1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/LazyValueInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DIBuilder.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/GetElementPtrTypeIterator.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/MDBuilder.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "local"
52 
53 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
54 
55 //===----------------------------------------------------------------------===//
56 //  Local constant propagation.
57 //
58 
59 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
60 /// constant value, convert it into an unconditional branch to the constant
61 /// destination.  This is a nontrivial operation because the successors of this
62 /// basic block must have their PHI nodes updated.
63 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
64 /// conditions and indirectbr addresses this might make dead if
65 /// DeleteDeadConditions is true.
66 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
67                                   const TargetLibraryInfo *TLI) {
68   TerminatorInst *T = BB->getTerminator();
69   IRBuilder<> Builder(T);
70 
71   // Branch - See if we are conditional jumping on constant
72   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
73     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
74     BasicBlock *Dest1 = BI->getSuccessor(0);
75     BasicBlock *Dest2 = BI->getSuccessor(1);
76 
77     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
78       // Are we branching on constant?
79       // YES.  Change to unconditional branch...
80       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
81       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
82 
83       //cerr << "Function: " << T->getParent()->getParent()
84       //     << "\nRemoving branch from " << T->getParent()
85       //     << "\n\nTo: " << OldDest << endl;
86 
87       // Let the basic block know that we are letting go of it.  Based on this,
88       // it will adjust it's PHI nodes.
89       OldDest->removePredecessor(BB);
90 
91       // Replace the conditional branch with an unconditional one.
92       Builder.CreateBr(Destination);
93       BI->eraseFromParent();
94       return true;
95     }
96 
97     if (Dest2 == Dest1) {       // Conditional branch to same location?
98       // This branch matches something like this:
99       //     br bool %cond, label %Dest, label %Dest
100       // and changes it into:  br label %Dest
101 
102       // Let the basic block know that we are letting go of one copy of it.
103       assert(BI->getParent() && "Terminator not inserted in block!");
104       Dest1->removePredecessor(BI->getParent());
105 
106       // Replace the conditional branch with an unconditional one.
107       Builder.CreateBr(Dest1);
108       Value *Cond = BI->getCondition();
109       BI->eraseFromParent();
110       if (DeleteDeadConditions)
111         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
112       return true;
113     }
114     return false;
115   }
116 
117   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
118     // If we are switching on a constant, we can convert the switch to an
119     // unconditional branch.
120     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
121     BasicBlock *DefaultDest = SI->getDefaultDest();
122     BasicBlock *TheOnlyDest = DefaultDest;
123 
124     // If the default is unreachable, ignore it when searching for TheOnlyDest.
125     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
126         SI->getNumCases() > 0) {
127       TheOnlyDest = SI->case_begin().getCaseSuccessor();
128     }
129 
130     // Figure out which case it goes to.
131     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
132          i != e; ++i) {
133       // Found case matching a constant operand?
134       if (i.getCaseValue() == CI) {
135         TheOnlyDest = i.getCaseSuccessor();
136         break;
137       }
138 
139       // Check to see if this branch is going to the same place as the default
140       // dest.  If so, eliminate it as an explicit compare.
141       if (i.getCaseSuccessor() == DefaultDest) {
142         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
143         unsigned NCases = SI->getNumCases();
144         // Fold the case metadata into the default if there will be any branches
145         // left, unless the metadata doesn't match the switch.
146         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
147           // Collect branch weights into a vector.
148           SmallVector<uint32_t, 8> Weights;
149           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
150                ++MD_i) {
151             ConstantInt *CI =
152                 mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i));
153             assert(CI);
154             Weights.push_back(CI->getValue().getZExtValue());
155           }
156           // Merge weight of this case to the default weight.
157           unsigned idx = i.getCaseIndex();
158           Weights[0] += Weights[idx+1];
159           // Remove weight for this case.
160           std::swap(Weights[idx+1], Weights.back());
161           Weights.pop_back();
162           SI->setMetadata(LLVMContext::MD_prof,
163                           MDBuilder(BB->getContext()).
164                           createBranchWeights(Weights));
165         }
166         // Remove this entry.
167         DefaultDest->removePredecessor(SI->getParent());
168         SI->removeCase(i);
169         --i; --e;
170         continue;
171       }
172 
173       // Otherwise, check to see if the switch only branches to one destination.
174       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
175       // destinations.
176       if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr;
177     }
178 
179     if (CI && !TheOnlyDest) {
180       // Branching on a constant, but not any of the cases, go to the default
181       // successor.
182       TheOnlyDest = SI->getDefaultDest();
183     }
184 
185     // If we found a single destination that we can fold the switch into, do so
186     // now.
187     if (TheOnlyDest) {
188       // Insert the new branch.
189       Builder.CreateBr(TheOnlyDest);
190       BasicBlock *BB = SI->getParent();
191 
192       // Remove entries from PHI nodes which we no longer branch to...
193       for (BasicBlock *Succ : SI->successors()) {
194         // Found case matching a constant operand?
195         if (Succ == TheOnlyDest)
196           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
197         else
198           Succ->removePredecessor(BB);
199       }
200 
201       // Delete the old switch.
202       Value *Cond = SI->getCondition();
203       SI->eraseFromParent();
204       if (DeleteDeadConditions)
205         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
206       return true;
207     }
208 
209     if (SI->getNumCases() == 1) {
210       // Otherwise, we can fold this switch into a conditional branch
211       // instruction if it has only one non-default destination.
212       SwitchInst::CaseIt FirstCase = SI->case_begin();
213       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
214           FirstCase.getCaseValue(), "cond");
215 
216       // Insert the new branch.
217       BranchInst *NewBr = Builder.CreateCondBr(Cond,
218                                                FirstCase.getCaseSuccessor(),
219                                                SI->getDefaultDest());
220       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
221       if (MD && MD->getNumOperands() == 3) {
222         ConstantInt *SICase =
223             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
224         ConstantInt *SIDef =
225             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
226         assert(SICase && SIDef);
227         // The TrueWeight should be the weight for the single case of SI.
228         NewBr->setMetadata(LLVMContext::MD_prof,
229                         MDBuilder(BB->getContext()).
230                         createBranchWeights(SICase->getValue().getZExtValue(),
231                                             SIDef->getValue().getZExtValue()));
232       }
233 
234       // Update make.implicit metadata to the newly-created conditional branch.
235       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
236       if (MakeImplicitMD)
237         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
238 
239       // Delete the old switch.
240       SI->eraseFromParent();
241       return true;
242     }
243     return false;
244   }
245 
246   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
247     // indirectbr blockaddress(@F, @BB) -> br label @BB
248     if (BlockAddress *BA =
249           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
250       BasicBlock *TheOnlyDest = BA->getBasicBlock();
251       // Insert the new branch.
252       Builder.CreateBr(TheOnlyDest);
253 
254       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
255         if (IBI->getDestination(i) == TheOnlyDest)
256           TheOnlyDest = nullptr;
257         else
258           IBI->getDestination(i)->removePredecessor(IBI->getParent());
259       }
260       Value *Address = IBI->getAddress();
261       IBI->eraseFromParent();
262       if (DeleteDeadConditions)
263         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
264 
265       // If we didn't find our destination in the IBI successor list, then we
266       // have undefined behavior.  Replace the unconditional branch with an
267       // 'unreachable' instruction.
268       if (TheOnlyDest) {
269         BB->getTerminator()->eraseFromParent();
270         new UnreachableInst(BB->getContext(), BB);
271       }
272 
273       return true;
274     }
275   }
276 
277   return false;
278 }
279 
280 
281 //===----------------------------------------------------------------------===//
282 //  Local dead code elimination.
