1033 BB->eraseFromParent(); // Delete the old basic block. 1034 } 1035 return true; 1036 } 1037 1038 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 1039 /// nodes in this block. This doesn't try to be clever about PHI nodes 1040 /// which differ only in the order of the incoming values, but instcombine 1041 /// orders them so it usually won't matter. 1042 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1043 // This implementation doesn't currently consider undef operands 1044 // specially. Theoretically, two phis which are identical except for 1045 // one having an undef where the other doesn't could be collapsed. 1046 1047 struct PHIDenseMapInfo { 1048 static PHINode *getEmptyKey() { 1049 return DenseMapInfo<PHINode *>::getEmptyKey(); 1050 } 1051 1052 static PHINode *getTombstoneKey() { 1053 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1054 } 1055 1056 static unsigned getHashValue(PHINode *PN) { 1057 // Compute a hash value on the operands. Instcombine will likely have 1058 // sorted them, which helps expose duplicates, but we have to check all 1059 // the operands to be safe in case instcombine hasn't run. 1060 return static_cast<unsigned>(hash_combine( 1061 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1062 hash_combine_range(PN->block_begin(), PN->block_end()))); 1063 } 1064 1065 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1066 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1067 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1068 return LHS == RHS; 1069 return LHS->isIdenticalTo(RHS); 1070 } 1071 }; 1072 1073 // Set of unique PHINodes. 1074 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1075 1076 // Examine each PHI. 1077 bool Changed = false; 1078 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1079 auto Inserted = PHISet.insert(PN); 1080 if (!Inserted.second) { 1081 // A duplicate. Replace this PHI with its duplicate. 1082 PN->replaceAllUsesWith(*Inserted.first); 1083 PN->eraseFromParent(); 1084 Changed = true; 1085 1086 // The RAUW can change PHIs that we already visited. Start over from the 1087 // beginning. 1088 PHISet.clear(); 1089 I = BB->begin(); 1090 } 1091 } 1092 1093 return Changed; 1094 } 1095 1096 /// enforceKnownAlignment - If the specified pointer points to an object that 1097 /// we control, modify the object's alignment to PrefAlign. This isn't 1098 /// often possible though. If alignment is important, a more reliable approach 1099 /// is to simply align all global variables and allocation instructions to 1100 /// their preferred alignment from the beginning. 1101 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 1102 unsigned PrefAlign, 1103 const DataLayout &DL) { 1104 assert(PrefAlign > Align); 1105 1106 V = V->stripPointerCasts(); 1107 1108 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1109 // TODO: ideally, computeKnownBits ought to have used 1110 // AllocaInst::getAlignment() in its computation already, making 1111 // the below max redundant. But, as it turns out, 1112 // stripPointerCasts recurses through infinite layers of bitcasts, 1113 // while computeKnownBits is not allowed to traverse more than 6 1114 // levels. 1115 Align = std::max(AI->getAlignment(), Align); 1116 if (PrefAlign <= Align) 1117 return Align; 1118 1119 // If the preferred alignment is greater than the natural stack alignment 1120 // then don't round up. This avoids dynamic stack realignment. 1121 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1122 return Align; 1123 AI->setAlignment(PrefAlign); 1124 return PrefAlign; 1125 } 1126 1127 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1128 // TODO: as above, this shouldn't be necessary. 1129 Align = std::max(GO->getAlignment(), Align); 1130 if (PrefAlign <= Align) 1131 return Align; 1132 1133 // If there is a large requested alignment and we can, bump up the alignment 1134 // of the global. If the memory we set aside for the global may not be the 1135 // memory used by the final program then it is impossible for us to reliably 1136 // enforce the preferred alignment. 1137 if (!GO->canIncreaseAlignment()) 1138 return Align; 1139 1140 GO->setAlignment(PrefAlign); 1141 return PrefAlign; 1142 } 1143 1144 return Align; 1145 } 1146 1147 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1148 const DataLayout &DL, 1149 const Instruction *CxtI, 1150 AssumptionCache *AC, 1151 const DominatorTree *DT) { 1152 assert(V->getType()->isPointerTy() && 1153 "getOrEnforceKnownAlignment expects a pointer!"); 1154 1155 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1156 unsigned TrailZ = Known.countMinTrailingZeros(); 1157 1158 // Avoid trouble with ridiculously large TrailZ values, such as 1159 // those computed from a null pointer. 1160 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1161 1162 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1163 1164 // LLVM doesn't support alignments larger than this currently. 1165 Align = std::min(Align, +Value::MaximumAlignment); 1166 1167 if (PrefAlign > Align) 1168 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1169 1170 // We don't need to make any adjustment. 1171 return Align; 1172 } 1173 1174 ///===---------------------------------------------------------------------===// 1175 /// Dbg Intrinsic utilities 1176 /// 1177 1178 /// See if there is a dbg.value intrinsic for DIVar before I. 1179 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1180 Instruction *I) { 1181 // Since we can't guarantee that the original dbg.declare instrinsic 1182 // is removed by LowerDbgDeclare(), we need to make sure that we are 1183 // not inserting the same dbg.value intrinsic over and over. 1184 BasicBlock::InstListType::iterator PrevI(I); 1185 if (PrevI != I->getParent()->getInstList().begin()) { 1186 --PrevI; 1187 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1188 if (DVI->getValue() == I->getOperand(0) && 1189 DVI->getVariable() == DIVar && 1190 DVI->getExpression() == DIExpr) 1191 return true; 1192 } 1193 return false; 1194 } 1195 1196 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1197 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1198 DIExpression *DIExpr, 1199 PHINode *APN) { 1200 // Since we can't guarantee that the original dbg.declare instrinsic 1201 // is removed by LowerDbgDeclare(), we need to make sure that we are 1202 // not inserting the same dbg.value intrinsic over and over. 1203 SmallVector<DbgValueInst *, 1> DbgValues; 1204 findDbgValues(DbgValues, APN); 1205 for (auto *DVI : DbgValues) { 1206 assert(DVI->getValue() == APN); 1207 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1208 return true; 1209 } 1210 return false; 1211 } 1212 1213 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1214 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1215 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1216 StoreInst *SI, DIBuilder &Builder) { 1217 assert(DII->isAddressOfVariable()); 1218 auto *DIVar = DII->getVariable(); 1219 assert(DIVar && "Missing variable"); 1220 auto *DIExpr = DII->getExpression(); 1221 Value *DV = SI->getOperand(0); 1222 1223 // If an argument is zero extended then use argument directly. The ZExt 1224 // may be zapped by an optimization pass in future. 