1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/LazyValueInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DIBuilder.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/ValueHandle.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/raw_ostream.h" 49 using namespace llvm; 50 51 #define DEBUG_TYPE "local" 52 53 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 54 55 //===----------------------------------------------------------------------===// 56 // Local constant propagation. 57 // 58 59 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 60 /// constant value, convert it into an unconditional branch to the constant 61 /// destination. This is a nontrivial operation because the successors of this 62 /// basic block must have their PHI nodes updated. 63 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 64 /// conditions and indirectbr addresses this might make dead if 65 /// DeleteDeadConditions is true. 66 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 67 const TargetLibraryInfo *TLI) { 68 TerminatorInst *T = BB->getTerminator(); 69 IRBuilder<> Builder(T); 70 71 // Branch - See if we are conditional jumping on constant 72 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 73 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 74 BasicBlock *Dest1 = BI->getSuccessor(0); 75 BasicBlock *Dest2 = BI->getSuccessor(1); 76 77 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 78 // Are we branching on constant? 79 // YES. Change to unconditional branch... 80 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 81 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 82 83 //cerr << "Function: " << T->getParent()->getParent() 84 // << "\nRemoving branch from " << T->getParent() 85 // << "\n\nTo: " << OldDest << endl; 86 87 // Let the basic block know that we are letting go of it. Based on this, 88 // it will adjust it's PHI nodes. 89 OldDest->removePredecessor(BB); 90 91 // Replace the conditional branch with an unconditional one. 92 Builder.CreateBr(Destination); 93 BI->eraseFromParent(); 94 return true; 95 } 96 97 if (Dest2 == Dest1) { // Conditional branch to same location? 98 // This branch matches something like this: 99 // br bool %cond, label %Dest, label %Dest 100 // and changes it into: br label %Dest 101 102 // Let the basic block know that we are letting go of one copy of it. 103 assert(BI->getParent() && "Terminator not inserted in block!"); 104 Dest1->removePredecessor(BI->getParent()); 105 106 // Replace the conditional branch with an unconditional one. 107 Builder.CreateBr(Dest1); 108 Value *Cond = BI->getCondition(); 109 BI->eraseFromParent(); 110 if (DeleteDeadConditions) 111 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 112 return true; 113 } 114 return false; 115 } 116 117 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 118 // If we are switching on a constant, we can convert the switch to an 119 // unconditional branch. 120 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 121 BasicBlock *DefaultDest = SI->getDefaultDest(); 122 BasicBlock *TheOnlyDest = DefaultDest; 123 124 // If the default is unreachable, ignore it when searching for TheOnlyDest. 125 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 126 SI->getNumCases() > 0) { 127 TheOnlyDest = SI->case_begin().getCaseSuccessor(); 128 } 129 130 // Figure out which case it goes to. 131 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 132 i != e; ++i) { 133 // Found case matching a constant operand? 134 if (i.getCaseValue() == CI) { 135 TheOnlyDest = i.getCaseSuccessor(); 136 break; 137 } 138 139 // Check to see if this branch is going to the same place as the default 140 // dest. If so, eliminate it as an explicit compare. 141 if (i.getCaseSuccessor() == DefaultDest) { 142 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 143 unsigned NCases = SI->getNumCases(); 144 // Fold the case metadata into the default if there will be any branches 145 // left, unless the metadata doesn't match the switch. 146 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 147 // Collect branch weights into a vector. 148 SmallVector<uint32_t, 8> Weights; 149 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 150 ++MD_i) { 151 ConstantInt *CI = 152 mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i)); 153 assert(CI); 154 Weights.push_back(CI->getValue().getZExtValue()); 155 } 156 // Merge weight of this case to the default weight. 157 unsigned idx = i.getCaseIndex(); 158 Weights[0] += Weights[idx+1]; 159 // Remove weight for this case. 160 std::swap(Weights[idx+1], Weights.back()); 161 Weights.pop_back(); 162 SI->setMetadata(LLVMContext::MD_prof, 163 MDBuilder(BB->getContext()). 164 createBranchWeights(Weights)); 165 } 166 // Remove this entry. 167 DefaultDest->removePredecessor(SI->getParent()); 168 SI->removeCase(i); 169 --i; --e; 170 continue; 171 } 172 173 // Otherwise, check to see if the switch only branches to one destination. 174 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 175 // destinations. 176 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr; 177 } 178 179 if (CI && !TheOnlyDest) { 180 // Branching on a constant, but not any of the cases, go to the default 181 // successor. 182 TheOnlyDest = SI->getDefaultDest(); 183 } 184 185 // If we found a single destination that we can fold the switch into, do so 186 // now. 187 if (TheOnlyDest) { 188 // Insert the new branch. 189 Builder.CreateBr(TheOnlyDest); 190 BasicBlock *BB = SI->getParent(); 191 192 // Remove entries from PHI nodes which we no longer branch to... 193 for (BasicBlock *Succ : SI->successors()) { 194 // Found case matching a constant operand? 195 if (Succ == TheOnlyDest) 196 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 197 else 198 Succ->removePredecessor(BB); 199 } 200 201 // Delete the old switch. 202 Value *Cond = SI->getCondition(); 203 SI->eraseFromParent(); 204 if (DeleteDeadConditions) 205 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 206 return true; 207 } 208 209 if (SI->getNumCases() == 1) { 210 // Otherwise, we can fold this switch into a conditional branch 211 // instruction if it has only one non-default destination. 212 SwitchInst::CaseIt FirstCase = SI->case_begin(); 213 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 214 FirstCase.getCaseValue(), "cond"); 215 216 // Insert the new branch. 217 BranchInst *NewBr = Builder.CreateCondBr(Cond, 218 FirstCase.getCaseSuccessor(), 219 SI->getDefaultDest()); 220 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 221 if (MD && MD->getNumOperands() == 3) { 222 ConstantInt *SICase = 223 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 224 ConstantInt *SIDef = 225 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 226 assert(SICase && SIDef); 227 // The TrueWeight should be the weight for the single case of SI. 228 NewBr->setMetadata(LLVMContext::MD_prof, 229 MDBuilder(BB->getContext()). 230 createBranchWeights(SICase->getValue().getZExtValue(), 231 SIDef->getValue().getZExtValue())); 232 } 233 234 // Update make.implicit metadata to the newly-created conditional branch. 235 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 236 if (MakeImplicitMD) 237 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 238 239 // Delete the old switch. 240 SI->eraseFromParent(); 241 return true; 242 } 243 return false; 244 } 245 246 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 247 // indirectbr blockaddress(@F, @BB) -> br label @BB 248 if (BlockAddress *BA = 249 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 250 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 251 // Insert the new branch. 252 Builder.CreateBr(TheOnlyDest); 253 254 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 255 if (IBI->getDestination(i) == TheOnlyDest) 256 TheOnlyDest = nullptr; 257 else 258 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 259 } 260 Value *Address = IBI->getAddress(); 261 IBI->eraseFromParent(); 262 if (DeleteDeadConditions) 263 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 264 265 // If we didn't find our destination in the IBI successor list, then we 266 // have undefined behavior. Replace the unconditional branch with an 267 // 'unreachable' instruction. 