1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/ConstantRange.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DIBuilder.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfo.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/PseudoProbe.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/Support/Casting.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/ErrorHandling.h" 77 #include "llvm/Support/KnownBits.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 80 #include "llvm/Transforms/Utils/ValueMapper.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <climits> 84 #include <cstdint> 85 #include <iterator> 86 #include <map> 87 #include <utility> 88 89 using namespace llvm; 90 using namespace llvm::PatternMatch; 91 92 #define DEBUG_TYPE "local" 93 94 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 95 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 96 97 static cl::opt<bool> PHICSEDebugHash( 98 "phicse-debug-hash", 99 #ifdef EXPENSIVE_CHECKS 100 cl::init(true), 101 #else 102 cl::init(false), 103 #endif 104 cl::Hidden, 105 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 106 "function is well-behaved w.r.t. its isEqual predicate")); 107 108 static cl::opt<unsigned> PHICSENumPHISmallSize( 109 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 110 cl::desc( 111 "When the basic block contains not more than this number of PHI nodes, " 112 "perform a (faster!) exhaustive search instead of set-driven one.")); 113 114 // Max recursion depth for collectBitParts used when detecting bswap and 115 // bitreverse idioms. 116 static const unsigned BitPartRecursionMaxDepth = 48; 117 118 //===----------------------------------------------------------------------===// 119 // Local constant propagation. 120 // 121 122 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 123 /// constant value, convert it into an unconditional branch to the constant 124 /// destination. This is a nontrivial operation because the successors of this 125 /// basic block must have their PHI nodes updated. 126 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 127 /// conditions and indirectbr addresses this might make dead if 128 /// DeleteDeadConditions is true. 129 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 130 const TargetLibraryInfo *TLI, 131 DomTreeUpdater *DTU) { 132 Instruction *T = BB->getTerminator(); 133 IRBuilder<> Builder(T); 134 135 // Branch - See if we are conditional jumping on constant 136 if (auto *BI = dyn_cast<BranchInst>(T)) { 137 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 138 139 BasicBlock *Dest1 = BI->getSuccessor(0); 140 BasicBlock *Dest2 = BI->getSuccessor(1); 141 142 if (Dest2 == Dest1) { // Conditional branch to same location? 143 // This branch matches something like this: 144 // br bool %cond, label %Dest, label %Dest 145 // and changes it into: br label %Dest 146 147 // Let the basic block know that we are letting go of one copy of it. 148 assert(BI->getParent() && "Terminator not inserted in block!"); 149 Dest1->removePredecessor(BI->getParent()); 150 151 // Replace the conditional branch with an unconditional one. 152 BranchInst *NewBI = Builder.CreateBr(Dest1); 153 154 // Transfer the metadata to the new branch instruction. 155 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 156 LLVMContext::MD_annotation}); 157 158 Value *Cond = BI->getCondition(); 159 BI->eraseFromParent(); 160 if (DeleteDeadConditions) 161 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 162 return true; 163 } 164 165 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 166 // Are we branching on constant? 167 // YES. Change to unconditional branch... 168 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 169 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 170 171 // Let the basic block know that we are letting go of it. Based on this, 172 // it will adjust it's PHI nodes. 173 OldDest->removePredecessor(BB); 174 175 // Replace the conditional branch with an unconditional one. 176 BranchInst *NewBI = Builder.CreateBr(Destination); 177 178 // Transfer the metadata to the new branch instruction. 179 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 180 LLVMContext::MD_annotation}); 181 182 BI->eraseFromParent(); 183 if (DTU) 184 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 185 return true; 186 } 187 188 return false; 189 } 190 191 if (auto *SI = dyn_cast<SwitchInst>(T)) { 192 // If we are switching on a constant, we can convert the switch to an 193 // unconditional branch. 194 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 195 BasicBlock *DefaultDest = SI->getDefaultDest(); 196 BasicBlock *TheOnlyDest = DefaultDest; 197 198 // If the default is unreachable, ignore it when searching for TheOnlyDest. 199 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 200 SI->getNumCases() > 0) { 201 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 202 } 203 204 bool Changed = false; 205 206 // Figure out which case it goes to. 207 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 208 // Found case matching a constant operand? 209 if (i->getCaseValue() == CI) { 210 TheOnlyDest = i->getCaseSuccessor(); 211 break; 212 } 213 214 // Check to see if this branch is going to the same place as the default 215 // dest. If so, eliminate it as an explicit compare. 216 if (i->getCaseSuccessor() == DefaultDest) { 217 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 218 unsigned NCases = SI->getNumCases(); 219 // Fold the case metadata into the default if there will be any branches 220 // left, unless the metadata doesn't match the switch. 221 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 222 // Collect branch weights into a vector. 223 SmallVector<uint32_t, 8> Weights; 224 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 225 ++MD_i) { 226 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 227 Weights.push_back(CI->getValue().getZExtValue()); 228 } 229 // Merge weight of this case to the default weight. 230 unsigned idx = i->getCaseIndex(); 231 Weights[0] += Weights[idx+1]; 232 // Remove weight for this case. 233 std::swap(Weights[idx+1], Weights.back()); 234 Weights.pop_back(); 235 SI->setMetadata(LLVMContext::MD_prof, 236 MDBuilder(BB->getContext()). 237 createBranchWeights(Weights)); 238 } 239 // Remove this entry. 240 BasicBlock *ParentBB = SI->getParent(); 241 DefaultDest->removePredecessor(ParentBB); 242 i = SI->removeCase(i); 243 e = SI->case_end(); 244 Changed = true; 245 continue; 246 } 247 248 // Otherwise, check to see if the switch only branches to one destination. 249 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 250 // destinations. 251 if (i->getCaseSuccessor() != TheOnlyDest) 252 TheOnlyDest = nullptr; 253 254 // Increment this iterator as we haven't removed the case. 255 ++i; 256 } 257 258 if (CI && !TheOnlyDest) { 259 // Branching on a constant, but not any of the cases, go to the default 260 // successor. 261 TheOnlyDest = SI->getDefaultDest(); 262 } 263 264 // If we found a single destination that we can fold the switch into, do so 265 // now. 266 if (TheOnlyDest) { 267 // Insert the new branch. 268 Builder.CreateBr(TheOnlyDest); 269 BasicBlock *BB = SI->getParent(); 270 271 SmallSet<BasicBlock *, 8> RemovedSuccessors; 272 273 // Remove entries from PHI nodes which we no longer branch to... 274 BasicBlock *SuccToKeep = TheOnlyDest; 275 for (BasicBlock *Succ : successors(SI)) { 276 if (DTU && Succ != TheOnlyDest) 277 RemovedSuccessors.insert(Succ); 278 // Found case matching a constant operand? 279 if (Succ == SuccToKeep) { 280 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 281 } else { 282 Succ->removePredecessor(BB); 283 } 284 } 285 286 // Delete the old switch. 287 Value *Cond = SI->getCondition(); 288 SI->eraseFromParent(); 289 if (DeleteDeadConditions) 290 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 291 if (DTU) { 292 std::vector<DominatorTree::UpdateType> Updates; 293 Updates.reserve(RemovedSuccessors.size()); 294 for (auto *RemovedSuccessor : RemovedSuccessors) 295 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 296 DTU->applyUpdates(Updates); 297 } 298 return true; 299 } 300 301 if (SI->getNumCases() == 1) { 302 // Otherwise, we can fold this switch into a conditional branch 303 // instruction if it has only one non-default destination. 304 auto FirstCase = *SI->case_begin(); 305 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 306 FirstCase.getCaseValue(), "cond"); 307 308 // Insert the new branch. 309 BranchInst *NewBr = Builder.CreateCondBr(Cond, 310 FirstCase.getCaseSuccessor(), 311 SI->getDefaultDest()); 312 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 313 if (MD && MD->getNumOperands() == 3) { 314 ConstantInt *SICase = 315 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 316 ConstantInt *SIDef = 317 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 318 assert(SICase && SIDef); 319 // The TrueWeight should be the weight for the single case of SI. 320 NewBr->setMetadata(LLVMContext::MD_prof, 321 MDBuilder(BB->getContext()). 322 createBranchWeights(SICase->getValue().getZExtValue(), 323 SIDef->getValue().getZExtValue())); 324 } 325 326 // Update make.implicit metadata to the newly-created conditional branch. 327 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 328 if (MakeImplicitMD) 329 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 330 331 // Delete the old switch. 332 SI->eraseFromParent(); 333 return true; 334 } 335 return Changed; 336 } 337 338 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 339 // indirectbr blockaddress(@F, @BB) -> br label @BB 340 if (auto *BA = 341 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 342 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 343 SmallSet<BasicBlock *, 8> RemovedSuccessors; 344 345 // Insert the new branch. 346 Builder.CreateBr(TheOnlyDest); 347 348 BasicBlock *SuccToKeep = TheOnlyDest; 349 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 350 BasicBlock *DestBB = IBI->getDestination(i); 351 if (DTU && DestBB != TheOnlyDest) 352 RemovedSuccessors.insert(DestBB); 353 if (IBI->getDestination(i) == SuccToKeep) { 354 SuccToKeep = nullptr; 355 } else { 356 DestBB->removePredecessor(BB); 357 } 358 } 359 Value *Address = IBI->getAddress(); 360 IBI->eraseFromParent(); 361 if (DeleteDeadConditions) 362 // Delete pointer cast instructions. 363 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 364 365 // Also zap the blockaddress constant if there are no users remaining, 366 // otherwise the destination is still marked as having its address taken. 367 if (BA->use_empty()) 368 BA->destroyConstant(); 369 370 // If we didn't find our destination in the IBI successor list, then we 371 // have undefined behavior. Replace the unconditional branch with an 372 // 'unreachable' instruction. 373 if (SuccToKeep) { 374 BB->getTerminator()->eraseFromParent(); 375 new UnreachableInst(BB->getContext(), BB); 376 } 377 378 if (DTU) { 379 std::vector<DominatorTree::UpdateType> Updates; 380 Updates.reserve(RemovedSuccessors.size()); 381 for (auto *RemovedSuccessor : RemovedSuccessors) 382 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 383 DTU->applyUpdates(Updates); 384 } 385 return true; 386 } 387 } 388 389 return false; 390 } 391 392 //===----------------------------------------------------------------------===// 393 // Local dead code elimination. 394 // 395 396 /// isInstructionTriviallyDead - Return true if the result produced by the 397 /// instruction is not used, and the instruction has no side effects. 398 /// 399 bool llvm::isInstructionTriviallyDead(Instruction *I, 400 const TargetLibraryInfo *TLI) { 401 if (!I->use_empty()) 402 return false; 403 return wouldInstructionBeTriviallyDead(I, TLI); 404 } 405 406 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( 407 Instruction *I, const TargetLibraryInfo *TLI) { 408 // Instructions that are "markers" and have implied meaning on code around 409 // them (without explicit uses), are not dead on unused paths. 410 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 411 if (II->getIntrinsicID() == Intrinsic::stacksave || 412 II->getIntrinsicID() == Intrinsic::launder_invariant_group || 413 II->isLifetimeStartOrEnd()) 414 return false; 415 return wouldInstructionBeTriviallyDead(I, TLI); 416 } 417 418 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 419 const TargetLibraryInfo *TLI) { 420 if (I->isTerminator()) 421 return false; 422 423 // We don't want the landingpad-like instructions removed by anything this 424 // general. 425 if (I->isEHPad()) 426 return false; 427 428 // We don't want debug info removed by anything this general, unless 429 // debug info is empty. 430 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 431 if (DDI->getAddress()) 432 return false; 433 return true; 434 } 435 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 436 if (DVI->hasArgList() || DVI->getValue(0)) 437 return false; 438 return true; 439 } 440 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 441 if (DLI->getLabel()) 442 return false; 443 return true; 444 } 445 446 if (!I->willReturn()) 447 return false; 448 449 if (!I->mayHaveSideEffects()) 450 return true; 451 452 // Special case intrinsics that "may have side effects" but can be deleted 453 // when dead. 454 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 455 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 456 if (II->getIntrinsicID() == Intrinsic::stacksave || 457 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 458 return true; 459 460 if (II->isLifetimeStartOrEnd()) { 461 auto *Arg = II->getArgOperand(1); 462 // Lifetime intrinsics are dead when their right-hand is undef. 463 if (isa<UndefValue>(Arg)) 464 return true; 465 // If the right-hand is an alloc, global, or argument and the only uses 466 // are lifetime intrinsics then the intrinsics are dead. 467 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 468 return llvm::all_of(Arg->uses(), [](Use &Use) { 469 if (IntrinsicInst *IntrinsicUse = 470 dyn_cast<IntrinsicInst>(Use.getUser())) 471 return IntrinsicUse->isLifetimeStartOrEnd(); 472 return false; 473 }); 474 return false; 475 } 476 477 // Assumptions are dead if their condition is trivially true. Guards on 478 // true are operationally no-ops. In the future we can consider more 479 // sophisticated tradeoffs for guards considering potential for check 480 // widening, but for now we keep things simple. 481 if ((II->getIntrinsicID() == Intrinsic::assume && 482 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || 483 II->getIntrinsicID() == Intrinsic::experimental_guard) { 484 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 485 return !Cond->isZero(); 486 487 return false; 488 } 489 490 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 491 Optional<fp::ExceptionBehavior> ExBehavior = FPI->getExceptionBehavior(); 492 return ExBehavior.getValue() != fp::ebStrict; 493 } 494 } 495 496 if (isAllocationFn(I, TLI) && isAllocRemovable(cast<CallBase>(I), TLI)) 497 return true; 498 499 if (CallInst *CI = isFreeCall(I, TLI)) 500 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 501 return C->isNullValue() || isa<UndefValue>(C); 502 503 if (auto *Call = dyn_cast<CallBase>(I)) 504 if (isMathLibCallNoop(Call, TLI)) 505 return true; 506 507 // To express possible interaction with floating point environment constrained 508 // intrinsics are described as if they access memory. So they look like having 509 // side effect but actually do not have it unless they raise floating point 510 // exception. If FP exceptions are ignored, the intrinsic may be deleted. 