1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/LazyValueInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DIBuilder.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/PatternMatch.h" 46 #include "llvm/IR/ValueHandle.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/raw_ostream.h" 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "local" 54 55 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 56 57 //===----------------------------------------------------------------------===// 58 // Local constant propagation. 59 // 60 61 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 62 /// constant value, convert it into an unconditional branch to the constant 63 /// destination. This is a nontrivial operation because the successors of this 64 /// basic block must have their PHI nodes updated. 65 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 66 /// conditions and indirectbr addresses this might make dead if 67 /// DeleteDeadConditions is true. 68 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 69 const TargetLibraryInfo *TLI) { 70 TerminatorInst *T = BB->getTerminator(); 71 IRBuilder<> Builder(T); 72 73 // Branch - See if we are conditional jumping on constant 74 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 75 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 76 BasicBlock *Dest1 = BI->getSuccessor(0); 77 BasicBlock *Dest2 = BI->getSuccessor(1); 78 79 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 80 // Are we branching on constant? 81 // YES. Change to unconditional branch... 82 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 83 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 84 85 //cerr << "Function: " << T->getParent()->getParent() 86 // << "\nRemoving branch from " << T->getParent() 87 // << "\n\nTo: " << OldDest << endl; 88 89 // Let the basic block know that we are letting go of it. Based on this, 90 // it will adjust it's PHI nodes. 91 OldDest->removePredecessor(BB); 92 93 // Replace the conditional branch with an unconditional one. 94 Builder.CreateBr(Destination); 95 BI->eraseFromParent(); 96 return true; 97 } 98 99 if (Dest2 == Dest1) { // Conditional branch to same location? 100 // This branch matches something like this: 101 // br bool %cond, label %Dest, label %Dest 102 // and changes it into: br label %Dest 103 104 // Let the basic block know that we are letting go of one copy of it. 105 assert(BI->getParent() && "Terminator not inserted in block!"); 106 Dest1->removePredecessor(BI->getParent()); 107 108 // Replace the conditional branch with an unconditional one. 109 Builder.CreateBr(Dest1); 110 Value *Cond = BI->getCondition(); 111 BI->eraseFromParent(); 112 if (DeleteDeadConditions) 113 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 114 return true; 115 } 116 return false; 117 } 118 119 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 120 // If we are switching on a constant, we can convert the switch to an 121 // unconditional branch. 122 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 123 BasicBlock *DefaultDest = SI->getDefaultDest(); 124 BasicBlock *TheOnlyDest = DefaultDest; 125 126 // If the default is unreachable, ignore it when searching for TheOnlyDest. 127 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 128 SI->getNumCases() > 0) { 129 TheOnlyDest = SI->case_begin().getCaseSuccessor(); 130 } 131 132 // Figure out which case it goes to. 133 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 134 // Found case matching a constant operand? 135 if (i.getCaseValue() == CI) { 136 TheOnlyDest = i.getCaseSuccessor(); 137 break; 138 } 139 140 // Check to see if this branch is going to the same place as the default 141 // dest. If so, eliminate it as an explicit compare. 142 if (i.getCaseSuccessor() == DefaultDest) { 143 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 144 unsigned NCases = SI->getNumCases(); 145 // Fold the case metadata into the default if there will be any branches 146 // left, unless the metadata doesn't match the switch. 147 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 148 // Collect branch weights into a vector. 149 SmallVector<uint32_t, 8> Weights; 150 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 151 ++MD_i) { 152 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 153 Weights.push_back(CI->getValue().getZExtValue()); 154 } 155 // Merge weight of this case to the default weight. 156 unsigned idx = i.getCaseIndex(); 157 Weights[0] += Weights[idx+1]; 158 // Remove weight for this case. 159 std::swap(Weights[idx+1], Weights.back()); 160 Weights.pop_back(); 161 SI->setMetadata(LLVMContext::MD_prof, 162 MDBuilder(BB->getContext()). 163 createBranchWeights(Weights)); 164 } 165 // Remove this entry. 166 DefaultDest->removePredecessor(SI->getParent()); 167 i = SI->removeCase(i); 168 e = SI->case_end(); 169 continue; 170 } 171 172 // Otherwise, check to see if the switch only branches to one destination. 173 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 174 // destinations. 175 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr; 176 177 // Increment this iterator as we haven't removed the case. 178 ++i; 179 } 180 181 if (CI && !TheOnlyDest) { 182 // Branching on a constant, but not any of the cases, go to the default 183 // successor. 184 TheOnlyDest = SI->getDefaultDest(); 185 } 186 187 // If we found a single destination that we can fold the switch into, do so 188 // now. 189 if (TheOnlyDest) { 190 // Insert the new branch. 191 Builder.CreateBr(TheOnlyDest); 192 BasicBlock *BB = SI->getParent(); 193 194 // Remove entries from PHI nodes which we no longer branch to... 195 for (BasicBlock *Succ : SI->successors()) { 196 // Found case matching a constant operand? 197 if (Succ == TheOnlyDest) 198 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 199 else 200 Succ->removePredecessor(BB); 201 } 202 203 // Delete the old switch. 204 Value *Cond = SI->getCondition(); 205 SI->eraseFromParent(); 206 if (DeleteDeadConditions) 207 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 208 return true; 209 } 210 211 if (SI->getNumCases() == 1) { 212 // Otherwise, we can fold this switch into a conditional branch 213 // instruction if it has only one non-default destination. 214 SwitchInst::CaseIt FirstCase = SI->case_begin(); 215 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 216 FirstCase.getCaseValue(), "cond"); 217 218 // Insert the new branch. 219 BranchInst *NewBr = Builder.CreateCondBr(Cond, 220 FirstCase.getCaseSuccessor(), 221 SI->getDefaultDest()); 222 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 223 if (MD && MD->getNumOperands() == 3) { 224 ConstantInt *SICase = 225 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 226 ConstantInt *SIDef = 227 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 228 assert(SICase && SIDef); 229 // The TrueWeight should be the weight for the single case of SI. 230 NewBr->setMetadata(LLVMContext::MD_prof, 231 MDBuilder(BB->getContext()). 232 createBranchWeights(SICase->getValue().getZExtValue(), 233 SIDef->getValue().getZExtValue())); 234 } 235 236 // Update make.implicit metadata to the newly-created conditional branch. 237 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 238 if (MakeImplicitMD) 239 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 240 241 // Delete the old switch. 242 SI->eraseFromParent(); 243 return true; 244 } 245 return false; 246 } 247 248 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 249 // indirectbr blockaddress(@F, @BB) -> br label @BB 250 if (BlockAddress *BA = 251 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 252 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 253 // Insert the new branch. 254 Builder.CreateBr(TheOnlyDest); 255 256 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 257 if (IBI->getDestination(i) == TheOnlyDest) 258 TheOnlyDest = nullptr; 259 else 260 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 261 } 262 Value *Address = IBI->getAddress(); 263 IBI->eraseFromParent(); 264 if (DeleteDeadConditions) 265 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 266 267 // If we didn't find our destination in the IBI successor list, then we 268 // have undefined behavior. Replace the unconditional branch with an 269 // 'unreachable' instruction. 270 if (TheOnlyDest) { 271 BB->getTerminator()->eraseFromParent(); 272 new UnreachableInst(BB->getContext(), BB); 273 } 274 275 return true; 276 } 277 } 278 279 return false; 280 } 281 282 283 //===----------------------------------------------------------------------===// 284 // Local dead code elimination. 285 // 286 287 /// isInstructionTriviallyDead - Return true if the result produced by the 288 /// instruction is not used, and the instruction has no side effects. 289 /// 290 bool llvm::isInstructionTriviallyDead(Instruction *I, 291 const TargetLibraryInfo *TLI) { 292 if (!I->use_empty()) 293 return false; 294 return wouldInstructionBeTriviallyDead(I, TLI); 295 } 296 297 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 298 const TargetLibraryInfo *TLI) { 299 if (isa<TerminatorInst>(I)) 300 return false; 301 302 // We don't want the landingpad-like instructions removed by anything this 303 // general. 304 if (I->isEHPad()) 305 return false; 306 307 // We don't want debug info removed by anything this general, unless 308 // debug info is empty. 