268 if (TheOnlyDest) { 269 BB->getTerminator()->eraseFromParent(); 270 new UnreachableInst(BB->getContext(), BB); 271 } 272 273 return true; 274 } 275 } 276 277 return false; 278 } 279 280 281 //===----------------------------------------------------------------------===// 282 // Local dead code elimination. 283 // 284 285 /// isInstructionTriviallyDead - Return true if the result produced by the 286 /// instruction is not used, and the instruction has no side effects. 287 /// 288 bool llvm::isInstructionTriviallyDead(Instruction *I, 289 const TargetLibraryInfo *TLI) { 290 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 291 292 // We don't want the landingpad-like instructions removed by anything this 293 // general. 294 if (I->isEHPad()) 295 return false; 296 297 // We don't want debug info removed by anything this general, unless 298 // debug info is empty. 299 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 300 if (DDI->getAddress()) 301 return false; 302 return true; 303 } 304 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 305 if (DVI->getValue()) 306 return false; 307 return true; 308 } 309 310 if (!I->mayHaveSideEffects()) return true; 311 312 // Special case intrinsics that "may have side effects" but can be deleted 313 // when dead. 314 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 315 // Safe to delete llvm.stacksave if dead. 316 if (II->getIntrinsicID() == Intrinsic::stacksave) 317 return true; 318 319 // Lifetime intrinsics are dead when their right-hand is undef. 320 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 321 II->getIntrinsicID() == Intrinsic::lifetime_end) 322 return isa<UndefValue>(II->getArgOperand(1)); 323 324 // Assumptions are dead if their condition is trivially true. Guards on 325 // true are operationally no-ops. In the future we can consider more 326 // sophisticated tradeoffs for guards considering potential for check 327 // widening, but for now we keep things simple. 328 if (II->getIntrinsicID() == Intrinsic::assume || 329 II->getIntrinsicID() == Intrinsic::experimental_guard) { 330 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 331 return !Cond->isZero(); 332 333 return false; 334 } 335 } 336 337 if (isAllocLikeFn(I, TLI)) return true; 338 339 if (CallInst *CI = isFreeCall(I, TLI)) 340 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 341 return C->isNullValue() || isa<UndefValue>(C); 342 343 return false; 344 } 345 346 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 347 /// trivially dead instruction, delete it. If that makes any of its operands 348 /// trivially dead, delete them too, recursively. Return true if any 349 /// instructions were deleted. 350 bool 351 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 352 const TargetLibraryInfo *TLI) { 353 Instruction *I = dyn_cast<Instruction>(V); 354 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 355 return false; 356 357 SmallVector<Instruction*, 16> DeadInsts; 358 DeadInsts.push_back(I); 359 360 do { 361 I = DeadInsts.pop_back_val(); 362 363 // Null out all of the instruction's operands to see if any operand becomes 364 // dead as we go. 365 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 366 Value *OpV = I->getOperand(i); 367 I->setOperand(i, nullptr); 368 369 if (!OpV->use_empty()) continue; 370 371 // If the operand is an instruction that became dead as we nulled out the 372 // operand, and if it is 'trivially' dead, delete it in a future loop 373 // iteration. 374 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 375 if (isInstructionTriviallyDead(OpI, TLI)) 376 DeadInsts.push_back(OpI); 377 } 378 379 I->eraseFromParent(); 380 } while (!DeadInsts.empty()); 381 382 return true; 383 } 384 385 /// areAllUsesEqual - Check whether the uses of a value are all the same. 386 /// This is similar to Instruction::hasOneUse() except this will also return 387 /// true when there are no uses or multiple uses that all refer to the same 388 /// value. 389 static bool areAllUsesEqual(Instruction *I) { 390 Value::user_iterator UI = I->user_begin(); 391 Value::user_iterator UE = I->user_end(); 392 if (UI == UE) 393 return true; 394 395 User *TheUse = *UI; 396 for (++UI; UI != UE; ++UI) { 397 if (*UI != TheUse) 398 return false; 399 } 400 return true; 401 } 402 403 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 404 /// dead PHI node, due to being a def-use chain of single-use nodes that 405 /// either forms a cycle or is terminated by a trivially dead instruction, 406 /// delete it. If that makes any of its operands trivially dead, delete them 407 /// too, recursively. Return true if a change was made. 408 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 409 const TargetLibraryInfo *TLI) { 410 SmallPtrSet<Instruction*, 4> Visited; 411 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 412 I = cast<Instruction>(*I->user_begin())) { 413 if (I->use_empty()) 414 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 415 416 // If we find an instruction more than once, we're on a cycle that 417 // won't prove fruitful. 418 if (!Visited.insert(I).second) { 419 // Break the cycle and delete the instruction and its operands. 420 I->replaceAllUsesWith(UndefValue::get(I->getType())); 421 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 422 return true; 423 } 424 } 425 return false; 426 } 427 428 static bool 429 simplifyAndDCEInstruction(Instruction *I, 430 SmallSetVector<Instruction *, 16> &WorkList, 431 const DataLayout &DL, 432 const TargetLibraryInfo *TLI) { 433 if (isInstructionTriviallyDead(I, TLI)) { 434 // Null out all of the instruction's operands to see if any operand becomes 435 // dead as we go. 436 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 437 Value *OpV = I->getOperand(i); 438 I->setOperand(i, nullptr); 439 440 if (!OpV->use_empty() || I == OpV) 441 continue; 442 443 // If the operand is an instruction that became dead as we nulled out the 444 // operand, and if it is 'trivially' dead, delete it in a future loop 445 // iteration. 446 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 447 if (isInstructionTriviallyDead(OpI, TLI)) 448 WorkList.insert(OpI); 449 } 450 451 I->eraseFromParent(); 452 453 return true; 454 } 455 456 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 457 // Add the users to the worklist. CAREFUL: an instruction can use itself, 458 // in the case of a phi node. 459 for (User *U : I->users()) 460 if (U != I) 461 WorkList.insert(cast<Instruction>(U)); 462 463 // Replace the instruction with its simplified value. 464 I->replaceAllUsesWith(SimpleV); 465 I->eraseFromParent(); 466 return true; 467 } 468 return false; 469 } 470 471 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 472 /// simplify any instructions in it and recursively delete dead instructions. 473 /// 474 /// This returns true if it changed the code, note that it can delete 475 /// instructions in other blocks as well in this block. 476 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 477 const TargetLibraryInfo *TLI) { 478 bool MadeChange = false; 479 const DataLayout &DL = BB->getModule()->getDataLayout(); 480 481 #ifndef NDEBUG 482 // In debug builds, ensure that the terminator of the block is never replaced 483 // or deleted by these simplifications. The idea of simplification is that it 484 // cannot introduce new instructions, and there is no way to replace the 485 // terminator of a block without introducing a new instruction. 486 AssertingVH<Instruction> TerminatorVH(&BB->back()); 487 #endif 488 489 SmallSetVector<Instruction *, 16> WorkList; 490 // Iterate over the original function, only adding insts to the worklist 491 // if they actually need to be revisited. This avoids having to pre-init 492 // the worklist with the entire function's worth of instructions. 493 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); BI != E;) { 494 assert(!BI->isTerminator()); 495 Instruction *I = &*BI; 496 ++BI; 497 498 // We're visiting this instruction now, so make sure it's not in the 499 // worklist from an earlier visit. 500 if (!WorkList.count(I)) 501 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 502 } 503 504 while (!WorkList.empty()) { 505 Instruction *I = WorkList.pop_back_val(); 506 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 507 } 508 return MadeChange; 509 } 510 511 //===----------------------------------------------------------------------===// 512 // Control Flow Graph Restructuring. 