1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/LazyValueInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DIBuilder.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/PatternMatch.h" 46 #include "llvm/IR/ValueHandle.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/raw_ostream.h" 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "local" 54 55 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 56 57 //===----------------------------------------------------------------------===// 58 // Local constant propagation. 59 // 60 61 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 62 /// constant value, convert it into an unconditional branch to the constant 63 /// destination. This is a nontrivial operation because the successors of this 64 /// basic block must have their PHI nodes updated. 65 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 66 /// conditions and indirectbr addresses this might make dead if 67 /// DeleteDeadConditions is true. 68 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 69 const TargetLibraryInfo *TLI) { 70 TerminatorInst *T = BB->getTerminator(); 71 IRBuilder<> Builder(T); 72 73 // Branch - See if we are conditional jumping on constant 74 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 75 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 76 BasicBlock *Dest1 = BI->getSuccessor(0); 77 BasicBlock *Dest2 = BI->getSuccessor(1); 78 79 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 80 // Are we branching on constant? 81 // YES. Change to unconditional branch... 82 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 83 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 84 85 //cerr << "Function: " << T->getParent()->getParent() 86 // << "\nRemoving branch from " << T->getParent() 87 // << "\n\nTo: " << OldDest << endl; 88 89 // Let the basic block know that we are letting go of it. Based on this, 90 // it will adjust it's PHI nodes. 91 OldDest->removePredecessor(BB); 92 93 // Replace the conditional branch with an unconditional one. 94 Builder.CreateBr(Destination); 95 BI->eraseFromParent(); 96 return true; 97 } 98 99 if (Dest2 == Dest1) { // Conditional branch to same location? 100 // This branch matches something like this: 101 // br bool %cond, label %Dest, label %Dest 102 // and changes it into: br label %Dest 103 104 // Let the basic block know that we are letting go of one copy of it. 105 assert(BI->getParent() && "Terminator not inserted in block!"); 106 Dest1->removePredecessor(BI->getParent()); 107 108 // Replace the conditional branch with an unconditional one. 109 Builder.CreateBr(Dest1); 110 Value *Cond = BI->getCondition(); 111 BI->eraseFromParent(); 112 if (DeleteDeadConditions) 113 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 114 return true; 115 } 116 return false; 117 } 118 119 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 120 // If we are switching on a constant, we can convert the switch to an 121 // unconditional branch. 122 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 123 BasicBlock *DefaultDest = SI->getDefaultDest(); 124 BasicBlock *TheOnlyDest = DefaultDest; 125 126 // If the default is unreachable, ignore it when searching for TheOnlyDest. 127 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 128 SI->getNumCases() > 0) { 129 TheOnlyDest = SI->case_begin().getCaseSuccessor(); 130 } 131 132 // Figure out which case it goes to. 133 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 134 i != e; ++i) { 135 // Found case matching a constant operand? 136 if (i.getCaseValue() == CI) { 137 TheOnlyDest = i.getCaseSuccessor(); 138 break; 139 } 140 141 // Check to see if this branch is going to the same place as the default 142 // dest. If so, eliminate it as an explicit compare. 143 if (i.getCaseSuccessor() == DefaultDest) { 144 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 145 unsigned NCases = SI->getNumCases(); 146 // Fold the case metadata into the default if there will be any branches 147 // left, unless the metadata doesn't match the switch. 148 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 149 // Collect branch weights into a vector. 150 SmallVector<uint32_t, 8> Weights; 151 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 152 ++MD_i) { 153 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 154 Weights.push_back(CI->getValue().getZExtValue()); 155 } 156 // Merge weight of this case to the default weight. 157 unsigned idx = i.getCaseIndex(); 158 Weights[0] += Weights[idx+1]; 159 // Remove weight for this case. 160 std::swap(Weights[idx+1], Weights.back()); 161 Weights.pop_back(); 162 SI->setMetadata(LLVMContext::MD_prof, 163 MDBuilder(BB->getContext()). 164 createBranchWeights(Weights)); 165 } 166 // Remove this entry. 167 DefaultDest->removePredecessor(SI->getParent()); 168 SI->removeCase(i); 169 --i; --e; 170 continue; 171 } 172 173 // Otherwise, check to see if the switch only branches to one destination. 174 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 175 // destinations. 176 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr; 177 } 178 179 if (CI && !TheOnlyDest) { 180 // Branching on a constant, but not any of the cases, go to the default 181 // successor. 182 TheOnlyDest = SI->getDefaultDest(); 183 } 184 185 // If we found a single destination that we can fold the switch into, do so 186 // now. 187 if (TheOnlyDest) { 188 // Insert the new branch. 189 Builder.CreateBr(TheOnlyDest); 190 BasicBlock *BB = SI->getParent(); 191 192 // Remove entries from PHI nodes which we no longer branch to... 193 for (BasicBlock *Succ : SI->successors()) { 194 // Found case matching a constant operand? 195 if (Succ == TheOnlyDest) 196 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 197 else 198 Succ->removePredecessor(BB); 199 } 200 201 // Delete the old switch. 202 Value *Cond = SI->getCondition(); 203 SI->eraseFromParent(); 204 if (DeleteDeadConditions) 205 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 206 return true; 207 } 208 209 if (SI->getNumCases() == 1) { 210 // Otherwise, we can fold this switch into a conditional branch 211 // instruction if it has only one non-default destination. 212 SwitchInst::CaseIt FirstCase = SI->case_begin(); 213 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 214 FirstCase.getCaseValue(), "cond"); 215 216 // Insert the new branch. 