511 if (auto *CI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 512 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 513 if (!EB || *EB == fp::ExceptionBehavior::ebIgnore) 514 return true; 515 } 516 517 return false; 518 } 519 520 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 521 /// trivially dead instruction, delete it. If that makes any of its operands 522 /// trivially dead, delete them too, recursively. Return true if any 523 /// instructions were deleted. 524 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 525 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 526 std::function<void(Value *)> AboutToDeleteCallback) { 527 Instruction *I = dyn_cast<Instruction>(V); 528 if (!I || !isInstructionTriviallyDead(I, TLI)) 529 return false; 530 531 SmallVector<WeakTrackingVH, 16> DeadInsts; 532 DeadInsts.push_back(I); 533 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 534 AboutToDeleteCallback); 535 536 return true; 537 } 538 539 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 540 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 541 MemorySSAUpdater *MSSAU, 542 std::function<void(Value *)> AboutToDeleteCallback) { 543 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 544 for (; S != E; ++S) { 545 auto *I = dyn_cast<Instruction>(DeadInsts[S]); 546 if (!I || !isInstructionTriviallyDead(I)) { 547 DeadInsts[S] = nullptr; 548 ++Alive; 549 } 550 } 551 if (Alive == E) 552 return false; 553 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 554 AboutToDeleteCallback); 555 return true; 556 } 557 558 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 559 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 560 MemorySSAUpdater *MSSAU, 561 std::function<void(Value *)> AboutToDeleteCallback) { 562 // Process the dead instruction list until empty. 563 while (!DeadInsts.empty()) { 564 Value *V = DeadInsts.pop_back_val(); 565 Instruction *I = cast_or_null<Instruction>(V); 566 if (!I) 567 continue; 568 assert(isInstructionTriviallyDead(I, TLI) && 569 "Live instruction found in dead worklist!"); 570 assert(I->use_empty() && "Instructions with uses are not dead."); 571 572 // Don't lose the debug info while deleting the instructions. 573 salvageDebugInfo(*I); 574 575 if (AboutToDeleteCallback) 576 AboutToDeleteCallback(I); 577 578 // Null out all of the instruction's operands to see if any operand becomes 579 // dead as we go. 580 for (Use &OpU : I->operands()) { 581 Value *OpV = OpU.get(); 582 OpU.set(nullptr); 583 584 if (!OpV->use_empty()) 585 continue; 586 587 // If the operand is an instruction that became dead as we nulled out the 588 // operand, and if it is 'trivially' dead, delete it in a future loop 589 // iteration. 590 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 591 if (isInstructionTriviallyDead(OpI, TLI)) 592 DeadInsts.push_back(OpI); 593 } 594 if (MSSAU) 595 MSSAU->removeMemoryAccess(I); 596 597 I->eraseFromParent(); 598 } 599 } 600 601 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 602 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 603 findDbgUsers(DbgUsers, I); 604 for (auto *DII : DbgUsers) { 605 Value *Undef = UndefValue::get(I->getType()); 606 DII->replaceVariableLocationOp(I, Undef); 607 } 608 return !DbgUsers.empty(); 609 } 610 611 /// areAllUsesEqual - Check whether the uses of a value are all the same. 612 /// This is similar to Instruction::hasOneUse() except this will also return 613 /// true when there are no uses or multiple uses that all refer to the same 614 /// value. 615 static bool areAllUsesEqual(Instruction *I) { 616 Value::user_iterator UI = I->user_begin(); 617 Value::user_iterator UE = I->user_end(); 618 if (UI == UE) 619 return true; 620 621 User *TheUse = *UI; 622 for (++UI; UI != UE; ++UI) { 623 if (*UI != TheUse) 624 return false; 625 } 626 return true; 627 } 628 629 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 630 /// dead PHI node, due to being a def-use chain of single-use nodes that 631 /// either forms a cycle or is terminated by a trivially dead instruction, 632 /// delete it. If that makes any of its operands trivially dead, delete them 633 /// too, recursively. Return true if a change was made. 634 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 635 const TargetLibraryInfo *TLI, 636 llvm::MemorySSAUpdater *MSSAU) { 637 SmallPtrSet<Instruction*, 4> Visited; 638 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 639 I = cast<Instruction>(*I->user_begin())) { 640 if (I->use_empty()) 641 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 642 643 // If we find an instruction more than once, we're on a cycle that 644 // won't prove fruitful. 645 if (!Visited.insert(I).second) { 646 // Break the cycle and delete the instruction and its operands. 647 I->replaceAllUsesWith(UndefValue::get(I->getType())); 648 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 649 return true; 650 } 651 } 652 return false; 653 } 654 655 static bool 656 simplifyAndDCEInstruction(Instruction *I, 657 SmallSetVector<Instruction *, 16> &WorkList, 658 const DataLayout &DL, 659 const TargetLibraryInfo *TLI) { 660 if (isInstructionTriviallyDead(I, TLI)) { 661 salvageDebugInfo(*I); 662 663 // Null out all of the instruction's operands to see if any operand becomes 664 // dead as we go. 665 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 666 Value *OpV = I->getOperand(i); 667 I->setOperand(i, nullptr); 668 669 if (!OpV->use_empty() || I == OpV) 670 continue; 671 672 // If the operand is an instruction that became dead as we nulled out the 673 // operand, and if it is 'trivially' dead, delete it in a future loop 674 // iteration. 675 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 676 if (isInstructionTriviallyDead(OpI, TLI)) 677 WorkList.insert(OpI); 678 } 679 680 I->eraseFromParent(); 681 682 return true; 683 } 684 685 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 686 // Add the users to the worklist. CAREFUL: an instruction can use itself, 687 // in the case of a phi node. 688 for (User *U : I->users()) { 689 if (U != I) { 690 WorkList.insert(cast<Instruction>(U)); 691 } 692 } 693 694 // Replace the instruction with its simplified value. 695 bool Changed = false; 696 if (!I->use_empty()) { 697 I->replaceAllUsesWith(SimpleV); 698 Changed = true; 699 } 700 if (isInstructionTriviallyDead(I, TLI)) { 701 I->eraseFromParent(); 702 Changed = true; 703 } 704 return Changed; 705 } 706 return false; 707 } 708 709 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 710 /// simplify any instructions in it and recursively delete dead instructions. 711 /// 712 /// This returns true if it changed the code, note that it can delete 713 /// instructions in other blocks as well in this block. 714 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 715 const TargetLibraryInfo *TLI) { 716 bool MadeChange = false; 717 const DataLayout &DL = BB->getModule()->getDataLayout(); 718 719 #ifndef NDEBUG 720 // In debug builds, ensure that the terminator of the block is never replaced 721 // or deleted by these simplifications. The idea of simplification is that it 722 // cannot introduce new instructions, and there is no way to replace the 723 // terminator of a block without introducing a new instruction. 724 AssertingVH<Instruction> TerminatorVH(&BB->back()); 725 #endif 726 727 SmallSetVector<Instruction *, 16> WorkList; 728 // Iterate over the original function, only adding insts to the worklist 729 // if they actually need to be revisited. This avoids having to pre-init 730 // the worklist with the entire function's worth of instructions. 731 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 732 BI != E;) { 733 assert(!BI->isTerminator()); 734 Instruction *I = &*BI; 735 ++BI; 736 737 // We're visiting this instruction now, so make sure it's not in the 738 // worklist from an earlier visit. 739 if (!WorkList.count(I)) 740 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 741 } 742 743 while (!WorkList.empty()) { 744 Instruction *I = WorkList.pop_back_val(); 745 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 746 } 747 return MadeChange; 748 } 749 750 //===----------------------------------------------------------------------===// 751 // Control Flow Graph Restructuring. 752 // 753 754 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 755 DomTreeUpdater *DTU) { 756 757 // If BB has single-entry PHI nodes, fold them. 758 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 759 Value *NewVal = PN->getIncomingValue(0); 760 // Replace self referencing PHI with undef, it must be dead. 761 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 762 PN->replaceAllUsesWith(NewVal); 763 PN->eraseFromParent(); 764 } 765 766 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 767 assert(PredBB && "Block doesn't have a single predecessor!"); 768 769 bool ReplaceEntryBB = PredBB->isEntryBlock(); 770 771 // DTU updates: Collect all the edges that enter 772 // PredBB. These dominator edges will be redirected to DestBB. 773 SmallVector<DominatorTree::UpdateType, 32> Updates; 774 775 if (DTU) { 776 // To avoid processing the same predecessor more than once. 777 SmallPtrSet<BasicBlock *, 2> SeenPreds; 778 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1); 779 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 780 // This predecessor of PredBB may already have DestBB as a successor. 781 if (PredOfPredBB != PredBB) 782 if (SeenPreds.insert(PredOfPredBB).second) 783 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 784 SeenPreds.clear(); 785 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 786 if (SeenPreds.insert(PredOfPredBB).second) 787 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 788 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 789 } 790 791 // Zap anything that took the address of DestBB. Not doing this will give the 792 // address an invalid value. 793 if (DestBB->hasAddressTaken()) { 794 BlockAddress *BA = BlockAddress::get(DestBB); 795 Constant *Replacement = 796 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 797 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 798 BA->getType())); 799 BA->destroyConstant(); 800 } 801 802 // Anything that branched to PredBB now branches to DestBB. 803 PredBB->replaceAllUsesWith(DestBB); 804 805 // Splice all the instructions from PredBB to DestBB. 806 PredBB->getTerminator()->eraseFromParent(); 807 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 808 new UnreachableInst(PredBB->getContext(), PredBB); 809 810 // If the PredBB is the entry block of the function, move DestBB up to 811 // become the entry block after we erase PredBB. 812 if (ReplaceEntryBB) 813 DestBB->moveAfter(PredBB); 814 815 if (DTU) { 816 assert(PredBB->getInstList().size() == 1 && 817 isa<UnreachableInst>(PredBB->getTerminator()) && 818 "The successor list of PredBB isn't empty before " 819 "applying corresponding DTU updates."); 820 DTU->applyUpdatesPermissive(Updates); 821 DTU->deleteBB(PredBB); 822 // Recalculation of DomTree is needed when updating a forward DomTree and 823 // the Entry BB is replaced. 824 if (ReplaceEntryBB && DTU->hasDomTree()) { 825 // The entry block was removed and there is no external interface for 826 // the dominator tree to be notified of this change. In this corner-case 827 // we recalculate the entire tree. 828 DTU->recalculate(*(DestBB->getParent())); 829 } 830 } 831 832 else { 833 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 834 } 835 } 836 837 /// Return true if we can choose one of these values to use in place of the 838 /// other. Note that we will always choose the non-undef value to keep. 839 static bool CanMergeValues(Value *First, Value *Second) { 840 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 841 } 842 843 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 844 /// branch to Succ, into Succ. 845 /// 846 /// Assumption: Succ is the single successor for BB. 847 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 848 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 849 850 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 851 << Succ->getName() << "\n"); 852 // Shortcut, if there is only a single predecessor it must be BB and merging 853 // is always safe 854 if (Succ->getSinglePredecessor()) return true; 855 856 // Make a list of the predecessors of BB 857 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 858 859 // Look at all the phi nodes in Succ, to see if they present a conflict when 860 // merging these blocks 861 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 862 PHINode *PN = cast<PHINode>(I); 863 864 // If the incoming value from BB is again a PHINode in 865 // BB which has the same incoming value for *PI as PN does, we can 866 // merge the phi nodes and then the blocks can still be merged 867 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 868 if (BBPN && BBPN->getParent() == BB) { 869 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 870 BasicBlock *IBB = PN->getIncomingBlock(PI); 871 if (BBPreds.count(IBB) && 872 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 873 PN->getIncomingValue(PI))) { 874 LLVM_DEBUG(dbgs() 875 << "Can't fold, phi node " << PN->getName() << " in " 876 << Succ->getName() << " is conflicting with " 877 << BBPN->getName() << " with regard to common predecessor " 878 << IBB->getName() << "\n"); 879 return false; 880 } 881 } 882 } else { 883 Value* Val = PN->getIncomingValueForBlock(BB); 884 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 885 // See if the incoming value for the common predecessor is equal to the 886 // one for BB, in which case this phi node will not prevent the merging 887 // of the block. 888 BasicBlock *IBB = PN->getIncomingBlock(PI); 889 if (BBPreds.count(IBB) && 890 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 891 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 892 << " in " << Succ->getName() 893 << " is conflicting with regard to common " 894 << "predecessor " << IBB->getName() << "\n"); 895 return false; 896 } 897 } 898 } 899 } 900 901 return true; 902 } 903 904 using PredBlockVector = SmallVector<BasicBlock *, 16>; 905 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 906 907 /// Determines the value to use as the phi node input for a block. 908 /// 909 /// Select between \p OldVal any value that we know flows from \p BB 910 /// to a particular phi on the basis of which one (if either) is not 911 /// undef. Update IncomingValues based on the selected value. 912 /// 913 /// \param OldVal The value we are considering selecting. 914 /// \param BB The block that the value flows in from. 915 /// \param IncomingValues A map from block-to-value for other phi inputs 916 /// that we have examined. 917 /// 918 /// \returns the selected value. 