513 // 514 515 516 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 517 /// method is called when we're about to delete Pred as a predecessor of BB. If 518 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 519 /// 520 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 521 /// nodes that collapse into identity values. For example, if we have: 522 /// x = phi(1, 0, 0, 0) 523 /// y = and x, z 524 /// 525 /// .. and delete the predecessor corresponding to the '1', this will attempt to 526 /// recursively fold the and to 0. 527 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 528 // This only adjusts blocks with PHI nodes. 529 if (!isa<PHINode>(BB->begin())) 530 return; 531 532 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 533 // them down. This will leave us with single entry phi nodes and other phis 534 // that can be removed. 535 BB->removePredecessor(Pred, true); 536 537 WeakVH PhiIt = &BB->front(); 538 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 539 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 540 Value *OldPhiIt = PhiIt; 541 542 if (!recursivelySimplifyInstruction(PN)) 543 continue; 544 545 // If recursive simplification ended up deleting the next PHI node we would 546 // iterate to, then our iterator is invalid, restart scanning from the top 547 // of the block. 548 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 549 } 550 } 551 552 553 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 554 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 555 /// between them, moving the instructions in the predecessor into DestBB and 556 /// deleting the predecessor block. 557 /// 558 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 559 // If BB has single-entry PHI nodes, fold them. 560 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 561 Value *NewVal = PN->getIncomingValue(0); 562 // Replace self referencing PHI with undef, it must be dead. 563 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 564 PN->replaceAllUsesWith(NewVal); 565 PN->eraseFromParent(); 566 } 567 568 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 569 assert(PredBB && "Block doesn't have a single predecessor!"); 570 571 // Zap anything that took the address of DestBB. Not doing this will give the 572 // address an invalid value. 573 if (DestBB->hasAddressTaken()) { 574 BlockAddress *BA = BlockAddress::get(DestBB); 575 Constant *Replacement = 576 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 577 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 578 BA->getType())); 579 BA->destroyConstant(); 580 } 581 582 // Anything that branched to PredBB now branches to DestBB. 583 PredBB->replaceAllUsesWith(DestBB); 584 585 // Splice all the instructions from PredBB to DestBB. 586 PredBB->getTerminator()->eraseFromParent(); 587 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 588 589 // If the PredBB is the entry block of the function, move DestBB up to 590 // become the entry block after we erase PredBB. 591 if (PredBB == &DestBB->getParent()->getEntryBlock()) 592 DestBB->moveAfter(PredBB); 593 594 if (DT) { 595 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 596 DT->changeImmediateDominator(DestBB, PredBBIDom); 597 DT->eraseNode(PredBB); 598 } 599 // Nuke BB. 600 PredBB->eraseFromParent(); 601 } 602 603 /// CanMergeValues - Return true if we can choose one of these values to use 604 /// in place of the other. Note that we will always choose the non-undef 605 /// value to keep. 606 static bool CanMergeValues(Value *First, Value *Second) { 607 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 608 } 609 610 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 611 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 612 /// 613 /// Assumption: Succ is the single successor for BB. 614 /// 615 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 616 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 617 618 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 619 << Succ->getName() << "\n"); 620 // Shortcut, if there is only a single predecessor it must be BB and merging 621 // is always safe 622 if (Succ->getSinglePredecessor()) return true; 623 624 // Make a list of the predecessors of BB 625 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 626 627 // Look at all the phi nodes in Succ, to see if they present a conflict when 628 // merging these blocks 629 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 630 PHINode *PN = cast<PHINode>(I); 631 632 // If the incoming value from BB is again a PHINode in 633 // BB which has the same incoming value for *PI as PN does, we can 634 // merge the phi nodes and then the blocks can still be merged 635 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 636 if (BBPN && BBPN->getParent() == BB) { 637 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 638 BasicBlock *IBB = PN->getIncomingBlock(PI); 639 if (BBPreds.count(IBB) && 640 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 641 PN->getIncomingValue(PI))) { 642 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 643 << Succ->getName() << " is conflicting with " 644 << BBPN->getName() << " with regard to common predecessor " 645 << IBB->getName() << "\n"); 646 return false; 647 } 648 } 649 } else { 650 Value* Val = PN->getIncomingValueForBlock(BB); 651 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 652 // See if the incoming value for the common predecessor is equal to the 653 // one for BB, in which case this phi node will not prevent the merging 654 // of the block. 655 BasicBlock *IBB = PN->getIncomingBlock(PI); 656 if (BBPreds.count(IBB) && 657 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 658 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 659 << Succ->getName() << " is conflicting with regard to common " 660 << "predecessor " << IBB->getName() << "\n"); 661 return false; 662 } 663 } 664 } 665 } 666 667 return true; 668 } 669 670 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 671 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 672 673 /// \brief Determines the value to use as the phi node input for a block. 674 /// 675 /// Select between \p OldVal any value that we know flows from \p BB 676 /// to a particular phi on the basis of which one (if either) is not 677 /// undef. Update IncomingValues based on the selected value. 678 /// 679 /// \param OldVal The value we are considering selecting. 680 /// \param BB The block that the value flows in from. 681 /// \param IncomingValues A map from block-to-value for other phi inputs 682 /// that we have examined. 683 /// 684 /// \returns the selected value. 685 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 686 IncomingValueMap &IncomingValues) { 687 if (!isa<UndefValue>(OldVal)) { 688 assert((!IncomingValues.count(BB) || 689 IncomingValues.find(BB)->second == OldVal) && 690 "Expected OldVal to match incoming value from BB!"); 691 692 IncomingValues.insert(std::make_pair(BB, OldVal)); 693 return OldVal; 694 } 695 696 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 697 if (It != IncomingValues.end()) return It->second; 698 699 return OldVal; 700 } 701 702 /// \brief Create a map from block to value for the operands of a 703 /// given phi. 704 /// 705 /// Create a map from block to value for each non-undef value flowing 706 /// into \p PN. 707 /// 708 /// \param PN The phi we are collecting the map for. 709 /// \param IncomingValues [out] The map from block to value for this phi. 710 static void gatherIncomingValuesToPhi(PHINode *PN, 711 IncomingValueMap &IncomingValues) { 712 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 713 BasicBlock *BB = PN->getIncomingBlock(i); 714 Value *V = PN->getIncomingValue(i); 715 716 if (!isa<UndefValue>(V)) 717 IncomingValues.insert(std::make_pair(BB, V)); 718 } 719 } 720 721 /// \brief Replace the incoming undef values to a phi with the values 722 /// from a block-to-value map. 723 /// 724 /// \param PN The phi we are replacing the undefs in. 725 /// \param IncomingValues A map from block to value. 