283 //
284 
285 /// isInstructionTriviallyDead - Return true if the result produced by the
286 /// instruction is not used, and the instruction has no side effects.
287 ///
288 bool llvm::isInstructionTriviallyDead(Instruction *I,
289                                       const TargetLibraryInfo *TLI) {
290   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
291 
292   // We don't want the landingpad-like instructions removed by anything this
293   // general.
294   if (I->isEHPad())
295     return false;
296 
297   // We don't want debug info removed by anything this general, unless
298   // debug info is empty.
299   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
300     if (DDI->getAddress())
301       return false;
302     return true;
303   }
304   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
305     if (DVI->getValue())
306       return false;
307     return true;
308   }
309 
310   if (!I->mayHaveSideEffects()) return true;
311 
312   // Special case intrinsics that "may have side effects" but can be deleted
313   // when dead.
314   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
315     // Safe to delete llvm.stacksave if dead.
316     if (II->getIntrinsicID() == Intrinsic::stacksave)
317       return true;
318 
319     // Lifetime intrinsics are dead when their right-hand is undef.
320     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
321         II->getIntrinsicID() == Intrinsic::lifetime_end)
322       return isa<UndefValue>(II->getArgOperand(1));
323 
324     // Assumptions are dead if their condition is trivially true.  Guards on
325     // true are operationally no-ops.  In the future we can consider more
326     // sophisticated tradeoffs for guards considering potential for check
327     // widening, but for now we keep things simple.
328     if (II->getIntrinsicID() == Intrinsic::assume ||
329         II->getIntrinsicID() == Intrinsic::experimental_guard) {
330       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
331         return !Cond->isZero();
332 
333       return false;
334     }
335   }
336 
337   if (isAllocLikeFn(I, TLI)) return true;
338 
339   if (CallInst *CI = isFreeCall(I, TLI))
340     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
341       return C->isNullValue() || isa<UndefValue>(C);
342 
343   return false;
344 }
345 
346 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
347 /// trivially dead instruction, delete it.  If that makes any of its operands
348 /// trivially dead, delete them too, recursively.  Return true if any
349 /// instructions were deleted.
350 bool
351 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
352                                                  const TargetLibraryInfo *TLI) {
353   Instruction *I = dyn_cast<Instruction>(V);
354   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
355     return false;
356 
357   SmallVector<Instruction*, 16> DeadInsts;
358   DeadInsts.push_back(I);
359 
360   do {
361     I = DeadInsts.pop_back_val();
362 
363     // Null out all of the instruction's operands to see if any operand becomes
364     // dead as we go.
365     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
366       Value *OpV = I->getOperand(i);
367       I->setOperand(i, nullptr);
368 
369       if (!OpV->use_empty()) continue;
370 
371       // If the operand is an instruction that became dead as we nulled out the
372       // operand, and if it is 'trivially' dead, delete it in a future loop
373       // iteration.
374       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
375         if (isInstructionTriviallyDead(OpI, TLI))
376           DeadInsts.push_back(OpI);
377     }
378 
379     I->eraseFromParent();
380   } while (!DeadInsts.empty());
381 
382   return true;
383 }
384 
385 /// areAllUsesEqual - Check whether the uses of a value are all the same.
386 /// This is similar to Instruction::hasOneUse() except this will also return
387 /// true when there are no uses or multiple uses that all refer to the same
388 /// value.
389 static bool areAllUsesEqual(Instruction *I) {
390   Value::user_iterator UI = I->user_begin();
391   Value::user_iterator UE = I->user_end();
392   if (UI == UE)
393     return true;
394 
395   User *TheUse = *UI;
396   for (++UI; UI != UE; ++UI) {
397     if (*UI != TheUse)
398       return false;
399   }
400   return true;
401 }
402 
403 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
404 /// dead PHI node, due to being a def-use chain of single-use nodes that
405 /// either forms a cycle or is terminated by a trivially dead instruction,
406 /// delete it.  If that makes any of its operands trivially dead, delete them
407 /// too, recursively.  Return true if a change was made.
408 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
409                                         const TargetLibraryInfo *TLI) {
410   SmallPtrSet<Instruction*, 4> Visited;
411   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
412        I = cast<Instruction>(*I->user_begin())) {
413     if (I->use_empty())
414       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
415 
416     // If we find an instruction more than once, we're on a cycle that
417     // won't prove fruitful.
418     if (!Visited.insert(I).second) {
419       // Break the cycle and delete the instruction and its operands.
420       I->replaceAllUsesWith(UndefValue::get(I->getType()));
421       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
422       return true;
423     }
424   }
425   return false;
426 }
427 
428 static bool
429 simplifyAndDCEInstruction(Instruction *I,
430                           SmallSetVector<Instruction *, 16> &WorkList,
431                           const DataLayout &DL,
432                           const TargetLibraryInfo *TLI) {
433   if (isInstructionTriviallyDead(I, TLI)) {
434     // Null out all of the instruction's operands to see if any operand becomes
435     // dead as we go.
436     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
437       Value *OpV = I->getOperand(i);
438       I->setOperand(i, nullptr);
439 
440       if (!OpV->use_empty() || I == OpV)
441         continue;
442 
443       // If the operand is an instruction that became dead as we nulled out the
444       // operand, and if it is 'trivially' dead, delete it in a future loop
445       // iteration.
446       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
447         if (isInstructionTriviallyDead(OpI, TLI))
448           WorkList.insert(OpI);
449     }
450 
451     I->eraseFromParent();
452 
453     return true;
454   }
455 
456   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
457     // Add the users to the worklist. CAREFUL: an instruction can use itself,
458     // in the case of a phi node.
459     for (User *U : I->users())
460       if (U != I)
461         WorkList.insert(cast<Instruction>(U));
462 
463     // Replace the instruction with its simplified value.
464     I->replaceAllUsesWith(SimpleV);
465     I->eraseFromParent();
466     return true;
467   }
468   return false;
469 }
470 
471 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
472 /// simplify any instructions in it and recursively delete dead instructions.
473 ///
474 /// This returns true if it changed the code, note that it can delete
475 /// instructions in other blocks as well in this block.
476 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
477                                        const TargetLibraryInfo *TLI) {
478   bool MadeChange = false;
479   const DataLayout &DL = BB->getModule()->getDataLayout();
480 
481 #ifndef NDEBUG
482   // In debug builds, ensure that the terminator of the block is never replaced
483   // or deleted by these simplifications. The idea of simplification is that it
484   // cannot introduce new instructions, and there is no way to replace the
485   // terminator of a block without introducing a new instruction.
486   AssertingVH<Instruction> TerminatorVH(&BB->back());
487 #endif
488 
489   SmallSetVector<Instruction *, 16> WorkList;
490   // Iterate over the original function, only adding insts to the worklist
491   // if they actually need to be revisited. This avoids having to pre-init
492   // the worklist with the entire function's worth of instructions.
493   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); BI != E;) {
494     assert(!BI->isTerminator());
495     Instruction *I = &*BI;
496     ++BI;
497 
498     // We're visiting this instruction now, so make sure it's not in the
499     // worklist from an earlier visit.
500     if (!WorkList.count(I))
501       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
502   }
503 
504   while (!WorkList.empty()) {
505     Instruction *I = WorkList.pop_back_val();
506     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
507   }
508   return MadeChange;
509 }
510 
511 //===----------------------------------------------------------------------===//
512 //  Control Flow Graph Restructuring.
513 //
514 
515 
516 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
517 /// method is called when we're about to delete Pred as a predecessor of BB.  If
518 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
519 ///
520 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
521 /// nodes that collapse into identity values.  For example, if we have:
522 ///   x = phi(1, 0, 0, 0)
523 ///   y = and x, z
524 ///
525 /// .. and delete the predecessor corresponding to the '1', this will attempt to
526 /// recursively fold the and to 0.