1225 Argument *ExtendedArg = nullptr; 1226 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1227 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1228 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1229 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1230 if (ExtendedArg) { 1231 // If this DII was already describing only a fragment of a variable, ensure 1232 // that fragment is appropriately narrowed here. 1233 // But if a fragment wasn't used, describe the value as the original 1234 // argument (rather than the zext or sext) so that it remains described even 1235 // if the sext/zext is optimized away. This widens the variable description, 1236 // leaving it up to the consumer to know how the smaller value may be 1237 // represented in a larger register. 1238 if (auto Fragment = DIExpr->getFragmentInfo()) { 1239 unsigned FragmentOffset = Fragment->OffsetInBits; 1240 SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(), 1241 DIExpr->elements_end() - 3); 1242 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1243 Ops.push_back(FragmentOffset); 1244 const DataLayout &DL = DII->getModule()->getDataLayout(); 1245 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1246 DIExpr = Builder.createExpression(Ops); 1247 } 1248 DV = ExtendedArg; 1249 } 1250 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1251 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1252 SI); 1253 } 1254 1255 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1256 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1257 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1258 LoadInst *LI, DIBuilder &Builder) { 1259 auto *DIVar = DII->getVariable(); 1260 auto *DIExpr = DII->getExpression(); 1261 assert(DIVar && "Missing variable"); 1262 1263 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1264 return; 1265 1266 // We are now tracking the loaded value instead of the address. In the 1267 // future if multi-location support is added to the IR, it might be 1268 // preferable to keep tracking both the loaded value and the original 1269 // address in case the alloca can not be elided. 1270 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1271 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); 1272 DbgValue->insertAfter(LI); 1273 } 1274 1275 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1276 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1277 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1278 PHINode *APN, DIBuilder &Builder) { 1279 auto *DIVar = DII->getVariable(); 1280 auto *DIExpr = DII->getExpression(); 1281 assert(DIVar && "Missing variable"); 1282 1283 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1284 return; 1285 1286 BasicBlock *BB = APN->getParent(); 1287 auto InsertionPt = BB->getFirstInsertionPt(); 1288 1289 // The block may be a catchswitch block, which does not have a valid 1290 // insertion point. 1291 // FIXME: Insert dbg.value markers in the successors when appropriate. 1292 if (InsertionPt != BB->end()) 1293 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), 1294 &*InsertionPt); 1295 } 1296 1297 /// Determine whether this alloca is either a VLA or an array. 1298 static bool isArray(AllocaInst *AI) { 1299 return AI->isArrayAllocation() || 1300 AI->getType()->getElementType()->isArrayTy(); 1301 } 1302 1303 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1304 /// of llvm.dbg.value intrinsics. 1305 bool llvm::LowerDbgDeclare(Function &F) { 1306 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1307 SmallVector<DbgDeclareInst *, 4> Dbgs; 1308 for (auto &FI : F) 1309 for (Instruction &BI : FI) 1310 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1311 Dbgs.push_back(DDI); 1312 1313 if (Dbgs.empty()) 1314 return false; 1315 1316 for (auto &I : Dbgs) { 1317 DbgDeclareInst *DDI = I; 1318 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1319 // If this is an alloca for a scalar variable, insert a dbg.value 1320 // at each load and store to the alloca and erase the dbg.declare. 1321 // The dbg.values allow tracking a variable even if it is not 1322 // stored on the stack, while the dbg.declare can only describe 1323 // the stack slot (and at a lexical-scope granularity). Later 1324 // passes will attempt to elide the stack slot. 1325 if (!AI || isArray(AI)) 1326 continue; 1327 1328 // A volatile load/store means that the alloca can't be elided anyway. 1329 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1330 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1331 return LI->isVolatile(); 1332 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1333 return SI->isVolatile(); 1334 return false; 1335 })) 1336 continue; 1337 1338 for (auto &AIUse : AI->uses()) { 1339 User *U = AIUse.getUser(); 1340 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1341 if (AIUse.getOperandNo() == 1) 1342 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1343 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1344 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1345 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1346 // This is a call by-value or some other instruction that 1347 // takes a pointer to the variable. Insert a *value* 1348 // intrinsic that describes the alloca. 1349 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), 1350 DDI->getExpression(), DDI->getDebugLoc(), 1351 CI); 1352 } 1353 } 1354 DDI->eraseFromParent(); 1355 } 1356 return true; 1357 } 1358 1359 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1360 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1361 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1362 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1363 if (InsertedPHIs.size() == 0) 1364 return; 1365 1366 // Map existing PHI nodes to their dbg.values. 1367 ValueToValueMapTy DbgValueMap; 1368 for (auto &I : *BB) { 1369 if (auto DbgII = dyn_cast<DbgInfoIntrinsic>(&I)) { 1370 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1371 DbgValueMap.insert({Loc, DbgII}); 1372 } 1373 } 1374 if (DbgValueMap.size() == 0) 1375 return; 1376 1377 // Then iterate through the new PHIs and look to see if they use one of the 1378 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1379 // propagate the info through the new PHI. 1380 LLVMContext &C = BB->getContext(); 1381 for (auto PHI : InsertedPHIs) { 1382 BasicBlock *Parent = PHI->getParent(); 1383 // Avoid inserting an intrinsic into an EH block. 