726 static void replaceUndefValuesInPhi(PHINode *PN, 727 const IncomingValueMap &IncomingValues) { 728 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 729 Value *V = PN->getIncomingValue(i); 730 731 if (!isa<UndefValue>(V)) continue; 732 733 BasicBlock *BB = PN->getIncomingBlock(i); 734 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 735 if (It == IncomingValues.end()) continue; 736 737 PN->setIncomingValue(i, It->second); 738 } 739 } 740 741 /// \brief Replace a value flowing from a block to a phi with 742 /// potentially multiple instances of that value flowing from the 743 /// block's predecessors to the phi. 744 /// 745 /// \param BB The block with the value flowing into the phi. 746 /// \param BBPreds The predecessors of BB. 747 /// \param PN The phi that we are updating. 748 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 749 const PredBlockVector &BBPreds, 750 PHINode *PN) { 751 Value *OldVal = PN->removeIncomingValue(BB, false); 752 assert(OldVal && "No entry in PHI for Pred BB!"); 753 754 IncomingValueMap IncomingValues; 755 756 // We are merging two blocks - BB, and the block containing PN - and 757 // as a result we need to redirect edges from the predecessors of BB 758 // to go to the block containing PN, and update PN 759 // accordingly. Since we allow merging blocks in the case where the 760 // predecessor and successor blocks both share some predecessors, 761 // and where some of those common predecessors might have undef 762 // values flowing into PN, we want to rewrite those values to be 763 // consistent with the non-undef values. 764 765 gatherIncomingValuesToPhi(PN, IncomingValues); 766 767 // If this incoming value is one of the PHI nodes in BB, the new entries 768 // in the PHI node are the entries from the old PHI. 769 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 770 PHINode *OldValPN = cast<PHINode>(OldVal); 771 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 772 // Note that, since we are merging phi nodes and BB and Succ might 773 // have common predecessors, we could end up with a phi node with 774 // identical incoming branches. This will be cleaned up later (and 775 // will trigger asserts if we try to clean it up now, without also 776 // simplifying the corresponding conditional branch). 777 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 778 Value *PredVal = OldValPN->getIncomingValue(i); 779 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 780 IncomingValues); 781 782 // And add a new incoming value for this predecessor for the 783 // newly retargeted branch. 784 PN->addIncoming(Selected, PredBB); 785 } 786 } else { 787 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 788 // Update existing incoming values in PN for this 789 // predecessor of BB. 790 BasicBlock *PredBB = BBPreds[i]; 791 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 792 IncomingValues); 793 794 // And add a new incoming value for this predecessor for the 795 // newly retargeted branch. 796 PN->addIncoming(Selected, PredBB); 797 } 798 } 799 800 replaceUndefValuesInPhi(PN, IncomingValues); 801 } 802 803 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 804 /// unconditional branch, and contains no instructions other than PHI nodes, 805 /// potential side-effect free intrinsics and the branch. If possible, 806 /// eliminate BB by rewriting all the predecessors to branch to the successor 807 /// block and return true. If we can't transform, return false. 808 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 809 assert(BB != &BB->getParent()->getEntryBlock() && 810 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 811 812 // We can't eliminate infinite loops. 813 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 814 if (BB == Succ) return false; 815 816 // Check to see if merging these blocks would cause conflicts for any of the 817 // phi nodes in BB or Succ. If not, we can safely merge. 818 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 819 820 // Check for cases where Succ has multiple predecessors and a PHI node in BB 821 // has uses which will not disappear when the PHI nodes are merged. It is 822 // possible to handle such cases, but difficult: it requires checking whether 823 // BB dominates Succ, which is non-trivial to calculate in the case where 824 // Succ has multiple predecessors. Also, it requires checking whether 825 // constructing the necessary self-referential PHI node doesn't introduce any 826 // conflicts; this isn't too difficult, but the previous code for doing this 827 // was incorrect. 828 // 829 // Note that if this check finds a live use, BB dominates Succ, so BB is 830 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 831 // folding the branch isn't profitable in that case anyway. 832 if (!Succ->getSinglePredecessor()) { 833 BasicBlock::iterator BBI = BB->begin(); 834 while (isa<PHINode>(*BBI)) { 835 for (Use &U : BBI->uses()) { 836 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 837 if (PN->getIncomingBlock(U) != BB) 838 return false; 839 } else { 840 return false; 841 } 842 } 843 ++BBI; 844 } 845 } 846 847 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 848 849 if (isa<PHINode>(Succ->begin())) { 850 // If there is more than one pred of succ, and there are PHI nodes in 851 // the successor, then we need to add incoming edges for the PHI nodes 852 // 853 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 854 855 // Loop over all of the PHI nodes in the successor of BB. 856 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 857 PHINode *PN = cast<PHINode>(I); 858 859 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 860 } 861 } 862 863 if (Succ->getSinglePredecessor()) { 864 // BB is the only predecessor of Succ, so Succ will end up with exactly 865 // the same predecessors BB had. 866 867 // Copy over any phi, debug or lifetime instruction. 868 BB->getTerminator()->eraseFromParent(); 869 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 870 BB->getInstList()); 871 } else { 872 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 873 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 874 assert(PN->use_empty() && "There shouldn't be any uses here!"); 875 PN->eraseFromParent(); 876 } 877 } 878 879 // Everything that jumped to BB now goes to Succ. 880 BB->replaceAllUsesWith(Succ); 881 if (!Succ->hasName()) Succ->takeName(BB); 882 BB->eraseFromParent(); // Delete the old basic block. 883 return true; 884 } 885 886 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 887 /// nodes in this block. This doesn't try to be clever about PHI nodes 888 /// which differ only in the order of the incoming values, but instcombine 889 /// orders them so it usually won't matter. 890 /// 891 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 892 // This implementation doesn't currently consider undef operands 893 // specially. Theoretically, two phis which are identical except for 894 // one having an undef where the other doesn't could be collapsed. 895 896 struct PHIDenseMapInfo { 897 static PHINode *getEmptyKey() { 898 return DenseMapInfo<PHINode *>::getEmptyKey(); 899 } 900 static PHINode *getTombstoneKey() { 901 return DenseMapInfo<PHINode *>::getTombstoneKey(); 902 } 903 static unsigned getHashValue(PHINode *PN) { 904 // Compute a hash value on the operands. Instcombine will likely have 905 // sorted them, which helps expose duplicates, but we have to check all 906 // the operands to be safe in case instcombine hasn't run. 907 return static_cast<unsigned>(hash_combine( 908 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 909 hash_combine_range(PN->block_begin(), PN->block_end()))); 910 } 911 static bool isEqual(PHINode *LHS, PHINode *RHS) { 912 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 913 RHS == getEmptyKey() || RHS == getTombstoneKey()) 914 return LHS == RHS; 915 return LHS->isIdenticalTo(RHS); 916 } 917 }; 918 919 // Set of unique PHINodes. 920 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 921 922 // Examine each PHI. 923 bool Changed = false; 924 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 925 auto Inserted = PHISet.insert(PN); 926 if (!Inserted.second) { 927 // A duplicate. Replace this PHI with its duplicate. 928 PN->replaceAllUsesWith(*Inserted.first); 929 PN->eraseFromParent(); 930 Changed = true; 931 932 // The RAUW can change PHIs that we already visited. Start over from the 933 // beginning. 934 PHISet.clear(); 935 I = BB->begin(); 936 } 937 } 938 939 return Changed; 940 } 941 942 /// enforceKnownAlignment - If the specified pointer points to an object that 943 /// we control, modify the object's alignment to PrefAlign. This isn't 944 /// often possible though. If alignment is important, a more reliable approach 945 /// is to simply align all global variables and allocation instructions to 946 /// their preferred alignment from the beginning. 