919 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 920 IncomingValueMap &IncomingValues) { 921 if (!isa<UndefValue>(OldVal)) { 922 assert((!IncomingValues.count(BB) || 923 IncomingValues.find(BB)->second == OldVal) && 924 "Expected OldVal to match incoming value from BB!"); 925 926 IncomingValues.insert(std::make_pair(BB, OldVal)); 927 return OldVal; 928 } 929 930 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 931 if (It != IncomingValues.end()) return It->second; 932 933 return OldVal; 934 } 935 936 /// Create a map from block to value for the operands of a 937 /// given phi. 938 /// 939 /// Create a map from block to value for each non-undef value flowing 940 /// into \p PN. 941 /// 942 /// \param PN The phi we are collecting the map for. 943 /// \param IncomingValues [out] The map from block to value for this phi. 944 static void gatherIncomingValuesToPhi(PHINode *PN, 945 IncomingValueMap &IncomingValues) { 946 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 947 BasicBlock *BB = PN->getIncomingBlock(i); 948 Value *V = PN->getIncomingValue(i); 949 950 if (!isa<UndefValue>(V)) 951 IncomingValues.insert(std::make_pair(BB, V)); 952 } 953 } 954 955 /// Replace the incoming undef values to a phi with the values 956 /// from a block-to-value map. 957 /// 958 /// \param PN The phi we are replacing the undefs in. 959 /// \param IncomingValues A map from block to value. 960 static void replaceUndefValuesInPhi(PHINode *PN, 961 const IncomingValueMap &IncomingValues) { 962 SmallVector<unsigned> TrueUndefOps; 963 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 964 Value *V = PN->getIncomingValue(i); 965 966 if (!isa<UndefValue>(V)) continue; 967 968 BasicBlock *BB = PN->getIncomingBlock(i); 969 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 970 971 // Keep track of undef/poison incoming values. Those must match, so we fix 972 // them up below if needed. 973 // Note: this is conservatively correct, but we could try harder and group 974 // the undef values per incoming basic block. 975 if (It == IncomingValues.end()) { 976 TrueUndefOps.push_back(i); 977 continue; 978 } 979 980 // There is a defined value for this incoming block, so map this undef 981 // incoming value to the defined value. 982 PN->setIncomingValue(i, It->second); 983 } 984 985 // If there are both undef and poison values incoming, then convert those 986 // values to undef. It is invalid to have different values for the same 987 // incoming block. 988 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 989 return isa<PoisonValue>(PN->getIncomingValue(i)); 990 }); 991 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 992 for (unsigned i : TrueUndefOps) 993 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 994 } 995 } 996 997 /// Replace a value flowing from a block to a phi with 998 /// potentially multiple instances of that value flowing from the 999 /// block's predecessors to the phi. 1000 /// 1001 /// \param BB The block with the value flowing into the phi. 1002 /// \param BBPreds The predecessors of BB. 1003 /// \param PN The phi that we are updating. 1004 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 1005 const PredBlockVector &BBPreds, 1006 PHINode *PN) { 1007 Value *OldVal = PN->removeIncomingValue(BB, false); 1008 assert(OldVal && "No entry in PHI for Pred BB!"); 1009 1010 IncomingValueMap IncomingValues; 1011 1012 // We are merging two blocks - BB, and the block containing PN - and 1013 // as a result we need to redirect edges from the predecessors of BB 1014 // to go to the block containing PN, and update PN 1015 // accordingly. Since we allow merging blocks in the case where the 1016 // predecessor and successor blocks both share some predecessors, 1017 // and where some of those common predecessors might have undef 1018 // values flowing into PN, we want to rewrite those values to be 1019 // consistent with the non-undef values. 1020 1021 gatherIncomingValuesToPhi(PN, IncomingValues); 1022 1023 // If this incoming value is one of the PHI nodes in BB, the new entries 1024 // in the PHI node are the entries from the old PHI. 1025 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1026 PHINode *OldValPN = cast<PHINode>(OldVal); 1027 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1028 // Note that, since we are merging phi nodes and BB and Succ might 1029 // have common predecessors, we could end up with a phi node with 1030 // identical incoming branches. This will be cleaned up later (and 1031 // will trigger asserts if we try to clean it up now, without also 1032 // simplifying the corresponding conditional branch). 1033 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1034 Value *PredVal = OldValPN->getIncomingValue(i); 1035 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 1036 IncomingValues); 1037 1038 // And add a new incoming value for this predecessor for the 1039 // newly retargeted branch. 1040 PN->addIncoming(Selected, PredBB); 1041 } 1042 } else { 1043 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1044 // Update existing incoming values in PN for this 1045 // predecessor of BB. 1046 BasicBlock *PredBB = BBPreds[i]; 1047 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1048 IncomingValues); 1049 1050 // And add a new incoming value for this predecessor for the 1051 // newly retargeted branch. 1052 PN->addIncoming(Selected, PredBB); 1053 } 1054 } 1055 1056 replaceUndefValuesInPhi(PN, IncomingValues); 1057 } 1058 1059 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1060 DomTreeUpdater *DTU) { 1061 assert(BB != &BB->getParent()->getEntryBlock() && 1062 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1063 1064 // We can't eliminate infinite loops. 1065 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1066 if (BB == Succ) return false; 1067 1068 // Check to see if merging these blocks would cause conflicts for any of the 1069 // phi nodes in BB or Succ. If not, we can safely merge. 1070 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1071 1072 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1073 // has uses which will not disappear when the PHI nodes are merged. It is 1074 // possible to handle such cases, but difficult: it requires checking whether 1075 // BB dominates Succ, which is non-trivial to calculate in the case where 1076 // Succ has multiple predecessors. Also, it requires checking whether 1077 // constructing the necessary self-referential PHI node doesn't introduce any 1078 // conflicts; this isn't too difficult, but the previous code for doing this 1079 // was incorrect. 1080 // 1081 // Note that if this check finds a live use, BB dominates Succ, so BB is 1082 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1083 // folding the branch isn't profitable in that case anyway. 1084 if (!Succ->getSinglePredecessor()) { 1085 BasicBlock::iterator BBI = BB->begin(); 1086 while (isa<PHINode>(*BBI)) { 1087 for (Use &U : BBI->uses()) { 1088 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1089 if (PN->getIncomingBlock(U) != BB) 1090 return false; 1091 } else { 1092 return false; 1093 } 1094 } 1095 ++BBI; 1096 } 1097 } 1098 1099 // We cannot fold the block if it's a branch to an already present callbr 1100 // successor because that creates duplicate successors. 1101 for (BasicBlock *PredBB : predecessors(BB)) { 1102 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { 1103 if (Succ == CBI->getDefaultDest()) 1104 return false; 1105 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1106 if (Succ == CBI->getIndirectDest(i)) 1107 return false; 1108 } 1109 } 1110 1111 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1112 1113 SmallVector<DominatorTree::UpdateType, 32> Updates; 1114 if (DTU) { 1115 // To avoid processing the same predecessor more than once. 1116 SmallPtrSet<BasicBlock *, 8> SeenPreds; 1117 // All predecessors of BB will be moved to Succ. 1118 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); 1119 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1); 1120 for (auto *PredOfBB : predecessors(BB)) 1121 // This predecessor of BB may already have Succ as a successor. 1122 if (!PredsOfSucc.contains(PredOfBB)) 1123 if (SeenPreds.insert(PredOfBB).second) 1124 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1125 SeenPreds.clear(); 1126 for (auto *PredOfBB : predecessors(BB)) 1127 if (SeenPreds.insert(PredOfBB).second) 1128 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1129 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1130 } 1131 1132 if (isa<PHINode>(Succ->begin())) { 1133 // If there is more than one pred of succ, and there are PHI nodes in 1134 // the successor, then we need to add incoming edges for the PHI nodes 1135 // 1136 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1137 1138 // Loop over all of the PHI nodes in the successor of BB. 1139 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1140 PHINode *PN = cast<PHINode>(I); 1141 1142 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1143 } 1144 } 1145 1146 if (Succ->getSinglePredecessor()) { 1147 // BB is the only predecessor of Succ, so Succ will end up with exactly 1148 // the same predecessors BB had. 1149 1150 // Copy over any phi, debug or lifetime instruction. 1151 BB->getTerminator()->eraseFromParent(); 1152 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1153 BB->getInstList()); 1154 } else { 1155 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1156 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1157 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1158 PN->eraseFromParent(); 1159 } 1160 } 1161 1162 // If the unconditional branch we replaced contains llvm.loop metadata, we 1163 // add the metadata to the branch instructions in the predecessors. 1164 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1165 Instruction *TI = BB->getTerminator(); 1166 if (TI) 1167 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1168 for (BasicBlock *Pred : predecessors(BB)) 1169 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1170 1171 // Everything that jumped to BB now goes to Succ. 1172 BB->replaceAllUsesWith(Succ); 1173 if (!Succ->hasName()) Succ->takeName(BB); 1174 1175 // Clear the successor list of BB to match updates applying to DTU later. 1176 if (BB->getTerminator()) 1177 BB->getInstList().pop_back(); 1178 new UnreachableInst(BB->getContext(), BB); 1179 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1180 "applying corresponding DTU updates."); 1181 1182 if (DTU) 1183 DTU->applyUpdates(Updates); 1184 1185 DeleteDeadBlock(BB, DTU); 1186 1187 return true; 1188 } 1189 1190 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1191 // This implementation doesn't currently consider undef operands 1192 // specially. Theoretically, two phis which are identical except for 1193 // one having an undef where the other doesn't could be collapsed. 1194 1195 bool Changed = false; 1196 1197 // Examine each PHI. 1198 // Note that increment of I must *NOT* be in the iteration_expression, since 1199 // we don't want to immediately advance when we restart from the beginning. 1200 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1201 ++I; 1202 // Is there an identical PHI node in this basic block? 1203 // Note that we only look in the upper square's triangle, 1204 // we already checked that the lower triangle PHI's aren't identical. 1205 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1206 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1207 continue; 1208 // A duplicate. Replace this PHI with the base PHI. 1209 ++NumPHICSEs; 1210 DuplicatePN->replaceAllUsesWith(PN); 1211 DuplicatePN->eraseFromParent(); 1212 Changed = true; 1213 1214 // The RAUW can change PHIs that we already visited. 1215 I = BB->begin(); 1216 break; // Start over from the beginning. 1217 } 1218 } 1219 return Changed; 1220 } 1221 1222 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1223 // This implementation doesn't currently consider undef operands 1224 // specially. Theoretically, two phis which are identical except for 1225 // one having an undef where the other doesn't could be collapsed. 1226 1227 struct PHIDenseMapInfo { 1228 static PHINode *getEmptyKey() { 1229 return DenseMapInfo<PHINode *>::getEmptyKey(); 1230 } 1231 1232 static PHINode *getTombstoneKey() { 1233 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1234 } 1235 1236 static bool isSentinel(PHINode *PN) { 1237 return PN == getEmptyKey() || PN == getTombstoneKey(); 1238 } 1239 1240 // WARNING: this logic must be kept in sync with 1241 // Instruction::isIdenticalToWhenDefined()! 1242 static unsigned getHashValueImpl(PHINode *PN) { 1243 // Compute a hash value on the operands. Instcombine will likely have 1244 // sorted them, which helps expose duplicates, but we have to check all 1245 // the operands to be safe in case instcombine hasn't run. 1246 return static_cast<unsigned>(hash_combine( 1247 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1248 hash_combine_range(PN->block_begin(), PN->block_end()))); 1249 } 1250 1251 static unsigned getHashValue(PHINode *PN) { 1252 #ifndef NDEBUG 1253 // If -phicse-debug-hash was specified, return a constant -- this 1254 // will force all hashing to collide, so we'll exhaustively search 1255 // the table for a match, and the assertion in isEqual will fire if 1256 // there's a bug causing equal keys to hash differently. 1257 if (PHICSEDebugHash) 1258 return 0; 1259 #endif 1260 return getHashValueImpl(PN); 1261 } 1262 1263 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1264 if (isSentinel(LHS) || isSentinel(RHS)) 1265 return LHS == RHS; 1266 return LHS->isIdenticalTo(RHS); 1267 } 1268 1269 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1270 // These comparisons are nontrivial, so assert that equality implies 1271 // hash equality (DenseMap demands this as an invariant). 1272 bool Result = isEqualImpl(LHS, RHS); 1273 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1274 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1275 return Result; 1276 } 1277 }; 1278 1279 // Set of unique PHINodes. 1280 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1281 PHISet.reserve(4 * PHICSENumPHISmallSize); 1282 1283 // Examine each PHI. 1284 bool Changed = false; 1285 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1286 auto Inserted = PHISet.insert(PN); 1287 if (!Inserted.second) { 1288 // A duplicate. Replace this PHI with its duplicate. 1289 ++NumPHICSEs; 1290 PN->replaceAllUsesWith(*Inserted.first); 1291 PN->eraseFromParent(); 1292 Changed = true; 1293 1294 // The RAUW can change PHIs that we already visited. Start over from the 1295 // beginning. 1296 PHISet.clear(); 1297 I = BB->begin(); 1298 } 1299 } 1300 1301 return Changed; 1302 } 1303 1304 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1305 if ( 1306 #ifndef NDEBUG 1307 !PHICSEDebugHash && 1308 #endif 1309 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1310 return EliminateDuplicatePHINodesNaiveImpl(BB); 1311 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1312 } 1313 1314 /// If the specified pointer points to an object that we control, try to modify 1315 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1316 /// the value after the operation, which may be lower than PrefAlign. 1317 /// 1318 /// Increating value alignment isn't often possible though. If alignment is 1319 /// important, a more reliable approach is to simply align all global variables 1320 /// and allocation instructions to their preferred alignment from the beginning. 