1384 if (Parent->getFirstNonPHI()->isEHPad()) 1385 continue; 1386 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1387 for (auto VI : PHI->operand_values()) { 1388 auto V = DbgValueMap.find(VI); 1389 if (V != DbgValueMap.end()) { 1390 auto *DbgII = cast<DbgInfoIntrinsic>(V->second); 1391 Instruction *NewDbgII = DbgII->clone(); 1392 NewDbgII->setOperand(0, PhiMAV); 1393 auto InsertionPt = Parent->getFirstInsertionPt(); 1394 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1395 NewDbgII->insertBefore(&*InsertionPt); 1396 } 1397 } 1398 } 1399 } 1400 1401 /// Finds all intrinsics declaring local variables as living in the memory that 1402 /// 'V' points to. This may include a mix of dbg.declare and 1403 /// dbg.addr intrinsics. 1404 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1405 auto *L = LocalAsMetadata::getIfExists(V); 1406 if (!L) 1407 return {}; 1408 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1409 if (!MDV) 1410 return {}; 1411 1412 TinyPtrVector<DbgInfoIntrinsic *> Declares; 1413 for (User *U : MDV->users()) { 1414 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U)) 1415 if (DII->isAddressOfVariable()) 1416 Declares.push_back(DII); 1417 } 1418 1419 return Declares; 1420 } 1421 1422 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1423 if (auto *L = LocalAsMetadata::getIfExists(V)) 1424 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1425 for (User *U : MDV->users()) 1426 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1427 DbgValues.push_back(DVI); 1428 } 1429 1430 void llvm::findDbgUsers(SmallVectorImpl<DbgInfoIntrinsic *> &DbgUsers, 1431 Value *V) { 1432 if (auto *L = LocalAsMetadata::getIfExists(V)) 1433 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1434 for (User *U : MDV->users()) 1435 if (DbgInfoIntrinsic *DII = dyn_cast<DbgInfoIntrinsic>(U)) 1436 DbgUsers.push_back(DII); 1437 } 1438 1439 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1440 Instruction *InsertBefore, DIBuilder &Builder, 1441 bool DerefBefore, int Offset, bool DerefAfter) { 1442 auto DbgAddrs = FindDbgAddrUses(Address); 1443 for (DbgInfoIntrinsic *DII : DbgAddrs) { 1444 DebugLoc Loc = DII->getDebugLoc(); 1445 auto *DIVar = DII->getVariable(); 1446 auto *DIExpr = DII->getExpression(); 1447 assert(DIVar && "Missing variable"); 1448 DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter); 1449 // Insert llvm.dbg.declare immediately after InsertBefore, and remove old 1450 // llvm.dbg.declare. 1451 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1452 if (DII == InsertBefore) 1453 InsertBefore = &*std::next(InsertBefore->getIterator()); 1454 DII->eraseFromParent(); 1455 } 1456 return !DbgAddrs.empty(); 1457 } 1458 1459 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1460 DIBuilder &Builder, bool DerefBefore, 1461 int Offset, bool DerefAfter) { 1462 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1463 DerefBefore, Offset, DerefAfter); 1464 } 1465 1466 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1467 DIBuilder &Builder, int Offset) { 1468 DebugLoc Loc = DVI->getDebugLoc(); 1469 auto *DIVar = DVI->getVariable(); 1470 auto *DIExpr = DVI->getExpression(); 1471 assert(DIVar && "Missing variable"); 1472 1473 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1474 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1475 // it and give up. 1476 if (!DIExpr || DIExpr->getNumElements() < 1 || 1477 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1478 return; 1479 1480 // Insert the offset immediately after the first deref. 1481 // We could just change the offset argument of dbg.value, but it's unsigned... 1482 if (Offset) { 1483 SmallVector<uint64_t, 4> Ops; 1484 Ops.push_back(dwarf::DW_OP_deref); 1485 DIExpression::appendOffset(Ops, Offset); 1486 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1487 DIExpr = Builder.createExpression(Ops); 1488 } 1489 1490 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1491 DVI->eraseFromParent(); 1492 } 1493 1494 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1495 DIBuilder &Builder, int Offset) { 1496 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1497 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1498 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1499 Use &U = *UI++; 1500 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1501 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1502 } 1503 } 1504 1505 void llvm::salvageDebugInfo(Instruction &I) { 1506 // This function is hot. An early check to determine whether the instruction 1507 // has any metadata to save allows it to return earlier on average. 1508 if (!I.isUsedByMetadata()) 1509 return; 1510 1511 SmallVector<DbgInfoIntrinsic *, 1> DbgUsers; 1512 findDbgUsers(DbgUsers, &I); 1513 if (DbgUsers.empty()) 1514 return; 1515 1516 auto &M = *I.getModule(); 1517 auto &DL = M.getDataLayout(); 1518 1519 auto wrapMD = [&](Value *V) { 1520 return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V)); 1521 }; 1522 1523 auto doSalvage = [&](DbgInfoIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) { 1524 auto *DIExpr = DII->getExpression(); 1525 DIExpr = DIExpression::doPrepend(DIExpr, Ops, 1526 DIExpression::WithStackValue); 1527 DII->setOperand(0, wrapMD(I.getOperand(0))); 1528 DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1529 DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1530 }; 1531 1532 auto applyOffset = [&](DbgInfoIntrinsic *DII, uint64_t Offset) { 1533 SmallVector<uint64_t, 8> Ops; 1534 DIExpression::appendOffset(Ops, Offset); 1535 doSalvage(DII, Ops); 1536 }; 1537 1538 auto applyOps = [&](DbgInfoIntrinsic *DII, 1539 std::initializer_list<uint64_t> Opcodes) { 1540 SmallVector<uint64_t, 8> Ops(Opcodes); 1541 doSalvage(DII, Ops); 1542 }; 1543 1544 if (auto *CI = dyn_cast<CastInst>(&I)) { 1545 if (!CI->isNoopCast(DL)) 1546 return; 1547 1548 // No-op casts are irrelevant for debug info. 1549 MetadataAsValue *CastSrc = wrapMD(I.getOperand(0)); 1550 for (auto *DII : DbgUsers) { 1551 DII->setOperand(0, CastSrc); 1552 DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1553 } 1554 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1555 unsigned BitWidth = 1556 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1557 // Rewrite a constant GEP into a DIExpression. Since we are performing 1558 // arithmetic to compute the variable's *value* in the DIExpression, we 1559 // need to mark the expression with a DW_OP_stack_value. 