947 /// 948 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 949 unsigned PrefAlign, 950 const DataLayout &DL) { 951 assert(PrefAlign > Align); 952 953 V = V->stripPointerCasts(); 954 955 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 956 // TODO: ideally, computeKnownBits ought to have used 957 // AllocaInst::getAlignment() in its computation already, making 958 // the below max redundant. But, as it turns out, 959 // stripPointerCasts recurses through infinite layers of bitcasts, 960 // while computeKnownBits is not allowed to traverse more than 6 961 // levels. 962 Align = std::max(AI->getAlignment(), Align); 963 if (PrefAlign <= Align) 964 return Align; 965 966 // If the preferred alignment is greater than the natural stack alignment 967 // then don't round up. This avoids dynamic stack realignment. 968 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 969 return Align; 970 AI->setAlignment(PrefAlign); 971 return PrefAlign; 972 } 973 974 if (auto *GO = dyn_cast<GlobalObject>(V)) { 975 // TODO: as above, this shouldn't be necessary. 976 Align = std::max(GO->getAlignment(), Align); 977 if (PrefAlign <= Align) 978 return Align; 979 980 // If there is a large requested alignment and we can, bump up the alignment 981 // of the global. If the memory we set aside for the global may not be the 982 // memory used by the final program then it is impossible for us to reliably 983 // enforce the preferred alignment. 984 if (!GO->canIncreaseAlignment()) 985 return Align; 986 987 GO->setAlignment(PrefAlign); 988 return PrefAlign; 989 } 990 991 return Align; 992 } 993 994 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 995 /// we can determine, return it, otherwise return 0. If PrefAlign is specified, 996 /// and it is more than the alignment of the ultimate object, see if we can 997 /// increase the alignment of the ultimate object, making this check succeed. 998 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 999 const DataLayout &DL, 1000 const Instruction *CxtI, 1001 AssumptionCache *AC, 1002 const DominatorTree *DT) { 1003 assert(V->getType()->isPointerTy() && 1004 "getOrEnforceKnownAlignment expects a pointer!"); 1005 unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType()); 1006 1007 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 1008 computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT); 1009 unsigned TrailZ = KnownZero.countTrailingOnes(); 1010 1011 // Avoid trouble with ridiculously large TrailZ values, such as 1012 // those computed from a null pointer. 1013 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1014 1015 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 1016 1017 // LLVM doesn't support alignments larger than this currently. 1018 Align = std::min(Align, +Value::MaximumAlignment); 1019 1020 if (PrefAlign > Align) 1021 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1022 1023 // We don't need to make any adjustment. 1024 return Align; 1025 } 1026 1027 ///===---------------------------------------------------------------------===// 1028 /// Dbg Intrinsic utilities 1029 /// 1030 1031 /// See if there is a dbg.value intrinsic for DIVar before I. 1032 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1033 Instruction *I) { 1034 // Since we can't guarantee that the original dbg.declare instrinsic 1035 // is removed by LowerDbgDeclare(), we need to make sure that we are 1036 // not inserting the same dbg.value intrinsic over and over. 1037 llvm::BasicBlock::InstListType::iterator PrevI(I); 1038 if (PrevI != I->getParent()->getInstList().begin()) { 1039 --PrevI; 1040 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1041 if (DVI->getValue() == I->getOperand(0) && 1042 DVI->getOffset() == 0 && 1043 DVI->getVariable() == DIVar && 1044 DVI->getExpression() == DIExpr) 1045 return true; 1046 } 1047 return false; 1048 } 1049 1050 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1051 /// that has an associated llvm.dbg.decl intrinsic. 1052 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1053 StoreInst *SI, DIBuilder &Builder) { 1054 auto *DIVar = DDI->getVariable(); 1055 auto *DIExpr = DDI->getExpression(); 1056 assert(DIVar && "Missing variable"); 1057 1058 // If an argument is zero extended then use argument directly. The ZExt 1059 // may be zapped by an optimization pass in future. 1060 Argument *ExtendedArg = nullptr; 1061 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1062 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1063 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1064 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1065 if (ExtendedArg) { 1066 // We're now only describing a subset of the variable. The piece we're 1067 // describing will always be smaller than the variable size, because 1068 // VariableSize == Size of Alloca described by DDI. Since SI stores 1069 // to the alloca described by DDI, if it's first operand is an extend, 1070 // we're guaranteed that before extension, the value was narrower than 1071 // the size of the alloca, hence the size of the described variable. 1072 SmallVector<uint64_t, 3> Ops; 1073 unsigned PieceOffset = 0; 1074 // If this already is a bit piece, we drop the bit piece from the expression 1075 // and record the offset. 1076 if (DIExpr->isBitPiece()) { 1077 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3); 1078 PieceOffset = DIExpr->getBitPieceOffset(); 1079 } else { 1080 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1081 } 1082 Ops.push_back(dwarf::DW_OP_bit_piece); 1083 Ops.push_back(PieceOffset); // Offset 1084 const DataLayout &DL = DDI->getModule()->getDataLayout(); 1085 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); // Size 1086 auto NewDIExpr = Builder.createExpression(Ops); 1087 if (!LdStHasDebugValue(DIVar, NewDIExpr, SI)) 1088 Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr, 1089 DDI->getDebugLoc(), SI); 1090 } else if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1091 Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr, 1092 DDI->getDebugLoc(), SI); 1093 return true; 1094 } 1095 1096 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1097 /// that has an associated llvm.dbg.decl intrinsic. 1098 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1099 LoadInst *LI, DIBuilder &Builder) { 1100 auto *DIVar = DDI->getVariable(); 1101 auto *DIExpr = DDI->getExpression(); 1102 assert(DIVar && "Missing variable"); 1103 1104 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1105 return true; 1106 1107 // We are now tracking the loaded value instead of the address. In the 1108 // future if multi-location support is added to the IR, it might be 1109 // preferable to keep tracking both the loaded value and the original 1110 // address in case the alloca can not be elided. 1111 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1112 LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr); 1113 DbgValue->insertAfter(LI); 1114 return true; 1115 } 1116 1117 /// Determine whether this alloca is either a VLA or an array. 1118 static bool isArray(AllocaInst *AI) { 1119 return AI->isArrayAllocation() || 1120 AI->getType()->getElementType()->isArrayTy(); 1121 } 1122 1123 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1124 /// of llvm.dbg.value intrinsics. 1125 bool llvm::LowerDbgDeclare(Function &F) { 1126 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1127 SmallVector<DbgDeclareInst *, 4> Dbgs; 1128 for (auto &FI : F) 1129 for (Instruction &BI : FI) 1130 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1131 Dbgs.push_back(DDI); 1132 1133 if (Dbgs.empty()) 1134 return false; 1135 1136 for (auto &I : Dbgs) { 1137 DbgDeclareInst *DDI = I; 1138 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1139 // If this is an alloca for a scalar variable, insert a dbg.value 1140 // at each load and store to the alloca and erase the dbg.declare. 