1321 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1322 const DataLayout &DL) { 1323 V = V->stripPointerCasts(); 1324 1325 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1326 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1327 // than the current alignment, as the known bits calculation should have 1328 // already taken it into account. However, this is not always the case, 1329 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1330 // doesn't. 1331 Align CurrentAlign = AI->getAlign(); 1332 if (PrefAlign <= CurrentAlign) 1333 return CurrentAlign; 1334 1335 // If the preferred alignment is greater than the natural stack alignment 1336 // then don't round up. This avoids dynamic stack realignment. 1337 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1338 return CurrentAlign; 1339 AI->setAlignment(PrefAlign); 1340 return PrefAlign; 1341 } 1342 1343 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1344 // TODO: as above, this shouldn't be necessary. 1345 Align CurrentAlign = GO->getPointerAlignment(DL); 1346 if (PrefAlign <= CurrentAlign) 1347 return CurrentAlign; 1348 1349 // If there is a large requested alignment and we can, bump up the alignment 1350 // of the global. If the memory we set aside for the global may not be the 1351 // memory used by the final program then it is impossible for us to reliably 1352 // enforce the preferred alignment. 1353 if (!GO->canIncreaseAlignment()) 1354 return CurrentAlign; 1355 1356 GO->setAlignment(PrefAlign); 1357 return PrefAlign; 1358 } 1359 1360 return Align(1); 1361 } 1362 1363 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1364 const DataLayout &DL, 1365 const Instruction *CxtI, 1366 AssumptionCache *AC, 1367 const DominatorTree *DT) { 1368 assert(V->getType()->isPointerTy() && 1369 "getOrEnforceKnownAlignment expects a pointer!"); 1370 1371 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1372 unsigned TrailZ = Known.countMinTrailingZeros(); 1373 1374 // Avoid trouble with ridiculously large TrailZ values, such as 1375 // those computed from a null pointer. 1376 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1377 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1378 1379 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1380 1381 if (PrefAlign && *PrefAlign > Alignment) 1382 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1383 1384 // We don't need to make any adjustment. 1385 return Alignment; 1386 } 1387 1388 ///===---------------------------------------------------------------------===// 1389 /// Dbg Intrinsic utilities 1390 /// 1391 1392 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1393 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1394 DIExpression *DIExpr, 1395 PHINode *APN) { 1396 // Since we can't guarantee that the original dbg.declare instrinsic 1397 // is removed by LowerDbgDeclare(), we need to make sure that we are 1398 // not inserting the same dbg.value intrinsic over and over. 1399 SmallVector<DbgValueInst *, 1> DbgValues; 1400 findDbgValues(DbgValues, APN); 1401 for (auto *DVI : DbgValues) { 1402 assert(is_contained(DVI->getValues(), APN)); 1403 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1404 return true; 1405 } 1406 return false; 1407 } 1408 1409 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1410 /// (or fragment of the variable) described by \p DII. 1411 /// 1412 /// This is primarily intended as a helper for the different 1413 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1414 /// converted describes an alloca'd variable, so we need to use the 1415 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1416 /// identified as covering an n-bit fragment, if the store size of i1 is at 1417 /// least n bits. 1418 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1419 const DataLayout &DL = DII->getModule()->getDataLayout(); 1420 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1421 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1422 assert(!ValueSize.isScalable() && 1423 "Fragments don't work on scalable types."); 1424 return ValueSize.getFixedSize() >= *FragmentSize; 1425 } 1426 // We can't always calculate the size of the DI variable (e.g. if it is a 1427 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1428 // intead. 1429 if (DII->isAddressOfVariable()) { 1430 // DII should have exactly 1 location when it is an address. 1431 assert(DII->getNumVariableLocationOps() == 1 && 1432 "address of variable must have exactly 1 location operand."); 1433 if (auto *AI = 1434 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1435 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1436 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1437 } 1438 } 1439 } 1440 // Could not determine size of variable. Conservatively return false. 1441 return false; 1442 } 1443 1444 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1445 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1446 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1447 /// case this DebugLoc leaks into any adjacent instructions. 1448 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1449 // Original dbg.declare must have a location. 1450 const DebugLoc &DeclareLoc = DII->getDebugLoc(); 1451 MDNode *Scope = DeclareLoc.getScope(); 1452 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1453 // Produce an unknown location with the correct scope / inlinedAt fields. 1454 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1455 } 1456 1457 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1458 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1459 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1460 StoreInst *SI, DIBuilder &Builder) { 1461 assert(DII->isAddressOfVariable()); 1462 auto *DIVar = DII->getVariable(); 1463 assert(DIVar && "Missing variable"); 1464 auto *DIExpr = DII->getExpression(); 1465 Value *DV = SI->getValueOperand(); 1466 1467 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1468 1469 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1470 // FIXME: If storing to a part of the variable described by the dbg.declare, 1471 // then we want to insert a dbg.value for the corresponding fragment. 1472 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1473 << *DII << '\n'); 1474 // For now, when there is a store to parts of the variable (but we do not 1475 // know which part) we insert an dbg.value instrinsic to indicate that we 1476 // know nothing about the variable's content. 1477 DV = UndefValue::get(DV->getType()); 1478 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1479 return; 1480 } 1481 1482 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1483 } 1484 1485 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1486 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1487 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1488 LoadInst *LI, DIBuilder &Builder) { 1489 auto *DIVar = DII->getVariable(); 1490 auto *DIExpr = DII->getExpression(); 1491 assert(DIVar && "Missing variable"); 1492 1493 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1494 // FIXME: If only referring to a part of the variable described by the 1495 // dbg.declare, then we want to insert a dbg.value for the corresponding 1496 // fragment. 1497 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1498 << *DII << '\n'); 1499 return; 1500 } 1501 1502 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1503 1504 // We are now tracking the loaded value instead of the address. In the 1505 // future if multi-location support is added to the IR, it might be 1506 // preferable to keep tracking both the loaded value and the original 1507 // address in case the alloca can not be elided. 1508 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1509 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1510 DbgValue->insertAfter(LI); 1511 } 1512 1513 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1514 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1515 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1516 PHINode *APN, DIBuilder &Builder) { 1517 auto *DIVar = DII->getVariable(); 1518 auto *DIExpr = DII->getExpression(); 1519 assert(DIVar && "Missing variable"); 1520 1521 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1522 return; 1523 1524 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1525 // FIXME: If only referring to a part of the variable described by the 1526 // dbg.declare, then we want to insert a dbg.value for the corresponding 1527 // fragment. 1528 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1529 << *DII << '\n'); 1530 return; 1531 } 1532 1533 BasicBlock *BB = APN->getParent(); 1534 auto InsertionPt = BB->getFirstInsertionPt(); 1535 1536 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1537 1538 // The block may be a catchswitch block, which does not have a valid 1539 // insertion point. 1540 // FIXME: Insert dbg.value markers in the successors when appropriate. 1541 if (InsertionPt != BB->end()) 1542 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1543 } 1544 1545 /// Determine whether this alloca is either a VLA or an array. 1546 static bool isArray(AllocaInst *AI) { 1547 return AI->isArrayAllocation() || 1548 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1549 } 1550 1551 /// Determine whether this alloca is a structure. 1552 static bool isStructure(AllocaInst *AI) { 1553 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1554 } 1555 1556 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1557 /// of llvm.dbg.value intrinsics. 1558 bool llvm::LowerDbgDeclare(Function &F) { 1559 bool Changed = false; 1560 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1561 SmallVector<DbgDeclareInst *, 4> Dbgs; 1562 for (auto &FI : F) 1563 for (Instruction &BI : FI) 1564 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1565 Dbgs.push_back(DDI); 1566 1567 if (Dbgs.empty()) 1568 return Changed; 1569 1570 for (auto &I : Dbgs) { 1571 DbgDeclareInst *DDI = I; 1572 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1573 // If this is an alloca for a scalar variable, insert a dbg.value 1574 // at each load and store to the alloca and erase the dbg.declare. 1575 // The dbg.values allow tracking a variable even if it is not 1576 // stored on the stack, while the dbg.declare can only describe 1577 // the stack slot (and at a lexical-scope granularity). Later 1578 // passes will attempt to elide the stack slot. 1579 if (!AI || isArray(AI) || isStructure(AI)) 1580 continue; 1581 1582 // A volatile load/store means that the alloca can't be elided anyway. 1583 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1584 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1585 return LI->isVolatile(); 1586 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1587 return SI->isVolatile(); 1588 return false; 1589 })) 1590 continue; 1591 1592 SmallVector<const Value *, 8> WorkList; 1593 WorkList.push_back(AI); 1594 while (!WorkList.empty()) { 1595 const Value *V = WorkList.pop_back_val(); 1596 for (auto &AIUse : V->uses()) { 1597 User *U = AIUse.getUser(); 1598 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1599 if (AIUse.getOperandNo() == 1) 1600 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1601 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1602 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1603 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1604 // This is a call by-value or some other instruction that takes a 1605 // pointer to the variable. Insert a *value* intrinsic that describes 1606 // the variable by dereferencing the alloca. 1607 if (!CI->isLifetimeStartOrEnd()) { 1608 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1609 auto *DerefExpr = 1610 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1611 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1612 NewLoc, CI); 1613 } 1614 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1615 if (BI->getType()->isPointerTy()) 1616 WorkList.push_back(BI); 1617 } 1618 } 1619 } 1620 DDI->eraseFromParent(); 1621 Changed = true; 1622 } 1623 1624 if (Changed) 1625 for (BasicBlock &BB : F) 1626 RemoveRedundantDbgInstrs(&BB); 1627 1628 return Changed; 1629 } 1630 1631 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1632 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1633 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1634 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1635 if (InsertedPHIs.size() == 0) 1636 return; 1637 1638 // Map existing PHI nodes to their dbg.values. 1639 ValueToValueMapTy DbgValueMap; 1640 for (auto &I : *BB) { 1641 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1642 for (Value *V : DbgII->location_ops()) 1643 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 1644 DbgValueMap.insert({Loc, DbgII}); 1645 } 1646 } 1647 if (DbgValueMap.size() == 0) 1648 return; 1649 1650 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 1651 // so that if a dbg.value is being rewritten to use more than one of the 1652 // inserted PHIs in the same destination BB, we can update the same dbg.value 1653 // with all the new PHIs instead of creating one copy for each. 1654 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 1655 DbgVariableIntrinsic *> 1656 NewDbgValueMap; 1657 // Then iterate through the new PHIs and look to see if they use one of the 1658 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 1659 // propagate the info through the new PHI. If we use more than one new PHI in 1660 // a single destination BB with the same old dbg.value, merge the updates so 1661 // that we get a single new dbg.value with all the new PHIs. 1662 for (auto PHI : InsertedPHIs) { 1663 BasicBlock *Parent = PHI->getParent(); 1664 // Avoid inserting an intrinsic into an EH block. 1665 if (Parent->getFirstNonPHI()->isEHPad()) 1666 continue; 1667 for (auto VI : PHI->operand_values()) { 1668 auto V = DbgValueMap.find(VI); 1669 if (V != DbgValueMap.end()) { 1670 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1671 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 1672 if (NewDI == NewDbgValueMap.end()) { 1673 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 1674 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 1675 } 1676 DbgVariableIntrinsic *NewDbgII = NewDI->second; 1677 // If PHI contains VI as an operand more than once, we may 1678 // replaced it in NewDbgII; confirm that it is present. 1679 if (is_contained(NewDbgII->location_ops(), VI)) 1680 NewDbgII->replaceVariableLocationOp(VI, PHI); 1681 } 1682 } 1683 } 1684 // Insert thew new dbg.values into their destination blocks. 1685 for (auto DI : NewDbgValueMap) { 1686 BasicBlock *Parent = DI.first.first; 1687 auto *NewDbgII = DI.second; 1688 auto InsertionPt = Parent->getFirstInsertionPt(); 1689 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1690 NewDbgII->insertBefore(&*InsertionPt); 1691 } 1692 } 1693 1694 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1695 DIBuilder &Builder, uint8_t DIExprFlags, 1696 int Offset) { 1697 auto DbgAddrs = FindDbgAddrUses(Address); 1698 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1699 const DebugLoc &Loc = DII->getDebugLoc(); 1700 auto *DIVar = DII->getVariable(); 1701 auto *DIExpr = DII->getExpression(); 1702 assert(DIVar && "Missing variable"); 1703 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1704 // Insert llvm.dbg.declare immediately before DII, and remove old 1705 // llvm.dbg.declare. 