217 BranchInst *NewBr = Builder.CreateCondBr(Cond, 218 FirstCase.getCaseSuccessor(), 219 SI->getDefaultDest()); 220 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 221 if (MD && MD->getNumOperands() == 3) { 222 ConstantInt *SICase = 223 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 224 ConstantInt *SIDef = 225 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 226 assert(SICase && SIDef); 227 // The TrueWeight should be the weight for the single case of SI. 228 NewBr->setMetadata(LLVMContext::MD_prof, 229 MDBuilder(BB->getContext()). 230 createBranchWeights(SICase->getValue().getZExtValue(), 231 SIDef->getValue().getZExtValue())); 232 } 233 234 // Update make.implicit metadata to the newly-created conditional branch. 235 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 236 if (MakeImplicitMD) 237 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 238 239 // Delete the old switch. 240 SI->eraseFromParent(); 241 return true; 242 } 243 return false; 244 } 245 246 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 247 // indirectbr blockaddress(@F, @BB) -> br label @BB 248 if (BlockAddress *BA = 249 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 250 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 251 // Insert the new branch. 252 Builder.CreateBr(TheOnlyDest); 253 254 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 255 if (IBI->getDestination(i) == TheOnlyDest) 256 TheOnlyDest = nullptr; 257 else 258 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 259 } 260 Value *Address = IBI->getAddress(); 261 IBI->eraseFromParent(); 262 if (DeleteDeadConditions) 263 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 264 265 // If we didn't find our destination in the IBI successor list, then we 266 // have undefined behavior. Replace the unconditional branch with an 267 // 'unreachable' instruction. 268 if (TheOnlyDest) { 269 BB->getTerminator()->eraseFromParent(); 270 new UnreachableInst(BB->getContext(), BB); 271 } 272 273 return true; 274 } 275 } 276 277 return false; 278 } 279 280 281 //===----------------------------------------------------------------------===// 282 // Local dead code elimination. 283 // 284 285 /// isInstructionTriviallyDead - Return true if the result produced by the 286 /// instruction is not used, and the instruction has no side effects. 287 /// 288 bool llvm::isInstructionTriviallyDead(Instruction *I, 289 const TargetLibraryInfo *TLI) { 290 if (!I->use_empty()) 291 return false; 292 return wouldInstructionBeTriviallyDead(I, TLI); 293 } 294 295 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 296 const TargetLibraryInfo *TLI) { 297 if (isa<TerminatorInst>(I)) 298 return false; 299 300 // We don't want the landingpad-like instructions removed by anything this 301 // general. 302 if (I->isEHPad()) 303 return false; 304 305 // We don't want debug info removed by anything this general, unless 306 // debug info is empty. 307 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 308 if (DDI->getAddress()) 309 return false; 310 return true; 311 } 312 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 313 if (DVI->getValue()) 314 return false; 315 return true; 316 } 317 318 if (!I->mayHaveSideEffects()) 319 return true; 320 321 // Special case intrinsics that "may have side effects" but can be deleted 322 // when dead. 323 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 324 // Safe to delete llvm.stacksave if dead. 325 if (II->getIntrinsicID() == Intrinsic::stacksave) 326 return true; 327 328 // Lifetime intrinsics are dead when their right-hand is undef. 329 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 330 II->getIntrinsicID() == Intrinsic::lifetime_end) 331 return isa<UndefValue>(II->getArgOperand(1)); 332 333 // Assumptions are dead if their condition is trivially true. Guards on 334 // true are operationally no-ops. In the future we can consider more 335 // sophisticated tradeoffs for guards considering potential for check 336 // widening, but for now we keep things simple. 337 if (II->getIntrinsicID() == Intrinsic::assume || 338 II->getIntrinsicID() == Intrinsic::experimental_guard) { 339 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 340 return !Cond->isZero(); 341 342 return false; 343 } 344 } 345 346 if (isAllocLikeFn(I, TLI)) 347 return true; 348 349 if (CallInst *CI = isFreeCall(I, TLI)) 350 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 351 return C->isNullValue() || isa<UndefValue>(C); 352 353 if (CallSite CS = CallSite(I)) 354 if (isMathLibCallNoop(CS, TLI)) 355 return true; 356 357 return false; 358 } 359 360 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 361 /// trivially dead instruction, delete it. If that makes any of its operands 362 /// trivially dead, delete them too, recursively. Return true if any 363 /// instructions were deleted. 364 bool 365 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 366 const TargetLibraryInfo *TLI) { 367 Instruction *I = dyn_cast<Instruction>(V); 368 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 369 return false; 370 371 SmallVector<Instruction*, 16> DeadInsts; 372 DeadInsts.push_back(I); 373 374 do { 375 I = DeadInsts.pop_back_val(); 376 377 // Null out all of the instruction's operands to see if any operand becomes 378 // dead as we go. 379 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 380 Value *OpV = I->getOperand(i); 381 I->setOperand(i, nullptr); 382 383 if (!OpV->use_empty()) continue; 384 385 // If the operand is an instruction that became dead as we nulled out the 386 // operand, and if it is 'trivially' dead, delete it in a future loop 387 // iteration. 388 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 389 if (isInstructionTriviallyDead(OpI, TLI)) 390 DeadInsts.push_back(OpI); 391 } 392 393 I->eraseFromParent(); 394 } while (!DeadInsts.empty()); 395 396 return true; 397 } 398 399 /// areAllUsesEqual - Check whether the uses of a value are all the same. 400 /// This is similar to Instruction::hasOneUse() except this will also return 401 /// true when there are no uses or multiple uses that all refer to the same 402 /// value. 