1141 // The dbg.values allow tracking a variable even if it is not 1142 // stored on the stack, while the dbg.declare can only describe 1143 // the stack slot (and at a lexical-scope granularity). Later 1144 // passes will attempt to elide the stack slot. 1145 if (AI && !isArray(AI)) { 1146 for (auto &AIUse : AI->uses()) { 1147 User *U = AIUse.getUser(); 1148 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1149 if (AIUse.getOperandNo() == 1) 1150 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1151 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1152 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1153 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1154 // This is a call by-value or some other instruction that 1155 // takes a pointer to the variable. Insert a *value* 1156 // intrinsic that describes the alloca. 1157 SmallVector<uint64_t, 1> NewDIExpr; 1158 auto *DIExpr = DDI->getExpression(); 1159 NewDIExpr.push_back(dwarf::DW_OP_deref); 1160 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1161 DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(), 1162 DIB.createExpression(NewDIExpr), 1163 DDI->getDebugLoc(), CI); 1164 } 1165 } 1166 DDI->eraseFromParent(); 1167 } 1168 } 1169 return true; 1170 } 1171 1172 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1173 /// alloca 'V', if any. 1174 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1175 if (auto *L = LocalAsMetadata::getIfExists(V)) 1176 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1177 for (User *U : MDV->users()) 1178 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1179 return DDI; 1180 1181 return nullptr; 1182 } 1183 1184 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1185 Instruction *InsertBefore, DIBuilder &Builder, 1186 bool Deref, int Offset) { 1187 DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address); 1188 if (!DDI) 1189 return false; 1190 DebugLoc Loc = DDI->getDebugLoc(); 1191 auto *DIVar = DDI->getVariable(); 1192 auto *DIExpr = DDI->getExpression(); 1193 assert(DIVar && "Missing variable"); 1194 1195 if (Deref || Offset) { 1196 // Create a copy of the original DIDescriptor for user variable, prepending 1197 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1198 // will take a value storing address of the memory for variable, not 1199 // alloca itself. 1200 SmallVector<uint64_t, 4> NewDIExpr; 1201 if (Deref) 1202 NewDIExpr.push_back(dwarf::DW_OP_deref); 1203 if (Offset > 0) { 1204 NewDIExpr.push_back(dwarf::DW_OP_plus); 1205 NewDIExpr.push_back(Offset); 1206 } else if (Offset < 0) { 1207 NewDIExpr.push_back(dwarf::DW_OP_minus); 1208 NewDIExpr.push_back(-Offset); 1209 } 1210 if (DIExpr) 1211 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1212 DIExpr = Builder.createExpression(NewDIExpr); 1213 } 1214 1215 // Insert llvm.dbg.declare immediately after the original alloca, and remove 1216 // old llvm.dbg.declare. 1217 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1218 DDI->eraseFromParent(); 1219 return true; 1220 } 1221 1222 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1223 DIBuilder &Builder, bool Deref, int Offset) { 1224 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1225 Deref, Offset); 1226 } 1227 1228 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1229 unsigned NumDeadInst = 0; 1230 // Delete the instructions backwards, as it has a reduced likelihood of 1231 // having to update as many def-use and use-def chains. 1232 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1233 while (EndInst != &BB->front()) { 1234 // Delete the next to last instruction. 1235 Instruction *Inst = &*--EndInst->getIterator(); 1236 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1237 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1238 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1239 EndInst = Inst; 1240 continue; 1241 } 1242 if (!isa<DbgInfoIntrinsic>(Inst)) 1243 ++NumDeadInst; 1244 Inst->eraseFromParent(); 1245 } 1246 return NumDeadInst; 1247 } 1248 1249 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap) { 1250 BasicBlock *BB = I->getParent(); 1251 // Loop over all of the successors, removing BB's entry from any PHI 1252 // nodes. 1253 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1254 (*SI)->removePredecessor(BB); 1255 1256 // Insert a call to llvm.trap right before this. This turns the undefined 1257 // behavior into a hard fail instead of falling through into random code. 1258 if (UseLLVMTrap) { 1259 Function *TrapFn = 1260 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1261 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1262 CallTrap->setDebugLoc(I->getDebugLoc()); 1263 } 1264 new UnreachableInst(I->getContext(), I); 1265 1266 // All instructions after this are dead. 1267 unsigned NumInstrsRemoved = 0; 1268 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1269 while (BBI != BBE) { 1270 if (!BBI->use_empty()) 1271 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1272 BB->getInstList().erase(BBI++); 1273 ++NumInstrsRemoved; 1274 } 1275 return NumInstrsRemoved; 1276 } 1277 1278 /// changeToCall - Convert the specified invoke into a normal call. 1279 static void changeToCall(InvokeInst *II) { 1280 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1281 SmallVector<OperandBundleDef, 1> OpBundles; 1282 II->getOperandBundlesAsDefs(OpBundles); 1283 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1284 "", II); 1285 NewCall->takeName(II); 1286 NewCall->setCallingConv(II->getCallingConv()); 1287 NewCall->setAttributes(II->getAttributes()); 1288 NewCall->setDebugLoc(II->getDebugLoc()); 1289 II->replaceAllUsesWith(NewCall); 1290 1291 // Follow the call by a branch to the normal destination. 1292 BranchInst::Create(II->getNormalDest(), II); 1293 1294 // Update PHI nodes in the unwind destination 1295 II->getUnwindDest()->removePredecessor(II->getParent()); 1296 II->eraseFromParent(); 1297 } 1298 1299 static bool markAliveBlocks(Function &F, 1300 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1301 1302 SmallVector<BasicBlock*, 128> Worklist; 1303 BasicBlock *BB = &F.front(); 1304 Worklist.push_back(BB); 1305 Reachable.insert(BB); 1306 bool Changed = false; 1307 do { 1308 BB = Worklist.pop_back_val(); 1309 1310 // Do a quick scan of the basic block, turning any obviously unreachable 1311 // instructions into LLVM unreachable insts. The instruction combining pass 1312 // canonicalizes unreachable insts into stores to null or undef. 1313 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ 1314 // Assumptions that are known to be false are equivalent to unreachable. 1315 // Also, if the condition is undefined, then we make the choice most 1316 // beneficial to the optimizer, and choose that to also be unreachable. 1317 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) { 1318 if (II->getIntrinsicID() == Intrinsic::assume) { 1319 bool MakeUnreachable = false; 1320 if (isa<UndefValue>(II->getArgOperand(0))) 1321 MakeUnreachable = true; 1322 else if (ConstantInt *Cond = 1323 dyn_cast<ConstantInt>(II->getArgOperand(0))) 1324 MakeUnreachable = Cond->isZero(); 1325 1326 if (MakeUnreachable) { 1327 // Don't insert a call to llvm.trap right before the unreachable. 1328 changeToUnreachable(&*BBI, false); 1329 Changed = true; 1330 break; 1331 } 1332 } 1333 1334 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1335 // A call to the guard intrinsic bails out of the current compilation 1336 // unit if the predicate passed to it is false. If the predicate is a 1337 // constant false, then we know the guard will bail out of the current 1338 // compile unconditionally, so all code following it is dead. 1339 // 1340 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1341 // guards to treat `undef` as `false` since a guard on `undef` can 1342 // still be useful for widening. 1343 if (auto *CI = dyn_cast<ConstantInt>(II->getArgOperand(0))) 1344 if (CI->isZero() && !isa<UnreachableInst>(II->getNextNode())) { 1345 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false); 1346 Changed = true; 1347 break; 1348 } 1349 } 1350 } 1351 1352 if (CallInst *CI = dyn_cast<CallInst>(BBI)) { 1353 if (CI->doesNotReturn()) { 1354 // If we found a call to a no-return function, insert an unreachable 1355 // instruction after it. Make sure there isn't *already* one there 1356 // though. 1357 ++BBI; 1358 if (!isa<UnreachableInst>(BBI)) { 1359 // Don't insert a call to llvm.trap right before the unreachable. 1360 changeToUnreachable(&*BBI, false); 1361 Changed = true; 1362 } 1363 break; 1364 } 1365 } 1366 1367 // Store to undef and store to null are undefined and used to signal that 1368 // they should be changed to unreachable by passes that can't modify the 1369 // CFG. 1370 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 1371 // Don't touch volatile stores. 