527 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
528   // This only adjusts blocks with PHI nodes.
529   if (!isa<PHINode>(BB->begin()))
530     return;
531 
532   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
533   // them down.  This will leave us with single entry phi nodes and other phis
534   // that can be removed.
535   BB->removePredecessor(Pred, true);
536 
537   WeakVH PhiIt = &BB->front();
538   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
539     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
540     Value *OldPhiIt = PhiIt;
541 
542     if (!recursivelySimplifyInstruction(PN))
543       continue;
544 
545     // If recursive simplification ended up deleting the next PHI node we would
546     // iterate to, then our iterator is invalid, restart scanning from the top
547     // of the block.
548     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
549   }
550 }
551 
552 
553 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
554 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
555 /// between them, moving the instructions in the predecessor into DestBB and
556 /// deleting the predecessor block.
557 ///
558 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
559   // If BB has single-entry PHI nodes, fold them.
560   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
561     Value *NewVal = PN->getIncomingValue(0);
562     // Replace self referencing PHI with undef, it must be dead.
563     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
564     PN->replaceAllUsesWith(NewVal);
565     PN->eraseFromParent();
566   }
567 
568   BasicBlock *PredBB = DestBB->getSinglePredecessor();
569   assert(PredBB && "Block doesn't have a single predecessor!");
570 
571   // Zap anything that took the address of DestBB.  Not doing this will give the
572   // address an invalid value.
573   if (DestBB->hasAddressTaken()) {
574     BlockAddress *BA = BlockAddress::get(DestBB);
575     Constant *Replacement =
576       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
577     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
578                                                      BA->getType()));
579     BA->destroyConstant();
580   }
581 
582   // Anything that branched to PredBB now branches to DestBB.
583   PredBB->replaceAllUsesWith(DestBB);
584 
585   // Splice all the instructions from PredBB to DestBB.
586   PredBB->getTerminator()->eraseFromParent();
587   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
588 
589   // If the PredBB is the entry block of the function, move DestBB up to
590   // become the entry block after we erase PredBB.
591   if (PredBB == &DestBB->getParent()->getEntryBlock())
592     DestBB->moveAfter(PredBB);
593 
594   if (DT) {
595     BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
596     DT->changeImmediateDominator(DestBB, PredBBIDom);
597     DT->eraseNode(PredBB);
598   }
599   // Nuke BB.
600   PredBB->eraseFromParent();
601 }
602 
603 /// CanMergeValues - Return true if we can choose one of these values to use
604 /// in place of the other. Note that we will always choose the non-undef
605 /// value to keep.
606 static bool CanMergeValues(Value *First, Value *Second) {
607   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
608 }
609 
610 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
611 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
612 ///
613 /// Assumption: Succ is the single successor for BB.
614 ///
615 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
616   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
617 
618   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
619         << Succ->getName() << "\n");
620   // Shortcut, if there is only a single predecessor it must be BB and merging
621   // is always safe
622   if (Succ->getSinglePredecessor()) return true;
623 
624   // Make a list of the predecessors of BB
625   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
626 
627   // Look at all the phi nodes in Succ, to see if they present a conflict when
628   // merging these blocks
629   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
630     PHINode *PN = cast<PHINode>(I);
631 
632     // If the incoming value from BB is again a PHINode in
633     // BB which has the same incoming value for *PI as PN does, we can
634     // merge the phi nodes and then the blocks can still be merged
635     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
636     if (BBPN && BBPN->getParent() == BB) {
637       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
638         BasicBlock *IBB = PN->getIncomingBlock(PI);
639         if (BBPreds.count(IBB) &&
640             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
641                             PN->getIncomingValue(PI))) {
642           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
643                 << Succ->getName() << " is conflicting with "
644                 << BBPN->getName() << " with regard to common predecessor "
645                 << IBB->getName() << "\n");
646           return false;
647         }
648       }
649     } else {
650       Value* Val = PN->getIncomingValueForBlock(BB);
651       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
652         // See if the incoming value for the common predecessor is equal to the
653         // one for BB, in which case this phi node will not prevent the merging
654         // of the block.
655         BasicBlock *IBB = PN->getIncomingBlock(PI);
656         if (BBPreds.count(IBB) &&
657             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
658           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
659                 << Succ->getName() << " is conflicting with regard to common "
660                 << "predecessor " << IBB->getName() << "\n");
661           return false;
662         }
663       }
664     }
665   }
666 
667   return true;
668 }
669 
670 typedef SmallVector<BasicBlock *, 16> PredBlockVector;
671 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
672 
673 /// \brief Determines the value to use as the phi node input for a block.
674 ///
675 /// Select between \p OldVal any value that we know flows from \p BB
676 /// to a particular phi on the basis of which one (if either) is not
677 /// undef. Update IncomingValues based on the selected value.
678 ///
679 /// \param OldVal The value we are considering selecting.
680 /// \param BB The block that the value flows in from.
681 /// \param IncomingValues A map from block-to-value for other phi inputs
682 /// that we have examined.
683 ///
684 /// \returns the selected value.
685 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
686                                           IncomingValueMap &IncomingValues) {
687   if (!isa<UndefValue>(OldVal)) {
688     assert((!IncomingValues.count(BB) ||
689             IncomingValues.find(BB)->second == OldVal) &&
690            "Expected OldVal to match incoming value from BB!");
691 
692     IncomingValues.insert(std::make_pair(BB, OldVal));
693     return OldVal;
694   }
695 
696   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
697   if (It != IncomingValues.end()) return It->second;
698 
699   return OldVal;
700 }
701 
702 /// \brief Create a map from block to value for the operands of a
703 /// given phi.
704 ///
705 /// Create a map from block to value for each non-undef value flowing
706 /// into \p PN.
707 ///
708 /// \param PN The phi we are collecting the map for.
709 /// \param IncomingValues [out] The map from block to value for this phi.
710 static void gatherIncomingValuesToPhi(PHINode *PN,
711                                       IncomingValueMap &IncomingValues) {
712   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
713     BasicBlock *BB = PN->getIncomingBlock(i);
714     Value *V = PN->getIncomingValue(i);
715 
716     if (!isa<UndefValue>(V))
717       IncomingValues.insert(std::make_pair(BB, V));
718   }
719 }
720 
721 /// \brief Replace the incoming undef values to a phi with the values
722 /// from a block-to-value map.
723 ///
724 /// \param PN The phi we are replacing the undefs in.
725 /// \param IncomingValues A map from block to value.
726 static void replaceUndefValuesInPhi(PHINode *PN,
727                                     const IncomingValueMap &IncomingValues) {
728   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
729     Value *V = PN->getIncomingValue(i);
730 
731     if (!isa<UndefValue>(V)) continue;
732 
733     BasicBlock *BB = PN->getIncomingBlock(i);
734     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
735     if (It == IncomingValues.end()) continue;
736 
737     PN->setIncomingValue(i, It->second);
738   }
739 }
740 
741 /// \brief Replace a value flowing from a block to a phi with
742 /// potentially multiple instances of that value flowing from the
743 /// block's predecessors to the phi.
744 ///
745 /// \param BB The block with the value flowing into the phi.
746 /// \param BBPreds The predecessors of BB.
747 /// \param PN The phi that we are updating.
748 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
749                                                 const PredBlockVector &BBPreds,
750                                                 PHINode *PN) {
751   Value *OldVal = PN->removeIncomingValue(BB, false);
752   assert(OldVal && "No entry in PHI for Pred BB!");
753 
754   IncomingValueMap IncomingValues;
755 
756   // We are merging two blocks - BB, and the block containing PN - and
757   // as a result we need to redirect edges from the predecessors of BB
758   // to go to the block containing PN, and update PN
759   // accordingly. Since we allow merging blocks in the case where the
760   // predecessor and successor blocks both share some predecessors,
761   // and where some of those common predecessors might have undef
762   // values flowing into PN, we want to rewrite those values to be
763   // consistent with the non-undef values.