403 static bool areAllUsesEqual(Instruction *I) { 404 Value::user_iterator UI = I->user_begin(); 405 Value::user_iterator UE = I->user_end(); 406 if (UI == UE) 407 return true; 408 409 User *TheUse = *UI; 410 for (++UI; UI != UE; ++UI) { 411 if (*UI != TheUse) 412 return false; 413 } 414 return true; 415 } 416 417 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 418 /// dead PHI node, due to being a def-use chain of single-use nodes that 419 /// either forms a cycle or is terminated by a trivially dead instruction, 420 /// delete it. If that makes any of its operands trivially dead, delete them 421 /// too, recursively. Return true if a change was made. 422 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 423 const TargetLibraryInfo *TLI) { 424 SmallPtrSet<Instruction*, 4> Visited; 425 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 426 I = cast<Instruction>(*I->user_begin())) { 427 if (I->use_empty()) 428 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 429 430 // If we find an instruction more than once, we're on a cycle that 431 // won't prove fruitful. 432 if (!Visited.insert(I).second) { 433 // Break the cycle and delete the instruction and its operands. 434 I->replaceAllUsesWith(UndefValue::get(I->getType())); 435 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 436 return true; 437 } 438 } 439 return false; 440 } 441 442 static bool 443 simplifyAndDCEInstruction(Instruction *I, 444 SmallSetVector<Instruction *, 16> &WorkList, 445 const DataLayout &DL, 446 const TargetLibraryInfo *TLI) { 447 if (isInstructionTriviallyDead(I, TLI)) { 448 // Null out all of the instruction's operands to see if any operand becomes 449 // dead as we go. 450 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 451 Value *OpV = I->getOperand(i); 452 I->setOperand(i, nullptr); 453 454 if (!OpV->use_empty() || I == OpV) 455 continue; 456 457 // If the operand is an instruction that became dead as we nulled out the 458 // operand, and if it is 'trivially' dead, delete it in a future loop 459 // iteration. 460 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 461 if (isInstructionTriviallyDead(OpI, TLI)) 462 WorkList.insert(OpI); 463 } 464 465 I->eraseFromParent(); 466 467 return true; 468 } 469 470 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 471 // Add the users to the worklist. CAREFUL: an instruction can use itself, 472 // in the case of a phi node. 473 for (User *U : I->users()) { 474 if (U != I) { 475 WorkList.insert(cast<Instruction>(U)); 476 } 477 } 478 479 // Replace the instruction with its simplified value. 480 bool Changed = false; 481 if (!I->use_empty()) { 482 I->replaceAllUsesWith(SimpleV); 483 Changed = true; 484 } 485 if (isInstructionTriviallyDead(I, TLI)) { 486 I->eraseFromParent(); 487 Changed = true; 488 } 489 return Changed; 490 } 491 return false; 492 } 493 494 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 495 /// simplify any instructions in it and recursively delete dead instructions. 496 /// 497 /// This returns true if it changed the code, note that it can delete 498 /// instructions in other blocks as well in this block. 499 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 500 const TargetLibraryInfo *TLI) { 501 bool MadeChange = false; 502 const DataLayout &DL = BB->getModule()->getDataLayout(); 503 504 #ifndef NDEBUG 505 // In debug builds, ensure that the terminator of the block is never replaced 506 // or deleted by these simplifications. The idea of simplification is that it 507 // cannot introduce new instructions, and there is no way to replace the 508 // terminator of a block without introducing a new instruction. 509 AssertingVH<Instruction> TerminatorVH(&BB->back()); 510 #endif 511 512 SmallSetVector<Instruction *, 16> WorkList; 513 // Iterate over the original function, only adding insts to the worklist 514 // if they actually need to be revisited. This avoids having to pre-init 515 // the worklist with the entire function's worth of instructions. 516 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 517 BI != E;) { 518 assert(!BI->isTerminator()); 519 Instruction *I = &*BI; 520 ++BI; 521 522 // We're visiting this instruction now, so make sure it's not in the 523 // worklist from an earlier visit. 524 if (!WorkList.count(I)) 525 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 526 } 527 528 while (!WorkList.empty()) { 529 Instruction *I = WorkList.pop_back_val(); 530 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 531 } 532 return MadeChange; 533 } 534 535 //===----------------------------------------------------------------------===// 536 // Control Flow Graph Restructuring. 537 // 538 539 540 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 541 /// method is called when we're about to delete Pred as a predecessor of BB. If 542 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 543 /// 544 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 545 /// nodes that collapse into identity values. For example, if we have: 546 /// x = phi(1, 0, 0, 0) 547 /// y = and x, z 548 /// 549 /// .. and delete the predecessor corresponding to the '1', this will attempt to 550 /// recursively fold the and to 0. 551 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 552 // This only adjusts blocks with PHI nodes. 553 if (!isa<PHINode>(BB->begin())) 554 return; 555 556 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 557 // them down. This will leave us with single entry phi nodes and other phis 558 // that can be removed. 559 BB->removePredecessor(Pred, true); 560 561 WeakVH PhiIt = &BB->front(); 562 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 563 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 564 Value *OldPhiIt = PhiIt; 565 566 if (!recursivelySimplifyInstruction(PN)) 567 continue; 568 569 // If recursive simplification ended up deleting the next PHI node we would 570 // iterate to, then our iterator is invalid, restart scanning from the top 571 // of the block. 572 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 573 } 574 } 575 576 577 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 578 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 579 /// between them, moving the instructions in the predecessor into DestBB and 580 /// deleting the predecessor block. 