1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/AssumeBundleQueries.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/LazyValueInfo.h" 34 #include "llvm/Analysis/MemoryBuiltins.h" 35 #include "llvm/Analysis/MemorySSAUpdater.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/BinaryFormat/Dwarf.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/PseudoProbe.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/Support/Casting.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/ErrorHandling.h" 77 #include "llvm/Support/KnownBits.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 80 #include "llvm/Transforms/Utils/ValueMapper.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <climits> 84 #include <cstdint> 85 #include <iterator> 86 #include <map> 87 #include <utility> 88 89 using namespace llvm; 90 using namespace llvm::PatternMatch; 91 92 #define DEBUG_TYPE "local" 93 94 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 95 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 96 97 static cl::opt<bool> PHICSEDebugHash( 98 "phicse-debug-hash", 99 #ifdef EXPENSIVE_CHECKS 100 cl::init(true), 101 #else 102 cl::init(false), 103 #endif 104 cl::Hidden, 105 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 106 "function is well-behaved w.r.t. its isEqual predicate")); 107 108 static cl::opt<unsigned> PHICSENumPHISmallSize( 109 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 110 cl::desc( 111 "When the basic block contains not more than this number of PHI nodes, " 112 "perform a (faster!) exhaustive search instead of set-driven one.")); 113 114 // Max recursion depth for collectBitParts used when detecting bswap and 115 // bitreverse idioms 116 static const unsigned BitPartRecursionMaxDepth = 64; 117 118 //===----------------------------------------------------------------------===// 119 // Local constant propagation. 120 // 121 122 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 123 /// constant value, convert it into an unconditional branch to the constant 124 /// destination. This is a nontrivial operation because the successors of this 125 /// basic block must have their PHI nodes updated. 126 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 127 /// conditions and indirectbr addresses this might make dead if 128 /// DeleteDeadConditions is true. 129 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 130 const TargetLibraryInfo *TLI, 131 DomTreeUpdater *DTU) { 132 Instruction *T = BB->getTerminator(); 133 IRBuilder<> Builder(T); 134 135 // Branch - See if we are conditional jumping on constant 136 if (auto *BI = dyn_cast<BranchInst>(T)) { 137 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 138 139 BasicBlock *Dest1 = BI->getSuccessor(0); 140 BasicBlock *Dest2 = BI->getSuccessor(1); 141 142 if (Dest2 == Dest1) { // Conditional branch to same location? 143 // This branch matches something like this: 144 // br bool %cond, label %Dest, label %Dest 145 // and changes it into: br label %Dest 146 147 // Let the basic block know that we are letting go of one copy of it. 148 assert(BI->getParent() && "Terminator not inserted in block!"); 149 Dest1->removePredecessor(BI->getParent()); 150 151 // Replace the conditional branch with an unconditional one. 152 Builder.CreateBr(Dest1); 153 Value *Cond = BI->getCondition(); 154 BI->eraseFromParent(); 155 if (DeleteDeadConditions) 156 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 157 return true; 158 } 159 160 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 161 // Are we branching on constant? 162 // YES. Change to unconditional branch... 163 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 164 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 165 166 // Let the basic block know that we are letting go of it. Based on this, 167 // it will adjust it's PHI nodes. 168 OldDest->removePredecessor(BB); 169 170 // Replace the conditional branch with an unconditional one. 171 Builder.CreateBr(Destination); 172 BI->eraseFromParent(); 173 if (DTU) 174 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 175 return true; 176 } 177 178 return false; 179 } 180 181 if (auto *SI = dyn_cast<SwitchInst>(T)) { 182 // If we are switching on a constant, we can convert the switch to an 183 // unconditional branch. 184 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 185 BasicBlock *DefaultDest = SI->getDefaultDest(); 186 BasicBlock *TheOnlyDest = DefaultDest; 187 188 // If the default is unreachable, ignore it when searching for TheOnlyDest. 189 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 190 SI->getNumCases() > 0) { 191 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 192 } 193 194 bool Changed = false; 195 196 // Figure out which case it goes to. 197 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 198 // Found case matching a constant operand? 199 if (i->getCaseValue() == CI) { 200 TheOnlyDest = i->getCaseSuccessor(); 201 break; 202 } 203 204 // Check to see if this branch is going to the same place as the default 205 // dest. If so, eliminate it as an explicit compare. 206 if (i->getCaseSuccessor() == DefaultDest) { 207 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 208 unsigned NCases = SI->getNumCases(); 209 // Fold the case metadata into the default if there will be any branches 210 // left, unless the metadata doesn't match the switch. 211 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 212 // Collect branch weights into a vector. 213 SmallVector<uint32_t, 8> Weights; 214 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 215 ++MD_i) { 216 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 217 Weights.push_back(CI->getValue().getZExtValue()); 218 } 219 // Merge weight of this case to the default weight. 220 unsigned idx = i->getCaseIndex(); 221 Weights[0] += Weights[idx+1]; 222 // Remove weight for this case. 223 std::swap(Weights[idx+1], Weights.back()); 224 Weights.pop_back(); 225 SI->setMetadata(LLVMContext::MD_prof, 226 MDBuilder(BB->getContext()). 227 createBranchWeights(Weights)); 228 } 229 // Remove this entry. 230 BasicBlock *ParentBB = SI->getParent(); 231 DefaultDest->removePredecessor(ParentBB); 232 i = SI->removeCase(i); 233 e = SI->case_end(); 234 Changed = true; 235 continue; 236 } 237 238 // Otherwise, check to see if the switch only branches to one destination. 239 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 240 // destinations. 241 if (i->getCaseSuccessor() != TheOnlyDest) 242 TheOnlyDest = nullptr; 243 244 // Increment this iterator as we haven't removed the case. 245 ++i; 246 } 247 248 if (CI && !TheOnlyDest) { 249 // Branching on a constant, but not any of the cases, go to the default 250 // successor. 251 TheOnlyDest = SI->getDefaultDest(); 252 } 253 254 // If we found a single destination that we can fold the switch into, do so 255 // now. 256 if (TheOnlyDest) { 257 // Insert the new branch. 258 Builder.CreateBr(TheOnlyDest); 259 BasicBlock *BB = SI->getParent(); 260 261 SmallSet<BasicBlock *, 8> RemovedSuccessors; 262 263 // Remove entries from PHI nodes which we no longer branch to... 264 BasicBlock *SuccToKeep = TheOnlyDest; 265 for (BasicBlock *Succ : successors(SI)) { 266 if (DTU && Succ != TheOnlyDest) 267 RemovedSuccessors.insert(Succ); 268 // Found case matching a constant operand? 269 if (Succ == SuccToKeep) { 270 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 271 } else { 272 Succ->removePredecessor(BB); 273 } 274 } 275 276 // Delete the old switch. 277 Value *Cond = SI->getCondition(); 278 SI->eraseFromParent(); 279 if (DeleteDeadConditions) 280 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 281 if (DTU) { 282 std::vector<DominatorTree::UpdateType> Updates; 283 Updates.reserve(RemovedSuccessors.size()); 284 for (auto *RemovedSuccessor : RemovedSuccessors) 285 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 286 DTU->applyUpdates(Updates); 287 } 288 return true; 289 } 290 291 if (SI->getNumCases() == 1) { 292 // Otherwise, we can fold this switch into a conditional branch 293 // instruction if it has only one non-default destination. 294 auto FirstCase = *SI->case_begin(); 295 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 296 FirstCase.getCaseValue(), "cond"); 297 298 // Insert the new branch. 299 BranchInst *NewBr = Builder.CreateCondBr(Cond, 300 FirstCase.getCaseSuccessor(), 301 SI->getDefaultDest()); 302 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 303 if (MD && MD->getNumOperands() == 3) { 304 ConstantInt *SICase = 305 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 306 ConstantInt *SIDef = 307 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 308 assert(SICase && SIDef); 309 // The TrueWeight should be the weight for the single case of SI. 310 NewBr->setMetadata(LLVMContext::MD_prof, 311 MDBuilder(BB->getContext()). 312 createBranchWeights(SICase->getValue().getZExtValue(), 313 SIDef->getValue().getZExtValue())); 314 } 315 316 // Update make.implicit metadata to the newly-created conditional branch. 317 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 318 if (MakeImplicitMD) 319 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 320 321 // Delete the old switch. 322 SI->eraseFromParent(); 323 return true; 324 } 325 return Changed; 326 } 327 328 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 329 // indirectbr blockaddress(@F, @BB) -> br label @BB 330 if (auto *BA = 331 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 332 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 333 SmallSet<BasicBlock *, 8> RemovedSuccessors; 334 335 // Insert the new branch. 336 Builder.CreateBr(TheOnlyDest); 337 338 BasicBlock *SuccToKeep = TheOnlyDest; 339 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 340 BasicBlock *DestBB = IBI->getDestination(i); 341 if (DTU && DestBB != TheOnlyDest) 342 RemovedSuccessors.insert(DestBB); 343 if (IBI->getDestination(i) == SuccToKeep) { 344 SuccToKeep = nullptr; 345 } else { 346 DestBB->removePredecessor(BB); 347 } 348 } 349 Value *Address = IBI->getAddress(); 350 IBI->eraseFromParent(); 351 if (DeleteDeadConditions) 352 // Delete pointer cast instructions. 353 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 354 355 // Also zap the blockaddress constant if there are no users remaining, 356 // otherwise the destination is still marked as having its address taken. 357 if (BA->use_empty()) 358 BA->destroyConstant(); 359 360 // If we didn't find our destination in the IBI successor list, then we 361 // have undefined behavior. Replace the unconditional branch with an 362 // 'unreachable' instruction. 363 if (SuccToKeep) { 364 BB->getTerminator()->eraseFromParent(); 365 new UnreachableInst(BB->getContext(), BB); 366 } 367 368 if (DTU) { 369 std::vector<DominatorTree::UpdateType> Updates; 370 Updates.reserve(RemovedSuccessors.size()); 371 for (auto *RemovedSuccessor : RemovedSuccessors) 372 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 373 DTU->applyUpdates(Updates); 374 } 375 return true; 376 } 377 } 378 379 return false; 380 } 381 382 //===----------------------------------------------------------------------===// 383 // Local dead code elimination. 384 // 385 386 /// isInstructionTriviallyDead - Return true if the result produced by the 387 /// instruction is not used, and the instruction has no side effects. 388 /// 389 bool llvm::isInstructionTriviallyDead(Instruction *I, 390 const TargetLibraryInfo *TLI) { 391 if (!I->use_empty()) 392 return false; 393 return wouldInstructionBeTriviallyDead(I, TLI); 394 } 395 396 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 397 const TargetLibraryInfo *TLI) { 398 if (I->isTerminator()) 399 return false; 400 401 // We don't want the landingpad-like instructions removed by anything this 402 // general. 403 if (I->isEHPad()) 404 return false; 405 406 // We don't want debug info removed by anything this general, unless 407 // debug info is empty. 408 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 409 if (DDI->getAddress()) 410 return false; 411 return true; 412 } 413 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 414 if (DVI->hasArgList() || DVI->getValue(0)) 415 return false; 416 return true; 417 } 418 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 419 if (DLI->getLabel()) 420 return false; 421 return true; 422 } 423 424 if (!I->willReturn()) 425 return false; 426 427 if (!I->mayHaveSideEffects()) 428 return true; 429 430 // Special case intrinsics that "may have side effects" but can be deleted 431 // when dead. 432 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 433 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 434 if (II->getIntrinsicID() == Intrinsic::stacksave || 435 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 436 return true; 437 438 if (II->isLifetimeStartOrEnd()) { 439 auto *Arg = II->getArgOperand(1); 440 // Lifetime intrinsics are dead when their right-hand is undef. 441 if (isa<UndefValue>(Arg)) 442 return true; 443 // If the right-hand is an alloc, global, or argument and the only uses 444 // are lifetime intrinsics then the intrinsics are dead. 445 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 446 return llvm::all_of(Arg->uses(), [](Use &Use) { 447 if (IntrinsicInst *IntrinsicUse = 448 dyn_cast<IntrinsicInst>(Use.getUser())) 449 return IntrinsicUse->isLifetimeStartOrEnd(); 450 return false; 451 }); 452 return false; 453 } 454 455 // Assumptions are dead if their condition is trivially true. Guards on 456 // true are operationally no-ops. In the future we can consider more 457 // sophisticated tradeoffs for guards considering potential for check 458 // widening, but for now we keep things simple. 459 if ((II->getIntrinsicID() == Intrinsic::assume && 460 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || 461 II->getIntrinsicID() == Intrinsic::experimental_guard) { 462 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 463 return !Cond->isZero(); 464 465 return false; 466 } 467 } 468 469 if (isAllocLikeFn(I, TLI)) 470 return true; 471 472 if (CallInst *CI = isFreeCall(I, TLI)) 473 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 474 return C->isNullValue() || isa<UndefValue>(C); 475 476 if (auto *Call = dyn_cast<CallBase>(I)) 477 if (isMathLibCallNoop(Call, TLI)) 478 return true; 479 480 return false; 481 } 482 483 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 484 /// trivially dead instruction, delete it. If that makes any of its operands 485 /// trivially dead, delete them too, recursively. Return true if any 486 /// instructions were deleted. 487 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 488 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 489 std::function<void(Value *)> AboutToDeleteCallback) { 490 Instruction *I = dyn_cast<Instruction>(V); 491 if (!I || !isInstructionTriviallyDead(I, TLI)) 492 return false; 493 494 SmallVector<WeakTrackingVH, 16> DeadInsts; 495 DeadInsts.push_back(I); 496 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 497 AboutToDeleteCallback); 498 499 return true; 500 } 501 502 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 503 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 504 MemorySSAUpdater *MSSAU, 505 std::function<void(Value *)> AboutToDeleteCallback) { 506 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 507 for (; S != E; ++S) { 508 auto *I = cast<Instruction>(DeadInsts[S]); 509 if (!isInstructionTriviallyDead(I)) { 510 DeadInsts[S] = nullptr; 511 ++Alive; 512 } 513 } 514 if (Alive == E) 515 return false; 516 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 517 AboutToDeleteCallback); 518 return true; 519 } 520 521 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 522 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 523 MemorySSAUpdater *MSSAU, 524 std::function<void(Value *)> AboutToDeleteCallback) { 525 // Process the dead instruction list until empty. 