764 
765   gatherIncomingValuesToPhi(PN, IncomingValues);
766 
767   // If this incoming value is one of the PHI nodes in BB, the new entries
768   // in the PHI node are the entries from the old PHI.
769   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
770     PHINode *OldValPN = cast<PHINode>(OldVal);
771     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
772       // Note that, since we are merging phi nodes and BB and Succ might
773       // have common predecessors, we could end up with a phi node with
774       // identical incoming branches. This will be cleaned up later (and
775       // will trigger asserts if we try to clean it up now, without also
776       // simplifying the corresponding conditional branch).
777       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
778       Value *PredVal = OldValPN->getIncomingValue(i);
779       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
780                                                     IncomingValues);
781 
782       // And add a new incoming value for this predecessor for the
783       // newly retargeted branch.
784       PN->addIncoming(Selected, PredBB);
785     }
786   } else {
787     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
788       // Update existing incoming values in PN for this
789       // predecessor of BB.
790       BasicBlock *PredBB = BBPreds[i];
791       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
792                                                     IncomingValues);
793 
794       // And add a new incoming value for this predecessor for the
795       // newly retargeted branch.
796       PN->addIncoming(Selected, PredBB);
797     }
798   }
799 
800   replaceUndefValuesInPhi(PN, IncomingValues);
801 }
802 
803 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
804 /// unconditional branch, and contains no instructions other than PHI nodes,
805 /// potential side-effect free intrinsics and the branch.  If possible,
806 /// eliminate BB by rewriting all the predecessors to branch to the successor
807 /// block and return true.  If we can't transform, return false.
808 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
809   assert(BB != &BB->getParent()->getEntryBlock() &&
810          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
811 
812   // We can't eliminate infinite loops.
813   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
814   if (BB == Succ) return false;
815 
816   // Check to see if merging these blocks would cause conflicts for any of the
817   // phi nodes in BB or Succ. If not, we can safely merge.
818   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
819 
820   // Check for cases where Succ has multiple predecessors and a PHI node in BB
821   // has uses which will not disappear when the PHI nodes are merged.  It is
822   // possible to handle such cases, but difficult: it requires checking whether
823   // BB dominates Succ, which is non-trivial to calculate in the case where
824   // Succ has multiple predecessors.  Also, it requires checking whether
825   // constructing the necessary self-referential PHI node doesn't introduce any
826   // conflicts; this isn't too difficult, but the previous code for doing this
827   // was incorrect.
828   //
829   // Note that if this check finds a live use, BB dominates Succ, so BB is
830   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
831   // folding the branch isn't profitable in that case anyway.
832   if (!Succ->getSinglePredecessor()) {
833     BasicBlock::iterator BBI = BB->begin();
834     while (isa<PHINode>(*BBI)) {
835       for (Use &U : BBI->uses()) {
836         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
837           if (PN->getIncomingBlock(U) != BB)
838             return false;
839         } else {
840           return false;
841         }
842       }
843       ++BBI;
844     }
845   }
846 
847   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
848 
849   if (isa<PHINode>(Succ->begin())) {
850     // If there is more than one pred of succ, and there are PHI nodes in
851     // the successor, then we need to add incoming edges for the PHI nodes
852     //
853     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
854 
855     // Loop over all of the PHI nodes in the successor of BB.
856     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
857       PHINode *PN = cast<PHINode>(I);
858 
859       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
860     }
861   }
862 
863   if (Succ->getSinglePredecessor()) {
864     // BB is the only predecessor of Succ, so Succ will end up with exactly
865     // the same predecessors BB had.
866 
867     // Copy over any phi, debug or lifetime instruction.
868     BB->getTerminator()->eraseFromParent();
869     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
870                                BB->getInstList());
871   } else {
872     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
873       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
874       assert(PN->use_empty() && "There shouldn't be any uses here!");
875       PN->eraseFromParent();
876     }
877   }
878 
879   // Everything that jumped to BB now goes to Succ.
880   BB->replaceAllUsesWith(Succ);
881   if (!Succ->hasName()) Succ->takeName(BB);
882   BB->eraseFromParent();              // Delete the old basic block.
883   return true;
884 }
885 
886 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
887 /// nodes in this block. This doesn't try to be clever about PHI nodes
888 /// which differ only in the order of the incoming values, but instcombine
889 /// orders them so it usually won't matter.
890 ///
891 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
892   // This implementation doesn't currently consider undef operands
893   // specially. Theoretically, two phis which are identical except for
894   // one having an undef where the other doesn't could be collapsed.
895 
896   struct PHIDenseMapInfo {
897     static PHINode *getEmptyKey() {
898       return DenseMapInfo<PHINode *>::getEmptyKey();
899     }
900     static PHINode *getTombstoneKey() {
901       return DenseMapInfo<PHINode *>::getTombstoneKey();
902     }
903     static unsigned getHashValue(PHINode *PN) {
904       // Compute a hash value on the operands. Instcombine will likely have
905       // sorted them, which helps expose duplicates, but we have to check all
906       // the operands to be safe in case instcombine hasn't run.
907       return static_cast<unsigned>(hash_combine(
908           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
909           hash_combine_range(PN->block_begin(), PN->block_end())));
910     }
911     static bool isEqual(PHINode *LHS, PHINode *RHS) {
912       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
913           RHS == getEmptyKey() || RHS == getTombstoneKey())
914         return LHS == RHS;
915       return LHS->isIdenticalTo(RHS);
916     }
917   };
918 
919   // Set of unique PHINodes.
920   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
921 
922   // Examine each PHI.
923   bool Changed = false;
924   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
925     auto Inserted = PHISet.insert(PN);
926     if (!Inserted.second) {
927       // A duplicate. Replace this PHI with its duplicate.
928       PN->replaceAllUsesWith(*Inserted.first);
929       PN->eraseFromParent();
930       Changed = true;
931 
932       // The RAUW can change PHIs that we already visited. Start over from the
933       // beginning.
934       PHISet.clear();
935       I = BB->begin();
936     }
937   }
938 
939   return Changed;
940 }
941 
942 /// enforceKnownAlignment - If the specified pointer points to an object that
943 /// we control, modify the object's alignment to PrefAlign. This isn't
944 /// often possible though. If alignment is important, a more reliable approach
945 /// is to simply align all global variables and allocation instructions to
946 /// their preferred alignment from the beginning.
947 ///
948 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
949                                       unsigned PrefAlign,
950                                       const DataLayout &DL) {
951   assert(PrefAlign > Align);
952 
953   V = V->stripPointerCasts();
954 
955   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
956     // TODO: ideally, computeKnownBits ought to have used
957     // AllocaInst::getAlignment() in its computation already, making
958     // the below max redundant. But, as it turns out,
959     // stripPointerCasts recurses through infinite layers of bitcasts,
960     // while computeKnownBits is not allowed to traverse more than 6
961     // levels.
962     Align = std::max(AI->getAlignment(), Align);
963     if (PrefAlign <= Align)
964       return Align;
965 
966     // If the preferred alignment is greater than the natural stack alignment
967     // then don't round up. This avoids dynamic stack realignment.
968     if (DL.exceedsNaturalStackAlignment(PrefAlign))
969       return Align;
970     AI->setAlignment(PrefAlign);
971     return PrefAlign;
972   }
973 
974   if (auto *GO = dyn_cast<GlobalObject>(V)) {
975     // TODO: as above, this shouldn't be necessary.