309 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 310 if (DDI->getAddress()) 311 return false; 312 return true; 313 } 314 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 315 if (DVI->getValue()) 316 return false; 317 return true; 318 } 319 320 if (!I->mayHaveSideEffects()) 321 return true; 322 323 // Special case intrinsics that "may have side effects" but can be deleted 324 // when dead. 325 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 326 // Safe to delete llvm.stacksave if dead. 327 if (II->getIntrinsicID() == Intrinsic::stacksave) 328 return true; 329 330 // Lifetime intrinsics are dead when their right-hand is undef. 331 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 332 II->getIntrinsicID() == Intrinsic::lifetime_end) 333 return isa<UndefValue>(II->getArgOperand(1)); 334 335 // Assumptions are dead if their condition is trivially true. Guards on 336 // true are operationally no-ops. In the future we can consider more 337 // sophisticated tradeoffs for guards considering potential for check 338 // widening, but for now we keep things simple. 339 if (II->getIntrinsicID() == Intrinsic::assume || 340 II->getIntrinsicID() == Intrinsic::experimental_guard) { 341 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 342 return !Cond->isZero(); 343 344 return false; 345 } 346 } 347 348 if (isAllocLikeFn(I, TLI)) 349 return true; 350 351 if (CallInst *CI = isFreeCall(I, TLI)) 352 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 353 return C->isNullValue() || isa<UndefValue>(C); 354 355 if (CallSite CS = CallSite(I)) 356 if (isMathLibCallNoop(CS, TLI)) 357 return true; 358 359 return false; 360 } 361 362 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 363 /// trivially dead instruction, delete it. If that makes any of its operands 364 /// trivially dead, delete them too, recursively. Return true if any 365 /// instructions were deleted. 366 bool 367 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 368 const TargetLibraryInfo *TLI) { 369 Instruction *I = dyn_cast<Instruction>(V); 370 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 371 return false; 372 373 SmallVector<Instruction*, 16> DeadInsts; 374 DeadInsts.push_back(I); 375 376 do { 377 I = DeadInsts.pop_back_val(); 378 379 // Null out all of the instruction's operands to see if any operand becomes 380 // dead as we go. 381 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 382 Value *OpV = I->getOperand(i); 383 I->setOperand(i, nullptr); 384 385 if (!OpV->use_empty()) continue; 386 387 // If the operand is an instruction that became dead as we nulled out the 388 // operand, and if it is 'trivially' dead, delete it in a future loop 389 // iteration. 390 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 391 if (isInstructionTriviallyDead(OpI, TLI)) 392 DeadInsts.push_back(OpI); 393 } 394 395 I->eraseFromParent(); 396 } while (!DeadInsts.empty()); 397 398 return true; 399 } 400 401 /// areAllUsesEqual - Check whether the uses of a value are all the same. 402 /// This is similar to Instruction::hasOneUse() except this will also return 403 /// true when there are no uses or multiple uses that all refer to the same 404 /// value. 405 static bool areAllUsesEqual(Instruction *I) { 406 Value::user_iterator UI = I->user_begin(); 407 Value::user_iterator UE = I->user_end(); 408 if (UI == UE) 409 return true; 410 411 User *TheUse = *UI; 412 for (++UI; UI != UE; ++UI) { 413 if (*UI != TheUse) 414 return false; 415 } 416 return true; 417 } 418 419 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 420 /// dead PHI node, due to being a def-use chain of single-use nodes that 421 /// either forms a cycle or is terminated by a trivially dead instruction, 422 /// delete it. If that makes any of its operands trivially dead, delete them 423 /// too, recursively. Return true if a change was made. 424 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 425 const TargetLibraryInfo *TLI) { 426 SmallPtrSet<Instruction*, 4> Visited; 427 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 428 I = cast<Instruction>(*I->user_begin())) { 429 if (I->use_empty()) 430 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 431 432 // If we find an instruction more than once, we're on a cycle that 433 // won't prove fruitful. 434 if (!Visited.insert(I).second) { 435 // Break the cycle and delete the instruction and its operands. 436 I->replaceAllUsesWith(UndefValue::get(I->getType())); 437 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 438 return true; 439 } 440 } 441 return false; 442 } 443 444 static bool 445 simplifyAndDCEInstruction(Instruction *I, 446 SmallSetVector<Instruction *, 16> &WorkList, 447 const DataLayout &DL, 448 const TargetLibraryInfo *TLI) { 449 if (isInstructionTriviallyDead(I, TLI)) { 450 // Null out all of the instruction's operands to see if any operand becomes 451 // dead as we go. 452 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 453 Value *OpV = I->getOperand(i); 454 I->setOperand(i, nullptr); 455 456 if (!OpV->use_empty() || I == OpV) 457 continue; 458 459 // If the operand is an instruction that became dead as we nulled out the 460 // operand, and if it is 'trivially' dead, delete it in a future loop 461 // iteration. 462 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 463 if (isInstructionTriviallyDead(OpI, TLI)) 464 WorkList.insert(OpI); 465 } 466 467 I->eraseFromParent(); 468 469 return true; 470 } 471 472 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 473 // Add the users to the worklist. CAREFUL: an instruction can use itself, 474 // in the case of a phi node. 475 for (User *U : I->users()) { 476 if (U != I) { 477 WorkList.insert(cast<Instruction>(U)); 478 } 479 } 480 481 // Replace the instruction with its simplified value. 482 bool Changed = false; 483 if (!I->use_empty()) { 484 I->replaceAllUsesWith(SimpleV); 485 Changed = true; 486 } 487 if (isInstructionTriviallyDead(I, TLI)) { 488 I->eraseFromParent(); 489 Changed = true; 490 } 491 return Changed; 492 } 493 return false; 494 } 495 496 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 497 /// simplify any instructions in it and recursively delete dead instructions. 498 /// 499 /// This returns true if it changed the code, note that it can delete 500 /// instructions in other blocks as well in this block. 501 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 502 const TargetLibraryInfo *TLI) { 503 bool MadeChange = false; 504 const DataLayout &DL = BB->getModule()->getDataLayout(); 505 506 #ifndef NDEBUG 507 // In debug builds, ensure that the terminator of the block is never replaced 508 // or deleted by these simplifications. The idea of simplification is that it 509 // cannot introduce new instructions, and there is no way to replace the 510 // terminator of a block without introducing a new instruction. 511 AssertingVH<Instruction> TerminatorVH(&BB->back()); 512 #endif 513 514 SmallSetVector<Instruction *, 16> WorkList; 515 // Iterate over the original function, only adding insts to the worklist 516 // if they actually need to be revisited. This avoids having to pre-init 517 // the worklist with the entire function's worth of instructions. 518 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 519 BI != E;) { 520 assert(!BI->isTerminator()); 521 Instruction *I = &*BI; 522 ++BI; 523 524 // We're visiting this instruction now, so make sure it's not in the 525 // worklist from an earlier visit. 526 if (!WorkList.count(I)) 527 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 528 } 529 530 while (!WorkList.empty()) { 531 Instruction *I = WorkList.pop_back_val(); 532 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 533 } 534 return MadeChange; 535 } 536 537 //===----------------------------------------------------------------------===// 538 // Control Flow Graph Restructuring. 539 // 540 541 542 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 543 /// method is called when we're about to delete Pred as a predecessor of BB. If 544 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 545 /// 546 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 547 /// nodes that collapse into identity values. For example, if we have: 548 /// x = phi(1, 0, 0, 0) 549 /// y = and x, z 550 /// 551 /// .. and delete the predecessor corresponding to the '1', this will attempt to 552 /// recursively fold the and to 0. 553 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 554 // This only adjusts blocks with PHI nodes. 555 if (!isa<PHINode>(BB->begin())) 556 return; 557 558 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 559 // them down. This will leave us with single entry phi nodes and other phis 560 // that can be removed. 561 BB->removePredecessor(Pred, true); 562 563 WeakVH PhiIt = &BB->front(); 564 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 565 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 566 Value *OldPhiIt = PhiIt; 567 568 if (!recursivelySimplifyInstruction(PN)) 569 continue; 570 571 // If recursive simplification ended up deleting the next PHI node we would 572 // iterate to, then our iterator is invalid, restart scanning from the top 573 // of the block. 574 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 575 } 576 } 577 578 579 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 580 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 581 /// between them, moving the instructions in the predecessor into DestBB and 582 /// deleting the predecessor block. 583 /// 584 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 585 // If BB has single-entry PHI nodes, fold them. 586 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 587 Value *NewVal = PN->getIncomingValue(0); 588 // Replace self referencing PHI with undef, it must be dead. 589 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 590 PN->replaceAllUsesWith(NewVal); 591 PN->eraseFromParent(); 592 } 593 594 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 595 assert(PredBB && "Block doesn't have a single predecessor!"); 596 597 // Zap anything that took the address of DestBB. Not doing this will give the 598 // address an invalid value. 