526 while (!DeadInsts.empty()) { 527 Value *V = DeadInsts.pop_back_val(); 528 Instruction *I = cast_or_null<Instruction>(V); 529 if (!I) 530 continue; 531 assert(isInstructionTriviallyDead(I, TLI) && 532 "Live instruction found in dead worklist!"); 533 assert(I->use_empty() && "Instructions with uses are not dead."); 534 535 // Don't lose the debug info while deleting the instructions. 536 salvageDebugInfo(*I); 537 538 if (AboutToDeleteCallback) 539 AboutToDeleteCallback(I); 540 541 // Null out all of the instruction's operands to see if any operand becomes 542 // dead as we go. 543 for (Use &OpU : I->operands()) { 544 Value *OpV = OpU.get(); 545 OpU.set(nullptr); 546 547 if (!OpV->use_empty()) 548 continue; 549 550 // If the operand is an instruction that became dead as we nulled out the 551 // operand, and if it is 'trivially' dead, delete it in a future loop 552 // iteration. 553 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 554 if (isInstructionTriviallyDead(OpI, TLI)) 555 DeadInsts.push_back(OpI); 556 } 557 if (MSSAU) 558 MSSAU->removeMemoryAccess(I); 559 560 I->eraseFromParent(); 561 } 562 } 563 564 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 565 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 566 findDbgUsers(DbgUsers, I); 567 for (auto *DII : DbgUsers) { 568 Value *Undef = UndefValue::get(I->getType()); 569 DII->replaceVariableLocationOp(I, Undef); 570 } 571 return !DbgUsers.empty(); 572 } 573 574 /// areAllUsesEqual - Check whether the uses of a value are all the same. 575 /// This is similar to Instruction::hasOneUse() except this will also return 576 /// true when there are no uses or multiple uses that all refer to the same 577 /// value. 578 static bool areAllUsesEqual(Instruction *I) { 579 Value::user_iterator UI = I->user_begin(); 580 Value::user_iterator UE = I->user_end(); 581 if (UI == UE) 582 return true; 583 584 User *TheUse = *UI; 585 for (++UI; UI != UE; ++UI) { 586 if (*UI != TheUse) 587 return false; 588 } 589 return true; 590 } 591 592 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 593 /// dead PHI node, due to being a def-use chain of single-use nodes that 594 /// either forms a cycle or is terminated by a trivially dead instruction, 595 /// delete it. If that makes any of its operands trivially dead, delete them 596 /// too, recursively. Return true if a change was made. 597 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 598 const TargetLibraryInfo *TLI, 599 llvm::MemorySSAUpdater *MSSAU) { 600 SmallPtrSet<Instruction*, 4> Visited; 601 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 602 I = cast<Instruction>(*I->user_begin())) { 603 if (I->use_empty()) 604 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 605 606 // If we find an instruction more than once, we're on a cycle that 607 // won't prove fruitful. 608 if (!Visited.insert(I).second) { 609 // Break the cycle and delete the instruction and its operands. 610 I->replaceAllUsesWith(UndefValue::get(I->getType())); 611 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 612 return true; 613 } 614 } 615 return false; 616 } 617 618 static bool 619 simplifyAndDCEInstruction(Instruction *I, 620 SmallSetVector<Instruction *, 16> &WorkList, 621 const DataLayout &DL, 622 const TargetLibraryInfo *TLI) { 623 if (isInstructionTriviallyDead(I, TLI)) { 624 salvageDebugInfo(*I); 625 626 // Null out all of the instruction's operands to see if any operand becomes 627 // dead as we go. 628 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 629 Value *OpV = I->getOperand(i); 630 I->setOperand(i, nullptr); 631 632 if (!OpV->use_empty() || I == OpV) 633 continue; 634 635 // If the operand is an instruction that became dead as we nulled out the 636 // operand, and if it is 'trivially' dead, delete it in a future loop 637 // iteration. 638 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 639 if (isInstructionTriviallyDead(OpI, TLI)) 640 WorkList.insert(OpI); 641 } 642 643 I->eraseFromParent(); 644 645 return true; 646 } 647 648 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 649 // Add the users to the worklist. CAREFUL: an instruction can use itself, 650 // in the case of a phi node. 651 for (User *U : I->users()) { 652 if (U != I) { 653 WorkList.insert(cast<Instruction>(U)); 654 } 655 } 656 657 // Replace the instruction with its simplified value. 658 bool Changed = false; 659 if (!I->use_empty()) { 660 I->replaceAllUsesWith(SimpleV); 661 Changed = true; 662 } 663 if (isInstructionTriviallyDead(I, TLI)) { 664 I->eraseFromParent(); 665 Changed = true; 666 } 667 return Changed; 668 } 669 return false; 670 } 671 672 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 673 /// simplify any instructions in it and recursively delete dead instructions. 674 /// 675 /// This returns true if it changed the code, note that it can delete 676 /// instructions in other blocks as well in this block. 677 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 678 const TargetLibraryInfo *TLI) { 679 bool MadeChange = false; 680 const DataLayout &DL = BB->getModule()->getDataLayout(); 681 682 #ifndef NDEBUG 683 // In debug builds, ensure that the terminator of the block is never replaced 684 // or deleted by these simplifications. The idea of simplification is that it 685 // cannot introduce new instructions, and there is no way to replace the 686 // terminator of a block without introducing a new instruction. 687 AssertingVH<Instruction> TerminatorVH(&BB->back()); 688 #endif 689 690 SmallSetVector<Instruction *, 16> WorkList; 691 // Iterate over the original function, only adding insts to the worklist 692 // if they actually need to be revisited. This avoids having to pre-init 693 // the worklist with the entire function's worth of instructions. 694 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 695 BI != E;) { 696 assert(!BI->isTerminator()); 697 Instruction *I = &*BI; 698 ++BI; 699 700 // We're visiting this instruction now, so make sure it's not in the 701 // worklist from an earlier visit. 702 if (!WorkList.count(I)) 703 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 704 } 705 706 while (!WorkList.empty()) { 707 Instruction *I = WorkList.pop_back_val(); 708 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 709 } 710 return MadeChange; 711 } 712 713 //===----------------------------------------------------------------------===// 714 // Control Flow Graph Restructuring. 715 // 716 717 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 718 DomTreeUpdater *DTU) { 719 720 // If BB has single-entry PHI nodes, fold them. 721 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 722 Value *NewVal = PN->getIncomingValue(0); 723 // Replace self referencing PHI with undef, it must be dead. 724 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 725 PN->replaceAllUsesWith(NewVal); 726 PN->eraseFromParent(); 727 } 728 729 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 730 assert(PredBB && "Block doesn't have a single predecessor!"); 731 732 bool ReplaceEntryBB = false; 733 if (PredBB == &DestBB->getParent()->getEntryBlock()) 734 ReplaceEntryBB = true; 735 736 // DTU updates: Collect all the edges that enter 737 // PredBB. These dominator edges will be redirected to DestBB. 738 SmallVector<DominatorTree::UpdateType, 32> Updates; 739 740 if (DTU) { 741 SmallPtrSet<BasicBlock *, 2> PredsOfPredBB(pred_begin(PredBB), 742 pred_end(PredBB)); 743 Updates.reserve(Updates.size() + 2 * PredsOfPredBB.size() + 1); 744 for (BasicBlock *PredOfPredBB : PredsOfPredBB) 745 // This predecessor of PredBB may already have DestBB as a successor. 746 if (PredOfPredBB != PredBB) 747 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 748 for (BasicBlock *PredOfPredBB : PredsOfPredBB) 749 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 750 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 751 } 752 753 // Zap anything that took the address of DestBB. Not doing this will give the 754 // address an invalid value. 755 if (DestBB->hasAddressTaken()) { 756 BlockAddress *BA = BlockAddress::get(DestBB); 757 Constant *Replacement = 758 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 759 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 760 BA->getType())); 761 BA->destroyConstant(); 762 } 763 764 // Anything that branched to PredBB now branches to DestBB. 765 PredBB->replaceAllUsesWith(DestBB); 766 767 // Splice all the instructions from PredBB to DestBB. 768 PredBB->getTerminator()->eraseFromParent(); 769 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 770 new UnreachableInst(PredBB->getContext(), PredBB); 771 772 // If the PredBB is the entry block of the function, move DestBB up to 773 // become the entry block after we erase PredBB. 774 if (ReplaceEntryBB) 775 DestBB->moveAfter(PredBB); 776 777 if (DTU) { 778 assert(PredBB->getInstList().size() == 1 && 779 isa<UnreachableInst>(PredBB->getTerminator()) && 780 "The successor list of PredBB isn't empty before " 781 "applying corresponding DTU updates."); 782 DTU->applyUpdatesPermissive(Updates); 783 DTU->deleteBB(PredBB); 784 // Recalculation of DomTree is needed when updating a forward DomTree and 785 // the Entry BB is replaced. 786 if (ReplaceEntryBB && DTU->hasDomTree()) { 787 // The entry block was removed and there is no external interface for 788 // the dominator tree to be notified of this change. In this corner-case 789 // we recalculate the entire tree. 790 DTU->recalculate(*(DestBB->getParent())); 791 } 792 } 793 794 else { 795 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 796 } 797 } 798 799 /// Return true if we can choose one of these values to use in place of the 800 /// other. Note that we will always choose the non-undef value to keep. 801 static bool CanMergeValues(Value *First, Value *Second) { 802 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 803 } 804 805 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 806 /// branch to Succ, into Succ. 807 /// 808 /// Assumption: Succ is the single successor for BB. 809 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 810 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 811 812 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 813 << Succ->getName() << "\n"); 814 // Shortcut, if there is only a single predecessor it must be BB and merging 815 // is always safe 816 if (Succ->getSinglePredecessor()) return true; 817 818 // Make a list of the predecessors of BB 819 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 820 821 // Look at all the phi nodes in Succ, to see if they present a conflict when 822 // merging these blocks 823 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 824 PHINode *PN = cast<PHINode>(I); 825 826 // If the incoming value from BB is again a PHINode in 827 // BB which has the same incoming value for *PI as PN does, we can 828 // merge the phi nodes and then the blocks can still be merged 829 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 830 if (BBPN && BBPN->getParent() == BB) { 831 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 832 BasicBlock *IBB = PN->getIncomingBlock(PI); 833 if (BBPreds.count(IBB) && 834 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 835 PN->getIncomingValue(PI))) { 836 LLVM_DEBUG(dbgs() 837 << "Can't fold, phi node " << PN->getName() << " in " 838 << Succ->getName() << " is conflicting with " 839 << BBPN->getName() << " with regard to common predecessor " 840 << IBB->getName() << "\n"); 841 return false; 842 } 843 } 844 } else { 845 Value* Val = PN->getIncomingValueForBlock(BB); 846 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 847 // See if the incoming value for the common predecessor is equal to the 848 // one for BB, in which case this phi node will not prevent the merging 849 // of the block. 850 BasicBlock *IBB = PN->getIncomingBlock(PI); 851 if (BBPreds.count(IBB) && 852 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 853 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 854 << " in " << Succ->getName() 855 << " is conflicting with regard to common " 856 << "predecessor " << IBB->getName() << "\n"); 857 return false; 858 } 859 } 860 } 861 } 862 863 return true; 864 } 865 866 using PredBlockVector = SmallVector<BasicBlock *, 16>; 867 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 868 869 /// Determines the value to use as the phi node input for a block. 870 /// 871 /// Select between \p OldVal any value that we know flows from \p BB 872 /// to a particular phi on the basis of which one (if either) is not 873 /// undef. Update IncomingValues based on the selected value. 874 /// 875 /// \param OldVal The value we are considering selecting. 876 /// \param BB The block that the value flows in from. 877 /// \param IncomingValues A map from block-to-value for other phi inputs 878 /// that we have examined. 879 /// 880 /// \returns the selected value. 881 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 882 IncomingValueMap &IncomingValues) { 883 if (!isa<UndefValue>(OldVal)) { 884 assert((!IncomingValues.count(BB) || 885 IncomingValues.find(BB)->second == OldVal) && 886 "Expected OldVal to match incoming value from BB!"); 887 888 IncomingValues.insert(std::make_pair(BB, OldVal)); 889 return OldVal; 890 } 891 892 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 893 if (It != IncomingValues.end()) return It->second; 894 895 return OldVal; 896 } 897 898 /// Create a map from block to value for the operands of a 899 /// given phi. 900 /// 901 /// Create a map from block to value for each non-undef value flowing 902 /// into \p PN. 903 /// 904 /// \param PN The phi we are collecting the map for. 905 /// \param IncomingValues [out] The map from block to value for this phi. 906 static void gatherIncomingValuesToPhi(PHINode *PN, 907 IncomingValueMap &IncomingValues) { 908 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 909 BasicBlock *BB = PN->getIncomingBlock(i); 910 Value *V = PN->getIncomingValue(i); 911 912 if (!isa<UndefValue>(V)) 913 IncomingValues.insert(std::make_pair(BB, V)); 914 } 915 } 916 917 /// Replace the incoming undef values to a phi with the values 918 /// from a block-to-value map. 919 /// 920 /// \param PN The phi we are replacing the undefs in. 921 /// \param IncomingValues A map from block to value. 922 static void replaceUndefValuesInPhi(PHINode *PN, 923 const IncomingValueMap &IncomingValues) { 924 SmallVector<unsigned> TrueUndefOps; 925 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 926 Value *V = PN->getIncomingValue(i); 927 928 if (!isa<UndefValue>(V)) continue; 929 930 BasicBlock *BB = PN->getIncomingBlock(i); 931 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 932 933 // Keep track of undef/poison incoming values. Those must match, so we fix 934 // them up below if needed. 