1372 if (SI->isVolatile()) continue; 1373 1374 Value *Ptr = SI->getOperand(1); 1375 1376 if (isa<UndefValue>(Ptr) || 1377 (isa<ConstantPointerNull>(Ptr) && 1378 SI->getPointerAddressSpace() == 0)) { 1379 changeToUnreachable(SI, true); 1380 Changed = true; 1381 break; 1382 } 1383 } 1384 } 1385 1386 TerminatorInst *Terminator = BB->getTerminator(); 1387 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1388 // Turn invokes that call 'nounwind' functions into ordinary calls. 1389 Value *Callee = II->getCalledValue(); 1390 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1391 changeToUnreachable(II, true); 1392 Changed = true; 1393 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1394 if (II->use_empty() && II->onlyReadsMemory()) { 1395 // jump to the normal destination branch. 1396 BranchInst::Create(II->getNormalDest(), II); 1397 II->getUnwindDest()->removePredecessor(II->getParent()); 1398 II->eraseFromParent(); 1399 } else 1400 changeToCall(II); 1401 Changed = true; 1402 } 1403 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1404 // Remove catchpads which cannot be reached. 1405 struct CatchPadDenseMapInfo { 1406 static CatchPadInst *getEmptyKey() { 1407 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1408 } 1409 static CatchPadInst *getTombstoneKey() { 1410 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1411 } 1412 static unsigned getHashValue(CatchPadInst *CatchPad) { 1413 return static_cast<unsigned>(hash_combine_range( 1414 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1415 } 1416 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1417 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1418 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1419 return LHS == RHS; 1420 return LHS->isIdenticalTo(RHS); 1421 } 1422 }; 1423 1424 // Set of unique CatchPads. 1425 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1426 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1427 HandlerSet; 1428 detail::DenseSetEmpty Empty; 1429 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1430 E = CatchSwitch->handler_end(); 1431 I != E; ++I) { 1432 BasicBlock *HandlerBB = *I; 1433 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1434 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1435 CatchSwitch->removeHandler(I); 1436 --I; 1437 --E; 1438 Changed = true; 1439 } 1440 } 1441 } 1442 1443 Changed |= ConstantFoldTerminator(BB, true); 1444 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1445 if (Reachable.insert(*SI).second) 1446 Worklist.push_back(*SI); 1447 } while (!Worklist.empty()); 1448 return Changed; 1449 } 1450 1451 void llvm::removeUnwindEdge(BasicBlock *BB) { 1452 TerminatorInst *TI = BB->getTerminator(); 1453 1454 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1455 changeToCall(II); 1456 return; 1457 } 1458 1459 TerminatorInst *NewTI; 1460 BasicBlock *UnwindDest; 1461 1462 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1463 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1464 UnwindDest = CRI->getUnwindDest(); 1465 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1466 auto *NewCatchSwitch = CatchSwitchInst::Create( 1467 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1468 CatchSwitch->getName(), CatchSwitch); 1469 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1470 NewCatchSwitch->addHandler(PadBB); 1471 1472 NewTI = NewCatchSwitch; 1473 UnwindDest = CatchSwitch->getUnwindDest(); 1474 } else { 1475 llvm_unreachable("Could not find unwind successor"); 1476 } 1477 1478 NewTI->takeName(TI); 1479 NewTI->setDebugLoc(TI->getDebugLoc()); 1480 UnwindDest->removePredecessor(BB); 1481 TI->replaceAllUsesWith(NewTI); 1482 TI->eraseFromParent(); 1483 } 1484 1485 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1486 /// if they are in a dead cycle. Return true if a change was made, false 1487 /// otherwise. 1488 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) { 1489 SmallPtrSet<BasicBlock*, 16> Reachable; 1490 bool Changed = markAliveBlocks(F, Reachable); 1491 1492 // If there are unreachable blocks in the CFG... 1493 if (Reachable.size() == F.size()) 1494 return Changed; 1495 1496 assert(Reachable.size() < F.size()); 1497 NumRemoved += F.size()-Reachable.size(); 1498 1499 // Loop over all of the basic blocks that are not reachable, dropping all of 1500 // their internal references... 1501 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1502 if (Reachable.count(&*BB)) 1503 continue; 1504 1505 for (succ_iterator SI = succ_begin(&*BB), SE = succ_end(&*BB); SI != SE; 1506 ++SI) 1507 if (Reachable.count(*SI)) 1508 (*SI)->removePredecessor(&*BB); 1509 if (LVI) 1510 LVI->eraseBlock(&*BB); 1511 BB->dropAllReferences(); 1512 } 1513 1514 for (Function::iterator I = ++F.begin(); I != F.end();) 1515 if (!Reachable.count(&*I)) 1516 I = F.getBasicBlockList().erase(I); 1517 else 1518 ++I; 1519 1520 return true; 1521 } 1522 1523 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1524 ArrayRef<unsigned> KnownIDs) { 1525 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1526 K->dropUnknownNonDebugMetadata(KnownIDs); 1527 K->getAllMetadataOtherThanDebugLoc(Metadata); 1528 for (unsigned i = 0, n = Metadata.size(); i < n; ++i) { 1529 unsigned Kind = Metadata[i].first; 1530 MDNode *JMD = J->getMetadata(Kind); 1531 MDNode *KMD = Metadata[i].second; 1532 1533 switch (Kind) { 1534 default: 1535 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1536 break; 1537 case LLVMContext::MD_dbg: 1538 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1539 case LLVMContext::MD_tbaa: 1540 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1541 break; 1542 case LLVMContext::MD_alias_scope: 1543 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1544 break; 1545 case LLVMContext::MD_noalias: 1546 case LLVMContext::MD_mem_parallel_loop_access: 1547 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1548 break; 1549 case LLVMContext::MD_range: 1550 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1551 break; 1552 case LLVMContext::MD_fpmath: 1553 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1554 break; 1555 case LLVMContext::MD_invariant_load: 1556 // Only set the !invariant.load if it is present in both instructions. 1557 K->setMetadata(Kind, JMD); 1558 break; 1559 case LLVMContext::MD_nonnull: 1560 // Only set the !nonnull if it is present in both instructions. 1561 K->setMetadata(Kind, JMD); 1562 break; 1563 case LLVMContext::MD_invariant_group: 1564 // Preserve !invariant.group in K. 1565 break; 1566 case LLVMContext::MD_align: 1567 K->setMetadata(Kind, 1568 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1569 break; 1570 case LLVMContext::MD_dereferenceable: 1571 case LLVMContext::MD_dereferenceable_or_null: 1572 K->setMetadata(Kind, 1573 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1574 break; 1575 } 1576 } 1577 // Set !invariant.group from J if J has it. If both instructions have it 1578 // then we will just pick it from J - even when they are different. 1579 // Also make sure that K is load or store - f.e. combining bitcast with load 1580 // could produce bitcast with invariant.group metadata, which is invalid. 1581 // FIXME: we should try to preserve both invariant.group md if they are 1582 // different, but right now instruction can only have one invariant.group. 1583 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1584 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1585 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1586 } 1587 1588 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1589 DominatorTree &DT, 1590 const BasicBlockEdge &Root) { 1591 assert(From->getType() == To->getType()); 1592 1593 unsigned Count = 0; 1594 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1595 UI != UE; ) { 1596 Use &U = *UI++; 1597 if (DT.dominates(Root, U)) { 1598 U.set(To); 1599 DEBUG(dbgs() << "Replace dominated use of '" 1600 << From->getName() << "' as " 1601 << *To << " in " << *U << "\n"); 1602 ++Count; 1603 } 1604 } 1605 return Count; 1606 } 1607 1608 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1609 DominatorTree &DT, 1610 const BasicBlock *BB) { 1611 assert(From->getType() == To->getType()); 1612 1613 unsigned Count = 0; 1614 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1615 UI != UE;) { 1616 Use &U = *UI++; 1617 auto *I = cast<Instruction>(U.getUser()); 1618 if (DT.properlyDominates(BB, I->getParent())) { 1619 U.set(To); 1620 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1621 << *To << " in " << *U << "\n"); 1622 ++Count; 1623 } 1624 } 1625 return Count; 1626 } 1627 1628 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) { 1629 // Check if the function is specifically marked as a gc leaf function. 