581 /// 582 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 583 // If BB has single-entry PHI nodes, fold them. 584 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 585 Value *NewVal = PN->getIncomingValue(0); 586 // Replace self referencing PHI with undef, it must be dead. 587 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 588 PN->replaceAllUsesWith(NewVal); 589 PN->eraseFromParent(); 590 } 591 592 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 593 assert(PredBB && "Block doesn't have a single predecessor!"); 594 595 // Zap anything that took the address of DestBB. Not doing this will give the 596 // address an invalid value. 597 if (DestBB->hasAddressTaken()) { 598 BlockAddress *BA = BlockAddress::get(DestBB); 599 Constant *Replacement = 600 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 601 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 602 BA->getType())); 603 BA->destroyConstant(); 604 } 605 606 // Anything that branched to PredBB now branches to DestBB. 607 PredBB->replaceAllUsesWith(DestBB); 608 609 // Splice all the instructions from PredBB to DestBB. 610 PredBB->getTerminator()->eraseFromParent(); 611 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 612 613 // If the PredBB is the entry block of the function, move DestBB up to 614 // become the entry block after we erase PredBB. 615 if (PredBB == &DestBB->getParent()->getEntryBlock()) 616 DestBB->moveAfter(PredBB); 617 618 if (DT) { 619 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 620 DT->changeImmediateDominator(DestBB, PredBBIDom); 621 DT->eraseNode(PredBB); 622 } 623 // Nuke BB. 624 PredBB->eraseFromParent(); 625 } 626 627 /// CanMergeValues - Return true if we can choose one of these values to use 628 /// in place of the other. Note that we will always choose the non-undef 629 /// value to keep. 630 static bool CanMergeValues(Value *First, Value *Second) { 631 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 632 } 633 634 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 635 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 636 /// 637 /// Assumption: Succ is the single successor for BB. 638 /// 639 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 640 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 641 642 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 643 << Succ->getName() << "\n"); 644 // Shortcut, if there is only a single predecessor it must be BB and merging 645 // is always safe 646 if (Succ->getSinglePredecessor()) return true; 647 648 // Make a list of the predecessors of BB 649 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 650 651 // Look at all the phi nodes in Succ, to see if they present a conflict when 652 // merging these blocks 653 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 654 PHINode *PN = cast<PHINode>(I); 655 656 // If the incoming value from BB is again a PHINode in 657 // BB which has the same incoming value for *PI as PN does, we can 658 // merge the phi nodes and then the blocks can still be merged 659 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 660 if (BBPN && BBPN->getParent() == BB) { 661 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 662 BasicBlock *IBB = PN->getIncomingBlock(PI); 663 if (BBPreds.count(IBB) && 664 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 665 PN->getIncomingValue(PI))) { 666 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 667 << Succ->getName() << " is conflicting with " 668 << BBPN->getName() << " with regard to common predecessor " 669 << IBB->getName() << "\n"); 670 return false; 671 } 672 } 673 } else { 674 Value* Val = PN->getIncomingValueForBlock(BB); 675 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 676 // See if the incoming value for the common predecessor is equal to the 677 // one for BB, in which case this phi node will not prevent the merging 678 // of the block. 679 BasicBlock *IBB = PN->getIncomingBlock(PI); 680 if (BBPreds.count(IBB) && 681 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 682 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 683 << Succ->getName() << " is conflicting with regard to common " 684 << "predecessor " << IBB->getName() << "\n"); 685 return false; 686 } 687 } 688 } 689 } 690 691 return true; 692 } 693 694 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 695 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 696 697 /// \brief Determines the value to use as the phi node input for a block. 698 /// 699 /// Select between \p OldVal any value that we know flows from \p BB 700 /// to a particular phi on the basis of which one (if either) is not 701 /// undef. Update IncomingValues based on the selected value. 702 /// 703 /// \param OldVal The value we are considering selecting. 704 /// \param BB The block that the value flows in from. 705 /// \param IncomingValues A map from block-to-value for other phi inputs 706 /// that we have examined. 707 /// 708 /// \returns the selected value. 709 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 710 IncomingValueMap &IncomingValues) { 711 if (!isa<UndefValue>(OldVal)) { 712 assert((!IncomingValues.count(BB) || 713 IncomingValues.find(BB)->second == OldVal) && 714 "Expected OldVal to match incoming value from BB!"); 715 716 IncomingValues.insert(std::make_pair(BB, OldVal)); 717 return OldVal; 718 } 719 720 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 721 if (It != IncomingValues.end()) return It->second; 722 723 return OldVal; 724 } 725 726 /// \brief Create a map from block to value for the operands of a 727 /// given phi. 728 /// 729 /// Create a map from block to value for each non-undef value flowing 730 /// into \p PN. 731 /// 732 /// \param PN The phi we are collecting the map for. 733 /// \param IncomingValues [out] The map from block to value for this phi. 734 static void gatherIncomingValuesToPhi(PHINode *PN, 735 IncomingValueMap &IncomingValues) { 736 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 737 BasicBlock *BB = PN->getIncomingBlock(i); 738 Value *V = PN->getIncomingValue(i); 739 740 if (!isa<UndefValue>(V)) 741 IncomingValues.insert(std::make_pair(BB, V)); 742 } 743 } 744 745 /// \brief Replace the incoming undef values to a phi with the values 746 /// from a block-to-value map. 747 /// 748 /// \param PN The phi we are replacing the undefs in. 749 /// \param IncomingValues A map from block to value. 