935 // Note: this is conservatively correct, but we could try harder and group 936 // the undef values per incoming basic block. 937 if (It == IncomingValues.end()) { 938 TrueUndefOps.push_back(i); 939 continue; 940 } 941 942 // There is a defined value for this incoming block, so map this undef 943 // incoming value to the defined value. 944 PN->setIncomingValue(i, It->second); 945 } 946 947 // If there are both undef and poison values incoming, then convert those 948 // values to undef. It is invalid to have different values for the same 949 // incoming block. 950 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 951 return isa<PoisonValue>(PN->getIncomingValue(i)); 952 }); 953 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 954 for (unsigned i : TrueUndefOps) 955 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 956 } 957 } 958 959 /// Replace a value flowing from a block to a phi with 960 /// potentially multiple instances of that value flowing from the 961 /// block's predecessors to the phi. 962 /// 963 /// \param BB The block with the value flowing into the phi. 964 /// \param BBPreds The predecessors of BB. 965 /// \param PN The phi that we are updating. 966 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 967 const PredBlockVector &BBPreds, 968 PHINode *PN) { 969 Value *OldVal = PN->removeIncomingValue(BB, false); 970 assert(OldVal && "No entry in PHI for Pred BB!"); 971 972 IncomingValueMap IncomingValues; 973 974 // We are merging two blocks - BB, and the block containing PN - and 975 // as a result we need to redirect edges from the predecessors of BB 976 // to go to the block containing PN, and update PN 977 // accordingly. Since we allow merging blocks in the case where the 978 // predecessor and successor blocks both share some predecessors, 979 // and where some of those common predecessors might have undef 980 // values flowing into PN, we want to rewrite those values to be 981 // consistent with the non-undef values. 982 983 gatherIncomingValuesToPhi(PN, IncomingValues); 984 985 // If this incoming value is one of the PHI nodes in BB, the new entries 986 // in the PHI node are the entries from the old PHI. 987 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 988 PHINode *OldValPN = cast<PHINode>(OldVal); 989 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 990 // Note that, since we are merging phi nodes and BB and Succ might 991 // have common predecessors, we could end up with a phi node with 992 // identical incoming branches. This will be cleaned up later (and 993 // will trigger asserts if we try to clean it up now, without also 994 // simplifying the corresponding conditional branch). 995 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 996 Value *PredVal = OldValPN->getIncomingValue(i); 997 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 998 IncomingValues); 999 1000 // And add a new incoming value for this predecessor for the 1001 // newly retargeted branch. 1002 PN->addIncoming(Selected, PredBB); 1003 } 1004 } else { 1005 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1006 // Update existing incoming values in PN for this 1007 // predecessor of BB. 1008 BasicBlock *PredBB = BBPreds[i]; 1009 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1010 IncomingValues); 1011 1012 // And add a new incoming value for this predecessor for the 1013 // newly retargeted branch. 1014 PN->addIncoming(Selected, PredBB); 1015 } 1016 } 1017 1018 replaceUndefValuesInPhi(PN, IncomingValues); 1019 } 1020 1021 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1022 DomTreeUpdater *DTU) { 1023 assert(BB != &BB->getParent()->getEntryBlock() && 1024 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1025 1026 // We can't eliminate infinite loops. 1027 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1028 if (BB == Succ) return false; 1029 1030 // Check to see if merging these blocks would cause conflicts for any of the 1031 // phi nodes in BB or Succ. If not, we can safely merge. 1032 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1033 1034 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1035 // has uses which will not disappear when the PHI nodes are merged. It is 1036 // possible to handle such cases, but difficult: it requires checking whether 1037 // BB dominates Succ, which is non-trivial to calculate in the case where 1038 // Succ has multiple predecessors. Also, it requires checking whether 1039 // constructing the necessary self-referential PHI node doesn't introduce any 1040 // conflicts; this isn't too difficult, but the previous code for doing this 1041 // was incorrect. 1042 // 1043 // Note that if this check finds a live use, BB dominates Succ, so BB is 1044 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1045 // folding the branch isn't profitable in that case anyway. 1046 if (!Succ->getSinglePredecessor()) { 1047 BasicBlock::iterator BBI = BB->begin(); 1048 while (isa<PHINode>(*BBI)) { 1049 for (Use &U : BBI->uses()) { 1050 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1051 if (PN->getIncomingBlock(U) != BB) 1052 return false; 1053 } else { 1054 return false; 1055 } 1056 } 1057 ++BBI; 1058 } 1059 } 1060 1061 // We cannot fold the block if it's a branch to an already present callbr 1062 // successor because that creates duplicate successors. 1063 for (BasicBlock *PredBB : predecessors(BB)) { 1064 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { 1065 if (Succ == CBI->getDefaultDest()) 1066 return false; 1067 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1068 if (Succ == CBI->getIndirectDest(i)) 1069 return false; 1070 } 1071 } 1072 1073 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1074 1075 SmallVector<DominatorTree::UpdateType, 32> Updates; 1076 if (DTU) { 1077 // All predecessors of BB will be moved to Succ. 1078 SmallPtrSet<BasicBlock *, 8> PredsOfBB(pred_begin(BB), pred_end(BB)); 1079 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); 1080 Updates.reserve(Updates.size() + 2 * PredsOfBB.size() + 1); 1081 for (auto *PredOfBB : PredsOfBB) 1082 // This predecessor of BB may already have Succ as a successor. 1083 if (!PredsOfSucc.contains(PredOfBB)) 1084 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1085 for (auto *PredOfBB : PredsOfBB) 1086 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1087 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1088 } 1089 1090 if (isa<PHINode>(Succ->begin())) { 1091 // If there is more than one pred of succ, and there are PHI nodes in 1092 // the successor, then we need to add incoming edges for the PHI nodes 1093 // 1094 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1095 1096 // Loop over all of the PHI nodes in the successor of BB. 1097 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1098 PHINode *PN = cast<PHINode>(I); 1099 1100 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1101 } 1102 } 1103 1104 if (Succ->getSinglePredecessor()) { 1105 // BB is the only predecessor of Succ, so Succ will end up with exactly 1106 // the same predecessors BB had. 1107 1108 // Copy over any phi, debug or lifetime instruction. 1109 BB->getTerminator()->eraseFromParent(); 1110 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1111 BB->getInstList()); 1112 } else { 1113 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1114 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1115 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1116 PN->eraseFromParent(); 1117 } 1118 } 1119 1120 // If the unconditional branch we replaced contains llvm.loop metadata, we 1121 // add the metadata to the branch instructions in the predecessors. 1122 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1123 Instruction *TI = BB->getTerminator(); 1124 if (TI) 1125 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1126 for (BasicBlock *Pred : predecessors(BB)) 1127 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1128 1129 // For AutoFDO, since BB is going to be removed, we won't be able to sample 1130 // it. To avoid assigning a zero weight for BB, move all its pseudo probes 1131 // into Succ and mark them dangling. This should allow the counts inference a 1132 // chance to get a more reasonable weight for BB. 1133 moveAndDanglePseudoProbes(BB, &*Succ->getFirstInsertionPt()); 1134 1135 // Everything that jumped to BB now goes to Succ. 1136 BB->replaceAllUsesWith(Succ); 1137 if (!Succ->hasName()) Succ->takeName(BB); 1138 1139 // Clear the successor list of BB to match updates applying to DTU later. 1140 if (BB->getTerminator()) 1141 BB->getInstList().pop_back(); 1142 new UnreachableInst(BB->getContext(), BB); 1143 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1144 "applying corresponding DTU updates."); 1145 1146 if (DTU) { 1147 DTU->applyUpdates(Updates); 1148 DTU->deleteBB(BB); 1149 } else { 1150 BB->eraseFromParent(); // Delete the old basic block. 1151 } 1152 return true; 1153 } 1154 1155 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1156 // This implementation doesn't currently consider undef operands 1157 // specially. Theoretically, two phis which are identical except for 1158 // one having an undef where the other doesn't could be collapsed. 1159 1160 bool Changed = false; 1161 1162 // Examine each PHI. 1163 // Note that increment of I must *NOT* be in the iteration_expression, since 1164 // we don't want to immediately advance when we restart from the beginning. 1165 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1166 ++I; 1167 // Is there an identical PHI node in this basic block? 1168 // Note that we only look in the upper square's triangle, 1169 // we already checked that the lower triangle PHI's aren't identical. 1170 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1171 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1172 continue; 1173 // A duplicate. Replace this PHI with the base PHI. 1174 ++NumPHICSEs; 1175 DuplicatePN->replaceAllUsesWith(PN); 1176 DuplicatePN->eraseFromParent(); 1177 Changed = true; 1178 1179 // The RAUW can change PHIs that we already visited. 1180 I = BB->begin(); 1181 break; // Start over from the beginning. 1182 } 1183 } 1184 return Changed; 1185 } 1186 1187 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1188 // This implementation doesn't currently consider undef operands 1189 // specially. Theoretically, two phis which are identical except for 1190 // one having an undef where the other doesn't could be collapsed. 1191 1192 struct PHIDenseMapInfo { 1193 static PHINode *getEmptyKey() { 1194 return DenseMapInfo<PHINode *>::getEmptyKey(); 1195 } 1196 1197 static PHINode *getTombstoneKey() { 1198 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1199 } 1200 1201 static bool isSentinel(PHINode *PN) { 1202 return PN == getEmptyKey() || PN == getTombstoneKey(); 1203 } 1204 1205 // WARNING: this logic must be kept in sync with 1206 // Instruction::isIdenticalToWhenDefined()! 1207 static unsigned getHashValueImpl(PHINode *PN) { 1208 // Compute a hash value on the operands. Instcombine will likely have 1209 // sorted them, which helps expose duplicates, but we have to check all 1210 // the operands to be safe in case instcombine hasn't run. 1211 return static_cast<unsigned>(hash_combine( 1212 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1213 hash_combine_range(PN->block_begin(), PN->block_end()))); 1214 } 1215 1216 static unsigned getHashValue(PHINode *PN) { 1217 #ifndef NDEBUG 1218 // If -phicse-debug-hash was specified, return a constant -- this 1219 // will force all hashing to collide, so we'll exhaustively search 1220 // the table for a match, and the assertion in isEqual will fire if 1221 // there's a bug causing equal keys to hash differently. 1222 if (PHICSEDebugHash) 1223 return 0; 1224 #endif 1225 return getHashValueImpl(PN); 1226 } 1227 1228 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1229 if (isSentinel(LHS) || isSentinel(RHS)) 1230 return LHS == RHS; 1231 return LHS->isIdenticalTo(RHS); 1232 } 1233 1234 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1235 // These comparisons are nontrivial, so assert that equality implies 1236 // hash equality (DenseMap demands this as an invariant). 1237 bool Result = isEqualImpl(LHS, RHS); 1238 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1239 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1240 return Result; 1241 } 1242 }; 1243 1244 // Set of unique PHINodes. 1245 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1246 PHISet.reserve(4 * PHICSENumPHISmallSize); 1247 1248 // Examine each PHI. 1249 bool Changed = false; 1250 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1251 auto Inserted = PHISet.insert(PN); 1252 if (!Inserted.second) { 1253 // A duplicate. Replace this PHI with its duplicate. 1254 ++NumPHICSEs; 1255 PN->replaceAllUsesWith(*Inserted.first); 1256 PN->eraseFromParent(); 1257 Changed = true; 1258 1259 // The RAUW can change PHIs that we already visited. Start over from the 1260 // beginning. 1261 PHISet.clear(); 1262 I = BB->begin(); 1263 } 1264 } 1265 1266 return Changed; 1267 } 1268 1269 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1270 if ( 1271 #ifndef NDEBUG 1272 !PHICSEDebugHash && 1273 #endif 1274 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1275 return EliminateDuplicatePHINodesNaiveImpl(BB); 1276 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1277 } 1278 1279 /// If the specified pointer points to an object that we control, try to modify 1280 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1281 /// the value after the operation, which may be lower than PrefAlign. 1282 /// 1283 /// Increating value alignment isn't often possible though. If alignment is 1284 /// important, a more reliable approach is to simply align all global variables 1285 /// and allocation instructions to their preferred alignment from the beginning. 1286 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1287 const DataLayout &DL) { 1288 V = V->stripPointerCasts(); 1289 1290 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1291 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1292 // than the current alignment, as the known bits calculation should have 1293 // already taken it into account. However, this is not always the case, 1294 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1295 // doesn't. 1296 Align CurrentAlign = AI->getAlign(); 1297 if (PrefAlign <= CurrentAlign) 1298 return CurrentAlign; 1299 1300 // If the preferred alignment is greater than the natural stack alignment 1301 // then don't round up. This avoids dynamic stack realignment. 1302 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1303 return CurrentAlign; 1304 AI->setAlignment(PrefAlign); 1305 return PrefAlign; 1306 } 1307 1308 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1309 // TODO: as above, this shouldn't be necessary. 1310 Align CurrentAlign = GO->getPointerAlignment(DL); 1311 if (PrefAlign <= CurrentAlign) 1312 return CurrentAlign; 1313 1314 // If there is a large requested alignment and we can, bump up the alignment 1315 // of the global. If the memory we set aside for the global may not be the 1316 // memory used by the final program then it is impossible for us to reliably 1317 // enforce the preferred alignment. 