976     Align = std::max(GO->getAlignment(), Align);
977     if (PrefAlign <= Align)
978       return Align;
979 
980     // If there is a large requested alignment and we can, bump up the alignment
981     // of the global.  If the memory we set aside for the global may not be the
982     // memory used by the final program then it is impossible for us to reliably
983     // enforce the preferred alignment.
984     if (!GO->canIncreaseAlignment())
985       return Align;
986 
987     GO->setAlignment(PrefAlign);
988     return PrefAlign;
989   }
990 
991   return Align;
992 }
993 
994 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
995 /// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
996 /// and it is more than the alignment of the ultimate object, see if we can
997 /// increase the alignment of the ultimate object, making this check succeed.
998 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
999                                           const DataLayout &DL,
1000                                           const Instruction *CxtI,
1001                                           AssumptionCache *AC,
1002                                           const DominatorTree *DT) {
1003   assert(V->getType()->isPointerTy() &&
1004          "getOrEnforceKnownAlignment expects a pointer!");
1005   unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType());
1006 
1007   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1008   computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
1009   unsigned TrailZ = KnownZero.countTrailingOnes();
1010 
1011   // Avoid trouble with ridiculously large TrailZ values, such as
1012   // those computed from a null pointer.
1013   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1014 
1015   unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
1016 
1017   // LLVM doesn't support alignments larger than this currently.
1018   Align = std::min(Align, +Value::MaximumAlignment);
1019 
1020   if (PrefAlign > Align)
1021     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1022 
1023   // We don't need to make any adjustment.
1024   return Align;
1025 }
1026 
1027 ///===---------------------------------------------------------------------===//
1028 ///  Dbg Intrinsic utilities
1029 ///
1030 
1031 /// See if there is a dbg.value intrinsic for DIVar before I.
1032 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1033                               Instruction *I) {
1034   // Since we can't guarantee that the original dbg.declare instrinsic
1035   // is removed by LowerDbgDeclare(), we need to make sure that we are
1036   // not inserting the same dbg.value intrinsic over and over.
1037   llvm::BasicBlock::InstListType::iterator PrevI(I);
1038   if (PrevI != I->getParent()->getInstList().begin()) {
1039     --PrevI;
1040     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1041       if (DVI->getValue() == I->getOperand(0) &&
1042           DVI->getOffset() == 0 &&
1043           DVI->getVariable() == DIVar &&
1044           DVI->getExpression() == DIExpr)
1045         return true;
1046   }
1047   return false;
1048 }
1049 
1050 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1051 /// that has an associated llvm.dbg.decl intrinsic.
1052 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1053                                            StoreInst *SI, DIBuilder &Builder) {
1054   auto *DIVar = DDI->getVariable();
1055   auto *DIExpr = DDI->getExpression();
1056   assert(DIVar && "Missing variable");
1057 
1058   // If an argument is zero extended then use argument directly. The ZExt
1059   // may be zapped by an optimization pass in future.
1060   Argument *ExtendedArg = nullptr;
1061   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1062     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1063   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1064     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1065   if (ExtendedArg) {
1066     // We're now only describing a subset of the variable. The piece we're
1067     // describing will always be smaller than the variable size, because
1068     // VariableSize == Size of Alloca described by DDI. Since SI stores
1069     // to the alloca described by DDI, if it's first operand is an extend,
1070     // we're guaranteed that before extension, the value was narrower than
1071     // the size of the alloca, hence the size of the described variable.
1072     SmallVector<uint64_t, 3> Ops;
1073     unsigned PieceOffset = 0;
1074     // If this already is a bit piece, we drop the bit piece from the expression
1075     // and record the offset.
1076     if (DIExpr->isBitPiece()) {
1077       Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3);
1078       PieceOffset = DIExpr->getBitPieceOffset();
1079     } else {
1080       Ops.append(DIExpr->elements_begin(), DIExpr->elements_end());
1081     }
1082     Ops.push_back(dwarf::DW_OP_bit_piece);
1083     Ops.push_back(PieceOffset); // Offset
1084     const DataLayout &DL = DDI->getModule()->getDataLayout();
1085     Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); // Size
1086     auto NewDIExpr = Builder.createExpression(Ops);
1087     if (!LdStHasDebugValue(DIVar, NewDIExpr, SI))
1088       Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr,
1089                                       DDI->getDebugLoc(), SI);
1090   } else if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1091     Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr,
1092                                     DDI->getDebugLoc(), SI);
1093   return true;
1094 }
1095 
1096 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1097 /// that has an associated llvm.dbg.decl intrinsic.
1098 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1099                                            LoadInst *LI, DIBuilder &Builder) {
1100   auto *DIVar = DDI->getVariable();
1101   auto *DIExpr = DDI->getExpression();
1102   assert(DIVar && "Missing variable");
1103 
1104   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1105     return true;
1106 
1107   // We are now tracking the loaded value instead of the address. In the
1108   // future if multi-location support is added to the IR, it might be
1109   // preferable to keep tracking both the loaded value and the original
1110   // address in case the alloca can not be elided.
1111   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1112       LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr);
1113   DbgValue->insertAfter(LI);
1114   return true;
1115 }
1116 
1117 /// Determine whether this alloca is either a VLA or an array.
1118 static bool isArray(AllocaInst *AI) {
1119   return AI->isArrayAllocation() ||
1120     AI->getType()->getElementType()->isArrayTy();
1121 }
1122 
1123 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1124 /// of llvm.dbg.value intrinsics.
1125 bool llvm::LowerDbgDeclare(Function &F) {
1126   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1127   SmallVector<DbgDeclareInst *, 4> Dbgs;
1128   for (auto &FI : F)
1129     for (Instruction &BI : FI)
1130       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1131         Dbgs.push_back(DDI);
1132 
1133   if (Dbgs.empty())
1134     return false;
1135 
1136   for (auto &I : Dbgs) {
1137     DbgDeclareInst *DDI = I;
1138     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1139     // If this is an alloca for a scalar variable, insert a dbg.value
1140     // at each load and store to the alloca and erase the dbg.declare.
1141     // The dbg.values allow tracking a variable even if it is not
1142     // stored on the stack, while the dbg.declare can only describe
1143     // the stack slot (and at a lexical-scope granularity). Later
1144     // passes will attempt to elide the stack slot.
1145     if (AI && !isArray(AI)) {
1146       for (auto &AIUse : AI->uses()) {
1147         User *U = AIUse.getUser();
1148         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1149           if (AIUse.getOperandNo() == 1)
1150             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1151         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1152           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1153         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1154           // This is a call by-value or some other instruction that
1155           // takes a pointer to the variable. Insert a *value*
1156           // intrinsic that describes the alloca.
1157           SmallVector<uint64_t, 1> NewDIExpr;
1158           auto *DIExpr = DDI->getExpression();
1159           NewDIExpr.push_back(dwarf::DW_OP_deref);
1160           NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1161           DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(),
1162                                       DIB.createExpression(NewDIExpr),
1163                                       DDI->getDebugLoc(), CI);
1164         }
1165       }
1166       DDI->eraseFromParent();
1167     }
1168   }
1169   return true;
1170 }
1171 
1172 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
1173 /// alloca 'V', if any.
1174 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
1175   if (auto *L = LocalAsMetadata::getIfExists(V))
1176     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1177       for (User *U : MDV->users())
1178         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
1179           return DDI;
1180 
1181   return nullptr;
1182 }
1183 
1184 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1185                              Instruction *InsertBefore, DIBuilder &Builder,
1186                              bool Deref, int Offset) {
1187   DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address);
1188   if (!DDI)
1189     return false;
1190   DebugLoc Loc = DDI->getDebugLoc();
1191   auto *DIVar = DDI->getVariable();
1192   auto *DIExpr = DDI->getExpression();
1193   assert(DIVar && "Missing variable");
1194 
1195   if (Deref || Offset) {
1196     // Create a copy of the original DIDescriptor for user variable, prepending
1197     // "deref" operation to a list of address elements, as new llvm.dbg.declare
1198     // will take a value storing address of the memory for variable, not
1199     // alloca itself.