599 if (DestBB->hasAddressTaken()) { 600 BlockAddress *BA = BlockAddress::get(DestBB); 601 Constant *Replacement = 602 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 603 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 604 BA->getType())); 605 BA->destroyConstant(); 606 } 607 608 // Anything that branched to PredBB now branches to DestBB. 609 PredBB->replaceAllUsesWith(DestBB); 610 611 // Splice all the instructions from PredBB to DestBB. 612 PredBB->getTerminator()->eraseFromParent(); 613 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 614 615 // If the PredBB is the entry block of the function, move DestBB up to 616 // become the entry block after we erase PredBB. 617 if (PredBB == &DestBB->getParent()->getEntryBlock()) 618 DestBB->moveAfter(PredBB); 619 620 if (DT) { 621 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 622 DT->changeImmediateDominator(DestBB, PredBBIDom); 623 DT->eraseNode(PredBB); 624 } 625 // Nuke BB. 626 PredBB->eraseFromParent(); 627 } 628 629 /// CanMergeValues - Return true if we can choose one of these values to use 630 /// in place of the other. Note that we will always choose the non-undef 631 /// value to keep. 632 static bool CanMergeValues(Value *First, Value *Second) { 633 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 634 } 635 636 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 637 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 638 /// 639 /// Assumption: Succ is the single successor for BB. 640 /// 641 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 642 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 643 644 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 645 << Succ->getName() << "\n"); 646 // Shortcut, if there is only a single predecessor it must be BB and merging 647 // is always safe 648 if (Succ->getSinglePredecessor()) return true; 649 650 // Make a list of the predecessors of BB 651 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 652 653 // Look at all the phi nodes in Succ, to see if they present a conflict when 654 // merging these blocks 655 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 656 PHINode *PN = cast<PHINode>(I); 657 658 // If the incoming value from BB is again a PHINode in 659 // BB which has the same incoming value for *PI as PN does, we can 660 // merge the phi nodes and then the blocks can still be merged 661 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 662 if (BBPN && BBPN->getParent() == BB) { 663 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 664 BasicBlock *IBB = PN->getIncomingBlock(PI); 665 if (BBPreds.count(IBB) && 666 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 667 PN->getIncomingValue(PI))) { 668 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 669 << Succ->getName() << " is conflicting with " 670 << BBPN->getName() << " with regard to common predecessor " 671 << IBB->getName() << "\n"); 672 return false; 673 } 674 } 675 } else { 676 Value* Val = PN->getIncomingValueForBlock(BB); 677 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 678 // See if the incoming value for the common predecessor is equal to the 679 // one for BB, in which case this phi node will not prevent the merging 680 // of the block. 681 BasicBlock *IBB = PN->getIncomingBlock(PI); 682 if (BBPreds.count(IBB) && 683 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 684 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 685 << Succ->getName() << " is conflicting with regard to common " 686 << "predecessor " << IBB->getName() << "\n"); 687 return false; 688 } 689 } 690 } 691 } 692 693 return true; 694 } 695 696 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 697 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 698 699 /// \brief Determines the value to use as the phi node input for a block. 700 /// 701 /// Select between \p OldVal any value that we know flows from \p BB 702 /// to a particular phi on the basis of which one (if either) is not 703 /// undef. Update IncomingValues based on the selected value. 704 /// 705 /// \param OldVal The value we are considering selecting. 706 /// \param BB The block that the value flows in from. 707 /// \param IncomingValues A map from block-to-value for other phi inputs 708 /// that we have examined. 709 /// 710 /// \returns the selected value. 711 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 712 IncomingValueMap &IncomingValues) { 713 if (!isa<UndefValue>(OldVal)) { 714 assert((!IncomingValues.count(BB) || 715 IncomingValues.find(BB)->second == OldVal) && 716 "Expected OldVal to match incoming value from BB!"); 717 718 IncomingValues.insert(std::make_pair(BB, OldVal)); 719 return OldVal; 720 } 721 722 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 723 if (It != IncomingValues.end()) return It->second; 724 725 return OldVal; 726 } 727 728 /// \brief Create a map from block to value for the operands of a 729 /// given phi. 730 /// 731 /// Create a map from block to value for each non-undef value flowing 732 /// into \p PN. 733 /// 734 /// \param PN The phi we are collecting the map for. 735 /// \param IncomingValues [out] The map from block to value for this phi. 736 static void gatherIncomingValuesToPhi(PHINode *PN, 737 IncomingValueMap &IncomingValues) { 738 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 739 BasicBlock *BB = PN->getIncomingBlock(i); 740 Value *V = PN->getIncomingValue(i); 741 742 if (!isa<UndefValue>(V)) 743 IncomingValues.insert(std::make_pair(BB, V)); 744 } 745 } 746 747 /// \brief Replace the incoming undef values to a phi with the values 748 /// from a block-to-value map. 749 /// 750 /// \param PN The phi we are replacing the undefs in. 751 /// \param IncomingValues A map from block to value. 752 static void replaceUndefValuesInPhi(PHINode *PN, 753 const IncomingValueMap &IncomingValues) { 754 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 755 Value *V = PN->getIncomingValue(i); 756 757 if (!isa<UndefValue>(V)) continue; 758 759 BasicBlock *BB = PN->getIncomingBlock(i); 760 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 761 if (It == IncomingValues.end()) continue; 762 763 PN->setIncomingValue(i, It->second); 764 } 765 } 766 767 /// \brief Replace a value flowing from a block to a phi with 768 /// potentially multiple instances of that value flowing from the 769 /// block's predecessors to the phi. 770 /// 771 /// \param BB The block with the value flowing into the phi. 772 /// \param BBPreds The predecessors of BB. 773 /// \param PN The phi that we are updating. 774 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 775 const PredBlockVector &BBPreds, 776 PHINode *PN) { 777 Value *OldVal = PN->removeIncomingValue(BB, false); 778 assert(OldVal && "No entry in PHI for Pred BB!"); 779 780 IncomingValueMap IncomingValues; 781 782 // We are merging two blocks - BB, and the block containing PN - and 783 // as a result we need to redirect edges from the predecessors of BB 784 // to go to the block containing PN, and update PN 785 // accordingly. Since we allow merging blocks in the case where the 786 // predecessor and successor blocks both share some predecessors, 787 // and where some of those common predecessors might have undef 788 // values flowing into PN, we want to rewrite those values to be 789 // consistent with the non-undef values. 790 791 gatherIncomingValuesToPhi(PN, IncomingValues); 792 793 // If this incoming value is one of the PHI nodes in BB, the new entries 794 // in the PHI node are the entries from the old PHI. 795 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 796 PHINode *OldValPN = cast<PHINode>(OldVal); 797 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 798 // Note that, since we are merging phi nodes and BB and Succ might 799 // have common predecessors, we could end up with a phi node with 800 // identical incoming branches. This will be cleaned up later (and 801 // will trigger asserts if we try to clean it up now, without also 802 // simplifying the corresponding conditional branch). 803 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 804 Value *PredVal = OldValPN->getIncomingValue(i); 805 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 806 IncomingValues); 807 808 // And add a new incoming value for this predecessor for the 809 // newly retargeted branch. 810 PN->addIncoming(Selected, PredBB); 811 } 812 } else { 813 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 814 // Update existing incoming values in PN for this 815 // predecessor of BB. 816 BasicBlock *PredBB = BBPreds[i]; 817 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 818 IncomingValues); 819 820 // And add a new incoming value for this predecessor for the 821 // newly retargeted branch. 822 PN->addIncoming(Selected, PredBB); 823 } 824 } 825 826 replaceUndefValuesInPhi(PN, IncomingValues); 827 } 828 829 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 830 /// unconditional branch, and contains no instructions other than PHI nodes, 831 /// potential side-effect free intrinsics and the branch. If possible, 832 /// eliminate BB by rewriting all the predecessors to branch to the successor 833 /// block and return true. If we can't transform, return false. 834 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 835 assert(BB != &BB->getParent()->getEntryBlock() && 836 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 837 838 // We can't eliminate infinite loops. 