1318 if (!GO->canIncreaseAlignment()) 1319 return CurrentAlign; 1320 1321 GO->setAlignment(PrefAlign); 1322 return PrefAlign; 1323 } 1324 1325 return Align(1); 1326 } 1327 1328 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1329 const DataLayout &DL, 1330 const Instruction *CxtI, 1331 AssumptionCache *AC, 1332 const DominatorTree *DT) { 1333 assert(V->getType()->isPointerTy() && 1334 "getOrEnforceKnownAlignment expects a pointer!"); 1335 1336 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1337 unsigned TrailZ = Known.countMinTrailingZeros(); 1338 1339 // Avoid trouble with ridiculously large TrailZ values, such as 1340 // those computed from a null pointer. 1341 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1342 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1343 1344 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1345 1346 if (PrefAlign && *PrefAlign > Alignment) 1347 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1348 1349 // We don't need to make any adjustment. 1350 return Alignment; 1351 } 1352 1353 ///===---------------------------------------------------------------------===// 1354 /// Dbg Intrinsic utilities 1355 /// 1356 1357 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1358 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1359 DIExpression *DIExpr, 1360 PHINode *APN) { 1361 // Since we can't guarantee that the original dbg.declare instrinsic 1362 // is removed by LowerDbgDeclare(), we need to make sure that we are 1363 // not inserting the same dbg.value intrinsic over and over. 1364 SmallVector<DbgValueInst *, 1> DbgValues; 1365 findDbgValues(DbgValues, APN); 1366 for (auto *DVI : DbgValues) { 1367 assert(is_contained(DVI->getValues(), APN)); 1368 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1369 return true; 1370 } 1371 return false; 1372 } 1373 1374 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1375 /// (or fragment of the variable) described by \p DII. 1376 /// 1377 /// This is primarily intended as a helper for the different 1378 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1379 /// converted describes an alloca'd variable, so we need to use the 1380 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1381 /// identified as covering an n-bit fragment, if the store size of i1 is at 1382 /// least n bits. 1383 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1384 const DataLayout &DL = DII->getModule()->getDataLayout(); 1385 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1386 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1387 assert(!ValueSize.isScalable() && 1388 "Fragments don't work on scalable types."); 1389 return ValueSize.getFixedSize() >= *FragmentSize; 1390 } 1391 // We can't always calculate the size of the DI variable (e.g. if it is a 1392 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1393 // intead. 1394 if (DII->isAddressOfVariable()) { 1395 // DII should have exactly 1 location when it is an address. 1396 assert(DII->getNumVariableLocationOps() == 1 && 1397 "address of variable must have exactly 1 location operand."); 1398 if (auto *AI = 1399 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1400 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1401 assert(ValueSize.isScalable() == FragmentSize->isScalable() && 1402 "Both sizes should agree on the scalable flag."); 1403 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1404 } 1405 } 1406 } 1407 // Could not determine size of variable. Conservatively return false. 1408 return false; 1409 } 1410 1411 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1412 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1413 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1414 /// case this DebugLoc leaks into any adjacent instructions. 1415 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1416 // Original dbg.declare must have a location. 1417 DebugLoc DeclareLoc = DII->getDebugLoc(); 1418 MDNode *Scope = DeclareLoc.getScope(); 1419 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1420 // Produce an unknown location with the correct scope / inlinedAt fields. 1421 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1422 } 1423 1424 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1425 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1426 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1427 StoreInst *SI, DIBuilder &Builder) { 1428 assert(DII->isAddressOfVariable()); 1429 auto *DIVar = DII->getVariable(); 1430 assert(DIVar && "Missing variable"); 1431 auto *DIExpr = DII->getExpression(); 1432 Value *DV = SI->getValueOperand(); 1433 1434 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1435 1436 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1437 // FIXME: If storing to a part of the variable described by the dbg.declare, 1438 // then we want to insert a dbg.value for the corresponding fragment. 1439 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1440 << *DII << '\n'); 1441 // For now, when there is a store to parts of the variable (but we do not 1442 // know which part) we insert an dbg.value instrinsic to indicate that we 1443 // know nothing about the variable's content. 1444 DV = UndefValue::get(DV->getType()); 1445 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1446 return; 1447 } 1448 1449 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1450 } 1451 1452 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1453 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1454 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1455 LoadInst *LI, DIBuilder &Builder) { 1456 auto *DIVar = DII->getVariable(); 1457 auto *DIExpr = DII->getExpression(); 1458 assert(DIVar && "Missing variable"); 1459 1460 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1461 // FIXME: If only referring to a part of the variable described by the 1462 // dbg.declare, then we want to insert a dbg.value for the corresponding 1463 // fragment. 1464 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1465 << *DII << '\n'); 1466 return; 1467 } 1468 1469 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1470 1471 // We are now tracking the loaded value instead of the address. In the 1472 // future if multi-location support is added to the IR, it might be 1473 // preferable to keep tracking both the loaded value and the original 1474 // address in case the alloca can not be elided. 1475 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1476 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1477 DbgValue->insertAfter(LI); 1478 } 1479 1480 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1481 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1482 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1483 PHINode *APN, DIBuilder &Builder) { 1484 auto *DIVar = DII->getVariable(); 1485 auto *DIExpr = DII->getExpression(); 1486 assert(DIVar && "Missing variable"); 1487 1488 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1489 return; 1490 1491 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1492 // FIXME: If only referring to a part of the variable described by the 1493 // dbg.declare, then we want to insert a dbg.value for the corresponding 1494 // fragment. 1495 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1496 << *DII << '\n'); 1497 return; 1498 } 1499 1500 BasicBlock *BB = APN->getParent(); 1501 auto InsertionPt = BB->getFirstInsertionPt(); 1502 1503 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1504 1505 // The block may be a catchswitch block, which does not have a valid 1506 // insertion point. 1507 // FIXME: Insert dbg.value markers in the successors when appropriate. 1508 if (InsertionPt != BB->end()) 1509 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1510 } 1511 1512 /// Determine whether this alloca is either a VLA or an array. 1513 static bool isArray(AllocaInst *AI) { 1514 return AI->isArrayAllocation() || 1515 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1516 } 1517 1518 /// Determine whether this alloca is a structure. 1519 static bool isStructure(AllocaInst *AI) { 1520 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1521 } 1522 1523 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1524 /// of llvm.dbg.value intrinsics. 1525 bool llvm::LowerDbgDeclare(Function &F) { 1526 bool Changed = false; 1527 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1528 SmallVector<DbgDeclareInst *, 4> Dbgs; 1529 for (auto &FI : F) 1530 for (Instruction &BI : FI) 1531 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1532 Dbgs.push_back(DDI); 1533 1534 if (Dbgs.empty()) 1535 return Changed; 1536 1537 for (auto &I : Dbgs) { 1538 DbgDeclareInst *DDI = I; 1539 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1540 // If this is an alloca for a scalar variable, insert a dbg.value 1541 // at each load and store to the alloca and erase the dbg.declare. 1542 // The dbg.values allow tracking a variable even if it is not 1543 // stored on the stack, while the dbg.declare can only describe 1544 // the stack slot (and at a lexical-scope granularity). Later 1545 // passes will attempt to elide the stack slot. 1546 if (!AI || isArray(AI) || isStructure(AI)) 1547 continue; 1548 1549 // A volatile load/store means that the alloca can't be elided anyway. 1550 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1551 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1552 return LI->isVolatile(); 1553 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1554 return SI->isVolatile(); 1555 return false; 1556 })) 1557 continue; 1558 1559 SmallVector<const Value *, 8> WorkList; 1560 WorkList.push_back(AI); 1561 while (!WorkList.empty()) { 1562 const Value *V = WorkList.pop_back_val(); 1563 for (auto &AIUse : V->uses()) { 1564 User *U = AIUse.getUser(); 1565 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1566 if (AIUse.getOperandNo() == 1) 1567 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1568 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1569 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1570 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1571 // This is a call by-value or some other instruction that takes a 1572 // pointer to the variable. Insert a *value* intrinsic that describes 1573 // the variable by dereferencing the alloca. 1574 if (!CI->isLifetimeStartOrEnd()) { 1575 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1576 auto *DerefExpr = 1577 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1578 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1579 NewLoc, CI); 1580 } 1581 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1582 if (BI->getType()->isPointerTy()) 1583 WorkList.push_back(BI); 1584 } 1585 } 1586 } 1587 DDI->eraseFromParent(); 1588 Changed = true; 1589 } 1590 1591 if (Changed) 1592 for (BasicBlock &BB : F) 1593 RemoveRedundantDbgInstrs(&BB); 1594 1595 return Changed; 1596 } 1597 1598 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1599 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1600 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1601 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1602 if (InsertedPHIs.size() == 0) 1603 return; 1604 1605 // Map existing PHI nodes to their dbg.values. 1606 ValueToValueMapTy DbgValueMap; 1607 for (auto &I : *BB) { 1608 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1609 for (Value *V : DbgII->location_ops()) 1610 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 1611 DbgValueMap.insert({Loc, DbgII}); 1612 } 1613 } 1614 if (DbgValueMap.size() == 0) 1615 return; 1616 1617 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 1618 // so that if a dbg.value is being rewritten to use more than one of the 1619 // inserted PHIs in the same destination BB, we can update the same dbg.value 1620 // with all the new PHIs instead of creating one copy for each. 1621 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 1622 DbgVariableIntrinsic *> 1623 NewDbgValueMap; 1624 // Then iterate through the new PHIs and look to see if they use one of the 1625 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 1626 // propagate the info through the new PHI. If we use more than one new PHI in 1627 // a single destination BB with the same old dbg.value, merge the updates so 1628 // that we get a single new dbg.value with all the new PHIs. 1629 for (auto PHI : InsertedPHIs) { 1630 BasicBlock *Parent = PHI->getParent(); 1631 // Avoid inserting an intrinsic into an EH block. 1632 if (Parent->getFirstNonPHI()->isEHPad()) 1633 continue; 1634 for (auto VI : PHI->operand_values()) { 1635 auto V = DbgValueMap.find(VI); 1636 if (V != DbgValueMap.end()) { 1637 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1638 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 1639 if (NewDI == NewDbgValueMap.end()) { 1640 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 1641 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 1642 } 1643 DbgVariableIntrinsic *NewDbgII = NewDI->second; 1644 // If PHI contains VI as an operand more than once, we may 1645 // replaced it in NewDbgII; confirm that it is present. 1646 if (is_contained(NewDbgII->location_ops(), VI)) 1647 NewDbgII->replaceVariableLocationOp(VI, PHI); 1648 } 1649 } 1650 } 1651 // Insert thew new dbg.values into their destination blocks. 1652 for (auto DI : NewDbgValueMap) { 1653 BasicBlock *Parent = DI.first.first; 1654 auto *NewDbgII = DI.second; 1655 auto InsertionPt = Parent->getFirstInsertionPt(); 1656 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1657 NewDbgII->insertBefore(&*InsertionPt); 1658 } 1659 } 1660 1661 /// Finds all intrinsics declaring local variables as living in the memory that 1662 /// 'V' points to. This may include a mix of dbg.declare and 1663 /// dbg.addr intrinsics. 1664 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1665 // This function is hot. Check whether the value has any metadata to avoid a 1666 // DenseMap lookup. 1667 if (!V->isUsedByMetadata()) 1668 return {}; 1669 auto *L = LocalAsMetadata::getIfExists(V); 1670 if (!L) 1671 return {}; 1672 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1673 if (!MDV) 1674 return {}; 1675 1676 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1677 for (User *U : MDV->users()) { 1678 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1679 if (DII->isAddressOfVariable()) 1680 Declares.push_back(DII); 1681 } 1682 1683 return Declares; 1684 } 1685 1686 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) { 1687 TinyPtrVector<DbgDeclareInst *> DDIs; 1688 for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V)) 1689 if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI)) 1690 DDIs.push_back(DDI); 1691 return DDIs; 1692 } 1693 1694 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1695 // This function is hot. Check whether the value has any metadata to avoid a 1696 // DenseMap lookup. 1697 if (!V->isUsedByMetadata()) 1698 return; 1699 // TODO: If this value appears multiple times in a DIArgList, we should still 1700 // only add the owning DbgValueInst once; use this set to track ArgListUsers. 1701 // This behaviour can be removed when we can automatically remove duplicates. 