1560 APInt Offset(BitWidth, 0); 1561 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) 1562 for (auto *DII : DbgUsers) 1563 applyOffset(DII, Offset.getSExtValue()); 1564 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1565 // Rewrite binary operations with constant integer operands. 1566 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1567 if (!ConstInt || ConstInt->getBitWidth() > 64) 1568 return; 1569 1570 uint64_t Val = ConstInt->getSExtValue(); 1571 for (auto *DII : DbgUsers) { 1572 switch (BI->getOpcode()) { 1573 case Instruction::Add: 1574 applyOffset(DII, Val); 1575 break; 1576 case Instruction::Sub: 1577 applyOffset(DII, -int64_t(Val)); 1578 break; 1579 case Instruction::Mul: 1580 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1581 break; 1582 case Instruction::SDiv: 1583 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1584 break; 1585 case Instruction::SRem: 1586 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1587 break; 1588 case Instruction::Or: 1589 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1590 break; 1591 case Instruction::And: 1592 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1593 break; 1594 case Instruction::Xor: 1595 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1596 break; 1597 case Instruction::Shl: 1598 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1599 break; 1600 case Instruction::LShr: 1601 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1602 break; 1603 case Instruction::AShr: 1604 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1605 break; 1606 default: 1607 // TODO: Salvage constants from each kind of binop we know about. 1608 continue; 1609 } 1610 } 1611 } else if (isa<LoadInst>(&I)) { 1612 MetadataAsValue *AddrMD = wrapMD(I.getOperand(0)); 1613 for (auto *DII : DbgUsers) { 1614 // Rewrite the load into DW_OP_deref. 1615 auto *DIExpr = DII->getExpression(); 1616 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref); 1617 DII->setOperand(0, AddrMD); 1618 DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1619 DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1620 } 1621 } 1622 } 1623 1624 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1625 unsigned NumDeadInst = 0; 1626 // Delete the instructions backwards, as it has a reduced likelihood of 1627 // having to update as many def-use and use-def chains. 1628 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1629 while (EndInst != &BB->front()) { 1630 // Delete the next to last instruction. 1631 Instruction *Inst = &*--EndInst->getIterator(); 1632 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1633 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1634 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1635 EndInst = Inst; 1636 continue; 1637 } 1638 if (!isa<DbgInfoIntrinsic>(Inst)) 1639 ++NumDeadInst; 1640 Inst->eraseFromParent(); 1641 } 1642 return NumDeadInst; 1643 } 1644 1645 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1646 bool PreserveLCSSA, DeferredDominance *DDT) { 1647 BasicBlock *BB = I->getParent(); 1648 std::vector <DominatorTree::UpdateType> Updates; 1649 1650 // Loop over all of the successors, removing BB's entry from any PHI 1651 // nodes. 1652 if (DDT) 1653 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1654 for (BasicBlock *Successor : successors(BB)) { 1655 Successor->removePredecessor(BB, PreserveLCSSA); 1656 if (DDT) 1657 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1658 } 1659 // Insert a call to llvm.trap right before this. This turns the undefined 1660 // behavior into a hard fail instead of falling through into random code. 1661 if (UseLLVMTrap) { 1662 Function *TrapFn = 1663 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1664 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1665 CallTrap->setDebugLoc(I->getDebugLoc()); 1666 } 1667 new UnreachableInst(I->getContext(), I); 1668 1669 // All instructions after this are dead. 1670 unsigned NumInstrsRemoved = 0; 1671 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1672 while (BBI != BBE) { 1673 if (!BBI->use_empty()) 1674 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1675 BB->getInstList().erase(BBI++); 1676 ++NumInstrsRemoved; 1677 } 1678 if (DDT) 1679 DDT->applyUpdates(Updates); 1680 return NumInstrsRemoved; 1681 } 1682 1683 /// changeToCall - Convert the specified invoke into a normal call. 1684 static void changeToCall(InvokeInst *II, DeferredDominance *DDT = nullptr) { 1685 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1686 SmallVector<OperandBundleDef, 1> OpBundles; 1687 II->getOperandBundlesAsDefs(OpBundles); 1688 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1689 "", II); 1690 NewCall->takeName(II); 1691 NewCall->setCallingConv(II->getCallingConv()); 1692 NewCall->setAttributes(II->getAttributes()); 1693 NewCall->setDebugLoc(II->getDebugLoc()); 1694 II->replaceAllUsesWith(NewCall); 1695 1696 // Follow the call by a branch to the normal destination. 1697 BasicBlock *NormalDestBB = II->getNormalDest(); 1698 BranchInst::Create(NormalDestBB, II); 1699 1700 // Update PHI nodes in the unwind destination 1701 BasicBlock *BB = II->getParent(); 1702 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1703 UnwindDestBB->removePredecessor(BB); 1704 II->eraseFromParent(); 1705 if (DDT) 1706 DDT->deleteEdge(BB, UnwindDestBB); 1707 } 1708 1709 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1710 BasicBlock *UnwindEdge) { 1711 BasicBlock *BB = CI->getParent(); 1712 1713 // Convert this function call into an invoke instruction. First, split the 1714 // basic block. 1715 BasicBlock *Split = 1716 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1717 1718 // Delete the unconditional branch inserted by splitBasicBlock 1719 BB->getInstList().pop_back(); 1720 1721 // Create the new invoke instruction. 1722 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1723 SmallVector<OperandBundleDef, 1> OpBundles; 1724 1725 CI->getOperandBundlesAsDefs(OpBundles); 1726 1727 // Note: we're round tripping operand bundles through memory here, and that 1728 // can potentially be avoided with a cleverer API design that we do not have 1729 // as of this time. 1730 1731 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1732 InvokeArgs, OpBundles, CI->getName(), BB); 1733 II->setDebugLoc(CI->getDebugLoc()); 1734 II->setCallingConv(CI->getCallingConv()); 1735 II->setAttributes(CI->getAttributes()); 1736 1737 // Make sure that anything using the call now uses the invoke! This also 1738 // updates the CallGraph if present, because it uses a WeakTrackingVH. 