839 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 840 if (BB == Succ) return false; 841 842 // Check to see if merging these blocks would cause conflicts for any of the 843 // phi nodes in BB or Succ. If not, we can safely merge. 844 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 845 846 // Check for cases where Succ has multiple predecessors and a PHI node in BB 847 // has uses which will not disappear when the PHI nodes are merged. It is 848 // possible to handle such cases, but difficult: it requires checking whether 849 // BB dominates Succ, which is non-trivial to calculate in the case where 850 // Succ has multiple predecessors. Also, it requires checking whether 851 // constructing the necessary self-referential PHI node doesn't introduce any 852 // conflicts; this isn't too difficult, but the previous code for doing this 853 // was incorrect. 854 // 855 // Note that if this check finds a live use, BB dominates Succ, so BB is 856 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 857 // folding the branch isn't profitable in that case anyway. 858 if (!Succ->getSinglePredecessor()) { 859 BasicBlock::iterator BBI = BB->begin(); 860 while (isa<PHINode>(*BBI)) { 861 for (Use &U : BBI->uses()) { 862 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 863 if (PN->getIncomingBlock(U) != BB) 864 return false; 865 } else { 866 return false; 867 } 868 } 869 ++BBI; 870 } 871 } 872 873 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 874 875 if (isa<PHINode>(Succ->begin())) { 876 // If there is more than one pred of succ, and there are PHI nodes in 877 // the successor, then we need to add incoming edges for the PHI nodes 878 // 879 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 880 881 // Loop over all of the PHI nodes in the successor of BB. 882 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 883 PHINode *PN = cast<PHINode>(I); 884 885 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 886 } 887 } 888 889 if (Succ->getSinglePredecessor()) { 890 // BB is the only predecessor of Succ, so Succ will end up with exactly 891 // the same predecessors BB had. 892 893 // Copy over any phi, debug or lifetime instruction. 894 BB->getTerminator()->eraseFromParent(); 895 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 896 BB->getInstList()); 897 } else { 898 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 899 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 900 assert(PN->use_empty() && "There shouldn't be any uses here!"); 901 PN->eraseFromParent(); 902 } 903 } 904 905 // If the unconditional branch we replaced contains llvm.loop metadata, we 906 // add the metadata to the branch instructions in the predecessors. 907 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 908 Instruction *TI = BB->getTerminator(); 909 if (TI) 910 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 911 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 912 BasicBlock *Pred = *PI; 913 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 914 } 915 916 // Everything that jumped to BB now goes to Succ. 917 BB->replaceAllUsesWith(Succ); 918 if (!Succ->hasName()) Succ->takeName(BB); 919 BB->eraseFromParent(); // Delete the old basic block. 920 return true; 921 } 922 923 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 924 /// nodes in this block. This doesn't try to be clever about PHI nodes 925 /// which differ only in the order of the incoming values, but instcombine 926 /// orders them so it usually won't matter. 927 /// 928 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 929 // This implementation doesn't currently consider undef operands 930 // specially. Theoretically, two phis which are identical except for 931 // one having an undef where the other doesn't could be collapsed. 932 933 struct PHIDenseMapInfo { 934 static PHINode *getEmptyKey() { 935 return DenseMapInfo<PHINode *>::getEmptyKey(); 936 } 937 static PHINode *getTombstoneKey() { 938 return DenseMapInfo<PHINode *>::getTombstoneKey(); 939 } 940 static unsigned getHashValue(PHINode *PN) { 941 // Compute a hash value on the operands. Instcombine will likely have 942 // sorted them, which helps expose duplicates, but we have to check all 943 // the operands to be safe in case instcombine hasn't run. 944 return static_cast<unsigned>(hash_combine( 945 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 946 hash_combine_range(PN->block_begin(), PN->block_end()))); 947 } 948 static bool isEqual(PHINode *LHS, PHINode *RHS) { 949 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 950 RHS == getEmptyKey() || RHS == getTombstoneKey()) 951 return LHS == RHS; 952 return LHS->isIdenticalTo(RHS); 953 } 954 }; 955 956 // Set of unique PHINodes. 957 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 958 959 // Examine each PHI. 960 bool Changed = false; 961 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 962 auto Inserted = PHISet.insert(PN); 963 if (!Inserted.second) { 964 // A duplicate. Replace this PHI with its duplicate. 965 PN->replaceAllUsesWith(*Inserted.first); 966 PN->eraseFromParent(); 967 Changed = true; 968 969 // The RAUW can change PHIs that we already visited. Start over from the 970 // beginning. 971 PHISet.clear(); 972 I = BB->begin(); 973 } 974 } 975 976 return Changed; 977 } 978 979 /// enforceKnownAlignment - If the specified pointer points to an object that 980 /// we control, modify the object's alignment to PrefAlign. This isn't 981 /// often possible though. If alignment is important, a more reliable approach 982 /// is to simply align all global variables and allocation instructions to 983 /// their preferred alignment from the beginning. 984 /// 985 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 986 unsigned PrefAlign, 987 const DataLayout &DL) { 988 assert(PrefAlign > Align); 989 990 V = V->stripPointerCasts(); 991 992 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 993 // TODO: ideally, computeKnownBits ought to have used 994 // AllocaInst::getAlignment() in its computation already, making 995 // the below max redundant. But, as it turns out, 996 // stripPointerCasts recurses through infinite layers of bitcasts, 997 // while computeKnownBits is not allowed to traverse more than 6 998 // levels. 999 Align = std::max(AI->getAlignment(), Align); 1000 if (PrefAlign <= Align) 1001 return Align; 1002 1003 // If the preferred alignment is greater than the natural stack alignment 1004 // then don't round up. This avoids dynamic stack realignment. 1005 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1006 return Align; 1007 AI->setAlignment(PrefAlign); 1008 return PrefAlign; 1009 } 1010 1011 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1012 // TODO: as above, this shouldn't be necessary. 1013 Align = std::max(GO->getAlignment(), Align); 1014 if (PrefAlign <= Align) 1015 return Align; 1016 1017 // If there is a large requested alignment and we can, bump up the alignment 1018 // of the global. If the memory we set aside for the global may not be the 1019 // memory used by the final program then it is impossible for us to reliably 1020 // enforce the preferred alignment. 1021 if (!GO->canIncreaseAlignment()) 1022 return Align; 1023 1024 GO->setAlignment(PrefAlign); 1025 return PrefAlign; 1026 } 1027 1028 return Align; 1029 } 1030 1031 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1032 const DataLayout &DL, 1033 const Instruction *CxtI, 1034 AssumptionCache *AC, 1035 const DominatorTree *DT) { 1036 assert(V->getType()->isPointerTy() && 1037 "getOrEnforceKnownAlignment expects a pointer!"); 1038 unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType()); 1039 1040 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 1041 computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT); 1042 unsigned TrailZ = KnownZero.countTrailingOnes(); 1043 1044 // Avoid trouble with ridiculously large TrailZ values, such as 1045 // those computed from a null pointer. 1046 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1047 1048 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 1049 1050 // LLVM doesn't support alignments larger than this currently. 1051 Align = std::min(Align, +Value::MaximumAlignment); 1052 1053 if (PrefAlign > Align) 1054 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1055 1056 // We don't need to make any adjustment. 1057 return Align; 1058 } 1059 1060 ///===---------------------------------------------------------------------===// 1061 /// Dbg Intrinsic utilities 1062 /// 1063 1064 /// See if there is a dbg.value intrinsic for DIVar before I. 1065 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1066 Instruction *I) { 1067 // Since we can't guarantee that the original dbg.declare instrinsic 1068 // is removed by LowerDbgDeclare(), we need to make sure that we are 1069 // not inserting the same dbg.value intrinsic over and over. 1070 llvm::BasicBlock::InstListType::iterator PrevI(I); 1071 if (PrevI != I->getParent()->getInstList().begin()) { 1072 --PrevI; 1073 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1074 if (DVI->getValue() == I->getOperand(0) && 1075 DVI->getOffset() == 0 && 1076 DVI->getVariable() == DIVar && 1077 DVI->getExpression() == DIExpr) 1078 return true; 1079 } 1080 return false; 1081 } 1082 1083 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1084 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1085 DIExpression *DIExpr, 1086 PHINode *APN) { 1087 // Since we can't guarantee that the original dbg.declare instrinsic 1088 // is removed by LowerDbgDeclare(), we need to make sure that we are 1089 // not inserting the same dbg.value intrinsic over and over. 1090 SmallVector<DbgValueInst *, 1> DbgValues; 1091 findDbgValues(DbgValues, APN); 1092 for (auto *DVI : DbgValues) { 1093 assert(DVI->getValue() == APN); 1094 assert(DVI->getOffset() == 0); 1095 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1096 return true; 1097 } 1098 return false; 1099 } 1100 1101 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1102 /// that has an associated llvm.dbg.decl intrinsic. 