1702 SmallPtrSet<DbgValueInst *, 4> EncounteredDbgValues; 1703 if (auto *L = LocalAsMetadata::getIfExists(V)) { 1704 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) { 1705 for (User *U : MDV->users()) 1706 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1707 DbgValues.push_back(DVI); 1708 } 1709 for (Metadata *AL : L->getAllArgListUsers()) { 1710 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), AL)) { 1711 for (User *U : MDV->users()) 1712 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1713 if (EncounteredDbgValues.insert(DVI).second) 1714 DbgValues.push_back(DVI); 1715 } 1716 } 1717 } 1718 } 1719 1720 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1721 Value *V) { 1722 // This function is hot. Check whether the value has any metadata to avoid a 1723 // DenseMap lookup. 1724 if (!V->isUsedByMetadata()) 1725 return; 1726 // TODO: If this value appears multiple times in a DIArgList, we should still 1727 // only add the owning DbgValueInst once; use this set to track ArgListUsers. 1728 // This behaviour can be removed when we can automatically remove duplicates. 1729 SmallPtrSet<DbgVariableIntrinsic *, 4> EncounteredDbgValues; 1730 if (auto *L = LocalAsMetadata::getIfExists(V)) { 1731 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) { 1732 for (User *U : MDV->users()) 1733 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1734 DbgUsers.push_back(DII); 1735 } 1736 for (Metadata *AL : L->getAllArgListUsers()) { 1737 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), AL)) { 1738 for (User *U : MDV->users()) 1739 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1740 if (EncounteredDbgValues.insert(DII).second) 1741 DbgUsers.push_back(DII); 1742 } 1743 } 1744 } 1745 } 1746 1747 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1748 DIBuilder &Builder, uint8_t DIExprFlags, 1749 int Offset) { 1750 auto DbgAddrs = FindDbgAddrUses(Address); 1751 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1752 DebugLoc Loc = DII->getDebugLoc(); 1753 auto *DIVar = DII->getVariable(); 1754 auto *DIExpr = DII->getExpression(); 1755 assert(DIVar && "Missing variable"); 1756 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1757 // Insert llvm.dbg.declare immediately before DII, and remove old 1758 // llvm.dbg.declare. 1759 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1760 DII->eraseFromParent(); 1761 } 1762 return !DbgAddrs.empty(); 1763 } 1764 1765 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1766 DIBuilder &Builder, int Offset) { 1767 DebugLoc Loc = DVI->getDebugLoc(); 1768 auto *DIVar = DVI->getVariable(); 1769 auto *DIExpr = DVI->getExpression(); 1770 assert(DIVar && "Missing variable"); 1771 1772 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1773 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1774 // it and give up. 1775 if (!DIExpr || DIExpr->getNumElements() < 1 || 1776 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1777 return; 1778 1779 // Insert the offset before the first deref. 1780 // We could just change the offset argument of dbg.value, but it's unsigned... 1781 if (Offset) 1782 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1783 1784 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1785 DVI->eraseFromParent(); 1786 } 1787 1788 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1789 DIBuilder &Builder, int Offset) { 1790 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1791 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1792 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1793 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1794 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1795 } 1796 1797 /// Where possible to salvage debug information for \p I do so 1798 /// and return True. If not possible mark undef and return False. 1799 void llvm::salvageDebugInfo(Instruction &I) { 1800 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1801 findDbgUsers(DbgUsers, &I); 1802 salvageDebugInfoForDbgValues(I, DbgUsers); 1803 } 1804 1805 void llvm::salvageDebugInfoForDbgValues( 1806 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1807 bool Salvaged = false; 1808 1809 for (auto *DII : DbgUsers) { 1810 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1811 // are implicitly pointing out the value as a DWARF memory location 1812 // description. 1813 bool StackValue = isa<DbgValueInst>(DII); 1814 auto DIILocation = DII->location_ops(); 1815 assert( 1816 is_contained(DIILocation, &I) && 1817 "DbgVariableIntrinsic must use salvaged instruction as its location"); 1818 unsigned LocNo = std::distance(DIILocation.begin(), find(DIILocation, &I)); 1819 1820 DIExpression *DIExpr = 1821 salvageDebugInfoImpl(I, DII->getExpression(), StackValue, LocNo); 1822 1823 // salvageDebugInfoImpl should fail on examining the first element of 1824 // DbgUsers, or none of them. 1825 if (!DIExpr) 1826 break; 1827 1828 DII->replaceVariableLocationOp(&I, I.getOperand(0)); 1829 DII->setExpression(DIExpr); 1830 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1831 Salvaged = true; 1832 } 1833 1834 if (Salvaged) 1835 return; 1836 1837 for (auto *DII : DbgUsers) { 1838 Value *Undef = UndefValue::get(I.getType()); 1839 DII->replaceVariableLocationOp(&I, Undef); 1840 } 1841 } 1842 1843 bool getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 1844 SmallVectorImpl<uint64_t> &Opcodes) { 1845 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 1846 // Rewrite a constant GEP into a DIExpression. 1847 APInt ConstantOffset(BitWidth, 0); 1848 if (!GEP->accumulateConstantOffset(DL, ConstantOffset)) 1849 return false; 1850 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 1851 return true; 1852 } 1853 1854 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 1855 switch (Opcode) { 1856 case Instruction::Add: 1857 return dwarf::DW_OP_plus; 1858 case Instruction::Sub: 1859 return dwarf::DW_OP_minus; 1860 case Instruction::Mul: 1861 return dwarf::DW_OP_mul; 1862 case Instruction::SDiv: 1863 return dwarf::DW_OP_div; 1864 case Instruction::SRem: 1865 return dwarf::DW_OP_mod; 1866 case Instruction::Or: 1867 return dwarf::DW_OP_or; 1868 case Instruction::And: 1869 return dwarf::DW_OP_and; 1870 case Instruction::Xor: 1871 return dwarf::DW_OP_xor; 1872 case Instruction::Shl: 1873 return dwarf::DW_OP_shl; 1874 case Instruction::LShr: 1875 return dwarf::DW_OP_shr; 1876 case Instruction::AShr: 1877 return dwarf::DW_OP_shra; 1878 default: 1879 // TODO: Salvage from each kind of binop we know about. 1880 return 0; 1881 } 1882 } 1883 1884 bool getSalvageOpsForBinOp(BinaryOperator *BI, 1885 SmallVectorImpl<uint64_t> &Opcodes) { 1886 // Rewrite binary operations with constant integer operands. 1887 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 1888 if (!ConstInt || ConstInt->getBitWidth() > 64) 1889 return false; 1890 uint64_t Val = ConstInt->getSExtValue(); 1891 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 1892 // Add or Sub Instructions with a constant operand can potentially be 1893 // simplified. 1894 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 1895 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 1896 DIExpression::appendOffset(Opcodes, Offset); 1897 return true; 1898 } 1899 // Add constant int operand to expression stack. 1900 Opcodes.append({dwarf::DW_OP_constu, Val}); 1901 1902 // Add salvaged binary operator to expression stack, if it has a valid 1903 // representation in a DIExpression. 1904 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 1905 if (!DwarfBinOp) 1906 return false; 1907 Opcodes.push_back(DwarfBinOp); 1908 1909 return true; 1910 } 1911 1912 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1913 DIExpression *SrcDIExpr, 1914 bool WithStackValue, unsigned LocNo) { 1915 auto &M = *I.getModule(); 1916 auto &DL = M.getDataLayout(); 1917 1918 // Apply a vector of opcodes to the source DIExpression. 1919 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1920 DIExpression *DIExpr = SrcDIExpr; 1921 if (!Ops.empty()) { 1922 DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, LocNo, WithStackValue); 1923 } 1924 return DIExpr; 1925 }; 1926 1927 // initializer-list helper for applying operators to the source DIExpression. 1928 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1929 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1930 return doSalvage(Ops); 1931 }; 1932 1933 if (auto *CI = dyn_cast<CastInst>(&I)) { 1934 // No-op casts are irrelevant for debug info. 1935 if (CI->isNoopCast(DL)) 1936 return SrcDIExpr; 1937 1938 Type *Type = CI->getType(); 1939 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1940 if (Type->isVectorTy() || 1941 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1942 return nullptr; 1943 1944 Value *FromValue = CI->getOperand(0); 1945 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1946 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1947 1948 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1949 isa<SExtInst>(&I))); 1950 } 1951 1952 SmallVector<uint64_t, 8> Ops; 1953 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1954 if (getSalvageOpsForGEP(GEP, DL, Ops)) 1955 return doSalvage(Ops); 1956 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1957 if (getSalvageOpsForBinOp(BI, Ops)) 1958 return doSalvage(Ops); 1959 } 1960 // *Not* to do: we should not attempt to salvage load instructions, 1961 // because the validity and lifetime of a dbg.value containing 1962 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1963 return nullptr; 1964 } 1965 1966 /// A replacement for a dbg.value expression. 1967 using DbgValReplacement = Optional<DIExpression *>; 1968 1969 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1970 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1971 /// changes are made. 1972 static bool rewriteDebugUsers( 1973 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1974 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1975 // Find debug users of From. 1976 SmallVector<DbgVariableIntrinsic *, 1> Users; 1977 findDbgUsers(Users, &From); 1978 if (Users.empty()) 1979 return false; 1980 1981 // Prevent use-before-def of To. 1982 bool Changed = false; 1983 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1984 if (isa<Instruction>(&To)) { 1985 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1986 1987 for (auto *DII : Users) { 1988 // It's common to see a debug user between From and DomPoint. Move it 1989 // after DomPoint to preserve the variable update without any reordering. 1990 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1991 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1992 DII->moveAfter(&DomPoint); 1993 Changed = true; 1994 1995 // Users which otherwise aren't dominated by the replacement value must 1996 // be salvaged or deleted. 1997 } else if (!DT.dominates(&DomPoint, DII)) { 1998 UndefOrSalvage.insert(DII); 1999 } 2000 } 2001 } 2002 2003 // Update debug users without use-before-def risk. 2004 for (auto *DII : Users) { 2005 if (UndefOrSalvage.count(DII)) 2006 continue; 2007 2008 DbgValReplacement DVR = RewriteExpr(*DII); 2009 if (!DVR) 2010 continue; 2011 2012 DII->replaceVariableLocationOp(&From, &To); 2013 DII->setExpression(*DVR); 2014 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 2015 Changed = true; 2016 } 2017 2018 if (!UndefOrSalvage.empty()) { 2019 // Try to salvage the remaining debug users. 2020 salvageDebugInfo(From); 2021 Changed = true; 2022 } 2023 2024 return Changed; 2025 } 2026 2027 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2028 /// losslessly preserve the bits and semantics of the value. This predicate is 2029 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2030 /// 2031 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2032 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2033 /// and also does not allow lossless pointer <-> integer conversions. 2034 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2035 Type *ToTy) { 2036 // Trivially compatible types. 2037 if (FromTy == ToTy) 2038 return true; 2039 2040 // Handle compatible pointer <-> integer conversions. 2041 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2042 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2043 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2044 !DL.isNonIntegralPointerType(ToTy); 2045 return SameSize && LosslessConversion; 2046 } 2047 2048 // TODO: This is not exhaustive. 2049 return false; 2050 } 2051 2052 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2053 Instruction &DomPoint, DominatorTree &DT) { 2054 // Exit early if From has no debug users. 2055 if (!From.isUsedByMetadata()) 2056 return false; 2057 2058 assert(&From != &To && "Can't replace something with itself"); 2059 2060 Type *FromTy = From.getType(); 2061 Type *ToTy = To.getType(); 2062 2063 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2064 return DII.getExpression(); 2065 }; 2066 2067 // Handle no-op conversions. 2068 Module &M = *From.getModule(); 2069 const DataLayout &DL = M.getDataLayout(); 2070 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2071 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2072 2073 // Handle integer-to-integer widening and narrowing. 2074 // FIXME: Use DW_OP_convert when it's available everywhere. 2075 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2076 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2077 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2078 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2079 2080 // When the width of the result grows, assume that a debugger will only 2081 // access the low `FromBits` bits when inspecting the source variable. 2082 if (FromBits < ToBits) 2083 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2084 2085 // The width of the result has shrunk. Use sign/zero extension to describe 2086 // the source variable's high bits. 2087 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2088 DILocalVariable *Var = DII.getVariable(); 2089 2090 // Without knowing signedness, sign/zero extension isn't possible. 2091 auto Signedness = Var->getSignedness(); 2092 if (!Signedness) 2093 return None; 2094 2095 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2096 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2097 Signed); 2098 }; 2099 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2100 } 2101 2102 // TODO: Floating-point conversions, vectors. 2103 return false; 2104 } 2105 2106 std::pair<unsigned, unsigned> 2107 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2108 unsigned NumDeadInst = 0; 2109 unsigned NumDeadDbgInst = 0; 2110 // Delete the instructions backwards, as it has a reduced likelihood of 2111 // having to update as many def-use and use-def chains. 2112 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2113 while (EndInst != &BB->front()) { 2114 // Delete the next to last instruction. 2115 Instruction *Inst = &*--EndInst->getIterator(); 2116 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2117 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2118 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2119 EndInst = Inst; 2120 continue; 2121 } 2122 if (isa<DbgInfoIntrinsic>(Inst)) 2123 ++NumDeadDbgInst; 2124 else 2125 ++NumDeadInst; 2126 Inst->eraseFromParent(); 2127 } 2128 return {NumDeadInst, NumDeadDbgInst}; 2129 } 2130 2131 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2132 bool PreserveLCSSA, DomTreeUpdater *DTU, 2133 MemorySSAUpdater *MSSAU) { 2134 BasicBlock *BB = I->getParent(); 2135 2136 if (MSSAU) 2137 MSSAU->changeToUnreachable(I); 2138 2139 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2140 2141 // Loop over all of the successors, removing BB's entry from any PHI 2142 // nodes. 