1630 if (CS.hasFnAttr("gc-leaf-function")) 1631 return true; 1632 if (const Function *F = CS.getCalledFunction()) { 1633 if (F->hasFnAttribute("gc-leaf-function")) 1634 return true; 1635 1636 if (auto IID = F->getIntrinsicID()) 1637 // Most LLVM intrinsics do not take safepoints. 1638 return IID != Intrinsic::experimental_gc_statepoint && 1639 IID != Intrinsic::experimental_deoptimize; 1640 } 1641 1642 return false; 1643 } 1644 1645 /// A potential constituent of a bitreverse or bswap expression. See 1646 /// collectBitParts for a fuller explanation. 1647 struct BitPart { 1648 BitPart(Value *P, unsigned BW) : Provider(P) { 1649 Provenance.resize(BW); 1650 } 1651 1652 /// The Value that this is a bitreverse/bswap of. 1653 Value *Provider; 1654 /// The "provenance" of each bit. Provenance[A] = B means that bit A 1655 /// in Provider becomes bit B in the result of this expression. 1656 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 1657 1658 enum { Unset = -1 }; 1659 }; 1660 1661 /// Analyze the specified subexpression and see if it is capable of providing 1662 /// pieces of a bswap or bitreverse. The subexpression provides a potential 1663 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 1664 /// the output of the expression came from a corresponding bit in some other 1665 /// value. This function is recursive, and the end result is a mapping of 1666 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 1667 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 1668 /// 1669 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 1670 /// that the expression deposits the low byte of %X into the high byte of the 1671 /// result and that all other bits are zero. This expression is accepted and a 1672 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 1673 /// [0-7]. 1674 /// 1675 /// To avoid revisiting values, the BitPart results are memoized into the 1676 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 1677 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 1678 /// store BitParts objects, not pointers. As we need the concept of a nullptr 1679 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 1680 /// type instead to provide the same functionality. 1681 /// 1682 /// Because we pass around references into \c BPS, we must use a container that 1683 /// does not invalidate internal references (std::map instead of DenseMap). 1684 /// 1685 static const Optional<BitPart> & 1686 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 1687 std::map<Value *, Optional<BitPart>> &BPS) { 1688 auto I = BPS.find(V); 1689 if (I != BPS.end()) 1690 return I->second; 1691 1692 auto &Result = BPS[V] = None; 1693 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1694 1695 if (Instruction *I = dyn_cast<Instruction>(V)) { 1696 // If this is an or instruction, it may be an inner node of the bswap. 1697 if (I->getOpcode() == Instruction::Or) { 1698 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 1699 MatchBitReversals, BPS); 1700 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 1701 MatchBitReversals, BPS); 1702 if (!A || !B) 1703 return Result; 1704 1705 // Try and merge the two together. 1706 if (!A->Provider || A->Provider != B->Provider) 1707 return Result; 1708 1709 Result = BitPart(A->Provider, BitWidth); 1710 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 1711 if (A->Provenance[i] != BitPart::Unset && 1712 B->Provenance[i] != BitPart::Unset && 1713 A->Provenance[i] != B->Provenance[i]) 1714 return Result = None; 1715 1716 if (A->Provenance[i] == BitPart::Unset) 1717 Result->Provenance[i] = B->Provenance[i]; 1718 else 1719 Result->Provenance[i] = A->Provenance[i]; 1720 } 1721 1722 return Result; 1723 } 1724 1725 // If this is a logical shift by a constant, recurse then shift the result. 1726 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 1727 unsigned BitShift = 1728 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 1729 // Ensure the shift amount is defined. 1730 if (BitShift > BitWidth) 1731 return Result; 1732 1733 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1734 MatchBitReversals, BPS); 1735 if (!Res) 1736 return Result; 1737 Result = Res; 1738 1739 // Perform the "shift" on BitProvenance. 1740 auto &P = Result->Provenance; 1741 if (I->getOpcode() == Instruction::Shl) { 1742 P.erase(std::prev(P.end(), BitShift), P.end()); 1743 P.insert(P.begin(), BitShift, BitPart::Unset); 1744 } else { 1745 P.erase(P.begin(), std::next(P.begin(), BitShift)); 1746 P.insert(P.end(), BitShift, BitPart::Unset); 1747 } 1748 1749 return Result; 1750 } 1751 1752 // If this is a logical 'and' with a mask that clears bits, recurse then 1753 // unset the appropriate bits. 1754 if (I->getOpcode() == Instruction::And && 1755 isa<ConstantInt>(I->getOperand(1))) { 1756 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 1757 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 1758 1759 // Check that the mask allows a multiple of 8 bits for a bswap, for an 1760 // early exit. 1761 unsigned NumMaskedBits = AndMask.countPopulation(); 1762 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 1763 return Result; 1764 1765 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1766 MatchBitReversals, BPS); 1767 if (!Res) 1768 return Result; 1769 Result = Res; 1770 1771 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 1772 // If the AndMask is zero for this bit, clear the bit. 1773 if ((AndMask & Bit) == 0) 1774 Result->Provenance[i] = BitPart::Unset; 1775 1776 return Result; 1777 } 1778 } 1779 1780 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 1781 // the input value to the bswap/bitreverse. 1782 Result = BitPart(V, BitWidth); 1783 for (unsigned i = 0; i < BitWidth; ++i) 1784 Result->Provenance[i] = i; 1785 return Result; 1786 } 1787 1788 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 1789 unsigned BitWidth) { 1790 if (From % 8 != To % 8) 1791 return false; 1792 // Convert from bit indices to byte indices and check for a byte reversal. 1793 From >>= 3; 1794 To >>= 3; 1795 BitWidth >>= 3; 1796 return From == BitWidth - To - 1; 1797 } 1798 1799 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 1800 unsigned BitWidth) { 1801 return From == BitWidth - To - 1; 1802 } 1803 1804 /// Given an OR instruction, check to see if this is a bitreverse 1805 /// idiom. If so, insert the new intrinsic and return true. 1806 bool llvm::recognizeBitReverseOrBSwapIdiom( 1807 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 1808 SmallVectorImpl<Instruction *> &InsertedInsts) { 1809 if (Operator::getOpcode(I) != Instruction::Or) 1810 return false; 1811 if (!MatchBSwaps && !MatchBitReversals) 1812 return false; 1813 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 1814 if (!ITy || ITy->getBitWidth() > 128) 1815 return false; // Can't do vectors or integers > 128 bits. 1816 unsigned BW = ITy->getBitWidth(); 1817 1818 // Try to find all the pieces corresponding to the bswap. 1819 std::map<Value *, Optional<BitPart>> BPS; 1820 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 1821 if (!Res) 1822 return false; 1823 auto &BitProvenance = Res->Provenance; 1824 1825 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 1826 // only byteswap values with an even number of bytes. 1827 bool OKForBSwap = BW % 16 == 0, OKForBitReverse = true; 1828 for (unsigned i = 0; i < BW; ++i) { 1829 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[i], i, BW); 1830 OKForBitReverse &= 1831 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, BW); 1832 } 1833 1834 Intrinsic::ID Intrin; 1835 if (OKForBSwap && MatchBSwaps) 1836 Intrin = Intrinsic::bswap; 1837 else if (OKForBitReverse && MatchBitReversals) 1838 Intrin = Intrinsic::bitreverse; 1839 else 1840 return false; 1841 1842 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 1843 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 1844 return true; 1845 } 1846