1103 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1104 StoreInst *SI, DIBuilder &Builder) { 1105 auto *DIVar = DDI->getVariable(); 1106 auto *DIExpr = DDI->getExpression(); 1107 assert(DIVar && "Missing variable"); 1108 1109 // If an argument is zero extended then use argument directly. The ZExt 1110 // may be zapped by an optimization pass in future. 1111 Argument *ExtendedArg = nullptr; 1112 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1113 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1114 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1115 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1116 if (ExtendedArg) { 1117 // We're now only describing a subset of the variable. The fragment we're 1118 // describing will always be smaller than the variable size, because 1119 // VariableSize == Size of Alloca described by DDI. Since SI stores 1120 // to the alloca described by DDI, if it's first operand is an extend, 1121 // we're guaranteed that before extension, the value was narrower than 1122 // the size of the alloca, hence the size of the described variable. 1123 SmallVector<uint64_t, 3> Ops; 1124 unsigned FragmentOffset = 0; 1125 // If this already is a bit fragment, we drop the bit fragment from the 1126 // expression and record the offset. 1127 auto Fragment = DIExpr->getFragmentInfo(); 1128 if (Fragment) { 1129 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3); 1130 FragmentOffset = Fragment->OffsetInBits; 1131 } else { 1132 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1133 } 1134 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1135 Ops.push_back(FragmentOffset); 1136 const DataLayout &DL = DDI->getModule()->getDataLayout(); 1137 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1138 auto NewDIExpr = Builder.createExpression(Ops); 1139 if (!LdStHasDebugValue(DIVar, NewDIExpr, SI)) 1140 Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr, 1141 DDI->getDebugLoc(), SI); 1142 } else if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1143 Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr, 1144 DDI->getDebugLoc(), SI); 1145 } 1146 1147 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1148 /// that has an associated llvm.dbg.decl intrinsic. 1149 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1150 LoadInst *LI, DIBuilder &Builder) { 1151 auto *DIVar = DDI->getVariable(); 1152 auto *DIExpr = DDI->getExpression(); 1153 assert(DIVar && "Missing variable"); 1154 1155 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1156 return; 1157 1158 // We are now tracking the loaded value instead of the address. In the 1159 // future if multi-location support is added to the IR, it might be 1160 // preferable to keep tracking both the loaded value and the original 1161 // address in case the alloca can not be elided. 1162 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1163 LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr); 1164 DbgValue->insertAfter(LI); 1165 } 1166 1167 /// Inserts a llvm.dbg.value intrinsic after a phi 1168 /// that has an associated llvm.dbg.decl intrinsic. 1169 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1170 PHINode *APN, DIBuilder &Builder) { 1171 auto *DIVar = DDI->getVariable(); 1172 auto *DIExpr = DDI->getExpression(); 1173 assert(DIVar && "Missing variable"); 1174 1175 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1176 return; 1177 1178 BasicBlock *BB = APN->getParent(); 1179 auto InsertionPt = BB->getFirstInsertionPt(); 1180 1181 // The block may be a catchswitch block, which does not have a valid 1182 // insertion point. 1183 // FIXME: Insert dbg.value markers in the successors when appropriate. 1184 if (InsertionPt != BB->end()) 1185 Builder.insertDbgValueIntrinsic(APN, 0, DIVar, DIExpr, DDI->getDebugLoc(), 1186 &*InsertionPt); 1187 } 1188 1189 /// Determine whether this alloca is either a VLA or an array. 1190 static bool isArray(AllocaInst *AI) { 1191 return AI->isArrayAllocation() || 1192 AI->getType()->getElementType()->isArrayTy(); 1193 } 1194 1195 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1196 /// of llvm.dbg.value intrinsics. 1197 bool llvm::LowerDbgDeclare(Function &F) { 1198 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1199 SmallVector<DbgDeclareInst *, 4> Dbgs; 1200 for (auto &FI : F) 1201 for (Instruction &BI : FI) 1202 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1203 Dbgs.push_back(DDI); 1204 1205 if (Dbgs.empty()) 1206 return false; 1207 1208 for (auto &I : Dbgs) { 1209 DbgDeclareInst *DDI = I; 1210 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1211 // If this is an alloca for a scalar variable, insert a dbg.value 1212 // at each load and store to the alloca and erase the dbg.declare. 1213 // The dbg.values allow tracking a variable even if it is not 1214 // stored on the stack, while the dbg.declare can only describe 1215 // the stack slot (and at a lexical-scope granularity). Later 1216 // passes will attempt to elide the stack slot. 1217 if (AI && !isArray(AI)) { 1218 for (auto &AIUse : AI->uses()) { 1219 User *U = AIUse.getUser(); 1220 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1221 if (AIUse.getOperandNo() == 1) 1222 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1223 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1224 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1225 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1226 // This is a call by-value or some other instruction that 1227 // takes a pointer to the variable. Insert a *value* 1228 // intrinsic that describes the alloca. 1229 SmallVector<uint64_t, 1> NewDIExpr; 1230 auto *DIExpr = DDI->getExpression(); 1231 NewDIExpr.push_back(dwarf::DW_OP_deref); 1232 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1233 DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(), 1234 DIB.createExpression(NewDIExpr), 1235 DDI->getDebugLoc(), CI); 1236 } 1237 } 1238 DDI->eraseFromParent(); 1239 } 1240 } 1241 return true; 1242 } 1243 1244 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1245 /// alloca 'V', if any. 1246 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1247 if (auto *L = LocalAsMetadata::getIfExists(V)) 1248 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1249 for (User *U : MDV->users()) 1250 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1251 return DDI; 1252 1253 return nullptr; 1254 } 1255 1256 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1257 if (auto *L = LocalAsMetadata::getIfExists(V)) 1258 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1259 for (User *U : MDV->users()) 1260 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1261 DbgValues.push_back(DVI); 1262 } 1263 1264 static void appendOffset(SmallVectorImpl<uint64_t> &Ops, int64_t Offset) { 1265 if (Offset > 0) { 1266 Ops.push_back(dwarf::DW_OP_plus); 1267 Ops.push_back(Offset); 1268 } else if (Offset < 0) { 1269 Ops.push_back(dwarf::DW_OP_minus); 1270 Ops.push_back(-Offset); 1271 } 1272 } 1273 1274 /// Prepend \p DIExpr with a deref and offset operation. 1275 static DIExpression *prependDIExpr(DIBuilder &Builder, DIExpression *DIExpr, 1276 bool Deref, int64_t Offset) { 1277 if (!Deref && !Offset) 1278 return DIExpr; 1279 // Create a copy of the original DIDescriptor for user variable, prepending 1280 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1281 // will take a value storing address of the memory for variable, not 1282 // alloca itself. 1283 SmallVector<uint64_t, 4> Ops; 1284 if (Deref) 1285 Ops.push_back(dwarf::DW_OP_deref); 1286 appendOffset(Ops, Offset); 1287 if (DIExpr) 1288 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1289 return Builder.createExpression(Ops); 1290 } 1291 1292 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1293 Instruction *InsertBefore, DIBuilder &Builder, 1294 bool Deref, int Offset) { 1295 DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address); 1296 if (!DDI) 1297 return false; 1298 DebugLoc Loc = DDI->getDebugLoc(); 1299 auto *DIVar = DDI->getVariable(); 1300 auto *DIExpr = DDI->getExpression(); 1301 assert(DIVar && "Missing variable"); 1302 1303 DIExpr = prependDIExpr(Builder, DIExpr, Deref, Offset); 1304 1305 // Insert llvm.dbg.declare immediately after the original alloca, and remove 1306 // old llvm.dbg.declare. 1307 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1308 DDI->eraseFromParent(); 1309 return true; 1310 } 1311 1312 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1313 DIBuilder &Builder, bool Deref, int Offset) { 1314 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1315 Deref, Offset); 1316 } 1317 1318 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1319 DIBuilder &Builder, int Offset) { 1320 DebugLoc Loc = DVI->getDebugLoc(); 1321 auto *DIVar = DVI->getVariable(); 1322 auto *DIExpr = DVI->getExpression(); 1323 assert(DIVar && "Missing variable"); 1324 1325 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1326 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1327 // it and give up. 1328 if (!DIExpr || DIExpr->getNumElements() < 1 || 1329 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1330 return; 1331 1332 // Insert the offset immediately after the first deref. 