2143 for (BasicBlock *Successor : successors(BB)) { 2144 Successor->removePredecessor(BB, PreserveLCSSA); 2145 if (DTU) 2146 UniqueSuccessors.insert(Successor); 2147 } 2148 // Insert a call to llvm.trap right before this. This turns the undefined 2149 // behavior into a hard fail instead of falling through into random code. 2150 if (UseLLVMTrap) { 2151 Function *TrapFn = 2152 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2153 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2154 CallTrap->setDebugLoc(I->getDebugLoc()); 2155 } 2156 auto *UI = new UnreachableInst(I->getContext(), I); 2157 UI->setDebugLoc(I->getDebugLoc()); 2158 2159 // All instructions after this are dead. 2160 unsigned NumInstrsRemoved = 0; 2161 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2162 while (BBI != BBE) { 2163 if (!BBI->use_empty()) 2164 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2165 BB->getInstList().erase(BBI++); 2166 ++NumInstrsRemoved; 2167 } 2168 if (DTU) { 2169 SmallVector<DominatorTree::UpdateType, 8> Updates; 2170 Updates.reserve(UniqueSuccessors.size()); 2171 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2172 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2173 DTU->applyUpdates(Updates); 2174 } 2175 return NumInstrsRemoved; 2176 } 2177 2178 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2179 SmallVector<Value *, 8> Args(II->args()); 2180 SmallVector<OperandBundleDef, 1> OpBundles; 2181 II->getOperandBundlesAsDefs(OpBundles); 2182 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2183 II->getCalledOperand(), Args, OpBundles); 2184 NewCall->setCallingConv(II->getCallingConv()); 2185 NewCall->setAttributes(II->getAttributes()); 2186 NewCall->setDebugLoc(II->getDebugLoc()); 2187 NewCall->copyMetadata(*II); 2188 2189 // If the invoke had profile metadata, try converting them for CallInst. 2190 uint64_t TotalWeight; 2191 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2192 // Set the total weight if it fits into i32, otherwise reset. 2193 MDBuilder MDB(NewCall->getContext()); 2194 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2195 ? nullptr 2196 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2197 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2198 } 2199 2200 return NewCall; 2201 } 2202 2203 /// changeToCall - Convert the specified invoke into a normal call. 2204 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2205 CallInst *NewCall = createCallMatchingInvoke(II); 2206 NewCall->takeName(II); 2207 NewCall->insertBefore(II); 2208 II->replaceAllUsesWith(NewCall); 2209 2210 // Follow the call by a branch to the normal destination. 2211 BasicBlock *NormalDestBB = II->getNormalDest(); 2212 BranchInst::Create(NormalDestBB, II); 2213 2214 // Update PHI nodes in the unwind destination 2215 BasicBlock *BB = II->getParent(); 2216 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2217 UnwindDestBB->removePredecessor(BB); 2218 II->eraseFromParent(); 2219 if (DTU) 2220 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2221 } 2222 2223 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2224 BasicBlock *UnwindEdge, 2225 DomTreeUpdater *DTU) { 2226 BasicBlock *BB = CI->getParent(); 2227 2228 // Convert this function call into an invoke instruction. First, split the 2229 // basic block. 2230 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2231 CI->getName() + ".noexc"); 2232 2233 // Delete the unconditional branch inserted by SplitBlock 2234 BB->getInstList().pop_back(); 2235 2236 // Create the new invoke instruction. 2237 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2238 SmallVector<OperandBundleDef, 1> OpBundles; 2239 2240 CI->getOperandBundlesAsDefs(OpBundles); 2241 2242 // Note: we're round tripping operand bundles through memory here, and that 2243 // can potentially be avoided with a cleverer API design that we do not have 2244 // as of this time. 2245 2246 InvokeInst *II = 2247 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2248 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2249 II->setDebugLoc(CI->getDebugLoc()); 2250 II->setCallingConv(CI->getCallingConv()); 2251 II->setAttributes(CI->getAttributes()); 2252 2253 if (DTU) 2254 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2255 2256 // Make sure that anything using the call now uses the invoke! This also 2257 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2258 CI->replaceAllUsesWith(II); 2259 2260 // Delete the original call 2261 Split->getInstList().pop_front(); 2262 return Split; 2263 } 2264 2265 static bool markAliveBlocks(Function &F, 2266 SmallPtrSetImpl<BasicBlock *> &Reachable, 2267 DomTreeUpdater *DTU = nullptr) { 2268 SmallVector<BasicBlock*, 128> Worklist; 2269 BasicBlock *BB = &F.front(); 2270 Worklist.push_back(BB); 2271 Reachable.insert(BB); 2272 bool Changed = false; 2273 do { 2274 BB = Worklist.pop_back_val(); 2275 2276 // Do a quick scan of the basic block, turning any obviously unreachable 2277 // instructions into LLVM unreachable insts. The instruction combining pass 2278 // canonicalizes unreachable insts into stores to null or undef. 2279 for (Instruction &I : *BB) { 2280 if (auto *CI = dyn_cast<CallInst>(&I)) { 2281 Value *Callee = CI->getCalledOperand(); 2282 // Handle intrinsic calls. 2283 if (Function *F = dyn_cast<Function>(Callee)) { 2284 auto IntrinsicID = F->getIntrinsicID(); 2285 // Assumptions that are known to be false are equivalent to 2286 // unreachable. Also, if the condition is undefined, then we make the 2287 // choice most beneficial to the optimizer, and choose that to also be 2288 // unreachable. 2289 if (IntrinsicID == Intrinsic::assume) { 2290 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2291 // Don't insert a call to llvm.trap right before the unreachable. 2292 changeToUnreachable(CI, false, false, DTU); 2293 Changed = true; 2294 break; 2295 } 2296 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2297 // A call to the guard intrinsic bails out of the current 2298 // compilation unit if the predicate passed to it is false. If the 2299 // predicate is a constant false, then we know the guard will bail 2300 // out of the current compile unconditionally, so all code following 2301 // it is dead. 2302 // 2303 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2304 // guards to treat `undef` as `false` since a guard on `undef` can 2305 // still be useful for widening. 2306 if (match(CI->getArgOperand(0), m_Zero())) 2307 if (!isa<UnreachableInst>(CI->getNextNode())) { 2308 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2309 false, DTU); 2310 Changed = true; 2311 break; 2312 } 2313 } 2314 } else if ((isa<ConstantPointerNull>(Callee) && 2315 !NullPointerIsDefined(CI->getFunction())) || 2316 isa<UndefValue>(Callee)) { 2317 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2318 Changed = true; 2319 break; 2320 } 2321 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2322 // If we found a call to a no-return function, insert an unreachable 2323 // instruction after it. Make sure there isn't *already* one there 2324 // though. 2325 if (!isa<UnreachableInst>(CI->getNextNode())) { 2326 // Don't insert a call to llvm.trap right before the unreachable. 2327 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2328 Changed = true; 2329 } 2330 break; 2331 } 2332 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2333 // Store to undef and store to null are undefined and used to signal 2334 // that they should be changed to unreachable by passes that can't 2335 // modify the CFG. 2336 2337 // Don't touch volatile stores. 2338 if (SI->isVolatile()) continue; 2339 2340 Value *Ptr = SI->getOperand(1); 2341 2342 if (isa<UndefValue>(Ptr) || 2343 (isa<ConstantPointerNull>(Ptr) && 2344 !NullPointerIsDefined(SI->getFunction(), 2345 SI->getPointerAddressSpace()))) { 2346 changeToUnreachable(SI, true, false, DTU); 2347 Changed = true; 2348 break; 2349 } 2350 } 2351 } 2352 2353 Instruction *Terminator = BB->getTerminator(); 2354 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2355 // Turn invokes that call 'nounwind' functions into ordinary calls. 2356 Value *Callee = II->getCalledOperand(); 2357 if ((isa<ConstantPointerNull>(Callee) && 2358 !NullPointerIsDefined(BB->getParent())) || 2359 isa<UndefValue>(Callee)) { 2360 changeToUnreachable(II, true, false, DTU); 2361 Changed = true; 2362 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2363 if (II->use_empty() && II->onlyReadsMemory()) { 2364 // jump to the normal destination branch. 2365 BasicBlock *NormalDestBB = II->getNormalDest(); 2366 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2367 BranchInst::Create(NormalDestBB, II); 2368 UnwindDestBB->removePredecessor(II->getParent()); 2369 II->eraseFromParent(); 2370 if (DTU) 2371 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2372 } else 2373 changeToCall(II, DTU); 2374 Changed = true; 2375 } 2376 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2377 // Remove catchpads which cannot be reached. 2378 struct CatchPadDenseMapInfo { 2379 static CatchPadInst *getEmptyKey() { 2380 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2381 } 2382 2383 static CatchPadInst *getTombstoneKey() { 2384 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2385 } 2386 2387 static unsigned getHashValue(CatchPadInst *CatchPad) { 2388 return static_cast<unsigned>(hash_combine_range( 2389 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2390 } 2391 2392 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2393 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2394 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2395 return LHS == RHS; 2396 return LHS->isIdenticalTo(RHS); 2397 } 2398 }; 2399 2400 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 2401 // Set of unique CatchPads. 2402 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2403 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2404 HandlerSet; 2405 detail::DenseSetEmpty Empty; 2406 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2407 E = CatchSwitch->handler_end(); 2408 I != E; ++I) { 2409 BasicBlock *HandlerBB = *I; 2410 if (DTU) 2411 ++NumPerSuccessorCases[HandlerBB]; 2412 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2413 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2414 if (DTU) 2415 --NumPerSuccessorCases[HandlerBB]; 2416 CatchSwitch->removeHandler(I); 2417 --I; 2418 --E; 2419 Changed = true; 2420 } 2421 } 2422 if (DTU) { 2423 std::vector<DominatorTree::UpdateType> Updates; 2424 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2425 if (I.second == 0) 2426 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2427 DTU->applyUpdates(Updates); 2428 } 2429 } 2430 2431 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2432 for (BasicBlock *Successor : successors(BB)) 2433 if (Reachable.insert(Successor).second) 2434 Worklist.push_back(Successor); 2435 } while (!Worklist.empty()); 2436 return Changed; 2437 } 2438 2439 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2440 Instruction *TI = BB->getTerminator(); 2441 2442 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2443 changeToCall(II, DTU); 2444 return; 2445 } 2446 2447 Instruction *NewTI; 2448 BasicBlock *UnwindDest; 2449 2450 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2451 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2452 UnwindDest = CRI->getUnwindDest(); 2453 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2454 auto *NewCatchSwitch = CatchSwitchInst::Create( 2455 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2456 CatchSwitch->getName(), CatchSwitch); 2457 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2458 NewCatchSwitch->addHandler(PadBB); 2459 2460 NewTI = NewCatchSwitch; 2461 UnwindDest = CatchSwitch->getUnwindDest(); 2462 } else { 2463 llvm_unreachable("Could not find unwind successor"); 2464 } 2465 2466 NewTI->takeName(TI); 2467 NewTI->setDebugLoc(TI->getDebugLoc()); 2468 UnwindDest->removePredecessor(BB); 2469 TI->replaceAllUsesWith(NewTI); 2470 TI->eraseFromParent(); 2471 if (DTU) 2472 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2473 } 2474 2475 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2476 /// if they are in a dead cycle. Return true if a change was made, false 2477 /// otherwise. 2478 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2479 MemorySSAUpdater *MSSAU) { 2480 SmallPtrSet<BasicBlock *, 16> Reachable; 2481 bool Changed = markAliveBlocks(F, Reachable, DTU); 2482 2483 // If there are unreachable blocks in the CFG... 2484 if (Reachable.size() == F.size()) 2485 return Changed; 2486 2487 assert(Reachable.size() < F.size()); 2488 2489 // Are there any blocks left to actually delete? 2490 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2491 for (BasicBlock &BB : F) { 2492 // Skip reachable basic blocks 2493 if (Reachable.count(&BB)) 2494 continue; 2495 // Skip already-deleted blocks 2496 if (DTU && DTU->isBBPendingDeletion(&BB)) 2497 continue; 2498 BlocksToRemove.insert(&BB); 2499 } 2500 2501 if (BlocksToRemove.empty()) 2502 return Changed; 2503 2504 Changed = true; 2505 NumRemoved += BlocksToRemove.size(); 2506 2507 if (MSSAU) 2508 MSSAU->removeBlocks(BlocksToRemove); 2509 2510 // Loop over all of the basic blocks that are up for removal, dropping all of 2511 // their internal references. Update DTU if available. 2512 std::vector<DominatorTree::UpdateType> Updates; 2513 for (auto *BB : BlocksToRemove) { 2514 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2515 for (BasicBlock *Successor : successors(BB)) { 2516 // Only remove references to BB in reachable successors of BB. 2517 if (Reachable.count(Successor)) 2518 Successor->removePredecessor(BB); 2519 if (DTU) 2520 UniqueSuccessors.insert(Successor); 2521 } 2522 BB->dropAllReferences(); 2523 if (DTU) { 2524 Instruction *TI = BB->getTerminator(); 2525 assert(TI && "Basic block should have a terminator"); 2526 // Terminators like invoke can have users. We have to replace their users, 2527 // before removing them. 2528 if (!TI->use_empty()) 2529 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2530 TI->eraseFromParent(); 2531 new UnreachableInst(BB->getContext(), BB); 2532 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2533 "applying corresponding DTU updates."); 2534 Updates.reserve(Updates.size() + UniqueSuccessors.size()); 2535 for (auto *UniqueSuccessor : UniqueSuccessors) 2536 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2537 } 2538 } 2539 2540 if (DTU) { 2541 DTU->applyUpdates(Updates); 2542 for (auto *BB : BlocksToRemove) 2543 DTU->deleteBB(BB); 2544 } else { 2545 for (auto *BB : BlocksToRemove) 2546 BB->eraseFromParent(); 2547 } 2548 2549 return Changed; 2550 } 2551 2552 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2553 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2554 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2555 K->dropUnknownNonDebugMetadata(KnownIDs); 2556 K->getAllMetadataOtherThanDebugLoc(Metadata); 2557 for (const auto &MD : Metadata) { 2558 unsigned Kind = MD.first; 2559 MDNode *JMD = J->getMetadata(Kind); 2560 MDNode *KMD = MD.second; 2561 2562 switch (Kind) { 2563 default: 2564 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2565 break; 2566 case LLVMContext::MD_dbg: 2567 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2568 case LLVMContext::MD_tbaa: 2569 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2570 break; 2571 case LLVMContext::MD_alias_scope: 2572 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2573 break; 2574 case LLVMContext::MD_noalias: 2575 case LLVMContext::MD_mem_parallel_loop_access: 2576 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2577 break; 2578 case LLVMContext::MD_access_group: 2579 K->setMetadata(LLVMContext::MD_access_group, 2580 intersectAccessGroups(K, J)); 2581 break; 2582 case LLVMContext::MD_range: 2583 2584 // If K does move, use most generic range. Otherwise keep the range of 2585 // K. 2586 if (DoesKMove) 2587 // FIXME: If K does move, we should drop the range info and nonnull. 