1706 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1707 DII->eraseFromParent(); 1708 } 1709 return !DbgAddrs.empty(); 1710 } 1711 1712 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1713 DIBuilder &Builder, int Offset) { 1714 const DebugLoc &Loc = DVI->getDebugLoc(); 1715 auto *DIVar = DVI->getVariable(); 1716 auto *DIExpr = DVI->getExpression(); 1717 assert(DIVar && "Missing variable"); 1718 1719 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1720 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1721 // it and give up. 1722 if (!DIExpr || DIExpr->getNumElements() < 1 || 1723 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1724 return; 1725 1726 // Insert the offset before the first deref. 1727 // We could just change the offset argument of dbg.value, but it's unsigned... 1728 if (Offset) 1729 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1730 1731 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1732 DVI->eraseFromParent(); 1733 } 1734 1735 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1736 DIBuilder &Builder, int Offset) { 1737 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1738 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1739 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1740 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1741 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1742 } 1743 1744 /// Where possible to salvage debug information for \p I do so 1745 /// and return True. If not possible mark undef and return False. 1746 void llvm::salvageDebugInfo(Instruction &I) { 1747 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1748 findDbgUsers(DbgUsers, &I); 1749 salvageDebugInfoForDbgValues(I, DbgUsers); 1750 } 1751 1752 void llvm::salvageDebugInfoForDbgValues( 1753 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1754 // These are arbitrary chosen limits on the maximum number of values and the 1755 // maximum size of a debug expression we can salvage up to, used for 1756 // performance reasons. 1757 const unsigned MaxDebugArgs = 16; 1758 const unsigned MaxExpressionSize = 128; 1759 bool Salvaged = false; 1760 1761 for (auto *DII : DbgUsers) { 1762 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1763 // are implicitly pointing out the value as a DWARF memory location 1764 // description. 1765 bool StackValue = isa<DbgValueInst>(DII); 1766 auto DIILocation = DII->location_ops(); 1767 assert( 1768 is_contained(DIILocation, &I) && 1769 "DbgVariableIntrinsic must use salvaged instruction as its location"); 1770 SmallVector<Value *, 4> AdditionalValues; 1771 // `I` may appear more than once in DII's location ops, and each use of `I` 1772 // must be updated in the DIExpression and potentially have additional 1773 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 1774 // DIILocation. 1775 Value *Op0 = nullptr; 1776 DIExpression *SalvagedExpr = DII->getExpression(); 1777 auto LocItr = find(DIILocation, &I); 1778 while (SalvagedExpr && LocItr != DIILocation.end()) { 1779 SmallVector<uint64_t, 16> Ops; 1780 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 1781 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 1782 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 1783 if (!Op0) 1784 break; 1785 SalvagedExpr = 1786 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 1787 LocItr = std::find(++LocItr, DIILocation.end(), &I); 1788 } 1789 // salvageDebugInfoImpl should fail on examining the first element of 1790 // DbgUsers, or none of them. 1791 if (!Op0) 1792 break; 1793 1794 DII->replaceVariableLocationOp(&I, Op0); 1795 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; 1796 if (AdditionalValues.empty() && IsValidSalvageExpr) { 1797 DII->setExpression(SalvagedExpr); 1798 } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr && 1799 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 1800 MaxDebugArgs) { 1801 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 1802 } else { 1803 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 1804 // currently only valid for stack value expressions. 1805 // Also do not salvage if the resulting DIArgList would contain an 1806 // unreasonably large number of values. 1807 Value *Undef = UndefValue::get(I.getOperand(0)->getType()); 1808 DII->replaceVariableLocationOp(I.getOperand(0), Undef); 1809 } 1810 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1811 Salvaged = true; 1812 } 1813 1814 if (Salvaged) 1815 return; 1816 1817 for (auto *DII : DbgUsers) { 1818 Value *Undef = UndefValue::get(I.getType()); 1819 DII->replaceVariableLocationOp(&I, Undef); 1820 } 1821 } 1822 1823 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 1824 uint64_t CurrentLocOps, 1825 SmallVectorImpl<uint64_t> &Opcodes, 1826 SmallVectorImpl<Value *> &AdditionalValues) { 1827 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 1828 // Rewrite a GEP into a DIExpression. 1829 MapVector<Value *, APInt> VariableOffsets; 1830 APInt ConstantOffset(BitWidth, 0); 1831 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 1832 return nullptr; 1833 if (!VariableOffsets.empty() && !CurrentLocOps) { 1834 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 1835 CurrentLocOps = 1; 1836 } 1837 for (auto Offset : VariableOffsets) { 1838 AdditionalValues.push_back(Offset.first); 1839 assert(Offset.second.isStrictlyPositive() && 1840 "Expected strictly positive multiplier for offset."); 1841 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 1842 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 1843 dwarf::DW_OP_plus}); 1844 } 1845 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 1846 return GEP->getOperand(0); 1847 } 1848 1849 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 1850 switch (Opcode) { 1851 case Instruction::Add: 1852 return dwarf::DW_OP_plus; 1853 case Instruction::Sub: 1854 return dwarf::DW_OP_minus; 1855 case Instruction::Mul: 1856 return dwarf::DW_OP_mul; 1857 case Instruction::SDiv: 1858 return dwarf::DW_OP_div; 1859 case Instruction::SRem: 1860 return dwarf::DW_OP_mod; 1861 case Instruction::Or: 1862 return dwarf::DW_OP_or; 1863 case Instruction::And: 1864 return dwarf::DW_OP_and; 1865 case Instruction::Xor: 1866 return dwarf::DW_OP_xor; 1867 case Instruction::Shl: 1868 return dwarf::DW_OP_shl; 1869 case Instruction::LShr: 1870 return dwarf::DW_OP_shr; 1871 case Instruction::AShr: 1872 return dwarf::DW_OP_shra; 1873 default: 1874 // TODO: Salvage from each kind of binop we know about. 1875 return 0; 1876 } 1877 } 1878 1879 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 1880 SmallVectorImpl<uint64_t> &Opcodes, 1881 SmallVectorImpl<Value *> &AdditionalValues) { 1882 // Handle binary operations with constant integer operands as a special case. 1883 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 1884 // Values wider than 64 bits cannot be represented within a DIExpression. 1885 if (ConstInt && ConstInt->getBitWidth() > 64) 1886 return nullptr; 1887 1888 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 1889 // Push any Constant Int operand onto the expression stack. 1890 if (ConstInt) { 1891 uint64_t Val = ConstInt->getSExtValue(); 1892 // Add or Sub Instructions with a constant operand can potentially be 1893 // simplified. 1894 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 1895 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 1896 DIExpression::appendOffset(Opcodes, Offset); 1897 return BI->getOperand(0); 1898 } 1899 Opcodes.append({dwarf::DW_OP_constu, Val}); 1900 } else { 1901 if (!CurrentLocOps) { 1902 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 1903 CurrentLocOps = 1; 1904 } 1905 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 1906 AdditionalValues.push_back(BI->getOperand(1)); 1907 } 1908 1909 // Add salvaged binary operator to expression stack, if it has a valid 1910 // representation in a DIExpression. 1911 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 1912 if (!DwarfBinOp) 1913 return nullptr; 1914 Opcodes.push_back(DwarfBinOp); 1915 return BI->getOperand(0); 1916 } 1917 1918 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 1919 SmallVectorImpl<uint64_t> &Ops, 1920 SmallVectorImpl<Value *> &AdditionalValues) { 1921 auto &M = *I.getModule(); 1922 auto &DL = M.getDataLayout(); 1923 1924 if (auto *CI = dyn_cast<CastInst>(&I)) { 1925 Value *FromValue = CI->getOperand(0); 1926 // No-op casts are irrelevant for debug info. 1927 if (CI->isNoopCast(DL)) { 1928 return FromValue; 1929 } 1930 1931 Type *Type = CI->getType(); 1932 if (Type->isPointerTy()) 1933 Type = DL.getIntPtrType(Type); 1934 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1935 if (Type->isVectorTy() || 1936 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || 1937 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) 1938 return nullptr; 1939 1940 llvm::Type *FromType = FromValue->getType(); 1941 if (FromType->isPointerTy()) 1942 FromType = DL.getIntPtrType(FromType); 1943 1944 unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); 1945 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1946 1947 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1948 isa<SExtInst>(&I)); 1949 Ops.append(ExtOps.begin(), ExtOps.end()); 1950 return FromValue; 1951 } 1952 1953 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 1954 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); 1955 if (auto *BI = dyn_cast<BinaryOperator>(&I)) 1956 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); 1957 1958 // *Not* to do: we should not attempt to salvage load instructions, 1959 // because the validity and lifetime of a dbg.value containing 1960 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1961 return nullptr; 1962 } 1963 1964 /// A replacement for a dbg.value expression. 1965 using DbgValReplacement = Optional<DIExpression *>; 1966 1967 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1968 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1969 /// changes are made. 1970 static bool rewriteDebugUsers( 1971 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1972 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1973 // Find debug users of From. 1974 SmallVector<DbgVariableIntrinsic *, 1> Users; 1975 findDbgUsers(Users, &From); 1976 if (Users.empty()) 1977 return false; 1978 1979 // Prevent use-before-def of To. 1980 bool Changed = false; 1981 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1982 if (isa<Instruction>(&To)) { 1983 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1984 1985 for (auto *DII : Users) { 1986 // It's common to see a debug user between From and DomPoint. Move it 1987 // after DomPoint to preserve the variable update without any reordering. 1988 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1989 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1990 DII->moveAfter(&DomPoint); 1991 Changed = true; 1992 1993 // Users which otherwise aren't dominated by the replacement value must 1994 // be salvaged or deleted. 1995 } else if (!DT.dominates(&DomPoint, DII)) { 1996 UndefOrSalvage.insert(DII); 1997 } 1998 } 1999 } 2000 2001 // Update debug users without use-before-def risk. 2002 for (auto *DII : Users) { 2003 if (UndefOrSalvage.count(DII)) 2004 continue; 2005 2006 DbgValReplacement DVR = RewriteExpr(*DII); 2007 if (!DVR) 2008 continue; 2009 2010 DII->replaceVariableLocationOp(&From, &To); 2011 DII->setExpression(*DVR); 2012 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 2013 Changed = true; 2014 } 2015 2016 if (!UndefOrSalvage.empty()) { 2017 // Try to salvage the remaining debug users. 2018 salvageDebugInfo(From); 2019 Changed = true; 2020 } 2021 2022 return Changed; 2023 } 2024 2025 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2026 /// losslessly preserve the bits and semantics of the value. This predicate is 2027 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2028 /// 2029 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2030 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2031 /// and also does not allow lossless pointer <-> integer conversions. 2032 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2033 Type *ToTy) { 2034 // Trivially compatible types. 2035 if (FromTy == ToTy) 2036 return true; 2037 2038 // Handle compatible pointer <-> integer conversions. 2039 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2040 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2041 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2042 !DL.isNonIntegralPointerType(ToTy); 2043 return SameSize && LosslessConversion; 2044 } 2045 2046 // TODO: This is not exhaustive. 2047 return false; 2048 } 2049 2050 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2051 Instruction &DomPoint, DominatorTree &DT) { 2052 // Exit early if From has no debug users. 2053 if (!From.isUsedByMetadata()) 2054 return false; 2055 2056 assert(&From != &To && "Can't replace something with itself"); 2057 2058 Type *FromTy = From.getType(); 2059 Type *ToTy = To.getType(); 2060 2061 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2062 return DII.getExpression(); 2063 }; 2064 2065 // Handle no-op conversions. 2066 Module &M = *From.getModule(); 2067 const DataLayout &DL = M.getDataLayout(); 2068 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2069 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2070 2071 // Handle integer-to-integer widening and narrowing. 2072 // FIXME: Use DW_OP_convert when it's available everywhere. 2073 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2074 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2075 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2076 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2077 2078 // When the width of the result grows, assume that a debugger will only 2079 // access the low `FromBits` bits when inspecting the source variable. 2080 if (FromBits < ToBits) 2081 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2082 2083 // The width of the result has shrunk. Use sign/zero extension to describe 2084 // the source variable's high bits. 2085 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2086 DILocalVariable *Var = DII.getVariable(); 2087 2088 // Without knowing signedness, sign/zero extension isn't possible. 2089 auto Signedness = Var->getSignedness(); 2090 if (!Signedness) 2091 return None; 2092 2093 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2094 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2095 Signed); 2096 }; 2097 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2098 } 2099 2100 // TODO: Floating-point conversions, vectors. 2101 return false; 2102 } 2103 2104 std::pair<unsigned, unsigned> 2105 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2106 unsigned NumDeadInst = 0; 2107 unsigned NumDeadDbgInst = 0; 2108 // Delete the instructions backwards, as it has a reduced likelihood of 2109 // having to update as many def-use and use-def chains. 2110 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2111 while (EndInst != &BB->front()) { 2112 // Delete the next to last instruction. 