1200     SmallVector<uint64_t, 4> NewDIExpr;
1201     if (Deref)
1202       NewDIExpr.push_back(dwarf::DW_OP_deref);
1203     if (Offset > 0) {
1204       NewDIExpr.push_back(dwarf::DW_OP_plus);
1205       NewDIExpr.push_back(Offset);
1206     } else if (Offset < 0) {
1207       NewDIExpr.push_back(dwarf::DW_OP_minus);
1208       NewDIExpr.push_back(-Offset);
1209     }
1210     if (DIExpr)
1211       NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1212     DIExpr = Builder.createExpression(NewDIExpr);
1213   }
1214 
1215   // Insert llvm.dbg.declare immediately after the original alloca, and remove
1216   // old llvm.dbg.declare.
1217   Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1218   DDI->eraseFromParent();
1219   return true;
1220 }
1221 
1222 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1223                                       DIBuilder &Builder, bool Deref, int Offset) {
1224   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1225                            Deref, Offset);
1226 }
1227 
1228 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1229   unsigned NumDeadInst = 0;
1230   // Delete the instructions backwards, as it has a reduced likelihood of
1231   // having to update as many def-use and use-def chains.
1232   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1233   while (EndInst != &BB->front()) {
1234     // Delete the next to last instruction.
1235     Instruction *Inst = &*--EndInst->getIterator();
1236     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1237       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1238     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1239       EndInst = Inst;
1240       continue;
1241     }
1242     if (!isa<DbgInfoIntrinsic>(Inst))
1243       ++NumDeadInst;
1244     Inst->eraseFromParent();
1245   }
1246   return NumDeadInst;
1247 }
1248 
1249 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
1250   BasicBlock *BB = I->getParent();
1251   // Loop over all of the successors, removing BB's entry from any PHI
1252   // nodes.
1253   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1254     (*SI)->removePredecessor(BB);
1255 
1256   // Insert a call to llvm.trap right before this.  This turns the undefined
1257   // behavior into a hard fail instead of falling through into random code.
1258   if (UseLLVMTrap) {
1259     Function *TrapFn =
1260       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1261     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1262     CallTrap->setDebugLoc(I->getDebugLoc());
1263   }
1264   new UnreachableInst(I->getContext(), I);
1265 
1266   // All instructions after this are dead.
1267   unsigned NumInstrsRemoved = 0;
1268   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1269   while (BBI != BBE) {
1270     if (!BBI->use_empty())
1271       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1272     BB->getInstList().erase(BBI++);
1273     ++NumInstrsRemoved;
1274   }
1275   return NumInstrsRemoved;
1276 }
1277 
1278 /// changeToCall - Convert the specified invoke into a normal call.
1279 static void changeToCall(InvokeInst *II) {
1280   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1281   SmallVector<OperandBundleDef, 1> OpBundles;
1282   II->getOperandBundlesAsDefs(OpBundles);
1283   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1284                                        "", II);
1285   NewCall->takeName(II);
1286   NewCall->setCallingConv(II->getCallingConv());
1287   NewCall->setAttributes(II->getAttributes());
1288   NewCall->setDebugLoc(II->getDebugLoc());
1289   II->replaceAllUsesWith(NewCall);
1290 
1291   // Follow the call by a branch to the normal destination.
1292   BranchInst::Create(II->getNormalDest(), II);
1293 
1294   // Update PHI nodes in the unwind destination
1295   II->getUnwindDest()->removePredecessor(II->getParent());
1296   II->eraseFromParent();
1297 }
1298 
1299 static bool markAliveBlocks(Function &F,
1300                             SmallPtrSetImpl<BasicBlock*> &Reachable) {
1301 
1302   SmallVector<BasicBlock*, 128> Worklist;
1303   BasicBlock *BB = &F.front();
1304   Worklist.push_back(BB);
1305   Reachable.insert(BB);
1306   bool Changed = false;
1307   do {
1308     BB = Worklist.pop_back_val();
1309 
1310     // Do a quick scan of the basic block, turning any obviously unreachable
1311     // instructions into LLVM unreachable insts.  The instruction combining pass
1312     // canonicalizes unreachable insts into stores to null or undef.
1313     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
1314       // Assumptions that are known to be false are equivalent to unreachable.
1315       // Also, if the condition is undefined, then we make the choice most
1316       // beneficial to the optimizer, and choose that to also be unreachable.
1317       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) {
1318         if (II->getIntrinsicID() == Intrinsic::assume) {
1319           bool MakeUnreachable = false;
1320           if (isa<UndefValue>(II->getArgOperand(0)))
1321             MakeUnreachable = true;
1322           else if (ConstantInt *Cond =
1323                    dyn_cast<ConstantInt>(II->getArgOperand(0)))
1324             MakeUnreachable = Cond->isZero();
1325 
1326           if (MakeUnreachable) {
1327             // Don't insert a call to llvm.trap right before the unreachable.
1328             changeToUnreachable(&*BBI, false);
1329             Changed = true;
1330             break;
1331           }
1332         }
1333 
1334         if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
1335           // A call to the guard intrinsic bails out of the current compilation
1336           // unit if the predicate passed to it is false.  If the predicate is a
1337           // constant false, then we know the guard will bail out of the current
1338           // compile unconditionally, so all code following it is dead.
1339           //
1340           // Note: unlike in llvm.assume, it is not "obviously profitable" for
1341           // guards to treat `undef` as `false` since a guard on `undef` can
1342           // still be useful for widening.
1343           if (auto *CI = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1344             if (CI->isZero() && !isa<UnreachableInst>(II->getNextNode())) {
1345               changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false);
1346               Changed = true;
1347               break;
1348             }
1349         }
1350       }
1351 
1352       if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
1353         if (CI->doesNotReturn()) {
1354           // If we found a call to a no-return function, insert an unreachable
1355           // instruction after it.  Make sure there isn't *already* one there
1356           // though.
1357           ++BBI;
1358           if (!isa<UnreachableInst>(BBI)) {
1359             // Don't insert a call to llvm.trap right before the unreachable.
1360             changeToUnreachable(&*BBI, false);
1361             Changed = true;
1362           }
1363           break;
1364         }
1365       }
1366 
1367       // Store to undef and store to null are undefined and used to signal that
1368       // they should be changed to unreachable by passes that can't modify the
1369       // CFG.
1370       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
1371         // Don't touch volatile stores.
1372         if (SI->isVolatile()) continue;
1373 
1374         Value *Ptr = SI->getOperand(1);
1375 
1376         if (isa<UndefValue>(Ptr) ||
1377             (isa<ConstantPointerNull>(Ptr) &&
1378              SI->getPointerAddressSpace() == 0)) {
1379           changeToUnreachable(SI, true);
1380           Changed = true;
1381           break;
1382         }
1383       }
1384     }
1385 
1386     TerminatorInst *Terminator = BB->getTerminator();
1387     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
1388       // Turn invokes that call 'nounwind' functions into ordinary calls.
1389       Value *Callee = II->getCalledValue();
1390       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1391         changeToUnreachable(II, true);
1392         Changed = true;
1393       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1394         if (II->use_empty() && II->onlyReadsMemory()) {
1395           // jump to the normal destination branch.