750 static void replaceUndefValuesInPhi(PHINode *PN, 751 const IncomingValueMap &IncomingValues) { 752 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 753 Value *V = PN->getIncomingValue(i); 754 755 if (!isa<UndefValue>(V)) continue; 756 757 BasicBlock *BB = PN->getIncomingBlock(i); 758 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 759 if (It == IncomingValues.end()) continue; 760 761 PN->setIncomingValue(i, It->second); 762 } 763 } 764 765 /// \brief Replace a value flowing from a block to a phi with 766 /// potentially multiple instances of that value flowing from the 767 /// block's predecessors to the phi. 768 /// 769 /// \param BB The block with the value flowing into the phi. 770 /// \param BBPreds The predecessors of BB. 771 /// \param PN The phi that we are updating. 772 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 773 const PredBlockVector &BBPreds, 774 PHINode *PN) { 775 Value *OldVal = PN->removeIncomingValue(BB, false); 776 assert(OldVal && "No entry in PHI for Pred BB!"); 777 778 IncomingValueMap IncomingValues; 779 780 // We are merging two blocks - BB, and the block containing PN - and 781 // as a result we need to redirect edges from the predecessors of BB 782 // to go to the block containing PN, and update PN 783 // accordingly. Since we allow merging blocks in the case where the 784 // predecessor and successor blocks both share some predecessors, 785 // and where some of those common predecessors might have undef 786 // values flowing into PN, we want to rewrite those values to be 787 // consistent with the non-undef values. 788 789 gatherIncomingValuesToPhi(PN, IncomingValues); 790 791 // If this incoming value is one of the PHI nodes in BB, the new entries 792 // in the PHI node are the entries from the old PHI. 793 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 794 PHINode *OldValPN = cast<PHINode>(OldVal); 795 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 796 // Note that, since we are merging phi nodes and BB and Succ might 797 // have common predecessors, we could end up with a phi node with 798 // identical incoming branches. This will be cleaned up later (and 799 // will trigger asserts if we try to clean it up now, without also 800 // simplifying the corresponding conditional branch). 801 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 802 Value *PredVal = OldValPN->getIncomingValue(i); 803 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 804 IncomingValues); 805 806 // And add a new incoming value for this predecessor for the 807 // newly retargeted branch. 808 PN->addIncoming(Selected, PredBB); 809 } 810 } else { 811 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 812 // Update existing incoming values in PN for this 813 // predecessor of BB. 814 BasicBlock *PredBB = BBPreds[i]; 815 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 816 IncomingValues); 817 818 // And add a new incoming value for this predecessor for the 819 // newly retargeted branch. 820 PN->addIncoming(Selected, PredBB); 821 } 822 } 823 824 replaceUndefValuesInPhi(PN, IncomingValues); 825 } 826 827 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 828 /// unconditional branch, and contains no instructions other than PHI nodes, 829 /// potential side-effect free intrinsics and the branch. If possible, 830 /// eliminate BB by rewriting all the predecessors to branch to the successor 831 /// block and return true. If we can't transform, return false. 832 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 833 assert(BB != &BB->getParent()->getEntryBlock() && 834 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 835 836 // We can't eliminate infinite loops. 837 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 838 if (BB == Succ) return false; 839 840 // Check to see if merging these blocks would cause conflicts for any of the 841 // phi nodes in BB or Succ. If not, we can safely merge. 842 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 843 844 // Check for cases where Succ has multiple predecessors and a PHI node in BB 845 // has uses which will not disappear when the PHI nodes are merged. It is 846 // possible to handle such cases, but difficult: it requires checking whether 847 // BB dominates Succ, which is non-trivial to calculate in the case where 848 // Succ has multiple predecessors. Also, it requires checking whether 849 // constructing the necessary self-referential PHI node doesn't introduce any 850 // conflicts; this isn't too difficult, but the previous code for doing this 851 // was incorrect. 852 // 853 // Note that if this check finds a live use, BB dominates Succ, so BB is 854 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 855 // folding the branch isn't profitable in that case anyway. 856 if (!Succ->getSinglePredecessor()) { 857 BasicBlock::iterator BBI = BB->begin(); 858 while (isa<PHINode>(*BBI)) { 859 for (Use &U : BBI->uses()) { 860 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 861 if (PN->getIncomingBlock(U) != BB) 862 return false; 863 } else { 864 return false; 865 } 866 } 867 ++BBI; 868 } 869 } 870 871 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 872 873 if (isa<PHINode>(Succ->begin())) { 874 // If there is more than one pred of succ, and there are PHI nodes in 875 // the successor, then we need to add incoming edges for the PHI nodes 876 // 877 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 878 879 // Loop over all of the PHI nodes in the successor of BB. 880 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 881 PHINode *PN = cast<PHINode>(I); 882 883 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 884 } 885 } 886 887 if (Succ->getSinglePredecessor()) { 888 // BB is the only predecessor of Succ, so Succ will end up with exactly 889 // the same predecessors BB had. 890 891 // Copy over any phi, debug or lifetime instruction. 892 BB->getTerminator()->eraseFromParent(); 893 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 894 BB->getInstList()); 895 } else { 896 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 897 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 898 assert(PN->use_empty() && "There shouldn't be any uses here!"); 899 PN->eraseFromParent(); 900 } 901 } 902 903 // If the unconditional branch we replaced contains llvm.loop metadata, we 904 // add the metadata to the branch instructions in the predecessors. 