2113 Instruction *Inst = &*--EndInst->getIterator(); 2114 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2115 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2116 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2117 EndInst = Inst; 2118 continue; 2119 } 2120 if (isa<DbgInfoIntrinsic>(Inst)) 2121 ++NumDeadDbgInst; 2122 else 2123 ++NumDeadInst; 2124 Inst->eraseFromParent(); 2125 } 2126 return {NumDeadInst, NumDeadDbgInst}; 2127 } 2128 2129 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, 2130 DomTreeUpdater *DTU, 2131 MemorySSAUpdater *MSSAU) { 2132 BasicBlock *BB = I->getParent(); 2133 2134 if (MSSAU) 2135 MSSAU->changeToUnreachable(I); 2136 2137 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2138 2139 // Loop over all of the successors, removing BB's entry from any PHI 2140 // nodes. 2141 for (BasicBlock *Successor : successors(BB)) { 2142 Successor->removePredecessor(BB, PreserveLCSSA); 2143 if (DTU) 2144 UniqueSuccessors.insert(Successor); 2145 } 2146 auto *UI = new UnreachableInst(I->getContext(), I); 2147 UI->setDebugLoc(I->getDebugLoc()); 2148 2149 // All instructions after this are dead. 2150 unsigned NumInstrsRemoved = 0; 2151 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2152 while (BBI != BBE) { 2153 if (!BBI->use_empty()) 2154 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2155 BB->getInstList().erase(BBI++); 2156 ++NumInstrsRemoved; 2157 } 2158 if (DTU) { 2159 SmallVector<DominatorTree::UpdateType, 8> Updates; 2160 Updates.reserve(UniqueSuccessors.size()); 2161 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2162 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2163 DTU->applyUpdates(Updates); 2164 } 2165 return NumInstrsRemoved; 2166 } 2167 2168 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2169 SmallVector<Value *, 8> Args(II->args()); 2170 SmallVector<OperandBundleDef, 1> OpBundles; 2171 II->getOperandBundlesAsDefs(OpBundles); 2172 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2173 II->getCalledOperand(), Args, OpBundles); 2174 NewCall->setCallingConv(II->getCallingConv()); 2175 NewCall->setAttributes(II->getAttributes()); 2176 NewCall->setDebugLoc(II->getDebugLoc()); 2177 NewCall->copyMetadata(*II); 2178 2179 // If the invoke had profile metadata, try converting them for CallInst. 2180 uint64_t TotalWeight; 2181 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2182 // Set the total weight if it fits into i32, otherwise reset. 2183 MDBuilder MDB(NewCall->getContext()); 2184 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2185 ? nullptr 2186 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2187 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2188 } 2189 2190 return NewCall; 2191 } 2192 2193 // changeToCall - Convert the specified invoke into a normal call. 2194 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2195 CallInst *NewCall = createCallMatchingInvoke(II); 2196 NewCall->takeName(II); 2197 NewCall->insertBefore(II); 2198 II->replaceAllUsesWith(NewCall); 2199 2200 // Follow the call by a branch to the normal destination. 2201 BasicBlock *NormalDestBB = II->getNormalDest(); 2202 BranchInst::Create(NormalDestBB, II); 2203 2204 // Update PHI nodes in the unwind destination 2205 BasicBlock *BB = II->getParent(); 2206 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2207 UnwindDestBB->removePredecessor(BB); 2208 II->eraseFromParent(); 2209 if (DTU) 2210 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2211 return NewCall; 2212 } 2213 2214 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2215 BasicBlock *UnwindEdge, 2216 DomTreeUpdater *DTU) { 2217 BasicBlock *BB = CI->getParent(); 2218 2219 // Convert this function call into an invoke instruction. First, split the 2220 // basic block. 2221 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2222 CI->getName() + ".noexc"); 2223 2224 // Delete the unconditional branch inserted by SplitBlock 2225 BB->getInstList().pop_back(); 2226 2227 // Create the new invoke instruction. 2228 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2229 SmallVector<OperandBundleDef, 1> OpBundles; 2230 2231 CI->getOperandBundlesAsDefs(OpBundles); 2232 2233 // Note: we're round tripping operand bundles through memory here, and that 2234 // can potentially be avoided with a cleverer API design that we do not have 2235 // as of this time. 2236 2237 InvokeInst *II = 2238 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2239 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2240 II->setDebugLoc(CI->getDebugLoc()); 2241 II->setCallingConv(CI->getCallingConv()); 2242 II->setAttributes(CI->getAttributes()); 2243 2244 if (DTU) 2245 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2246 2247 // Make sure that anything using the call now uses the invoke! This also 2248 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2249 CI->replaceAllUsesWith(II); 2250 2251 // Delete the original call 2252 Split->getInstList().pop_front(); 2253 return Split; 2254 } 2255 2256 static bool markAliveBlocks(Function &F, 2257 SmallPtrSetImpl<BasicBlock *> &Reachable, 2258 DomTreeUpdater *DTU = nullptr) { 2259 SmallVector<BasicBlock*, 128> Worklist; 2260 BasicBlock *BB = &F.front(); 2261 Worklist.push_back(BB); 2262 Reachable.insert(BB); 2263 bool Changed = false; 2264 do { 2265 BB = Worklist.pop_back_val(); 2266 2267 // Do a quick scan of the basic block, turning any obviously unreachable 2268 // instructions into LLVM unreachable insts. The instruction combining pass 2269 // canonicalizes unreachable insts into stores to null or undef. 2270 for (Instruction &I : *BB) { 2271 if (auto *CI = dyn_cast<CallInst>(&I)) { 2272 Value *Callee = CI->getCalledOperand(); 2273 // Handle intrinsic calls. 2274 if (Function *F = dyn_cast<Function>(Callee)) { 2275 auto IntrinsicID = F->getIntrinsicID(); 2276 // Assumptions that are known to be false are equivalent to 2277 // unreachable. Also, if the condition is undefined, then we make the 2278 // choice most beneficial to the optimizer, and choose that to also be 2279 // unreachable. 2280 if (IntrinsicID == Intrinsic::assume) { 2281 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2282 // Don't insert a call to llvm.trap right before the unreachable. 2283 changeToUnreachable(CI, false, DTU); 2284 Changed = true; 2285 break; 2286 } 2287 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2288 // A call to the guard intrinsic bails out of the current 2289 // compilation unit if the predicate passed to it is false. If the 2290 // predicate is a constant false, then we know the guard will bail 2291 // out of the current compile unconditionally, so all code following 2292 // it is dead. 2293 // 2294 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2295 // guards to treat `undef` as `false` since a guard on `undef` can 2296 // still be useful for widening. 2297 if (match(CI->getArgOperand(0), m_Zero())) 2298 if (!isa<UnreachableInst>(CI->getNextNode())) { 2299 changeToUnreachable(CI->getNextNode(), false, DTU); 2300 Changed = true; 2301 break; 2302 } 2303 } 2304 } else if ((isa<ConstantPointerNull>(Callee) && 2305 !NullPointerIsDefined(CI->getFunction())) || 2306 isa<UndefValue>(Callee)) { 2307 changeToUnreachable(CI, false, DTU); 2308 Changed = true; 2309 break; 2310 } 2311 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2312 // If we found a call to a no-return function, insert an unreachable 2313 // instruction after it. Make sure there isn't *already* one there 2314 // though. 2315 if (!isa<UnreachableInst>(CI->getNextNode())) { 2316 // Don't insert a call to llvm.trap right before the unreachable. 2317 changeToUnreachable(CI->getNextNode(), false, DTU); 2318 Changed = true; 2319 } 2320 break; 2321 } 2322 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2323 // Store to undef and store to null are undefined and used to signal 2324 // that they should be changed to unreachable by passes that can't 2325 // modify the CFG. 2326 2327 // Don't touch volatile stores. 2328 if (SI->isVolatile()) continue; 2329 2330 Value *Ptr = SI->getOperand(1); 2331 2332 if (isa<UndefValue>(Ptr) || 2333 (isa<ConstantPointerNull>(Ptr) && 2334 !NullPointerIsDefined(SI->getFunction(), 2335 SI->getPointerAddressSpace()))) { 2336 changeToUnreachable(SI, false, DTU); 2337 Changed = true; 2338 break; 2339 } 2340 } 2341 } 2342 2343 Instruction *Terminator = BB->getTerminator(); 2344 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2345 // Turn invokes that call 'nounwind' functions into ordinary calls. 2346 Value *Callee = II->getCalledOperand(); 2347 if ((isa<ConstantPointerNull>(Callee) && 2348 !NullPointerIsDefined(BB->getParent())) || 2349 isa<UndefValue>(Callee)) { 2350 changeToUnreachable(II, false, DTU); 2351 Changed = true; 2352 } else { 2353 if (II->doesNotReturn()) { 2354 // If we found an invoke of a no-return function, 2355 // insert an unreachable instruction after it (on the normal dest). 2356 // Make sure there isn't *already* one there though. 2357 Instruction *FirstNormalInst = &II->getNormalDest()->front(); 2358 if (!isa<UnreachableInst>(FirstNormalInst)) { 2359 // Don't insert a call to llvm.trap right before the unreachable. 2360 changeToUnreachable(FirstNormalInst, false, DTU); 2361 Changed = true; 2362 } 2363 } 2364 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2365 if (II->use_empty() && II->onlyReadsMemory()) { 2366 // jump to the normal destination branch. 2367 BasicBlock *NormalDestBB = II->getNormalDest(); 2368 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2369 BranchInst::Create(NormalDestBB, II); 2370 UnwindDestBB->removePredecessor(II->getParent()); 2371 II->eraseFromParent(); 2372 if (DTU) 2373 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2374 } else 2375 changeToCall(II, DTU); 2376 Changed = true; 2377 } 2378 } 2379 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2380 // Remove catchpads which cannot be reached. 2381 struct CatchPadDenseMapInfo { 2382 static CatchPadInst *getEmptyKey() { 2383 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2384 } 2385 2386 static CatchPadInst *getTombstoneKey() { 2387 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2388 } 2389 2390 static unsigned getHashValue(CatchPadInst *CatchPad) { 2391 return static_cast<unsigned>(hash_combine_range( 2392 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2393 } 2394 2395 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2396 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2397 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2398 return LHS == RHS; 2399 return LHS->isIdenticalTo(RHS); 2400 } 2401 }; 2402 2403 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 2404 // Set of unique CatchPads. 2405 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2406 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2407 HandlerSet; 2408 detail::DenseSetEmpty Empty; 2409 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2410 E = CatchSwitch->handler_end(); 2411 I != E; ++I) { 2412 BasicBlock *HandlerBB = *I; 2413 if (DTU) 2414 ++NumPerSuccessorCases[HandlerBB]; 2415 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2416 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2417 if (DTU) 2418 --NumPerSuccessorCases[HandlerBB]; 2419 CatchSwitch->removeHandler(I); 2420 --I; 2421 --E; 2422 Changed = true; 2423 } 2424 } 2425 if (DTU) { 2426 std::vector<DominatorTree::UpdateType> Updates; 2427 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2428 if (I.second == 0) 2429 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2430 DTU->applyUpdates(Updates); 2431 } 2432 } 2433 2434 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2435 for (BasicBlock *Successor : successors(BB)) 2436 if (Reachable.insert(Successor).second) 2437 Worklist.push_back(Successor); 2438 } while (!Worklist.empty()); 2439 return Changed; 2440 } 2441 2442 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2443 Instruction *TI = BB->getTerminator(); 2444 2445 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2446 changeToCall(II, DTU); 2447 return; 2448 } 2449 2450 Instruction *NewTI; 2451 BasicBlock *UnwindDest; 2452 2453 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2454 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2455 UnwindDest = CRI->getUnwindDest(); 2456 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2457 auto *NewCatchSwitch = CatchSwitchInst::Create( 2458 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2459 CatchSwitch->getName(), CatchSwitch); 2460 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2461 NewCatchSwitch->addHandler(PadBB); 2462 2463 NewTI = NewCatchSwitch; 2464 UnwindDest = CatchSwitch->getUnwindDest(); 2465 } else { 2466 llvm_unreachable("Could not find unwind successor"); 2467 } 2468 2469 NewTI->takeName(TI); 2470 NewTI->setDebugLoc(TI->getDebugLoc()); 2471 UnwindDest->removePredecessor(BB); 2472 TI->replaceAllUsesWith(NewTI); 2473 TI->eraseFromParent(); 2474 if (DTU) 2475 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2476 } 2477 2478 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2479 /// if they are in a dead cycle. Return true if a change was made, false 2480 /// otherwise. 2481 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2482 MemorySSAUpdater *MSSAU) { 2483 SmallPtrSet<BasicBlock *, 16> Reachable; 2484 bool Changed = markAliveBlocks(F, Reachable, DTU); 2485 2486 // If there are unreachable blocks in the CFG... 2487 if (Reachable.size() == F.size()) 2488 return Changed; 2489 2490 assert(Reachable.size() < F.size()); 2491 2492 // Are there any blocks left to actually delete? 2493 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2494 for (BasicBlock &BB : F) { 2495 // Skip reachable basic blocks 2496 if (Reachable.count(&BB)) 2497 continue; 2498 // Skip already-deleted blocks 2499 if (DTU && DTU->isBBPendingDeletion(&BB)) 2500 continue; 2501 BlocksToRemove.insert(&BB); 2502 } 2503 2504 if (BlocksToRemove.empty()) 2505 return Changed; 2506 2507 Changed = true; 2508 NumRemoved += BlocksToRemove.size(); 2509 2510 if (MSSAU) 2511 MSSAU->removeBlocks(BlocksToRemove); 2512 2513 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 2514 2515 return Changed; 2516 } 2517 2518 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2519 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2520 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2521 K->dropUnknownNonDebugMetadata(KnownIDs); 2522 K->getAllMetadataOtherThanDebugLoc(Metadata); 2523 for (const auto &MD : Metadata) { 2524 unsigned Kind = MD.first; 2525 MDNode *JMD = J->getMetadata(Kind); 2526 MDNode *KMD = MD.second; 2527 2528 switch (Kind) { 2529 default: 2530 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2531 break; 2532 case LLVMContext::MD_dbg: 2533 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2534 case LLVMContext::MD_tbaa: 2535 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2536 break; 2537 case LLVMContext::MD_alias_scope: 2538 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2539 break; 2540 case LLVMContext::MD_noalias: 2541 case LLVMContext::MD_mem_parallel_loop_access: 2542 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2543 break; 2544 case LLVMContext::MD_access_group: 2545 K->setMetadata(LLVMContext::MD_access_group, 2546 intersectAccessGroups(K, J)); 2547 break; 2548 case LLVMContext::MD_range: 2549 2550 // If K does move, use most generic range. Otherwise keep the range of 2551 // K. 2552 if (DoesKMove) 2553 // FIXME: If K does move, we should drop the range info and nonnull. 