1739 CI->replaceAllUsesWith(II); 1740 1741 // Delete the original call 1742 Split->getInstList().pop_front(); 1743 return Split; 1744 } 1745 1746 static bool markAliveBlocks(Function &F, 1747 SmallPtrSetImpl<BasicBlock*> &Reachable, 1748 DeferredDominance *DDT = nullptr) { 1749 SmallVector<BasicBlock*, 128> Worklist; 1750 BasicBlock *BB = &F.front(); 1751 Worklist.push_back(BB); 1752 Reachable.insert(BB); 1753 bool Changed = false; 1754 do { 1755 BB = Worklist.pop_back_val(); 1756 1757 // Do a quick scan of the basic block, turning any obviously unreachable 1758 // instructions into LLVM unreachable insts. The instruction combining pass 1759 // canonicalizes unreachable insts into stores to null or undef. 1760 for (Instruction &I : *BB) { 1761 // Assumptions that are known to be false are equivalent to unreachable. 1762 // Also, if the condition is undefined, then we make the choice most 1763 // beneficial to the optimizer, and choose that to also be unreachable. 1764 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1765 if (II->getIntrinsicID() == Intrinsic::assume) { 1766 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 1767 // Don't insert a call to llvm.trap right before the unreachable. 1768 changeToUnreachable(II, false, false, DDT); 1769 Changed = true; 1770 break; 1771 } 1772 } 1773 1774 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1775 // A call to the guard intrinsic bails out of the current compilation 1776 // unit if the predicate passed to it is false. If the predicate is a 1777 // constant false, then we know the guard will bail out of the current 1778 // compile unconditionally, so all code following it is dead. 1779 // 1780 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1781 // guards to treat `undef` as `false` since a guard on `undef` can 1782 // still be useful for widening. 1783 if (match(II->getArgOperand(0), m_Zero())) 1784 if (!isa<UnreachableInst>(II->getNextNode())) { 1785 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/false, 1786 false, DDT); 1787 Changed = true; 1788 break; 1789 } 1790 } 1791 } 1792 1793 if (auto *CI = dyn_cast<CallInst>(&I)) { 1794 Value *Callee = CI->getCalledValue(); 1795 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1796 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DDT); 1797 Changed = true; 1798 break; 1799 } 1800 if (CI->doesNotReturn()) { 1801 // If we found a call to a no-return function, insert an unreachable 1802 // instruction after it. Make sure there isn't *already* one there 1803 // though. 1804 if (!isa<UnreachableInst>(CI->getNextNode())) { 1805 // Don't insert a call to llvm.trap right before the unreachable. 1806 changeToUnreachable(CI->getNextNode(), false, false, DDT); 1807 Changed = true; 1808 } 1809 break; 1810 } 1811 } 1812 1813 // Store to undef and store to null are undefined and used to signal that 1814 // they should be changed to unreachable by passes that can't modify the 1815 // CFG. 1816 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1817 // Don't touch volatile stores. 1818 if (SI->isVolatile()) continue; 1819 1820 Value *Ptr = SI->getOperand(1); 1821 1822 if (isa<UndefValue>(Ptr) || 1823 (isa<ConstantPointerNull>(Ptr) && 1824 SI->getPointerAddressSpace() == 0)) { 1825 changeToUnreachable(SI, true, false, DDT); 1826 Changed = true; 1827 break; 1828 } 1829 } 1830 } 1831 1832 TerminatorInst *Terminator = BB->getTerminator(); 1833 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1834 // Turn invokes that call 'nounwind' functions into ordinary calls. 1835 Value *Callee = II->getCalledValue(); 1836 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1837 changeToUnreachable(II, true, false, DDT); 1838 Changed = true; 1839 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1840 if (II->use_empty() && II->onlyReadsMemory()) { 1841 // jump to the normal destination branch. 1842 BasicBlock *NormalDestBB = II->getNormalDest(); 1843 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1844 BranchInst::Create(NormalDestBB, II); 1845 UnwindDestBB->removePredecessor(II->getParent()); 1846 II->eraseFromParent(); 1847 if (DDT) 1848 DDT->deleteEdge(BB, UnwindDestBB); 1849 } else 1850 changeToCall(II, DDT); 1851 Changed = true; 1852 } 1853 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1854 // Remove catchpads which cannot be reached. 1855 struct CatchPadDenseMapInfo { 1856 static CatchPadInst *getEmptyKey() { 1857 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1858 } 1859 1860 static CatchPadInst *getTombstoneKey() { 1861 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1862 } 1863 1864 static unsigned getHashValue(CatchPadInst *CatchPad) { 1865 return static_cast<unsigned>(hash_combine_range( 1866 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1867 } 1868 1869 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1870 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1871 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1872 return LHS == RHS; 1873 return LHS->isIdenticalTo(RHS); 1874 } 1875 }; 1876 1877 // Set of unique CatchPads. 1878 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1879 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1880 HandlerSet; 1881 detail::DenseSetEmpty Empty; 1882 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1883 E = CatchSwitch->handler_end(); 1884 I != E; ++I) { 1885 BasicBlock *HandlerBB = *I; 1886 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1887 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1888 CatchSwitch->removeHandler(I); 1889 --I; 1890 --E; 1891 Changed = true; 1892 } 1893 } 1894 } 1895 1896 Changed |= ConstantFoldTerminator(BB, true, nullptr, DDT); 1897 for (BasicBlock *Successor : successors(BB)) 1898 if (Reachable.insert(Successor).second) 1899 Worklist.push_back(Successor); 1900 } while (!Worklist.empty()); 1901 return Changed; 1902 } 1903 1904 void llvm::removeUnwindEdge(BasicBlock *BB, DeferredDominance *DDT) { 1905 TerminatorInst *TI = BB->getTerminator(); 1906 1907 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1908 changeToCall(II, DDT); 1909 return; 1910 } 1911 1912 TerminatorInst *NewTI; 1913 BasicBlock *UnwindDest; 1914 1915 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1916 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1917 UnwindDest = CRI->getUnwindDest(); 1918 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1919 auto *NewCatchSwitch = CatchSwitchInst::Create( 1920 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1921 CatchSwitch->getName(), CatchSwitch); 1922 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1923 NewCatchSwitch->addHandler(PadBB); 1924 1925 NewTI = NewCatchSwitch; 1926 UnwindDest = CatchSwitch->getUnwindDest(); 1927 } else { 1928 llvm_unreachable("Could not find unwind successor"); 1929 } 1930 1931 NewTI->takeName(TI); 1932 NewTI->setDebugLoc(TI->getDebugLoc()); 1933 UnwindDest->removePredecessor(BB); 1934 TI->replaceAllUsesWith(NewTI); 1935 TI->eraseFromParent(); 1936 if (DDT) 1937 DDT->deleteEdge(BB, UnwindDest); 1938 } 1939 1940 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 1941 /// if they are in a dead cycle. Return true if a change was made, false 1942 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 1943 /// after modifying the CFG. 1944 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI, 1945 DeferredDominance *DDT) { 1946 SmallPtrSet<BasicBlock*, 16> Reachable; 1947 bool Changed = markAliveBlocks(F, Reachable, DDT); 1948 1949 // If there are unreachable blocks in the CFG... 1950 if (Reachable.size() == F.size()) 1951 return Changed; 1952 1953 assert(Reachable.size() < F.size()); 1954 NumRemoved += F.size()-Reachable.size(); 1955 1956 // Loop over all of the basic blocks that are not reachable, dropping all of 1957 // their internal references. Update DDT and LVI if available. 