905 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 906 Instruction *TI = BB->getTerminator(); 907 if (TI) 908 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 909 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 910 BasicBlock *Pred = *PI; 911 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 912 } 913 914 // Everything that jumped to BB now goes to Succ. 915 BB->replaceAllUsesWith(Succ); 916 if (!Succ->hasName()) Succ->takeName(BB); 917 BB->eraseFromParent(); // Delete the old basic block. 918 return true; 919 } 920 921 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 922 /// nodes in this block. This doesn't try to be clever about PHI nodes 923 /// which differ only in the order of the incoming values, but instcombine 924 /// orders them so it usually won't matter. 925 /// 926 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 927 // This implementation doesn't currently consider undef operands 928 // specially. Theoretically, two phis which are identical except for 929 // one having an undef where the other doesn't could be collapsed. 930 931 struct PHIDenseMapInfo { 932 static PHINode *getEmptyKey() { 933 return DenseMapInfo<PHINode *>::getEmptyKey(); 934 } 935 static PHINode *getTombstoneKey() { 936 return DenseMapInfo<PHINode *>::getTombstoneKey(); 937 } 938 static unsigned getHashValue(PHINode *PN) { 939 // Compute a hash value on the operands. Instcombine will likely have 940 // sorted them, which helps expose duplicates, but we have to check all 941 // the operands to be safe in case instcombine hasn't run. 942 return static_cast<unsigned>(hash_combine( 943 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 944 hash_combine_range(PN->block_begin(), PN->block_end()))); 945 } 946 static bool isEqual(PHINode *LHS, PHINode *RHS) { 947 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 948 RHS == getEmptyKey() || RHS == getTombstoneKey()) 949 return LHS == RHS; 950 return LHS->isIdenticalTo(RHS); 951 } 952 }; 953 954 // Set of unique PHINodes. 955 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 956 957 // Examine each PHI. 958 bool Changed = false; 959 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 960 auto Inserted = PHISet.insert(PN); 961 if (!Inserted.second) { 962 // A duplicate. Replace this PHI with its duplicate. 963 PN->replaceAllUsesWith(*Inserted.first); 964 PN->eraseFromParent(); 965 Changed = true; 966 967 // The RAUW can change PHIs that we already visited. Start over from the 968 // beginning. 969 PHISet.clear(); 970 I = BB->begin(); 971 } 972 } 973 974 return Changed; 975 } 976 977 /// enforceKnownAlignment - If the specified pointer points to an object that 978 /// we control, modify the object's alignment to PrefAlign. This isn't 979 /// often possible though. If alignment is important, a more reliable approach 980 /// is to simply align all global variables and allocation instructions to 981 /// their preferred alignment from the beginning. 982 /// 983 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 984 unsigned PrefAlign, 985 const DataLayout &DL) { 986 assert(PrefAlign > Align); 987 988 V = V->stripPointerCasts(); 989 990 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 991 // TODO: ideally, computeKnownBits ought to have used 992 // AllocaInst::getAlignment() in its computation already, making 993 // the below max redundant. But, as it turns out, 994 // stripPointerCasts recurses through infinite layers of bitcasts, 995 // while computeKnownBits is not allowed to traverse more than 6 996 // levels. 997 Align = std::max(AI->getAlignment(), Align); 998 if (PrefAlign <= Align) 999 return Align; 1000 1001 // If the preferred alignment is greater than the natural stack alignment 1002 // then don't round up. This avoids dynamic stack realignment. 1003 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1004 return Align; 1005 AI->setAlignment(PrefAlign); 1006 return PrefAlign; 1007 } 1008 1009 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1010 // TODO: as above, this shouldn't be necessary. 1011 Align = std::max(GO->getAlignment(), Align); 1012 if (PrefAlign <= Align) 1013 return Align; 1014 1015 // If there is a large requested alignment and we can, bump up the alignment 1016 // of the global. If the memory we set aside for the global may not be the 1017 // memory used by the final program then it is impossible for us to reliably 1018 // enforce the preferred alignment. 1019 if (!GO->canIncreaseAlignment()) 1020 return Align; 1021 1022 GO->setAlignment(PrefAlign); 1023 return PrefAlign; 1024 } 1025 1026 return Align; 1027 } 1028 1029 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1030 const DataLayout &DL, 1031 const Instruction *CxtI, 1032 AssumptionCache *AC, 1033 const DominatorTree *DT) { 1034 assert(V->getType()->isPointerTy() && 1035 "getOrEnforceKnownAlignment expects a pointer!"); 1036 unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType()); 1037 1038 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 1039 computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT); 1040 unsigned TrailZ = KnownZero.countTrailingOnes(); 1041 1042 // Avoid trouble with ridiculously large TrailZ values, such as 1043 // those computed from a null pointer. 1044 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1045 1046 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 1047 1048 // LLVM doesn't support alignments larger than this currently. 1049 Align = std::min(Align, +Value::MaximumAlignment); 1050 1051 if (PrefAlign > Align) 1052 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1053 1054 // We don't need to make any adjustment. 