1333 // We could just change the offset argument of dbg.value, but it's unsigned... 1334 if (Offset) { 1335 SmallVector<uint64_t, 4> Ops; 1336 Ops.push_back(dwarf::DW_OP_deref); 1337 appendOffset(Ops, Offset); 1338 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1339 DIExpr = Builder.createExpression(Ops); 1340 } 1341 1342 Builder.insertDbgValueIntrinsic(NewAddress, DVI->getOffset(), DIVar, DIExpr, 1343 Loc, DVI); 1344 DVI->eraseFromParent(); 1345 } 1346 1347 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1348 DIBuilder &Builder, int Offset) { 1349 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1350 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1351 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1352 Use &U = *UI++; 1353 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1354 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1355 } 1356 } 1357 1358 void llvm::salvageDebugInfo(Instruction &I) { 1359 SmallVector<DbgValueInst *, 1> DbgValues; 1360 auto &M = *I.getModule(); 1361 1362 auto MDWrap = [&](Value *V) { 1363 return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V)); 1364 }; 1365 1366 if (isa<BitCastInst>(&I)) { 1367 findDbgValues(DbgValues, &I); 1368 for (auto *DVI : DbgValues) { 1369 // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value 1370 // to use the cast's source. 1371 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1372 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1373 } 1374 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1375 findDbgValues(DbgValues, &I); 1376 for (auto *DVI : DbgValues) { 1377 unsigned BitWidth = 1378 M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace()); 1379 APInt Offset(BitWidth, 0); 1380 // Rewrite a constant GEP into a DIExpression. 1381 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1382 auto *DIExpr = DVI->getExpression(); 1383 DIBuilder DIB(M, /*AllowUnresolved*/ false); 1384 // GEP offsets are i32 and thus alwaus fit into an int64_t. 1385 DIExpr = prependDIExpr(DIB, DIExpr, NoDeref, Offset.getSExtValue()); 1386 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1387 DVI->setOperand(3, MetadataAsValue::get(I.getContext(), DIExpr)); 1388 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1389 } 1390 } 1391 } else if (isa<LoadInst>(&I)) { 1392 findDbgValues(DbgValues, &I); 1393 for (auto *DVI : DbgValues) { 1394 // Rewrite the load into DW_OP_deref. 1395 auto *DIExpr = DVI->getExpression(); 1396 DIBuilder DIB(M, /*AllowUnresolved*/ false); 1397 DIExpr = prependDIExpr(DIB, DIExpr, WithDeref, 0); 1398 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1399 DVI->setOperand(3, MetadataAsValue::get(I.getContext(), DIExpr)); 1400 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1401 } 1402 } 1403 } 1404 1405 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1406 unsigned NumDeadInst = 0; 1407 // Delete the instructions backwards, as it has a reduced likelihood of 1408 // having to update as many def-use and use-def chains. 1409 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1410 while (EndInst != &BB->front()) { 1411 // Delete the next to last instruction. 1412 Instruction *Inst = &*--EndInst->getIterator(); 1413 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1414 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1415 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1416 EndInst = Inst; 1417 continue; 1418 } 1419 if (!isa<DbgInfoIntrinsic>(Inst)) 1420 ++NumDeadInst; 1421 Inst->eraseFromParent(); 1422 } 1423 return NumDeadInst; 1424 } 1425 1426 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1427 bool PreserveLCSSA) { 1428 BasicBlock *BB = I->getParent(); 1429 // Loop over all of the successors, removing BB's entry from any PHI 1430 // nodes. 1431 for (BasicBlock *Successor : successors(BB)) 1432 Successor->removePredecessor(BB, PreserveLCSSA); 1433 1434 // Insert a call to llvm.trap right before this. This turns the undefined 1435 // behavior into a hard fail instead of falling through into random code. 1436 if (UseLLVMTrap) { 1437 Function *TrapFn = 1438 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1439 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1440 CallTrap->setDebugLoc(I->getDebugLoc()); 1441 } 1442 new UnreachableInst(I->getContext(), I); 1443 1444 // All instructions after this are dead. 1445 unsigned NumInstrsRemoved = 0; 1446 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1447 while (BBI != BBE) { 1448 if (!BBI->use_empty()) 1449 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1450 BB->getInstList().erase(BBI++); 1451 ++NumInstrsRemoved; 1452 } 1453 return NumInstrsRemoved; 1454 } 1455 1456 /// changeToCall - Convert the specified invoke into a normal call. 1457 static void changeToCall(InvokeInst *II) { 1458 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1459 SmallVector<OperandBundleDef, 1> OpBundles; 1460 II->getOperandBundlesAsDefs(OpBundles); 1461 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1462 "", II); 1463 NewCall->takeName(II); 1464 NewCall->setCallingConv(II->getCallingConv()); 1465 NewCall->setAttributes(II->getAttributes()); 1466 NewCall->setDebugLoc(II->getDebugLoc()); 1467 II->replaceAllUsesWith(NewCall); 1468 1469 // Follow the call by a branch to the normal destination. 1470 BranchInst::Create(II->getNormalDest(), II); 1471 1472 // Update PHI nodes in the unwind destination 1473 II->getUnwindDest()->removePredecessor(II->getParent()); 1474 II->eraseFromParent(); 1475 } 1476 1477 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1478 BasicBlock *UnwindEdge) { 1479 BasicBlock *BB = CI->getParent(); 1480 1481 // Convert this function call into an invoke instruction. First, split the 1482 // basic block. 1483 BasicBlock *Split = 1484 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1485 1486 // Delete the unconditional branch inserted by splitBasicBlock 1487 BB->getInstList().pop_back(); 1488 1489 // Create the new invoke instruction. 1490 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1491 SmallVector<OperandBundleDef, 1> OpBundles; 1492 1493 CI->getOperandBundlesAsDefs(OpBundles); 1494 1495 // Note: we're round tripping operand bundles through memory here, and that 1496 // can potentially be avoided with a cleverer API design that we do not have 1497 // as of this time. 1498 1499 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1500 InvokeArgs, OpBundles, CI->getName(), BB); 1501 II->setDebugLoc(CI->getDebugLoc()); 1502 II->setCallingConv(CI->getCallingConv()); 1503 II->setAttributes(CI->getAttributes()); 1504 1505 // Make sure that anything using the call now uses the invoke! This also 1506 // updates the CallGraph if present, because it uses a WeakVH. 1507 CI->replaceAllUsesWith(II); 1508 1509 // Delete the original call 1510 Split->getInstList().pop_front(); 1511 return Split; 1512 } 1513 1514 static bool markAliveBlocks(Function &F, 1515 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1516 1517 SmallVector<BasicBlock*, 128> Worklist; 1518 BasicBlock *BB = &F.front(); 1519 Worklist.push_back(BB); 1520 Reachable.insert(BB); 1521 bool Changed = false; 1522 do { 1523 BB = Worklist.pop_back_val(); 1524 1525 // Do a quick scan of the basic block, turning any obviously unreachable 1526 // instructions into LLVM unreachable insts. The instruction combining pass 1527 // canonicalizes unreachable insts into stores to null or undef. 1528 for (Instruction &I : *BB) { 1529 // Assumptions that are known to be false are equivalent to unreachable. 1530 // Also, if the condition is undefined, then we make the choice most 1531 // beneficial to the optimizer, and choose that to also be unreachable. 1532 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1533 if (II->getIntrinsicID() == Intrinsic::assume) { 1534 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 1535 // Don't insert a call to llvm.trap right before the unreachable. 1536 changeToUnreachable(II, false); 1537 Changed = true; 1538 break; 1539 } 1540 } 1541 1542 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1543 // A call to the guard intrinsic bails out of the current compilation 1544 // unit if the predicate passed to it is false. If the predicate is a 1545 // constant false, then we know the guard will bail out of the current 1546 // compile unconditionally, so all code following it is dead. 1547 // 1548 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1549 // guards to treat `undef` as `false` since a guard on `undef` can 1550 // still be useful for widening. 1551 if (match(II->getArgOperand(0), m_Zero())) 1552 if (!isa<UnreachableInst>(II->getNextNode())) { 1553 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false); 1554 Changed = true; 1555 break; 1556 } 1557 } 1558 } 1559 1560 if (auto *CI = dyn_cast<CallInst>(&I)) { 1561 Value *Callee = CI->getCalledValue(); 1562 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1563 changeToUnreachable(CI, /*UseLLVMTrap=*/false); 1564 Changed = true; 1565 break; 1566 } 1567 if (CI->doesNotReturn()) { 1568 // If we found a call to a no-return function, insert an unreachable 1569 // instruction after it. Make sure there isn't *already* one there 1570 // though. 1571 if (!isa<UnreachableInst>(CI->getNextNode())) { 1572 // Don't insert a call to llvm.trap right before the unreachable. 1573 changeToUnreachable(CI->getNextNode(), false); 1574 Changed = true; 1575 } 1576 break; 1577 } 1578 } 1579 1580 // Store to undef and store to null are undefined and used to signal that 1581 // they should be changed to unreachable by passes that can't modify the 1582 // CFG. 1583 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1584 // Don't touch volatile stores. 