1396           BranchInst::Create(II->getNormalDest(), II);
1397           II->getUnwindDest()->removePredecessor(II->getParent());
1398           II->eraseFromParent();
1399         } else
1400           changeToCall(II);
1401         Changed = true;
1402       }
1403     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
1404       // Remove catchpads which cannot be reached.
1405       struct CatchPadDenseMapInfo {
1406         static CatchPadInst *getEmptyKey() {
1407           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
1408         }
1409         static CatchPadInst *getTombstoneKey() {
1410           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
1411         }
1412         static unsigned getHashValue(CatchPadInst *CatchPad) {
1413           return static_cast<unsigned>(hash_combine_range(
1414               CatchPad->value_op_begin(), CatchPad->value_op_end()));
1415         }
1416         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
1417           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1418               RHS == getEmptyKey() || RHS == getTombstoneKey())
1419             return LHS == RHS;
1420           return LHS->isIdenticalTo(RHS);
1421         }
1422       };
1423 
1424       // Set of unique CatchPads.
1425       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
1426                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
1427           HandlerSet;
1428       detail::DenseSetEmpty Empty;
1429       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
1430                                              E = CatchSwitch->handler_end();
1431            I != E; ++I) {
1432         BasicBlock *HandlerBB = *I;
1433         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
1434         if (!HandlerSet.insert({CatchPad, Empty}).second) {
1435           CatchSwitch->removeHandler(I);
1436           --I;
1437           --E;
1438           Changed = true;
1439         }
1440       }
1441     }
1442 
1443     Changed |= ConstantFoldTerminator(BB, true);
1444     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1445       if (Reachable.insert(*SI).second)
1446         Worklist.push_back(*SI);
1447   } while (!Worklist.empty());
1448   return Changed;
1449 }
1450 
1451 void llvm::removeUnwindEdge(BasicBlock *BB) {
1452   TerminatorInst *TI = BB->getTerminator();
1453 
1454   if (auto *II = dyn_cast<InvokeInst>(TI)) {
1455     changeToCall(II);
1456     return;
1457   }
1458 
1459   TerminatorInst *NewTI;
1460   BasicBlock *UnwindDest;
1461 
1462   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
1463     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
1464     UnwindDest = CRI->getUnwindDest();
1465   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
1466     auto *NewCatchSwitch = CatchSwitchInst::Create(
1467         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
1468         CatchSwitch->getName(), CatchSwitch);
1469     for (BasicBlock *PadBB : CatchSwitch->handlers())
1470       NewCatchSwitch->addHandler(PadBB);
1471 
1472     NewTI = NewCatchSwitch;
1473     UnwindDest = CatchSwitch->getUnwindDest();
1474   } else {
1475     llvm_unreachable("Could not find unwind successor");
1476   }
1477 
1478   NewTI->takeName(TI);
1479   NewTI->setDebugLoc(TI->getDebugLoc());
1480   UnwindDest->removePredecessor(BB);
1481   TI->replaceAllUsesWith(NewTI);
1482   TI->eraseFromParent();
1483 }
1484 
1485 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
1486 /// if they are in a dead cycle.  Return true if a change was made, false
1487 /// otherwise.
1488 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) {
1489   SmallPtrSet<BasicBlock*, 16> Reachable;
1490   bool Changed = markAliveBlocks(F, Reachable);
1491 
1492   // If there are unreachable blocks in the CFG...
1493   if (Reachable.size() == F.size())
1494     return Changed;
1495 
1496   assert(Reachable.size() < F.size());
1497   NumRemoved += F.size()-Reachable.size();
1498 
1499   // Loop over all of the basic blocks that are not reachable, dropping all of
1500   // their internal references...
1501   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
1502     if (Reachable.count(&*BB))
1503       continue;
1504 
1505     for (succ_iterator SI = succ_begin(&*BB), SE = succ_end(&*BB); SI != SE;
1506          ++SI)
1507       if (Reachable.count(*SI))
1508         (*SI)->removePredecessor(&*BB);
1509     if (LVI)
1510       LVI->eraseBlock(&*BB);
1511     BB->dropAllReferences();
1512   }
1513 
1514   for (Function::iterator I = ++F.begin(); I != F.end();)
1515     if (!Reachable.count(&*I))
1516       I = F.getBasicBlockList().erase(I);
1517     else
1518       ++I;
1519 
1520   return true;
1521 }
1522 
1523 void llvm::combineMetadata(Instruction *K, const Instruction *J,
1524                            ArrayRef<unsigned> KnownIDs) {
1525   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
1526   K->dropUnknownNonDebugMetadata(KnownIDs);
1527   K->getAllMetadataOtherThanDebugLoc(Metadata);
1528   for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
1529     unsigned Kind = Metadata[i].first;
1530     MDNode *JMD = J->getMetadata(Kind);
1531     MDNode *KMD = Metadata[i].second;
1532 
1533     switch (Kind) {
1534       default:
1535         K->setMetadata(Kind, nullptr); // Remove unknown metadata
1536         break;
1537       case LLVMContext::MD_dbg:
1538         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1539       case LLVMContext::MD_tbaa:
1540         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
1541         break;
1542       case LLVMContext::MD_alias_scope:
1543         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
1544         break;
1545       case LLVMContext::MD_noalias:
1546       case LLVMContext::MD_mem_parallel_loop_access:
1547         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
1548         break;
1549       case LLVMContext::MD_range:
1550         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
1551         break;
1552       case LLVMContext::MD_fpmath:
1553         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
1554         break;
1555       case LLVMContext::MD_invariant_load:
1556         // Only set the !invariant.load if it is present in both instructions.
1557         K->setMetadata(Kind, JMD);
1558         break;
1559       case LLVMContext::MD_nonnull:
1560         // Only set the !nonnull if it is present in both instructions.
1561         K->setMetadata(Kind, JMD);
1562         break;
1563       case LLVMContext::MD_invariant_group:
1564         // Preserve !invariant.group in K.
1565         break;
1566       case LLVMContext::MD_align:
1567         K->setMetadata(Kind,
1568           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1569         break;
1570       case LLVMContext::MD_dereferenceable:
1571       case LLVMContext::MD_dereferenceable_or_null:
1572         K->setMetadata(Kind,
1573           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1574         break;
1575     }
1576   }
1577   // Set !invariant.group from J if J has it. If both instructions have it
1578   // then we will just pick it from J - even when they are different.
1579   // Also make sure that K is load or store - f.e. combining bitcast with load
1580   // could produce bitcast with invariant.group metadata, which is invalid.
1581   // FIXME: we should try to preserve both invariant.group md if they are
1582   // different, but right now instruction can only have one invariant.group.
1583   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
1584     if (isa<LoadInst>(K) || isa<StoreInst>(K))
1585       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
1586 }
1587 
1588 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1589                                         DominatorTree &DT,
1590                                         const BasicBlockEdge &Root) {
1591   assert(From->getType() == To->getType());
1592 
1593   unsigned Count = 0;
1594   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1595        UI != UE; ) {
1596     Use &U = *UI++;
1597     if (DT.dominates(Root, U)) {
1598       U.set(To);
1599       DEBUG(dbgs() << "Replace dominated use of '"
1600             << From->getName() << "' as "
1601             << *To << " in " << *U << "\n");
1602       ++Count;
1603     }
1604   }
1605   return Count;
1606 }
1607 
1608 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1609                                         DominatorTree &DT,
1610                                         const BasicBlock *BB) {
1611   assert(From->getType() == To->getType());
1612 
1613   unsigned Count = 0;
1614   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1615        UI != UE;) {
1616     Use &U = *UI++;
1617     auto *I = cast<Instruction>(U.getUser());
1618     if (DT.properlyDominates(BB, I->getParent())) {
1619       U.set(To);
1620       DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
1621                    << *To << " in " << *U << "\n");
1622       ++Count;
1623     }
1624   }
1625   return Count;
1626 }
1627 
1628 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) {
1629   // Check if the function is specifically marked as a gc leaf function.