1055 return Align; 1056 } 1057 1058 ///===---------------------------------------------------------------------===// 1059 /// Dbg Intrinsic utilities 1060 /// 1061 1062 /// See if there is a dbg.value intrinsic for DIVar before I. 1063 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1064 Instruction *I) { 1065 // Since we can't guarantee that the original dbg.declare instrinsic 1066 // is removed by LowerDbgDeclare(), we need to make sure that we are 1067 // not inserting the same dbg.value intrinsic over and over. 1068 llvm::BasicBlock::InstListType::iterator PrevI(I); 1069 if (PrevI != I->getParent()->getInstList().begin()) { 1070 --PrevI; 1071 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1072 if (DVI->getValue() == I->getOperand(0) && 1073 DVI->getOffset() == 0 && 1074 DVI->getVariable() == DIVar && 1075 DVI->getExpression() == DIExpr) 1076 return true; 1077 } 1078 return false; 1079 } 1080 1081 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1082 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1083 DIExpression *DIExpr, 1084 PHINode *APN) { 1085 // Since we can't guarantee that the original dbg.declare instrinsic 1086 // is removed by LowerDbgDeclare(), we need to make sure that we are 1087 // not inserting the same dbg.value intrinsic over and over. 1088 SmallVector<DbgValueInst *, 1> DbgValues; 1089 findDbgValues(DbgValues, APN); 1090 for (auto *DVI : DbgValues) { 1091 assert(DVI->getValue() == APN); 1092 assert(DVI->getOffset() == 0); 1093 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1094 return true; 1095 } 1096 return false; 1097 } 1098 1099 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1100 /// that has an associated llvm.dbg.decl intrinsic. 1101 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1102 StoreInst *SI, DIBuilder &Builder) { 1103 auto *DIVar = DDI->getVariable(); 1104 auto *DIExpr = DDI->getExpression(); 1105 assert(DIVar && "Missing variable"); 1106 1107 // If an argument is zero extended then use argument directly. The ZExt 1108 // may be zapped by an optimization pass in future. 1109 Argument *ExtendedArg = nullptr; 1110 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1111 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1112 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1113 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1114 if (ExtendedArg) { 1115 // We're now only describing a subset of the variable. The fragment we're 1116 // describing will always be smaller than the variable size, because 1117 // VariableSize == Size of Alloca described by DDI. Since SI stores 1118 // to the alloca described by DDI, if it's first operand is an extend, 1119 // we're guaranteed that before extension, the value was narrower than 1120 // the size of the alloca, hence the size of the described variable. 1121 SmallVector<uint64_t, 3> Ops; 1122 unsigned FragmentOffset = 0; 1123 // If this already is a bit fragment, we drop the bit fragment from the 1124 // expression and record the offset. 1125 auto Fragment = DIExpr->getFragmentInfo(); 1126 if (Fragment) { 1127 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3); 1128 FragmentOffset = Fragment->OffsetInBits; 1129 } else { 1130 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1131 } 1132 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1133 Ops.push_back(FragmentOffset); 1134 const DataLayout &DL = DDI->getModule()->getDataLayout(); 1135 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1136 auto NewDIExpr = Builder.createExpression(Ops); 1137 if (!LdStHasDebugValue(DIVar, NewDIExpr, SI)) 1138 Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr, 1139 DDI->getDebugLoc(), SI); 1140 } else if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1141 Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr, 1142 DDI->getDebugLoc(), SI); 1143 } 1144 1145 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1146 /// that has an associated llvm.dbg.decl intrinsic. 1147 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1148 LoadInst *LI, DIBuilder &Builder) { 1149 auto *DIVar = DDI->getVariable(); 1150 auto *DIExpr = DDI->getExpression(); 1151 assert(DIVar && "Missing variable"); 1152 1153 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1154 return; 1155 1156 // We are now tracking the loaded value instead of the address. In the 1157 // future if multi-location support is added to the IR, it might be 1158 // preferable to keep tracking both the loaded value and the original 1159 // address in case the alloca can not be elided. 1160 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1161 LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr); 1162 DbgValue->insertAfter(LI); 1163 } 1164 1165 /// Inserts a llvm.dbg.value intrinsic after a phi 1166 /// that has an associated llvm.dbg.decl intrinsic. 1167 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1168 PHINode *APN, DIBuilder &Builder) { 1169 auto *DIVar = DDI->getVariable(); 1170 auto *DIExpr = DDI->getExpression(); 1171 assert(DIVar && "Missing variable"); 1172 1173 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1174 return; 1175 1176 BasicBlock *BB = APN->getParent(); 1177 auto InsertionPt = BB->getFirstInsertionPt(); 1178 1179 // The block may be a catchswitch block, which does not have a valid 1180 // insertion point. 1181 // FIXME: Insert dbg.value markers in the successors when appropriate. 1182 if (InsertionPt != BB->end()) 1183 Builder.insertDbgValueIntrinsic(APN, 0, DIVar, DIExpr, DDI->getDebugLoc(), 1184 &*InsertionPt); 1185 } 1186 1187 /// Determine whether this alloca is either a VLA or an array. 1188 static bool isArray(AllocaInst *AI) { 1189 return AI->isArrayAllocation() || 1190 AI->getType()->getElementType()->isArrayTy(); 1191 } 1192 1193 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1194 /// of llvm.dbg.value intrinsics. 1195 bool llvm::LowerDbgDeclare(Function &F) { 1196 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1197 SmallVector<DbgDeclareInst *, 4> Dbgs; 1198 for (auto &FI : F) 1199 for (Instruction &BI : FI) 1200 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1201 Dbgs.push_back(DDI); 1202 1203 if (Dbgs.empty()) 1204 return false; 1205 1206 for (auto &I : Dbgs) { 1207 DbgDeclareInst *DDI = I; 1208 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1209 // If this is an alloca for a scalar variable, insert a dbg.value 1210 // at each load and store to the alloca and erase the dbg.declare. 1211 // The dbg.values allow tracking a variable even if it is not 1212 // stored on the stack, while the dbg.declare can only describe 1213 // the stack slot (and at a lexical-scope granularity). Later 1214 // passes will attempt to elide the stack slot. 1215 if (AI && !isArray(AI)) { 1216 for (auto &AIUse : AI->uses()) { 1217 User *U = AIUse.getUser(); 1218 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1219 if (AIUse.getOperandNo() == 1) 1220 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1221 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1222 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1223 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1224 // This is a call by-value or some other instruction that 1225 // takes a pointer to the variable. Insert a *value* 1226 // intrinsic that describes the alloca. 