1958 std::vector <DominatorTree::UpdateType> Updates; 1959 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) { 1960 auto *BB = &*I; 1961 if (Reachable.count(BB)) 1962 continue; 1963 for (BasicBlock *Successor : successors(BB)) { 1964 if (Reachable.count(Successor)) 1965 Successor->removePredecessor(BB); 1966 if (DDT) 1967 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1968 } 1969 if (LVI) 1970 LVI->eraseBlock(BB); 1971 BB->dropAllReferences(); 1972 } 1973 1974 for (Function::iterator I = ++F.begin(); I != F.end();) { 1975 auto *BB = &*I; 1976 if (Reachable.count(BB)) { 1977 ++I; 1978 continue; 1979 } 1980 if (DDT) { 1981 DDT->deleteBB(BB); // deferred deletion of BB. 1982 ++I; 1983 } else { 1984 I = F.getBasicBlockList().erase(I); 1985 } 1986 } 1987 1988 if (DDT) 1989 DDT->applyUpdates(Updates); 1990 return true; 1991 } 1992 1993 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1994 ArrayRef<unsigned> KnownIDs) { 1995 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1996 K->dropUnknownNonDebugMetadata(KnownIDs); 1997 K->getAllMetadataOtherThanDebugLoc(Metadata); 1998 for (const auto &MD : Metadata) { 1999 unsigned Kind = MD.first; 2000 MDNode *JMD = J->getMetadata(Kind); 2001 MDNode *KMD = MD.second; 2002 2003 switch (Kind) { 2004 default: 2005 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2006 break; 2007 case LLVMContext::MD_dbg: 2008 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2009 case LLVMContext::MD_tbaa: 2010 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2011 break; 2012 case LLVMContext::MD_alias_scope: 2013 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2014 break; 2015 case LLVMContext::MD_noalias: 2016 case LLVMContext::MD_mem_parallel_loop_access: 2017 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2018 break; 2019 case LLVMContext::MD_range: 2020 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2021 break; 2022 case LLVMContext::MD_fpmath: 2023 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2024 break; 2025 case LLVMContext::MD_invariant_load: 2026 // Only set the !invariant.load if it is present in both instructions. 2027 K->setMetadata(Kind, JMD); 2028 break; 2029 case LLVMContext::MD_nonnull: 2030 // Only set the !nonnull if it is present in both instructions. 2031 K->setMetadata(Kind, JMD); 2032 break; 2033 case LLVMContext::MD_invariant_group: 2034 // Preserve !invariant.group in K. 2035 break; 2036 case LLVMContext::MD_align: 2037 K->setMetadata(Kind, 2038 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2039 break; 2040 case LLVMContext::MD_dereferenceable: 2041 case LLVMContext::MD_dereferenceable_or_null: 2042 K->setMetadata(Kind, 2043 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2044 break; 2045 } 2046 } 2047 // Set !invariant.group from J if J has it. If both instructions have it 2048 // then we will just pick it from J - even when they are different. 2049 // Also make sure that K is load or store - f.e. combining bitcast with load 2050 // could produce bitcast with invariant.group metadata, which is invalid. 2051 // FIXME: we should try to preserve both invariant.group md if they are 2052 // different, but right now instruction can only have one invariant.group. 2053 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2054 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2055 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2056 } 2057 2058 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 2059 unsigned KnownIDs[] = { 2060 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2061 LLVMContext::MD_noalias, LLVMContext::MD_range, 2062 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2063 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2064 LLVMContext::MD_dereferenceable, 2065 LLVMContext::MD_dereferenceable_or_null}; 2066 combineMetadata(K, J, KnownIDs); 2067 } 2068 2069 template <typename RootType, typename DominatesFn> 2070 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2071 const RootType &Root, 2072 const DominatesFn &Dominates) { 2073 assert(From->getType() == To->getType()); 2074 2075 unsigned Count = 0; 2076 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2077 UI != UE;) { 2078 Use &U = *UI++; 2079 if (!Dominates(Root, U)) 2080 continue; 2081 U.set(To); 2082 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 2083 << *To << " in " << *U << "\n"); 2084 ++Count; 2085 } 2086 return Count; 2087 } 2088 2089 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2090 assert(From->getType() == To->getType()); 2091 auto *BB = From->getParent(); 2092 unsigned Count = 0; 2093 2094 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2095 UI != UE;) { 2096 Use &U = *UI++; 2097 auto *I = cast<Instruction>(U.getUser()); 2098 if (I->getParent() == BB) 2099 continue; 2100 U.set(To); 2101 ++Count; 2102 } 2103 return Count; 2104 } 2105 2106 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2107 DominatorTree &DT, 2108 const BasicBlockEdge &Root) { 2109 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2110 return DT.dominates(Root, U); 2111 }; 2112 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2113 } 2114 2115 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2116 DominatorTree &DT, 2117 const BasicBlock *BB) { 2118 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2119 auto *I = cast<Instruction>(U.getUser())->getParent(); 2120 return DT.properlyDominates(BB, I); 2121 }; 2122 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2123 } 2124 2125 bool llvm::callsGCLeafFunction(ImmutableCallSite CS, 2126 const TargetLibraryInfo &TLI) { 2127 // Check if the function is specifically marked as a gc leaf function. 