2588 // Currently this function is used with DoesKMove in passes 2589 // doing hoisting/sinking and the current behavior of using the 2590 // most generic range is correct in those cases. 2591 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2592 break; 2593 case LLVMContext::MD_fpmath: 2594 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2595 break; 2596 case LLVMContext::MD_invariant_load: 2597 // Only set the !invariant.load if it is present in both instructions. 2598 K->setMetadata(Kind, JMD); 2599 break; 2600 case LLVMContext::MD_nonnull: 2601 // If K does move, keep nonull if it is present in both instructions. 2602 if (DoesKMove) 2603 K->setMetadata(Kind, JMD); 2604 break; 2605 case LLVMContext::MD_invariant_group: 2606 // Preserve !invariant.group in K. 2607 break; 2608 case LLVMContext::MD_align: 2609 K->setMetadata(Kind, 2610 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2611 break; 2612 case LLVMContext::MD_dereferenceable: 2613 case LLVMContext::MD_dereferenceable_or_null: 2614 K->setMetadata(Kind, 2615 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2616 break; 2617 case LLVMContext::MD_preserve_access_index: 2618 // Preserve !preserve.access.index in K. 2619 break; 2620 } 2621 } 2622 // Set !invariant.group from J if J has it. If both instructions have it 2623 // then we will just pick it from J - even when they are different. 2624 // Also make sure that K is load or store - f.e. combining bitcast with load 2625 // could produce bitcast with invariant.group metadata, which is invalid. 2626 // FIXME: we should try to preserve both invariant.group md if they are 2627 // different, but right now instruction can only have one invariant.group. 2628 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2629 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2630 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2631 } 2632 2633 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2634 bool KDominatesJ) { 2635 unsigned KnownIDs[] = { 2636 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2637 LLVMContext::MD_noalias, LLVMContext::MD_range, 2638 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2639 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2640 LLVMContext::MD_dereferenceable, 2641 LLVMContext::MD_dereferenceable_or_null, 2642 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2643 combineMetadata(K, J, KnownIDs, KDominatesJ); 2644 } 2645 2646 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2647 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2648 Source.getAllMetadata(MD); 2649 MDBuilder MDB(Dest.getContext()); 2650 Type *NewType = Dest.getType(); 2651 const DataLayout &DL = Source.getModule()->getDataLayout(); 2652 for (const auto &MDPair : MD) { 2653 unsigned ID = MDPair.first; 2654 MDNode *N = MDPair.second; 2655 // Note, essentially every kind of metadata should be preserved here! This 2656 // routine is supposed to clone a load instruction changing *only its type*. 2657 // The only metadata it makes sense to drop is metadata which is invalidated 2658 // when the pointer type changes. This should essentially never be the case 2659 // in LLVM, but we explicitly switch over only known metadata to be 2660 // conservatively correct. If you are adding metadata to LLVM which pertains 2661 // to loads, you almost certainly want to add it here. 2662 switch (ID) { 2663 case LLVMContext::MD_dbg: 2664 case LLVMContext::MD_tbaa: 2665 case LLVMContext::MD_prof: 2666 case LLVMContext::MD_fpmath: 2667 case LLVMContext::MD_tbaa_struct: 2668 case LLVMContext::MD_invariant_load: 2669 case LLVMContext::MD_alias_scope: 2670 case LLVMContext::MD_noalias: 2671 case LLVMContext::MD_nontemporal: 2672 case LLVMContext::MD_mem_parallel_loop_access: 2673 case LLVMContext::MD_access_group: 2674 // All of these directly apply. 2675 Dest.setMetadata(ID, N); 2676 break; 2677 2678 case LLVMContext::MD_nonnull: 2679 copyNonnullMetadata(Source, N, Dest); 2680 break; 2681 2682 case LLVMContext::MD_align: 2683 case LLVMContext::MD_dereferenceable: 2684 case LLVMContext::MD_dereferenceable_or_null: 2685 // These only directly apply if the new type is also a pointer. 2686 if (NewType->isPointerTy()) 2687 Dest.setMetadata(ID, N); 2688 break; 2689 2690 case LLVMContext::MD_range: 2691 copyRangeMetadata(DL, Source, N, Dest); 2692 break; 2693 } 2694 } 2695 } 2696 2697 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2698 auto *ReplInst = dyn_cast<Instruction>(Repl); 2699 if (!ReplInst) 2700 return; 2701 2702 // Patch the replacement so that it is not more restrictive than the value 2703 // being replaced. 2704 // Note that if 'I' is a load being replaced by some operation, 2705 // for example, by an arithmetic operation, then andIRFlags() 2706 // would just erase all math flags from the original arithmetic 2707 // operation, which is clearly not wanted and not needed. 2708 if (!isa<LoadInst>(I)) 2709 ReplInst->andIRFlags(I); 2710 2711 // FIXME: If both the original and replacement value are part of the 2712 // same control-flow region (meaning that the execution of one 2713 // guarantees the execution of the other), then we can combine the 2714 // noalias scopes here and do better than the general conservative 2715 // answer used in combineMetadata(). 2716 2717 // In general, GVN unifies expressions over different control-flow 2718 // regions, and so we need a conservative combination of the noalias 2719 // scopes. 2720 static const unsigned KnownIDs[] = { 2721 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2722 LLVMContext::MD_noalias, LLVMContext::MD_range, 2723 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2724 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2725 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2726 combineMetadata(ReplInst, I, KnownIDs, false); 2727 } 2728 2729 template <typename RootType, typename DominatesFn> 2730 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2731 const RootType &Root, 2732 const DominatesFn &Dominates) { 2733 assert(From->getType() == To->getType()); 2734 2735 unsigned Count = 0; 2736 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2737 UI != UE;) { 2738 Use &U = *UI++; 2739 if (!Dominates(Root, U)) 2740 continue; 2741 U.set(To); 2742 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2743 << "' as " << *To << " in " << *U << "\n"); 2744 ++Count; 2745 } 2746 return Count; 2747 } 2748 2749 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2750 assert(From->getType() == To->getType()); 2751 auto *BB = From->getParent(); 2752 unsigned Count = 0; 2753 2754 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2755 UI != UE;) { 2756 Use &U = *UI++; 2757 auto *I = cast<Instruction>(U.getUser()); 2758 if (I->getParent() == BB) 2759 continue; 2760 U.set(To); 2761 ++Count; 2762 } 2763 return Count; 2764 } 2765 2766 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2767 DominatorTree &DT, 2768 const BasicBlockEdge &Root) { 2769 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2770 return DT.dominates(Root, U); 2771 }; 2772 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2773 } 2774 2775 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2776 DominatorTree &DT, 2777 const BasicBlock *BB) { 2778 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 2779 return DT.dominates(BB, U); 2780 }; 2781 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 2782 } 2783 2784 bool llvm::callsGCLeafFunction(const CallBase *Call, 2785 const TargetLibraryInfo &TLI) { 2786 // Check if the function is specifically marked as a gc leaf function. 2787 if (Call->hasFnAttr("gc-leaf-function")) 2788 return true; 2789 if (const Function *F = Call->getCalledFunction()) { 2790 if (F->hasFnAttribute("gc-leaf-function")) 2791 return true; 2792 2793 if (auto IID = F->getIntrinsicID()) { 2794 // Most LLVM intrinsics do not take safepoints. 2795 return IID != Intrinsic::experimental_gc_statepoint && 2796 IID != Intrinsic::experimental_deoptimize && 2797 IID != Intrinsic::memcpy_element_unordered_atomic && 2798 IID != Intrinsic::memmove_element_unordered_atomic; 2799 } 2800 } 2801 2802 // Lib calls can be materialized by some passes, and won't be 2803 // marked as 'gc-leaf-function.' All available Libcalls are 2804 // GC-leaf. 2805 LibFunc LF; 2806 if (TLI.getLibFunc(*Call, LF)) { 2807 return TLI.has(LF); 2808 } 2809 2810 return false; 2811 } 2812 2813 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2814 LoadInst &NewLI) { 2815 auto *NewTy = NewLI.getType(); 2816 2817 // This only directly applies if the new type is also a pointer. 2818 if (NewTy->isPointerTy()) { 2819 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2820 return; 2821 } 2822 2823 // The only other translation we can do is to integral loads with !range 2824 // metadata. 2825 if (!NewTy->isIntegerTy()) 2826 return; 2827 2828 MDBuilder MDB(NewLI.getContext()); 2829 const Value *Ptr = OldLI.getPointerOperand(); 2830 auto *ITy = cast<IntegerType>(NewTy); 2831 auto *NullInt = ConstantExpr::getPtrToInt( 2832 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2833 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2834 NewLI.setMetadata(LLVMContext::MD_range, 2835 MDB.createRange(NonNullInt, NullInt)); 2836 } 2837 2838 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2839 MDNode *N, LoadInst &NewLI) { 2840 auto *NewTy = NewLI.getType(); 2841 2842 // Give up unless it is converted to a pointer where there is a single very 2843 // valuable mapping we can do reliably. 2844 // FIXME: It would be nice to propagate this in more ways, but the type 2845 // conversions make it hard. 2846 if (!NewTy->isPointerTy()) 2847 return; 2848 2849 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2850 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2851 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2852 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2853 } 2854 } 2855 2856 void llvm::dropDebugUsers(Instruction &I) { 2857 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2858 findDbgUsers(DbgUsers, &I); 2859 for (auto *DII : DbgUsers) 2860 DII->eraseFromParent(); 2861 } 2862 2863 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2864 BasicBlock *BB) { 2865 // Since we are moving the instructions out of its basic block, we do not 2866 // retain their original debug locations (DILocations) and debug intrinsic 2867 // instructions. 2868 // 2869 // Doing so would degrade the debugging experience and adversely affect the 2870 // accuracy of profiling information. 2871 // 2872 // Currently, when hoisting the instructions, we take the following actions: 2873 // - Remove their debug intrinsic instructions. 2874 // - Set their debug locations to the values from the insertion point. 2875 // 2876 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2877 // need to be deleted, is because there will not be any instructions with a 2878 // DILocation in either branch left after performing the transformation. We 2879 // can only insert a dbg.value after the two branches are joined again. 2880 // 2881 // See PR38762, PR39243 for more details. 2882 // 2883 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2884 // encode predicated DIExpressions that yield different results on different 2885 // code paths. 2886 2887 // A hoisted conditional probe should be treated as dangling so that it will 2888 // not be over-counted when the samples collected on the non-conditional path 2889 // are counted towards the conditional path. We leave it for the counts 2890 // inference algorithm to figure out a proper count for a danglng probe. 2891 moveAndDanglePseudoProbes(BB, InsertPt); 2892 2893 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2894 Instruction *I = &*II; 2895 I->dropUnknownNonDebugMetadata(); 2896 if (I->isUsedByMetadata()) 2897 dropDebugUsers(*I); 2898 if (isa<DbgInfoIntrinsic>(I)) { 2899 // Remove DbgInfo Intrinsics. 2900 II = I->eraseFromParent(); 2901 continue; 2902 } 2903 I->setDebugLoc(InsertPt->getDebugLoc()); 2904 ++II; 2905 } 2906 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2907 BB->begin(), 2908 BB->getTerminator()->getIterator()); 2909 } 2910 2911 namespace { 2912 2913 /// A potential constituent of a bitreverse or bswap expression. See 2914 /// collectBitParts for a fuller explanation. 2915 struct BitPart { 2916 BitPart(Value *P, unsigned BW) : Provider(P) { 2917 Provenance.resize(BW); 2918 } 2919 2920 /// The Value that this is a bitreverse/bswap of. 2921 Value *Provider; 2922 2923 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2924 /// in Provider becomes bit B in the result of this expression. 2925 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2926 2927 enum { Unset = -1 }; 2928 }; 2929 2930 } // end anonymous namespace 2931 2932 /// Analyze the specified subexpression and see if it is capable of providing 2933 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2934 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2935 /// the output of the expression came from a corresponding bit in some other 2936 /// value. This function is recursive, and the end result is a mapping of 2937 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2938 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2939 /// 2940 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2941 /// that the expression deposits the low byte of %X into the high byte of the 2942 /// result and that all other bits are zero. This expression is accepted and a 2943 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2944 /// [0-7]. 2945 /// 2946 /// For vector types, all analysis is performed at the per-element level. No 2947 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2948 /// constant masks must be splatted across all elements. 2949 /// 2950 /// To avoid revisiting values, the BitPart results are memoized into the 2951 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2952 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2953 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2954 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2955 /// type instead to provide the same functionality. 2956 /// 2957 /// Because we pass around references into \c BPS, we must use a container that 2958 /// does not invalidate internal references (std::map instead of DenseMap). 