1585 if (SI->isVolatile()) continue; 1586 1587 Value *Ptr = SI->getOperand(1); 1588 1589 if (isa<UndefValue>(Ptr) || 1590 (isa<ConstantPointerNull>(Ptr) && 1591 SI->getPointerAddressSpace() == 0)) { 1592 changeToUnreachable(SI, true); 1593 Changed = true; 1594 break; 1595 } 1596 } 1597 } 1598 1599 TerminatorInst *Terminator = BB->getTerminator(); 1600 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1601 // Turn invokes that call 'nounwind' functions into ordinary calls. 1602 Value *Callee = II->getCalledValue(); 1603 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1604 changeToUnreachable(II, true); 1605 Changed = true; 1606 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1607 if (II->use_empty() && II->onlyReadsMemory()) { 1608 // jump to the normal destination branch. 1609 BranchInst::Create(II->getNormalDest(), II); 1610 II->getUnwindDest()->removePredecessor(II->getParent()); 1611 II->eraseFromParent(); 1612 } else 1613 changeToCall(II); 1614 Changed = true; 1615 } 1616 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1617 // Remove catchpads which cannot be reached. 1618 struct CatchPadDenseMapInfo { 1619 static CatchPadInst *getEmptyKey() { 1620 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1621 } 1622 static CatchPadInst *getTombstoneKey() { 1623 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1624 } 1625 static unsigned getHashValue(CatchPadInst *CatchPad) { 1626 return static_cast<unsigned>(hash_combine_range( 1627 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1628 } 1629 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1630 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1631 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1632 return LHS == RHS; 1633 return LHS->isIdenticalTo(RHS); 1634 } 1635 }; 1636 1637 // Set of unique CatchPads. 1638 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1639 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1640 HandlerSet; 1641 detail::DenseSetEmpty Empty; 1642 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1643 E = CatchSwitch->handler_end(); 1644 I != E; ++I) { 1645 BasicBlock *HandlerBB = *I; 1646 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1647 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1648 CatchSwitch->removeHandler(I); 1649 --I; 1650 --E; 1651 Changed = true; 1652 } 1653 } 1654 } 1655 1656 Changed |= ConstantFoldTerminator(BB, true); 1657 for (BasicBlock *Successor : successors(BB)) 1658 if (Reachable.insert(Successor).second) 1659 Worklist.push_back(Successor); 1660 } while (!Worklist.empty()); 1661 return Changed; 1662 } 1663 1664 void llvm::removeUnwindEdge(BasicBlock *BB) { 1665 TerminatorInst *TI = BB->getTerminator(); 1666 1667 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1668 changeToCall(II); 1669 return; 1670 } 1671 1672 TerminatorInst *NewTI; 1673 BasicBlock *UnwindDest; 1674 1675 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1676 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1677 UnwindDest = CRI->getUnwindDest(); 1678 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1679 auto *NewCatchSwitch = CatchSwitchInst::Create( 1680 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1681 CatchSwitch->getName(), CatchSwitch); 1682 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1683 NewCatchSwitch->addHandler(PadBB); 1684 1685 NewTI = NewCatchSwitch; 1686 UnwindDest = CatchSwitch->getUnwindDest(); 1687 } else { 1688 llvm_unreachable("Could not find unwind successor"); 1689 } 1690 1691 NewTI->takeName(TI); 1692 NewTI->setDebugLoc(TI->getDebugLoc()); 1693 UnwindDest->removePredecessor(BB); 1694 TI->replaceAllUsesWith(NewTI); 1695 TI->eraseFromParent(); 1696 } 1697 1698 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1699 /// if they are in a dead cycle. Return true if a change was made, false 1700 /// otherwise. 1701 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) { 1702 SmallPtrSet<BasicBlock*, 16> Reachable; 1703 bool Changed = markAliveBlocks(F, Reachable); 1704 1705 // If there are unreachable blocks in the CFG... 1706 if (Reachable.size() == F.size()) 1707 return Changed; 1708 1709 assert(Reachable.size() < F.size()); 1710 NumRemoved += F.size()-Reachable.size(); 1711 1712 // Loop over all of the basic blocks that are not reachable, dropping all of 1713 // their internal references... 1714 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1715 if (Reachable.count(&*BB)) 1716 continue; 1717 1718 for (BasicBlock *Successor : successors(&*BB)) 1719 if (Reachable.count(Successor)) 1720 Successor->removePredecessor(&*BB); 1721 if (LVI) 1722 LVI->eraseBlock(&*BB); 1723 BB->dropAllReferences(); 1724 } 1725 1726 for (Function::iterator I = ++F.begin(); I != F.end();) 1727 if (!Reachable.count(&*I)) 1728 I = F.getBasicBlockList().erase(I); 1729 else 1730 ++I; 1731 1732 return true; 1733 } 1734 1735 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1736 ArrayRef<unsigned> KnownIDs) { 1737 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1738 K->dropUnknownNonDebugMetadata(KnownIDs); 1739 K->getAllMetadataOtherThanDebugLoc(Metadata); 1740 for (const auto &MD : Metadata) { 1741 unsigned Kind = MD.first; 1742 MDNode *JMD = J->getMetadata(Kind); 1743 MDNode *KMD = MD.second; 1744 1745 switch (Kind) { 1746 default: 1747 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1748 break; 1749 case LLVMContext::MD_dbg: 1750 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1751 case LLVMContext::MD_tbaa: 1752 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1753 break; 1754 case LLVMContext::MD_alias_scope: 1755 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1756 break; 1757 case LLVMContext::MD_noalias: 1758 case LLVMContext::MD_mem_parallel_loop_access: 1759 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1760 break; 1761 case LLVMContext::MD_range: 1762 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1763 break; 1764 case LLVMContext::MD_fpmath: 1765 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1766 break; 1767 case LLVMContext::MD_invariant_load: 1768 // Only set the !invariant.load if it is present in both instructions. 1769 K->setMetadata(Kind, JMD); 1770 break; 1771 case LLVMContext::MD_nonnull: 1772 // Only set the !nonnull if it is present in both instructions. 1773 K->setMetadata(Kind, JMD); 1774 break; 1775 case LLVMContext::MD_invariant_group: 1776 // Preserve !invariant.group in K. 1777 break; 1778 case LLVMContext::MD_align: 1779 K->setMetadata(Kind, 1780 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1781 break; 1782 case LLVMContext::MD_dereferenceable: 1783 case LLVMContext::MD_dereferenceable_or_null: 1784 K->setMetadata(Kind, 1785 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1786 break; 1787 } 1788 } 1789 // Set !invariant.group from J if J has it. If both instructions have it 1790 // then we will just pick it from J - even when they are different. 1791 // Also make sure that K is load or store - f.e. combining bitcast with load 1792 // could produce bitcast with invariant.group metadata, which is invalid. 1793 // FIXME: we should try to preserve both invariant.group md if they are 1794 // different, but right now instruction can only have one invariant.group. 1795 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1796 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1797 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1798 } 1799 1800 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 1801 unsigned KnownIDs[] = { 1802 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1803 LLVMContext::MD_noalias, LLVMContext::MD_range, 1804 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 1805 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 1806 LLVMContext::MD_dereferenceable, 1807 LLVMContext::MD_dereferenceable_or_null}; 1808 combineMetadata(K, J, KnownIDs); 1809 } 1810 1811 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1812 DominatorTree &DT, 1813 const BasicBlockEdge &Root) { 1814 assert(From->getType() == To->getType()); 1815 1816 unsigned Count = 0; 1817 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1818 UI != UE; ) { 1819 Use &U = *UI++; 1820 if (DT.dominates(Root, U)) { 1821 U.set(To); 1822 DEBUG(dbgs() << "Replace dominated use of '" 1823 << From->getName() << "' as " 1824 << *To << " in " << *U << "\n"); 1825 ++Count; 1826 } 1827 } 1828 return Count; 1829 } 1830 1831 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1832 DominatorTree &DT, 1833 const BasicBlock *BB) { 1834 assert(From->getType() == To->getType()); 1835 1836 unsigned Count = 0; 1837 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1838 UI != UE;) { 1839 Use &U = *UI++; 1840 auto *I = cast<Instruction>(U.getUser()); 1841 if (DT.properlyDominates(BB, I->getParent())) { 1842 U.set(To); 1843 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1844 << *To << " in " << *U << "\n"); 1845 ++Count; 1846 } 1847 } 1848 return Count; 1849 } 1850 1851 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) { 1852 // Check if the function is specifically marked as a gc leaf function. 1853 if (CS.hasFnAttr("gc-leaf-function")) 1854 return true; 1855 if (const Function *F = CS.getCalledFunction()) { 1856 if (F->hasFnAttribute("gc-leaf-function")) 1857 return true; 1858 1859 if (auto IID = F->getIntrinsicID()) 1860 // Most LLVM intrinsics do not take safepoints. 1861 return IID != Intrinsic::experimental_gc_statepoint && 1862 IID != Intrinsic::experimental_deoptimize; 1863 } 1864 1865 return false; 1866 } 1867 1868 namespace { 1869 /// A potential constituent of a bitreverse or bswap expression. See 1870 /// collectBitParts for a fuller explanation. 