2128 if (CS.hasFnAttr("gc-leaf-function")) 2129 return true; 2130 if (const Function *F = CS.getCalledFunction()) { 2131 if (F->hasFnAttribute("gc-leaf-function")) 2132 return true; 2133 2134 if (auto IID = F->getIntrinsicID()) 2135 // Most LLVM intrinsics do not take safepoints. 2136 return IID != Intrinsic::experimental_gc_statepoint && 2137 IID != Intrinsic::experimental_deoptimize; 2138 } 2139 2140 // Lib calls can be materialized by some passes, and won't be 2141 // marked as 'gc-leaf-function.' All available Libcalls are 2142 // GC-leaf. 2143 LibFunc LF; 2144 if (TLI.getLibFunc(CS, LF)) { 2145 return TLI.has(LF); 2146 } 2147 2148 return false; 2149 } 2150 2151 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2152 LoadInst &NewLI) { 2153 auto *NewTy = NewLI.getType(); 2154 2155 // This only directly applies if the new type is also a pointer. 2156 if (NewTy->isPointerTy()) { 2157 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2158 return; 2159 } 2160 2161 // The only other translation we can do is to integral loads with !range 2162 // metadata. 2163 if (!NewTy->isIntegerTy()) 2164 return; 2165 2166 MDBuilder MDB(NewLI.getContext()); 2167 const Value *Ptr = OldLI.getPointerOperand(); 2168 auto *ITy = cast<IntegerType>(NewTy); 2169 auto *NullInt = ConstantExpr::getPtrToInt( 2170 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2171 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2172 NewLI.setMetadata(LLVMContext::MD_range, 2173 MDB.createRange(NonNullInt, NullInt)); 2174 } 2175 2176 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2177 MDNode *N, LoadInst &NewLI) { 2178 auto *NewTy = NewLI.getType(); 2179 2180 // Give up unless it is converted to a pointer where there is a single very 2181 // valuable mapping we can do reliably. 2182 // FIXME: It would be nice to propagate this in more ways, but the type 2183 // conversions make it hard. 2184 if (!NewTy->isPointerTy()) 2185 return; 2186 2187 unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy); 2188 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2189 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2190 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2191 } 2192 } 2193 2194 namespace { 2195 2196 /// A potential constituent of a bitreverse or bswap expression. See 2197 /// collectBitParts for a fuller explanation. 2198 struct BitPart { 2199 BitPart(Value *P, unsigned BW) : Provider(P) { 2200 Provenance.resize(BW); 2201 } 2202 2203 /// The Value that this is a bitreverse/bswap of. 2204 Value *Provider; 2205 2206 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2207 /// in Provider becomes bit B in the result of this expression. 2208 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2209 2210 enum { Unset = -1 }; 2211 }; 2212 2213 } // end anonymous namespace 2214 2215 /// Analyze the specified subexpression and see if it is capable of providing 2216 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2217 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2218 /// the output of the expression came from a corresponding bit in some other 2219 /// value. This function is recursive, and the end result is a mapping of 2220 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2221 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2222 /// 2223 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2224 /// that the expression deposits the low byte of %X into the high byte of the 2225 /// result and that all other bits are zero. This expression is accepted and a 2226 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2227 /// [0-7]. 2228 /// 2229 /// To avoid revisiting values, the BitPart results are memoized into the 2230 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2231 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2232 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2233 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2234 /// type instead to provide the same functionality. 2235 /// 2236 /// Because we pass around references into \c BPS, we must use a container that 2237 /// does not invalidate internal references (std::map instead of DenseMap). 2238 static const Optional<BitPart> & 2239 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2240 std::map<Value *, Optional<BitPart>> &BPS) { 2241 auto I = BPS.find(V); 2242 if (I != BPS.end()) 2243 return I->second; 2244 2245 auto &Result = BPS[V] = None; 2246 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2247 2248 if (Instruction *I = dyn_cast<Instruction>(V)) { 2249 // If this is an or instruction, it may be an inner node of the bswap. 2250 if (I->getOpcode() == Instruction::Or) { 2251 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2252 MatchBitReversals, BPS); 2253 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2254 MatchBitReversals, BPS); 2255 if (!A || !B) 2256 return Result; 2257 2258 // Try and merge the two together. 2259 if (!A->Provider || A->Provider != B->Provider) 2260 return Result; 2261 2262 Result = BitPart(A->Provider, BitWidth); 2263 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2264 if (A->Provenance[i] != BitPart::Unset && 2265 B->Provenance[i] != BitPart::Unset && 2266 A->Provenance[i] != B->Provenance[i]) 2267 return Result = None; 2268 2269 if (A->Provenance[i] == BitPart::Unset) 2270 Result->Provenance[i] = B->Provenance[i]; 2271 else 2272 Result->Provenance[i] = A->Provenance[i]; 2273 } 2274 2275 return Result; 2276 } 2277 2278 // If this is a logical shift by a constant, recurse then shift the result. 2279 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2280 unsigned BitShift = 2281 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2282 // Ensure the shift amount is defined. 2283 if (BitShift > BitWidth) 2284 return Result; 2285 2286 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2287 MatchBitReversals, BPS); 2288 if (!Res) 2289 return Result; 2290 Result = Res; 2291 2292 // Perform the "shift" on BitProvenance. 2293 auto &P = Result->Provenance; 2294 if (I->getOpcode() == Instruction::Shl) { 2295 P.erase(std::prev(P.end(), BitShift), P.end()); 2296 P.insert(P.begin(), BitShift, BitPart::Unset); 2297 } else { 2298 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2299 P.insert(P.end(), BitShift, BitPart::Unset); 2300 } 2301 2302 return Result; 2303 } 2304 2305 // If this is a logical 'and' with a mask that clears bits, recurse then 2306 // unset the appropriate bits. 2307 if (I->getOpcode() == Instruction::And && 2308 isa<ConstantInt>(I->getOperand(1))) { 2309 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2310 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2311 2312 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2313 // early exit. 2314 unsigned NumMaskedBits = AndMask.countPopulation(); 2315 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2316 return Result; 2317 2318 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2319 MatchBitReversals, BPS); 2320 if (!Res) 2321 return Result; 2322 Result = Res; 2323 2324 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2325 // If the AndMask is zero for this bit, clear the bit. 2326 if ((AndMask & Bit) == 0) 2327 Result->Provenance[i] = BitPart::Unset; 2328 return Result; 2329 } 2330 2331 // If this is a zext instruction zero extend the result. 