2959 static const Optional<BitPart> & 2960 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2961 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2962 auto I = BPS.find(V); 2963 if (I != BPS.end()) 2964 return I->second; 2965 2966 auto &Result = BPS[V] = None; 2967 auto BitWidth = V->getType()->getScalarSizeInBits(); 2968 2969 // Can't do integer/elements > 128 bits. 2970 if (BitWidth > 128) 2971 return Result; 2972 2973 // Prevent stack overflow by limiting the recursion depth 2974 if (Depth == BitPartRecursionMaxDepth) { 2975 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2976 return Result; 2977 } 2978 2979 if (auto *I = dyn_cast<Instruction>(V)) { 2980 Value *X, *Y; 2981 const APInt *C; 2982 2983 // If this is an or instruction, it may be an inner node of the bswap. 2984 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2985 const auto &A = 2986 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2987 const auto &B = 2988 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2989 if (!A || !B) 2990 return Result; 2991 2992 // Try and merge the two together. 2993 if (!A->Provider || A->Provider != B->Provider) 2994 return Result; 2995 2996 Result = BitPart(A->Provider, BitWidth); 2997 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2998 if (A->Provenance[BitIdx] != BitPart::Unset && 2999 B->Provenance[BitIdx] != BitPart::Unset && 3000 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 3001 return Result = None; 3002 3003 if (A->Provenance[BitIdx] == BitPart::Unset) 3004 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 3005 else 3006 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 3007 } 3008 3009 return Result; 3010 } 3011 3012 // If this is a logical shift by a constant, recurse then shift the result. 3013 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 3014 const APInt &BitShift = *C; 3015 3016 // Ensure the shift amount is defined. 3017 if (BitShift.uge(BitWidth)) 3018 return Result; 3019 3020 const auto &Res = 3021 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3022 if (!Res) 3023 return Result; 3024 Result = Res; 3025 3026 // Perform the "shift" on BitProvenance. 3027 auto &P = Result->Provenance; 3028 if (I->getOpcode() == Instruction::Shl) { 3029 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 3030 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 3031 } else { 3032 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 3033 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 3034 } 3035 3036 return Result; 3037 } 3038 3039 // If this is a logical 'and' with a mask that clears bits, recurse then 3040 // unset the appropriate bits. 3041 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 3042 const APInt &AndMask = *C; 3043 3044 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3045 // early exit. 3046 unsigned NumMaskedBits = AndMask.countPopulation(); 3047 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3048 return Result; 3049 3050 const auto &Res = 3051 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3052 if (!Res) 3053 return Result; 3054 Result = Res; 3055 3056 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3057 // If the AndMask is zero for this bit, clear the bit. 3058 if (AndMask[BitIdx] == 0) 3059 Result->Provenance[BitIdx] = BitPart::Unset; 3060 return Result; 3061 } 3062 3063 // If this is a zext instruction zero extend the result. 3064 if (match(V, m_ZExt(m_Value(X)))) { 3065 const auto &Res = 3066 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3067 if (!Res) 3068 return Result; 3069 3070 Result = BitPart(Res->Provider, BitWidth); 3071 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3072 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3073 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3074 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3075 Result->Provenance[BitIdx] = BitPart::Unset; 3076 return Result; 3077 } 3078 3079 // If this is a truncate instruction, extract the lower bits. 3080 if (match(V, m_Trunc(m_Value(X)))) { 3081 const auto &Res = 3082 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3083 if (!Res) 3084 return Result; 3085 3086 Result = BitPart(Res->Provider, BitWidth); 3087 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3088 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3089 return Result; 3090 } 3091 3092 // BITREVERSE - most likely due to us previous matching a partial 3093 // bitreverse. 3094 if (match(V, m_BitReverse(m_Value(X)))) { 3095 const auto &Res = 3096 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3097 if (!Res) 3098 return Result; 3099 3100 Result = BitPart(Res->Provider, BitWidth); 3101 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3102 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3103 return Result; 3104 } 3105 3106 // BSWAP - most likely due to us previous matching a partial bswap. 3107 if (match(V, m_BSwap(m_Value(X)))) { 3108 const auto &Res = 3109 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3110 if (!Res) 3111 return Result; 3112 3113 unsigned ByteWidth = BitWidth / 8; 3114 Result = BitPart(Res->Provider, BitWidth); 3115 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3116 unsigned ByteBitOfs = ByteIdx * 8; 3117 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3118 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3119 Res->Provenance[ByteBitOfs + BitIdx]; 3120 } 3121 return Result; 3122 } 3123 3124 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3125 // amount (modulo). 3126 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3127 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3128 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3129 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3130 // We can treat fshr as a fshl by flipping the modulo amount. 3131 unsigned ModAmt = C->urem(BitWidth); 3132 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3133 ModAmt = BitWidth - ModAmt; 3134 3135 const auto &LHS = 3136 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3137 const auto &RHS = 3138 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3139 3140 // Check we have both sources and they are from the same provider. 3141 if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider) 3142 return Result; 3143 3144 unsigned StartBitRHS = BitWidth - ModAmt; 3145 Result = BitPart(LHS->Provider, BitWidth); 3146 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3147 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3148 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3149 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3150 return Result; 3151 } 3152 } 3153 3154 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 3155 // the input value to the bswap/bitreverse. 3156 Result = BitPart(V, BitWidth); 3157 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3158 Result->Provenance[BitIdx] = BitIdx; 3159 return Result; 3160 } 3161 3162 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3163 unsigned BitWidth) { 3164 if (From % 8 != To % 8) 3165 return false; 3166 // Convert from bit indices to byte indices and check for a byte reversal. 3167 From >>= 3; 3168 To >>= 3; 3169 BitWidth >>= 3; 3170 return From == BitWidth - To - 1; 3171 } 3172 3173 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3174 unsigned BitWidth) { 3175 return From == BitWidth - To - 1; 3176 } 3177 3178 bool llvm::recognizeBSwapOrBitReverseIdiom( 3179 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3180 SmallVectorImpl<Instruction *> &InsertedInsts) { 3181 if (Operator::getOpcode(I) != Instruction::Or) 3182 return false; 3183 if (!MatchBSwaps && !MatchBitReversals) 3184 return false; 3185 Type *ITy = I->getType(); 3186 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3187 return false; // Can't do integer/elements > 128 bits. 3188 3189 Type *DemandedTy = ITy; 3190 if (I->hasOneUse()) 3191 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3192 DemandedTy = Trunc->getType(); 3193 3194 // Try to find all the pieces corresponding to the bswap. 3195 std::map<Value *, Optional<BitPart>> BPS; 3196 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 3197 if (!Res) 3198 return false; 3199 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3200 assert(all_of(BitProvenance, 3201 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3202 "Illegal bit provenance index"); 3203 3204 // If the upper bits are zero, then attempt to perform as a truncated op. 3205 if (BitProvenance.back() == BitPart::Unset) { 3206 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3207 BitProvenance = BitProvenance.drop_back(); 3208 if (BitProvenance.empty()) 3209 return false; // TODO - handle null value? 3210 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3211 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3212 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3213 } 3214 3215 // Check BitProvenance hasn't found a source larger than the result type. 3216 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3217 if (DemandedBW > ITy->getScalarSizeInBits()) 3218 return false; 3219 3220 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3221 // only byteswap values with an even number of bytes. 3222 APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); 3223 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3224 bool OKForBitReverse = MatchBitReversals; 3225 for (unsigned BitIdx = 0; 3226 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3227 if (BitProvenance[BitIdx] == BitPart::Unset) { 3228 DemandedMask.clearBit(BitIdx); 3229 continue; 3230 } 3231 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3232 DemandedBW); 3233 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3234 BitIdx, DemandedBW); 3235 } 3236 3237 Intrinsic::ID Intrin; 3238 if (OKForBSwap) 3239 Intrin = Intrinsic::bswap; 3240 else if (OKForBitReverse) 3241 Intrin = Intrinsic::bitreverse; 3242 else 3243 return false; 3244 3245 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3246 Value *Provider = Res->Provider; 3247 3248 // We may need to truncate the provider. 3249 if (DemandedTy != Provider->getType()) { 3250 auto *Trunc = 3251 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3252 InsertedInsts.push_back(Trunc); 3253 Provider = Trunc; 3254 } 3255 3256 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3257 InsertedInsts.push_back(Result); 3258 3259 if (!DemandedMask.isAllOnesValue()) { 3260 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3261 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3262 InsertedInsts.push_back(Result); 3263 } 3264 3265 // We may need to zeroextend back to the result type. 3266 if (ITy != Result->getType()) { 3267 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3268 InsertedInsts.push_back(ExtInst); 3269 } 3270 3271 return true; 3272 } 3273 3274 // CodeGen has special handling for some string functions that may replace 3275 // them with target-specific intrinsics. Since that'd skip our interceptors 3276 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3277 // we mark affected calls as NoBuiltin, which will disable optimization 3278 // in CodeGen. 3279 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3280 CallInst *CI, const TargetLibraryInfo *TLI) { 3281 Function *F = CI->getCalledFunction(); 3282 LibFunc Func; 3283 if (F && !F->hasLocalLinkage() && F->hasName() && 3284 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3285 !F->doesNotAccessMemory()) 3286 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3287 } 3288 3289 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3290 // We can't have a PHI with a metadata type. 3291 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3292 return false; 3293 3294 // Early exit. 3295 if (!isa<Constant>(I->getOperand(OpIdx))) 3296 return true; 3297 3298 switch (I->getOpcode()) { 3299 default: 3300 return true; 3301 case Instruction::Call: 3302 case Instruction::Invoke: { 3303 const auto &CB = cast<CallBase>(*I); 3304 3305 // Can't handle inline asm. Skip it. 3306 if (CB.isInlineAsm()) 3307 return false; 3308 3309 // Constant bundle operands may need to retain their constant-ness for 3310 // correctness. 3311 if (CB.isBundleOperand(OpIdx)) 3312 return false; 3313 3314 if (OpIdx < CB.getNumArgOperands()) { 3315 // Some variadic intrinsics require constants in the variadic arguments, 3316 // which currently aren't markable as immarg. 3317 if (isa<IntrinsicInst>(CB) && 3318 OpIdx >= CB.getFunctionType()->getNumParams()) { 3319 // This is known to be OK for stackmap. 3320 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3321 } 3322 3323 // gcroot is a special case, since it requires a constant argument which 3324 // isn't also required to be a simple ConstantInt. 3325 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3326 return false; 3327 3328 // Some intrinsic operands are required to be immediates. 3329 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3330 } 3331 3332 // It is never allowed to replace the call argument to an intrinsic, but it 3333 // may be possible for a call. 3334 return !isa<IntrinsicInst>(CB); 3335 } 3336 case Instruction::ShuffleVector: 3337 // Shufflevector masks are constant. 3338 return OpIdx != 2; 3339 case Instruction::Switch: 3340 case Instruction::ExtractValue: 3341 // All operands apart from the first are constant. 3342 return OpIdx == 0; 3343 case Instruction::InsertValue: 3344 // All operands apart from the first and the second are constant. 3345 return OpIdx < 2; 3346 case Instruction::Alloca: 3347 // Static allocas (constant size in the entry block) are handled by 3348 // prologue/epilogue insertion so they're free anyway. We definitely don't 3349 // want to make them non-constant. 3350 return !cast<AllocaInst>(I)->isStaticAlloca(); 3351 case Instruction::GetElementPtr: 3352 if (OpIdx == 0) 3353 return true; 3354 gep_type_iterator It = gep_type_begin(I); 3355 for (auto E = std::next(It, OpIdx); It != E; ++It) 3356 if (It.isStruct()) 3357 return false; 3358 return true; 3359 } 3360 } 3361 3362 Value *llvm::invertCondition(Value *Condition) { 3363 // First: Check if it's a constant 3364 if (Constant *C = dyn_cast<Constant>(Condition)) 3365 return ConstantExpr::getNot(C); 3366 3367 // Second: If the condition is already inverted, return the original value 3368 Value *NotCondition; 3369 if (match(Condition, m_Not(m_Value(NotCondition)))) 3370 return NotCondition; 3371 3372 BasicBlock *Parent = nullptr; 3373 Instruction *Inst = dyn_cast<Instruction>(Condition); 3374 if (Inst) 3375 Parent = Inst->getParent(); 3376 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3377 Parent = &Arg->getParent()->getEntryBlock(); 3378 assert(Parent && "Unsupported condition to invert"); 3379 3380 // Third: Check all the users for an invert 3381 for (User *U : Condition->users()) 3382 if (Instruction *I = dyn_cast<Instruction>(U)) 3383 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3384 return I; 3385 3386 // Last option: Create a new instruction 3387 auto *Inverted = 3388 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3389 if (Inst && !isa<PHINode>(Inst)) 3390 Inverted->insertAfter(Inst); 3391 else 3392 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3393 return Inverted; 3394 } 3395