1630   if (CS.hasFnAttr("gc-leaf-function"))
1631     return true;
1632   if (const Function *F = CS.getCalledFunction()) {
1633     if (F->hasFnAttribute("gc-leaf-function"))
1634       return true;
1635 
1636     if (auto IID = F->getIntrinsicID())
1637       // Most LLVM intrinsics do not take safepoints.
1638       return IID != Intrinsic::experimental_gc_statepoint &&
1639              IID != Intrinsic::experimental_deoptimize;
1640   }
1641 
1642   return false;
1643 }
1644 
1645 /// A potential constituent of a bitreverse or bswap expression. See
1646 /// collectBitParts for a fuller explanation.
1647 struct BitPart {
1648   BitPart(Value *P, unsigned BW) : Provider(P) {
1649     Provenance.resize(BW);
1650   }
1651 
1652   /// The Value that this is a bitreverse/bswap of.
1653   Value *Provider;
1654   /// The "provenance" of each bit. Provenance[A] = B means that bit A
1655   /// in Provider becomes bit B in the result of this expression.
1656   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
1657 
1658   enum { Unset = -1 };
1659 };
1660 
1661 /// Analyze the specified subexpression and see if it is capable of providing
1662 /// pieces of a bswap or bitreverse. The subexpression provides a potential
1663 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
1664 /// the output of the expression came from a corresponding bit in some other
1665 /// value. This function is recursive, and the end result is a mapping of
1666 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
1667 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
1668 ///
1669 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
1670 /// that the expression deposits the low byte of %X into the high byte of the
1671 /// result and that all other bits are zero. This expression is accepted and a
1672 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
1673 /// [0-7].
1674 ///
1675 /// To avoid revisiting values, the BitPart results are memoized into the
1676 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
1677 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
1678 /// store BitParts objects, not pointers. As we need the concept of a nullptr
1679 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
1680 /// type instead to provide the same functionality.
1681 ///
1682 /// Because we pass around references into \c BPS, we must use a container that
1683 /// does not invalidate internal references (std::map instead of DenseMap).
1684 ///
1685 static const Optional<BitPart> &
1686 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
1687                 std::map<Value *, Optional<BitPart>> &BPS) {
1688   auto I = BPS.find(V);
1689   if (I != BPS.end())
1690     return I->second;
1691 
1692   auto &Result = BPS[V] = None;
1693   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1694 
1695   if (Instruction *I = dyn_cast<Instruction>(V)) {
1696     // If this is an or instruction, it may be an inner node of the bswap.
1697     if (I->getOpcode() == Instruction::Or) {
1698       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
1699                                 MatchBitReversals, BPS);
1700       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
1701                                 MatchBitReversals, BPS);
1702       if (!A || !B)
1703         return Result;
1704 
1705       // Try and merge the two together.
1706       if (!A->Provider || A->Provider != B->Provider)
1707         return Result;
1708 
1709       Result = BitPart(A->Provider, BitWidth);
1710       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
1711         if (A->Provenance[i] != BitPart::Unset &&
1712             B->Provenance[i] != BitPart::Unset &&
1713             A->Provenance[i] != B->Provenance[i])
1714           return Result = None;
1715 
1716         if (A->Provenance[i] == BitPart::Unset)
1717           Result->Provenance[i] = B->Provenance[i];
1718         else
1719           Result->Provenance[i] = A->Provenance[i];
1720       }
1721 
1722       return Result;
1723     }
1724 
1725     // If this is a logical shift by a constant, recurse then shift the result.
1726     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1727       unsigned BitShift =
1728           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1729       // Ensure the shift amount is defined.
1730       if (BitShift > BitWidth)
1731         return Result;
1732 
1733       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1734                                   MatchBitReversals, BPS);
1735       if (!Res)
1736         return Result;
1737       Result = Res;
1738 
1739       // Perform the "shift" on BitProvenance.
1740       auto &P = Result->Provenance;
1741       if (I->getOpcode() == Instruction::Shl) {
1742         P.erase(std::prev(P.end(), BitShift), P.end());
1743         P.insert(P.begin(), BitShift, BitPart::Unset);
1744       } else {
1745         P.erase(P.begin(), std::next(P.begin(), BitShift));
1746         P.insert(P.end(), BitShift, BitPart::Unset);
1747       }
1748 
1749       return Result;
1750     }
1751 
1752     // If this is a logical 'and' with a mask that clears bits, recurse then
1753     // unset the appropriate bits.
1754     if (I->getOpcode() == Instruction::And &&
1755         isa<ConstantInt>(I->getOperand(1))) {
1756       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
1757       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1758 
1759       // Check that the mask allows a multiple of 8 bits for a bswap, for an
1760       // early exit.
1761       unsigned NumMaskedBits = AndMask.countPopulation();
1762       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
1763         return Result;
1764 
1765       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1766                                   MatchBitReversals, BPS);
1767       if (!Res)
1768         return Result;
1769       Result = Res;
1770 
1771       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
1772         // If the AndMask is zero for this bit, clear the bit.
1773         if ((AndMask & Bit) == 0)
1774           Result->Provenance[i] = BitPart::Unset;
1775 
1776       return Result;
1777     }
1778   }
1779 
1780   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
1781   // the input value to the bswap/bitreverse.
1782   Result = BitPart(V, BitWidth);
1783   for (unsigned i = 0; i < BitWidth; ++i)
1784     Result->Provenance[i] = i;
1785   return Result;
1786 }
1787 
1788 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
1789                                           unsigned BitWidth) {
1790   if (From % 8 != To % 8)
1791     return false;
1792   // Convert from bit indices to byte indices and check for a byte reversal.
1793   From >>= 3;
1794   To >>= 3;
1795   BitWidth >>= 3;
1796   return From == BitWidth - To - 1;
1797 }
1798 
1799 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
1800                                                unsigned BitWidth) {
1801   return From == BitWidth - To - 1;
1802 }
1803 
1804 /// Given an OR instruction, check to see if this is a bitreverse
1805 /// idiom. If so, insert the new intrinsic and return true.
1806 bool llvm::recognizeBitReverseOrBSwapIdiom(
1807     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
1808     SmallVectorImpl<Instruction *> &InsertedInsts) {
1809   if (Operator::getOpcode(I) != Instruction::Or)
1810     return false;
1811   if (!MatchBSwaps && !MatchBitReversals)
1812     return false;
1813   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
1814   if (!ITy || ITy->getBitWidth() > 128)
1815     return false;   // Can't do vectors or integers > 128 bits.
1816   unsigned BW = ITy->getBitWidth();
1817 
1818   // Try to find all the pieces corresponding to the bswap.
1819   std::map<Value *, Optional<BitPart>> BPS;
1820   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
1821   if (!Res)
1822     return false;
1823   auto &BitProvenance = Res->Provenance;
1824 
1825   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
1826   // only byteswap values with an even number of bytes.
1827   bool OKForBSwap = BW % 16 == 0, OKForBitReverse = true;
1828   for (unsigned i = 0; i < BW; ++i) {
1829     OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[i], i, BW);
1830     OKForBitReverse &=
1831         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, BW);
1832   }
1833 
1834   Intrinsic::ID Intrin;
1835   if (OKForBSwap && MatchBSwaps)
1836     Intrin = Intrinsic::bswap;
1837   else if (OKForBitReverse && MatchBitReversals)
1838     Intrin = Intrinsic::bitreverse;
1839   else
1840     return false;
1841 
1842   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
1843   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
1844   return true;
1845 }
1846