2332 if (I->getOpcode() == Instruction::ZExt) { 2333 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2334 MatchBitReversals, BPS); 2335 if (!Res) 2336 return Result; 2337 2338 Result = BitPart(Res->Provider, BitWidth); 2339 auto NarrowBitWidth = 2340 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2341 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2342 Result->Provenance[i] = Res->Provenance[i]; 2343 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2344 Result->Provenance[i] = BitPart::Unset; 2345 return Result; 2346 } 2347 } 2348 2349 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2350 // the input value to the bswap/bitreverse. 2351 Result = BitPart(V, BitWidth); 2352 for (unsigned i = 0; i < BitWidth; ++i) 2353 Result->Provenance[i] = i; 2354 return Result; 2355 } 2356 2357 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2358 unsigned BitWidth) { 2359 if (From % 8 != To % 8) 2360 return false; 2361 // Convert from bit indices to byte indices and check for a byte reversal. 2362 From >>= 3; 2363 To >>= 3; 2364 BitWidth >>= 3; 2365 return From == BitWidth - To - 1; 2366 } 2367 2368 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2369 unsigned BitWidth) { 2370 return From == BitWidth - To - 1; 2371 } 2372 2373 bool llvm::recognizeBSwapOrBitReverseIdiom( 2374 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2375 SmallVectorImpl<Instruction *> &InsertedInsts) { 2376 if (Operator::getOpcode(I) != Instruction::Or) 2377 return false; 2378 if (!MatchBSwaps && !MatchBitReversals) 2379 return false; 2380 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2381 if (!ITy || ITy->getBitWidth() > 128) 2382 return false; // Can't do vectors or integers > 128 bits. 2383 unsigned BW = ITy->getBitWidth(); 2384 2385 unsigned DemandedBW = BW; 2386 IntegerType *DemandedTy = ITy; 2387 if (I->hasOneUse()) { 2388 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2389 DemandedTy = cast<IntegerType>(Trunc->getType()); 2390 DemandedBW = DemandedTy->getBitWidth(); 2391 } 2392 } 2393 2394 // Try to find all the pieces corresponding to the bswap. 2395 std::map<Value *, Optional<BitPart>> BPS; 2396 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2397 if (!Res) 2398 return false; 2399 auto &BitProvenance = Res->Provenance; 2400 2401 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2402 // only byteswap values with an even number of bytes. 2403 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2404 for (unsigned i = 0; i < DemandedBW; ++i) { 2405 OKForBSwap &= 2406 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2407 OKForBitReverse &= 2408 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2409 } 2410 2411 Intrinsic::ID Intrin; 2412 if (OKForBSwap && MatchBSwaps) 2413 Intrin = Intrinsic::bswap; 2414 else if (OKForBitReverse && MatchBitReversals) 2415 Intrin = Intrinsic::bitreverse; 2416 else 2417 return false; 2418 2419 if (ITy != DemandedTy) { 2420 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2421 Value *Provider = Res->Provider; 2422 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2423 // We may need to truncate the provider. 2424 if (DemandedTy != ProviderTy) { 2425 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2426 "trunc", I); 2427 InsertedInsts.push_back(Trunc); 2428 Provider = Trunc; 2429 } 2430 auto *CI = CallInst::Create(F, Provider, "rev", I); 2431 InsertedInsts.push_back(CI); 2432 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2433 InsertedInsts.push_back(ExtInst); 2434 return true; 2435 } 2436 2437 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2438 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2439 return true; 2440 } 2441 2442 // CodeGen has special handling for some string functions that may replace 2443 // them with target-specific intrinsics. Since that'd skip our interceptors 2444 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2445 // we mark affected calls as NoBuiltin, which will disable optimization 2446 // in CodeGen. 2447 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2448 CallInst *CI, const TargetLibraryInfo *TLI) { 2449 Function *F = CI->getCalledFunction(); 2450 LibFunc Func; 2451 if (F && !F->hasLocalLinkage() && F->hasName() && 2452 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2453 !F->doesNotAccessMemory()) 2454 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2455 } 2456 2457 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2458 // We can't have a PHI with a metadata type. 2459 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2460 return false; 2461 2462 // Early exit. 2463 if (!isa<Constant>(I->getOperand(OpIdx))) 2464 return true; 2465 2466 switch (I->getOpcode()) { 2467 default: 2468 return true; 2469 case Instruction::Call: 2470 case Instruction::Invoke: 2471 // Can't handle inline asm. Skip it. 2472 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2473 return false; 2474 // Many arithmetic intrinsics have no issue taking a 2475 // variable, however it's hard to distingish these from 2476 // specials such as @llvm.frameaddress that require a constant. 2477 if (isa<IntrinsicInst>(I)) 2478 return false; 2479 2480 // Constant bundle operands may need to retain their constant-ness for 2481 // correctness. 2482 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2483 return false; 2484 return true; 2485 case Instruction::ShuffleVector: 2486 // Shufflevector masks are constant. 2487 return OpIdx != 2; 2488 case Instruction::Switch: 2489 case Instruction::ExtractValue: 2490 // All operands apart from the first are constant. 2491 return OpIdx == 0; 2492 case Instruction::InsertValue: 2493 // All operands apart from the first and the second are constant. 2494 return OpIdx < 2; 2495 case Instruction::Alloca: 2496 // Static allocas (constant size in the entry block) are handled by 2497 // prologue/epilogue insertion so they're free anyway. We definitely don't 2498 // want to make them non-constant. 2499 return !dyn_cast<AllocaInst>(I)->isStaticAlloca(); 2500 case Instruction::GetElementPtr: 2501 if (OpIdx == 0) 2502 return true; 2503 gep_type_iterator It = gep_type_begin(I); 2504 for (auto E = std::next(It, OpIdx); It != E; ++It) 2505 if (It.isStruct()) 2506 return false; 2507 return true; 2508 } 2509 } 2510