2554 // Currently this function is used with DoesKMove in passes 2555 // doing hoisting/sinking and the current behavior of using the 2556 // most generic range is correct in those cases. 2557 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2558 break; 2559 case LLVMContext::MD_fpmath: 2560 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2561 break; 2562 case LLVMContext::MD_invariant_load: 2563 // Only set the !invariant.load if it is present in both instructions. 2564 K->setMetadata(Kind, JMD); 2565 break; 2566 case LLVMContext::MD_nonnull: 2567 // If K does move, keep nonull if it is present in both instructions. 2568 if (DoesKMove) 2569 K->setMetadata(Kind, JMD); 2570 break; 2571 case LLVMContext::MD_invariant_group: 2572 // Preserve !invariant.group in K. 2573 break; 2574 case LLVMContext::MD_align: 2575 K->setMetadata(Kind, 2576 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2577 break; 2578 case LLVMContext::MD_dereferenceable: 2579 case LLVMContext::MD_dereferenceable_or_null: 2580 K->setMetadata(Kind, 2581 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2582 break; 2583 case LLVMContext::MD_preserve_access_index: 2584 // Preserve !preserve.access.index in K. 2585 break; 2586 } 2587 } 2588 // Set !invariant.group from J if J has it. If both instructions have it 2589 // then we will just pick it from J - even when they are different. 2590 // Also make sure that K is load or store - f.e. combining bitcast with load 2591 // could produce bitcast with invariant.group metadata, which is invalid. 2592 // FIXME: we should try to preserve both invariant.group md if they are 2593 // different, but right now instruction can only have one invariant.group. 2594 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2595 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2596 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2597 } 2598 2599 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2600 bool KDominatesJ) { 2601 unsigned KnownIDs[] = { 2602 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2603 LLVMContext::MD_noalias, LLVMContext::MD_range, 2604 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2605 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2606 LLVMContext::MD_dereferenceable, 2607 LLVMContext::MD_dereferenceable_or_null, 2608 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2609 combineMetadata(K, J, KnownIDs, KDominatesJ); 2610 } 2611 2612 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2613 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2614 Source.getAllMetadata(MD); 2615 MDBuilder MDB(Dest.getContext()); 2616 Type *NewType = Dest.getType(); 2617 const DataLayout &DL = Source.getModule()->getDataLayout(); 2618 for (const auto &MDPair : MD) { 2619 unsigned ID = MDPair.first; 2620 MDNode *N = MDPair.second; 2621 // Note, essentially every kind of metadata should be preserved here! This 2622 // routine is supposed to clone a load instruction changing *only its type*. 2623 // The only metadata it makes sense to drop is metadata which is invalidated 2624 // when the pointer type changes. This should essentially never be the case 2625 // in LLVM, but we explicitly switch over only known metadata to be 2626 // conservatively correct. If you are adding metadata to LLVM which pertains 2627 // to loads, you almost certainly want to add it here. 2628 switch (ID) { 2629 case LLVMContext::MD_dbg: 2630 case LLVMContext::MD_tbaa: 2631 case LLVMContext::MD_prof: 2632 case LLVMContext::MD_fpmath: 2633 case LLVMContext::MD_tbaa_struct: 2634 case LLVMContext::MD_invariant_load: 2635 case LLVMContext::MD_alias_scope: 2636 case LLVMContext::MD_noalias: 2637 case LLVMContext::MD_nontemporal: 2638 case LLVMContext::MD_mem_parallel_loop_access: 2639 case LLVMContext::MD_access_group: 2640 // All of these directly apply. 2641 Dest.setMetadata(ID, N); 2642 break; 2643 2644 case LLVMContext::MD_nonnull: 2645 copyNonnullMetadata(Source, N, Dest); 2646 break; 2647 2648 case LLVMContext::MD_align: 2649 case LLVMContext::MD_dereferenceable: 2650 case LLVMContext::MD_dereferenceable_or_null: 2651 // These only directly apply if the new type is also a pointer. 2652 if (NewType->isPointerTy()) 2653 Dest.setMetadata(ID, N); 2654 break; 2655 2656 case LLVMContext::MD_range: 2657 copyRangeMetadata(DL, Source, N, Dest); 2658 break; 2659 } 2660 } 2661 } 2662 2663 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2664 auto *ReplInst = dyn_cast<Instruction>(Repl); 2665 if (!ReplInst) 2666 return; 2667 2668 // Patch the replacement so that it is not more restrictive than the value 2669 // being replaced. 2670 // Note that if 'I' is a load being replaced by some operation, 2671 // for example, by an arithmetic operation, then andIRFlags() 2672 // would just erase all math flags from the original arithmetic 2673 // operation, which is clearly not wanted and not needed. 2674 if (!isa<LoadInst>(I)) 2675 ReplInst->andIRFlags(I); 2676 2677 // FIXME: If both the original and replacement value are part of the 2678 // same control-flow region (meaning that the execution of one 2679 // guarantees the execution of the other), then we can combine the 2680 // noalias scopes here and do better than the general conservative 2681 // answer used in combineMetadata(). 2682 2683 // In general, GVN unifies expressions over different control-flow 2684 // regions, and so we need a conservative combination of the noalias 2685 // scopes. 2686 static const unsigned KnownIDs[] = { 2687 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2688 LLVMContext::MD_noalias, LLVMContext::MD_range, 2689 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2690 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2691 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2692 combineMetadata(ReplInst, I, KnownIDs, false); 2693 } 2694 2695 template <typename RootType, typename DominatesFn> 2696 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2697 const RootType &Root, 2698 const DominatesFn &Dominates) { 2699 assert(From->getType() == To->getType()); 2700 2701 unsigned Count = 0; 2702 for (Use &U : llvm::make_early_inc_range(From->uses())) { 2703 if (!Dominates(Root, U)) 2704 continue; 2705 U.set(To); 2706 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2707 << "' as " << *To << " in " << *U << "\n"); 2708 ++Count; 2709 } 2710 return Count; 2711 } 2712 2713 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2714 assert(From->getType() == To->getType()); 2715 auto *BB = From->getParent(); 2716 unsigned Count = 0; 2717 2718 for (Use &U : llvm::make_early_inc_range(From->uses())) { 2719 auto *I = cast<Instruction>(U.getUser()); 2720 if (I->getParent() == BB) 2721 continue; 2722 U.set(To); 2723 ++Count; 2724 } 2725 return Count; 2726 } 2727 2728 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2729 DominatorTree &DT, 2730 const BasicBlockEdge &Root) { 2731 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2732 return DT.dominates(Root, U); 2733 }; 2734 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2735 } 2736 2737 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2738 DominatorTree &DT, 2739 const BasicBlock *BB) { 2740 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 2741 return DT.dominates(BB, U); 2742 }; 2743 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 2744 } 2745 2746 bool llvm::callsGCLeafFunction(const CallBase *Call, 2747 const TargetLibraryInfo &TLI) { 2748 // Check if the function is specifically marked as a gc leaf function. 2749 if (Call->hasFnAttr("gc-leaf-function")) 2750 return true; 2751 if (const Function *F = Call->getCalledFunction()) { 2752 if (F->hasFnAttribute("gc-leaf-function")) 2753 return true; 2754 2755 if (auto IID = F->getIntrinsicID()) { 2756 // Most LLVM intrinsics do not take safepoints. 2757 return IID != Intrinsic::experimental_gc_statepoint && 2758 IID != Intrinsic::experimental_deoptimize && 2759 IID != Intrinsic::memcpy_element_unordered_atomic && 2760 IID != Intrinsic::memmove_element_unordered_atomic; 2761 } 2762 } 2763 2764 // Lib calls can be materialized by some passes, and won't be 2765 // marked as 'gc-leaf-function.' All available Libcalls are 2766 // GC-leaf. 2767 LibFunc LF; 2768 if (TLI.getLibFunc(*Call, LF)) { 2769 return TLI.has(LF); 2770 } 2771 2772 return false; 2773 } 2774 2775 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2776 LoadInst &NewLI) { 2777 auto *NewTy = NewLI.getType(); 2778 2779 // This only directly applies if the new type is also a pointer. 2780 if (NewTy->isPointerTy()) { 2781 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2782 return; 2783 } 2784 2785 // The only other translation we can do is to integral loads with !range 2786 // metadata. 2787 if (!NewTy->isIntegerTy()) 2788 return; 2789 2790 MDBuilder MDB(NewLI.getContext()); 2791 const Value *Ptr = OldLI.getPointerOperand(); 2792 auto *ITy = cast<IntegerType>(NewTy); 2793 auto *NullInt = ConstantExpr::getPtrToInt( 2794 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2795 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2796 NewLI.setMetadata(LLVMContext::MD_range, 2797 MDB.createRange(NonNullInt, NullInt)); 2798 } 2799 2800 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2801 MDNode *N, LoadInst &NewLI) { 2802 auto *NewTy = NewLI.getType(); 2803 2804 // Give up unless it is converted to a pointer where there is a single very 2805 // valuable mapping we can do reliably. 2806 // FIXME: It would be nice to propagate this in more ways, but the type 2807 // conversions make it hard. 2808 if (!NewTy->isPointerTy()) 2809 return; 2810 2811 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2812 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2813 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2814 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2815 } 2816 } 2817 2818 void llvm::dropDebugUsers(Instruction &I) { 2819 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2820 findDbgUsers(DbgUsers, &I); 2821 for (auto *DII : DbgUsers) 2822 DII->eraseFromParent(); 2823 } 2824 2825 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2826 BasicBlock *BB) { 2827 // Since we are moving the instructions out of its basic block, we do not 2828 // retain their original debug locations (DILocations) and debug intrinsic 2829 // instructions. 2830 // 2831 // Doing so would degrade the debugging experience and adversely affect the 2832 // accuracy of profiling information. 2833 // 2834 // Currently, when hoisting the instructions, we take the following actions: 2835 // - Remove their debug intrinsic instructions. 2836 // - Set their debug locations to the values from the insertion point. 2837 // 2838 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2839 // need to be deleted, is because there will not be any instructions with a 2840 // DILocation in either branch left after performing the transformation. We 2841 // can only insert a dbg.value after the two branches are joined again. 2842 // 2843 // See PR38762, PR39243 for more details. 2844 // 2845 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2846 // encode predicated DIExpressions that yield different results on different 2847 // code paths. 2848 2849 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2850 Instruction *I = &*II; 2851 I->dropUndefImplyingAttrsAndUnknownMetadata(); 2852 if (I->isUsedByMetadata()) 2853 dropDebugUsers(*I); 2854 if (I->isDebugOrPseudoInst()) { 2855 // Remove DbgInfo and pseudo probe Intrinsics. 2856 II = I->eraseFromParent(); 2857 continue; 2858 } 2859 I->setDebugLoc(InsertPt->getDebugLoc()); 2860 ++II; 2861 } 2862 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2863 BB->begin(), 2864 BB->getTerminator()->getIterator()); 2865 } 2866 2867 namespace { 2868 2869 /// A potential constituent of a bitreverse or bswap expression. See 2870 /// collectBitParts for a fuller explanation. 2871 struct BitPart { 2872 BitPart(Value *P, unsigned BW) : Provider(P) { 2873 Provenance.resize(BW); 2874 } 2875 2876 /// The Value that this is a bitreverse/bswap of. 2877 Value *Provider; 2878 2879 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2880 /// in Provider becomes bit B in the result of this expression. 2881 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2882 2883 enum { Unset = -1 }; 2884 }; 2885 2886 } // end anonymous namespace 2887 2888 /// Analyze the specified subexpression and see if it is capable of providing 2889 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2890 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2891 /// the output of the expression came from a corresponding bit in some other 2892 /// value. This function is recursive, and the end result is a mapping of 2893 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2894 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2895 /// 2896 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2897 /// that the expression deposits the low byte of %X into the high byte of the 2898 /// result and that all other bits are zero. This expression is accepted and a 2899 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2900 /// [0-7]. 2901 /// 2902 /// For vector types, all analysis is performed at the per-element level. No 2903 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2904 /// constant masks must be splatted across all elements. 2905 /// 2906 /// To avoid revisiting values, the BitPart results are memoized into the 2907 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2908 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2909 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2910 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2911 /// type instead to provide the same functionality. 2912 /// 2913 /// Because we pass around references into \c BPS, we must use a container that 2914 /// does not invalidate internal references (std::map instead of DenseMap). 2915 static const Optional<BitPart> & 2916 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2917 std::map<Value *, Optional<BitPart>> &BPS, int Depth, 2918 bool &FoundRoot) { 2919 auto I = BPS.find(V); 2920 if (I != BPS.end()) 2921 return I->second; 2922 2923 auto &Result = BPS[V] = None; 2924 auto BitWidth = V->getType()->getScalarSizeInBits(); 2925 2926 // Can't do integer/elements > 128 bits. 2927 if (BitWidth > 128) 2928 return Result; 2929 2930 // Prevent stack overflow by limiting the recursion depth 2931 if (Depth == BitPartRecursionMaxDepth) { 2932 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2933 return Result; 2934 } 2935 2936 if (auto *I = dyn_cast<Instruction>(V)) { 2937 Value *X, *Y; 2938 const APInt *C; 2939 2940 // If this is an or instruction, it may be an inner node of the bswap. 2941 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2942 // Check we have both sources and they are from the same provider. 2943 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2944 Depth + 1, FoundRoot); 2945 if (!A || !A->Provider) 2946 return Result; 2947 2948 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 2949 Depth + 1, FoundRoot); 2950 if (!B || A->Provider != B->Provider) 2951 return Result; 2952 2953 // Try and merge the two together. 