1871 struct BitPart { 1872 BitPart(Value *P, unsigned BW) : Provider(P) { 1873 Provenance.resize(BW); 1874 } 1875 1876 /// The Value that this is a bitreverse/bswap of. 1877 Value *Provider; 1878 /// The "provenance" of each bit. Provenance[A] = B means that bit A 1879 /// in Provider becomes bit B in the result of this expression. 1880 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 1881 1882 enum { Unset = -1 }; 1883 }; 1884 } // end anonymous namespace 1885 1886 /// Analyze the specified subexpression and see if it is capable of providing 1887 /// pieces of a bswap or bitreverse. The subexpression provides a potential 1888 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 1889 /// the output of the expression came from a corresponding bit in some other 1890 /// value. This function is recursive, and the end result is a mapping of 1891 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 1892 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 1893 /// 1894 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 1895 /// that the expression deposits the low byte of %X into the high byte of the 1896 /// result and that all other bits are zero. This expression is accepted and a 1897 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 1898 /// [0-7]. 1899 /// 1900 /// To avoid revisiting values, the BitPart results are memoized into the 1901 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 1902 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 1903 /// store BitParts objects, not pointers. As we need the concept of a nullptr 1904 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 1905 /// type instead to provide the same functionality. 1906 /// 1907 /// Because we pass around references into \c BPS, we must use a container that 1908 /// does not invalidate internal references (std::map instead of DenseMap). 1909 /// 1910 static const Optional<BitPart> & 1911 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 1912 std::map<Value *, Optional<BitPart>> &BPS) { 1913 auto I = BPS.find(V); 1914 if (I != BPS.end()) 1915 return I->second; 1916 1917 auto &Result = BPS[V] = None; 1918 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1919 1920 if (Instruction *I = dyn_cast<Instruction>(V)) { 1921 // If this is an or instruction, it may be an inner node of the bswap. 1922 if (I->getOpcode() == Instruction::Or) { 1923 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 1924 MatchBitReversals, BPS); 1925 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 1926 MatchBitReversals, BPS); 1927 if (!A || !B) 1928 return Result; 1929 1930 // Try and merge the two together. 1931 if (!A->Provider || A->Provider != B->Provider) 1932 return Result; 1933 1934 Result = BitPart(A->Provider, BitWidth); 1935 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 1936 if (A->Provenance[i] != BitPart::Unset && 1937 B->Provenance[i] != BitPart::Unset && 1938 A->Provenance[i] != B->Provenance[i]) 1939 return Result = None; 1940 1941 if (A->Provenance[i] == BitPart::Unset) 1942 Result->Provenance[i] = B->Provenance[i]; 1943 else 1944 Result->Provenance[i] = A->Provenance[i]; 1945 } 1946 1947 return Result; 1948 } 1949 1950 // If this is a logical shift by a constant, recurse then shift the result. 1951 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 1952 unsigned BitShift = 1953 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 1954 // Ensure the shift amount is defined. 1955 if (BitShift > BitWidth) 1956 return Result; 1957 1958 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1959 MatchBitReversals, BPS); 1960 if (!Res) 1961 return Result; 1962 Result = Res; 1963 1964 // Perform the "shift" on BitProvenance. 1965 auto &P = Result->Provenance; 1966 if (I->getOpcode() == Instruction::Shl) { 1967 P.erase(std::prev(P.end(), BitShift), P.end()); 1968 P.insert(P.begin(), BitShift, BitPart::Unset); 1969 } else { 1970 P.erase(P.begin(), std::next(P.begin(), BitShift)); 1971 P.insert(P.end(), BitShift, BitPart::Unset); 1972 } 1973 1974 return Result; 1975 } 1976 1977 // If this is a logical 'and' with a mask that clears bits, recurse then 1978 // unset the appropriate bits. 1979 if (I->getOpcode() == Instruction::And && 1980 isa<ConstantInt>(I->getOperand(1))) { 1981 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 1982 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 1983 1984 // Check that the mask allows a multiple of 8 bits for a bswap, for an 1985 // early exit. 1986 unsigned NumMaskedBits = AndMask.countPopulation(); 1987 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 1988 return Result; 1989 1990 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1991 MatchBitReversals, BPS); 1992 if (!Res) 1993 return Result; 1994 Result = Res; 1995 1996 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 1997 // If the AndMask is zero for this bit, clear the bit. 1998 if ((AndMask & Bit) == 0) 1999 Result->Provenance[i] = BitPart::Unset; 2000 return Result; 2001 } 2002 2003 // If this is a zext instruction zero extend the result. 2004 if (I->getOpcode() == Instruction::ZExt) { 2005 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2006 MatchBitReversals, BPS); 2007 if (!Res) 2008 return Result; 2009 2010 Result = BitPart(Res->Provider, BitWidth); 2011 auto NarrowBitWidth = 2012 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2013 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2014 Result->Provenance[i] = Res->Provenance[i]; 2015 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2016 Result->Provenance[i] = BitPart::Unset; 2017 return Result; 2018 } 2019 } 2020 2021 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2022 // the input value to the bswap/bitreverse. 2023 Result = BitPart(V, BitWidth); 2024 for (unsigned i = 0; i < BitWidth; ++i) 2025 Result->Provenance[i] = i; 2026 return Result; 2027 } 2028 2029 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2030 unsigned BitWidth) { 2031 if (From % 8 != To % 8) 2032 return false; 2033 // Convert from bit indices to byte indices and check for a byte reversal. 2034 From >>= 3; 2035 To >>= 3; 2036 BitWidth >>= 3; 2037 return From == BitWidth - To - 1; 2038 } 2039 2040 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2041 unsigned BitWidth) { 2042 return From == BitWidth - To - 1; 2043 } 2044 2045 /// Given an OR instruction, check to see if this is a bitreverse 2046 /// idiom. If so, insert the new intrinsic and return true. 2047 bool llvm::recognizeBSwapOrBitReverseIdiom( 2048 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2049 SmallVectorImpl<Instruction *> &InsertedInsts) { 2050 if (Operator::getOpcode(I) != Instruction::Or) 2051 return false; 2052 if (!MatchBSwaps && !MatchBitReversals) 2053 return false; 2054 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2055 if (!ITy || ITy->getBitWidth() > 128) 2056 return false; // Can't do vectors or integers > 128 bits. 2057 unsigned BW = ITy->getBitWidth(); 2058 2059 unsigned DemandedBW = BW; 2060 IntegerType *DemandedTy = ITy; 2061 if (I->hasOneUse()) { 2062 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2063 DemandedTy = cast<IntegerType>(Trunc->getType()); 2064 DemandedBW = DemandedTy->getBitWidth(); 2065 } 2066 } 2067 2068 // Try to find all the pieces corresponding to the bswap. 2069 std::map<Value *, Optional<BitPart>> BPS; 2070 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2071 if (!Res) 2072 return false; 2073 auto &BitProvenance = Res->Provenance; 2074 2075 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2076 // only byteswap values with an even number of bytes. 2077 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2078 for (unsigned i = 0; i < DemandedBW; ++i) { 2079 OKForBSwap &= 2080 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2081 OKForBitReverse &= 2082 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2083 } 2084 2085 Intrinsic::ID Intrin; 2086 if (OKForBSwap && MatchBSwaps) 2087 Intrin = Intrinsic::bswap; 2088 else if (OKForBitReverse && MatchBitReversals) 2089 Intrin = Intrinsic::bitreverse; 2090 else 2091 return false; 2092 2093 if (ITy != DemandedTy) { 2094 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2095 Value *Provider = Res->Provider; 2096 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2097 // We may need to truncate the provider. 2098 if (DemandedTy != ProviderTy) { 2099 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2100 "trunc", I); 2101 InsertedInsts.push_back(Trunc); 2102 Provider = Trunc; 2103 } 2104 auto *CI = CallInst::Create(F, Provider, "rev", I); 2105 InsertedInsts.push_back(CI); 2106 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2107 InsertedInsts.push_back(ExtInst); 2108 return true; 2109 } 2110 2111 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2112 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2113 return true; 2114 } 2115 2116 // CodeGen has special handling for some string functions that may replace 2117 // them with target-specific intrinsics. Since that'd skip our interceptors 2118 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2119 // we mark affected calls as NoBuiltin, which will disable optimization 2120 // in CodeGen. 2121 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2122 CallInst *CI, const TargetLibraryInfo *TLI) { 2123 Function *F = CI->getCalledFunction(); 2124 LibFunc Func; 2125 if (F && !F->hasLocalLinkage() && F->hasName() && 2126 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2127 !F->doesNotAccessMemory()) 2128 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2129 } 2130