2954 Result = BitPart(A->Provider, BitWidth); 2955 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2956 if (A->Provenance[BitIdx] != BitPart::Unset && 2957 B->Provenance[BitIdx] != BitPart::Unset && 2958 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2959 return Result = None; 2960 2961 if (A->Provenance[BitIdx] == BitPart::Unset) 2962 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2963 else 2964 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2965 } 2966 2967 return Result; 2968 } 2969 2970 // If this is a logical shift by a constant, recurse then shift the result. 2971 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2972 const APInt &BitShift = *C; 2973 2974 // Ensure the shift amount is defined. 2975 if (BitShift.uge(BitWidth)) 2976 return Result; 2977 2978 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 2979 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 2980 return Result; 2981 2982 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2983 Depth + 1, FoundRoot); 2984 if (!Res) 2985 return Result; 2986 Result = Res; 2987 2988 // Perform the "shift" on BitProvenance. 2989 auto &P = Result->Provenance; 2990 if (I->getOpcode() == Instruction::Shl) { 2991 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2992 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2993 } else { 2994 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2995 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2996 } 2997 2998 return Result; 2999 } 3000 3001 // If this is a logical 'and' with a mask that clears bits, recurse then 3002 // unset the appropriate bits. 3003 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 3004 const APInt &AndMask = *C; 3005 3006 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3007 // early exit. 3008 unsigned NumMaskedBits = AndMask.countPopulation(); 3009 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3010 return Result; 3011 3012 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3013 Depth + 1, FoundRoot); 3014 if (!Res) 3015 return Result; 3016 Result = Res; 3017 3018 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3019 // If the AndMask is zero for this bit, clear the bit. 3020 if (AndMask[BitIdx] == 0) 3021 Result->Provenance[BitIdx] = BitPart::Unset; 3022 return Result; 3023 } 3024 3025 // If this is a zext instruction zero extend the result. 3026 if (match(V, m_ZExt(m_Value(X)))) { 3027 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3028 Depth + 1, FoundRoot); 3029 if (!Res) 3030 return Result; 3031 3032 Result = BitPart(Res->Provider, BitWidth); 3033 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3034 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3035 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3036 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3037 Result->Provenance[BitIdx] = BitPart::Unset; 3038 return Result; 3039 } 3040 3041 // If this is a truncate instruction, extract the lower bits. 3042 if (match(V, m_Trunc(m_Value(X)))) { 3043 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3044 Depth + 1, FoundRoot); 3045 if (!Res) 3046 return Result; 3047 3048 Result = BitPart(Res->Provider, BitWidth); 3049 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3050 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3051 return Result; 3052 } 3053 3054 // BITREVERSE - most likely due to us previous matching a partial 3055 // bitreverse. 3056 if (match(V, m_BitReverse(m_Value(X)))) { 3057 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3058 Depth + 1, FoundRoot); 3059 if (!Res) 3060 return Result; 3061 3062 Result = BitPart(Res->Provider, BitWidth); 3063 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3064 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3065 return Result; 3066 } 3067 3068 // BSWAP - most likely due to us previous matching a partial bswap. 3069 if (match(V, m_BSwap(m_Value(X)))) { 3070 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3071 Depth + 1, FoundRoot); 3072 if (!Res) 3073 return Result; 3074 3075 unsigned ByteWidth = BitWidth / 8; 3076 Result = BitPart(Res->Provider, BitWidth); 3077 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3078 unsigned ByteBitOfs = ByteIdx * 8; 3079 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3080 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3081 Res->Provenance[ByteBitOfs + BitIdx]; 3082 } 3083 return Result; 3084 } 3085 3086 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3087 // amount (modulo). 3088 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3089 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3090 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3091 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3092 // We can treat fshr as a fshl by flipping the modulo amount. 3093 unsigned ModAmt = C->urem(BitWidth); 3094 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3095 ModAmt = BitWidth - ModAmt; 3096 3097 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3098 if (!MatchBitReversals && (ModAmt % 8) != 0) 3099 return Result; 3100 3101 // Check we have both sources and they are from the same provider. 3102 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3103 Depth + 1, FoundRoot); 3104 if (!LHS || !LHS->Provider) 3105 return Result; 3106 3107 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3108 Depth + 1, FoundRoot); 3109 if (!RHS || LHS->Provider != RHS->Provider) 3110 return Result; 3111 3112 unsigned StartBitRHS = BitWidth - ModAmt; 3113 Result = BitPart(LHS->Provider, BitWidth); 3114 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3115 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3116 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3117 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3118 return Result; 3119 } 3120 } 3121 3122 // If we've already found a root input value then we're never going to merge 3123 // these back together. 3124 if (FoundRoot) 3125 return Result; 3126 3127 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 3128 // be the root input value to the bswap/bitreverse. 3129 FoundRoot = true; 3130 Result = BitPart(V, BitWidth); 3131 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3132 Result->Provenance[BitIdx] = BitIdx; 3133 return Result; 3134 } 3135 3136 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3137 unsigned BitWidth) { 3138 if (From % 8 != To % 8) 3139 return false; 3140 // Convert from bit indices to byte indices and check for a byte reversal. 3141 From >>= 3; 3142 To >>= 3; 3143 BitWidth >>= 3; 3144 return From == BitWidth - To - 1; 3145 } 3146 3147 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3148 unsigned BitWidth) { 3149 return From == BitWidth - To - 1; 3150 } 3151 3152 bool llvm::recognizeBSwapOrBitReverseIdiom( 3153 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3154 SmallVectorImpl<Instruction *> &InsertedInsts) { 3155 if (!match(I, m_Or(m_Value(), m_Value())) && 3156 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 3157 !match(I, m_FShr(m_Value(), m_Value(), m_Value()))) 3158 return false; 3159 if (!MatchBSwaps && !MatchBitReversals) 3160 return false; 3161 Type *ITy = I->getType(); 3162 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3163 return false; // Can't do integer/elements > 128 bits. 3164 3165 // Try to find all the pieces corresponding to the bswap. 3166 bool FoundRoot = false; 3167 std::map<Value *, Optional<BitPart>> BPS; 3168 const auto &Res = 3169 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 3170 if (!Res) 3171 return false; 3172 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3173 assert(all_of(BitProvenance, 3174 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3175 "Illegal bit provenance index"); 3176 3177 // If the upper bits are zero, then attempt to perform as a truncated op. 3178 Type *DemandedTy = ITy; 3179 if (BitProvenance.back() == BitPart::Unset) { 3180 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3181 BitProvenance = BitProvenance.drop_back(); 3182 if (BitProvenance.empty()) 3183 return false; // TODO - handle null value? 3184 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3185 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3186 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3187 } 3188 3189 // Check BitProvenance hasn't found a source larger than the result type. 3190 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3191 if (DemandedBW > ITy->getScalarSizeInBits()) 3192 return false; 3193 3194 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3195 // only byteswap values with an even number of bytes. 3196 APInt DemandedMask = APInt::getAllOnes(DemandedBW); 3197 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3198 bool OKForBitReverse = MatchBitReversals; 3199 for (unsigned BitIdx = 0; 3200 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3201 if (BitProvenance[BitIdx] == BitPart::Unset) { 3202 DemandedMask.clearBit(BitIdx); 3203 continue; 3204 } 3205 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3206 DemandedBW); 3207 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3208 BitIdx, DemandedBW); 3209 } 3210 3211 Intrinsic::ID Intrin; 3212 if (OKForBSwap) 3213 Intrin = Intrinsic::bswap; 3214 else if (OKForBitReverse) 3215 Intrin = Intrinsic::bitreverse; 3216 else 3217 return false; 3218 3219 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3220 Value *Provider = Res->Provider; 3221 3222 // We may need to truncate the provider. 3223 if (DemandedTy != Provider->getType()) { 3224 auto *Trunc = 3225 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3226 InsertedInsts.push_back(Trunc); 3227 Provider = Trunc; 3228 } 3229 3230 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3231 InsertedInsts.push_back(Result); 3232 3233 if (!DemandedMask.isAllOnes()) { 3234 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3235 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3236 InsertedInsts.push_back(Result); 3237 } 3238 3239 // We may need to zeroextend back to the result type. 3240 if (ITy != Result->getType()) { 3241 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3242 InsertedInsts.push_back(ExtInst); 3243 } 3244 3245 return true; 3246 } 3247 3248 // CodeGen has special handling for some string functions that may replace 3249 // them with target-specific intrinsics. Since that'd skip our interceptors 3250 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3251 // we mark affected calls as NoBuiltin, which will disable optimization 3252 // in CodeGen. 3253 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3254 CallInst *CI, const TargetLibraryInfo *TLI) { 3255 Function *F = CI->getCalledFunction(); 3256 LibFunc Func; 3257 if (F && !F->hasLocalLinkage() && F->hasName() && 3258 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3259 !F->doesNotAccessMemory()) 3260 CI->addFnAttr(Attribute::NoBuiltin); 3261 } 3262 3263 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3264 // We can't have a PHI with a metadata type. 3265 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3266 return false; 3267 3268 // Early exit. 3269 if (!isa<Constant>(I->getOperand(OpIdx))) 3270 return true; 3271 3272 switch (I->getOpcode()) { 3273 default: 3274 return true; 3275 case Instruction::Call: 3276 case Instruction::Invoke: { 3277 const auto &CB = cast<CallBase>(*I); 3278 3279 // Can't handle inline asm. Skip it. 3280 if (CB.isInlineAsm()) 3281 return false; 3282 3283 // Constant bundle operands may need to retain their constant-ness for 3284 // correctness. 3285 if (CB.isBundleOperand(OpIdx)) 3286 return false; 3287 3288 if (OpIdx < CB.arg_size()) { 3289 // Some variadic intrinsics require constants in the variadic arguments, 3290 // which currently aren't markable as immarg. 3291 if (isa<IntrinsicInst>(CB) && 3292 OpIdx >= CB.getFunctionType()->getNumParams()) { 3293 // This is known to be OK for stackmap. 3294 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3295 } 3296 3297 // gcroot is a special case, since it requires a constant argument which 3298 // isn't also required to be a simple ConstantInt. 3299 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3300 return false; 3301 3302 // Some intrinsic operands are required to be immediates. 3303 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3304 } 3305 3306 // It is never allowed to replace the call argument to an intrinsic, but it 3307 // may be possible for a call. 3308 return !isa<IntrinsicInst>(CB); 3309 } 3310 case Instruction::ShuffleVector: 3311 // Shufflevector masks are constant. 3312 return OpIdx != 2; 3313 case Instruction::Switch: 3314 case Instruction::ExtractValue: 3315 // All operands apart from the first are constant. 3316 return OpIdx == 0; 3317 case Instruction::InsertValue: 3318 // All operands apart from the first and the second are constant. 3319 return OpIdx < 2; 3320 case Instruction::Alloca: 3321 // Static allocas (constant size in the entry block) are handled by 3322 // prologue/epilogue insertion so they're free anyway. We definitely don't 3323 // want to make them non-constant. 3324 return !cast<AllocaInst>(I)->isStaticAlloca(); 3325 case Instruction::GetElementPtr: 3326 if (OpIdx == 0) 3327 return true; 3328 gep_type_iterator It = gep_type_begin(I); 3329 for (auto E = std::next(It, OpIdx); It != E; ++It) 3330 if (It.isStruct()) 3331 return false; 3332 return true; 3333 } 3334 } 3335 3336 Value *llvm::invertCondition(Value *Condition) { 3337 // First: Check if it's a constant 3338 if (Constant *C = dyn_cast<Constant>(Condition)) 3339 return ConstantExpr::getNot(C); 3340 3341 // Second: If the condition is already inverted, return the original value 3342 Value *NotCondition; 3343 if (match(Condition, m_Not(m_Value(NotCondition)))) 3344 return NotCondition; 3345 3346 BasicBlock *Parent = nullptr; 3347 Instruction *Inst = dyn_cast<Instruction>(Condition); 3348 if (Inst) 3349 Parent = Inst->getParent(); 3350 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3351 Parent = &Arg->getParent()->getEntryBlock(); 3352 assert(Parent && "Unsupported condition to invert"); 3353 3354 // Third: Check all the users for an invert 3355 for (User *U : Condition->users()) 3356 if (Instruction *I = dyn_cast<Instruction>(U)) 3357 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3358 return I; 3359 3360 // Last option: Create a new instruction 3361 auto *Inverted = 3362 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3363 if (Inst && !isa<PHINode>(Inst)) 3364 Inverted->insertAfter(Inst); 3365 else 3366 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3367 return Inverted; 3368 } 3369 3370 bool llvm::inferAttributesFromOthers(Function &F) { 3371 // Note: We explicitly check for attributes rather than using cover functions 3372 // because some of the cover functions include the logic being implemented. 3373 3374 bool Changed = false; 3375 // readnone + not convergent implies nosync 3376 if (!F.hasFnAttribute(Attribute::NoSync) && 3377 F.doesNotAccessMemory() && !F.isConvergent()) { 3378 F.setNoSync(); 3379 Changed = true; 3380 } 3381 3382 // readonly implies nofree 3383 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 3384 F.setDoesNotFreeMemory(); 3385 Changed = true; 3386 } 3387 3388 // willreturn implies mustprogress 3389 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 3390 F.setMustProgress(); 3391 Changed = true; 3392 } 3393 3394 // TODO: There are a bunch of cases of restrictive memory effects we 3395 // can infer by inspecting arguments of argmemonly-ish functions. 3396 3397 return Changed; 3398 } 3399