1227 SmallVector<uint64_t, 1> NewDIExpr; 1228 auto *DIExpr = DDI->getExpression(); 1229 NewDIExpr.push_back(dwarf::DW_OP_deref); 1230 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1231 DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(), 1232 DIB.createExpression(NewDIExpr), 1233 DDI->getDebugLoc(), CI); 1234 } 1235 } 1236 DDI->eraseFromParent(); 1237 } 1238 } 1239 return true; 1240 } 1241 1242 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1243 /// alloca 'V', if any. 1244 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1245 if (auto *L = LocalAsMetadata::getIfExists(V)) 1246 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1247 for (User *U : MDV->users()) 1248 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1249 return DDI; 1250 1251 return nullptr; 1252 } 1253 1254 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1255 if (auto *L = LocalAsMetadata::getIfExists(V)) 1256 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1257 for (User *U : MDV->users()) 1258 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1259 DbgValues.push_back(DVI); 1260 } 1261 1262 static void appendOffset(SmallVectorImpl<uint64_t> &Ops, int64_t Offset) { 1263 if (Offset > 0) { 1264 Ops.push_back(dwarf::DW_OP_plus); 1265 Ops.push_back(Offset); 1266 } else if (Offset < 0) { 1267 Ops.push_back(dwarf::DW_OP_minus); 1268 Ops.push_back(-Offset); 1269 } 1270 } 1271 1272 /// Prepend \p DIExpr with a deref and offset operation. 1273 static DIExpression *prependDIExpr(DIBuilder &Builder, DIExpression *DIExpr, 1274 bool Deref, int64_t Offset) { 1275 if (!Deref && !Offset) 1276 return DIExpr; 1277 // Create a copy of the original DIDescriptor for user variable, prepending 1278 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1279 // will take a value storing address of the memory for variable, not 1280 // alloca itself. 1281 SmallVector<uint64_t, 4> Ops; 1282 if (Deref) 1283 Ops.push_back(dwarf::DW_OP_deref); 1284 appendOffset(Ops, Offset); 1285 if (DIExpr) 1286 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1287 return Builder.createExpression(Ops); 1288 } 1289 1290 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1291 Instruction *InsertBefore, DIBuilder &Builder, 1292 bool Deref, int Offset) { 1293 DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address); 1294 if (!DDI) 1295 return false; 1296 DebugLoc Loc = DDI->getDebugLoc(); 1297 auto *DIVar = DDI->getVariable(); 1298 auto *DIExpr = DDI->getExpression(); 1299 assert(DIVar && "Missing variable"); 1300 1301 DIExpr = prependDIExpr(Builder, DIExpr, Deref, Offset); 1302 1303 // Insert llvm.dbg.declare immediately after the original alloca, and remove 1304 // old llvm.dbg.declare. 1305 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1306 DDI->eraseFromParent(); 1307 return true; 1308 } 1309 1310 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1311 DIBuilder &Builder, bool Deref, int Offset) { 1312 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1313 Deref, Offset); 1314 } 1315 1316 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1317 DIBuilder &Builder, int Offset) { 1318 DebugLoc Loc = DVI->getDebugLoc(); 1319 auto *DIVar = DVI->getVariable(); 1320 auto *DIExpr = DVI->getExpression(); 1321 assert(DIVar && "Missing variable"); 1322 1323 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1324 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1325 // it and give up. 1326 if (!DIExpr || DIExpr->getNumElements() < 1 || 1327 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1328 return; 1329 1330 // Insert the offset immediately after the first deref. 1331 // We could just change the offset argument of dbg.value, but it's unsigned... 1332 if (Offset) { 1333 SmallVector<uint64_t, 4> Ops; 1334 Ops.push_back(dwarf::DW_OP_deref); 1335 appendOffset(Ops, Offset); 1336 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1337 DIExpr = Builder.createExpression(Ops); 1338 } 1339 1340 Builder.insertDbgValueIntrinsic(NewAddress, DVI->getOffset(), DIVar, DIExpr, 1341 Loc, DVI); 1342 DVI->eraseFromParent(); 1343 } 1344 1345 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1346 DIBuilder &Builder, int Offset) { 1347 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1348 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1349 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1350 Use &U = *UI++; 1351 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1352 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1353 } 1354 } 1355 1356 void llvm::salvageDebugInfo(Instruction &I) { 1357 SmallVector<DbgValueInst *, 1> DbgValues; 1358 auto &M = *I.getModule(); 1359 1360 auto MDWrap = [&](Value *V) { 1361 return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V)); 1362 }; 1363 1364 if (isa<BitCastInst>(&I)) { 1365 findDbgValues(DbgValues, &I); 1366 for (auto *DVI : DbgValues) { 1367 // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value 1368 // to use the cast's source. 1369 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1370 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1371 } 1372 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1373 findDbgValues(DbgValues, &I); 1374 for (auto *DVI : DbgValues) { 1375 unsigned BitWidth = 1376 M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace()); 1377 APInt Offset(BitWidth, 0); 1378 // Rewrite a constant GEP into a DIExpression. 1379 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1380 auto *DIExpr = DVI->getExpression(); 1381 DIBuilder DIB(M, /*AllowUnresolved*/ false); 1382 // GEP offsets are i32 and thus alwaus fit into an int64_t. 1383 DIExpr = prependDIExpr(DIB, DIExpr, NoDeref, Offset.getSExtValue()); 1384 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1385 DVI->setOperand(3, MetadataAsValue::get(I.getContext(), DIExpr)); 1386 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1387 } 1388 } 1389 } else if (isa<LoadInst>(&I)) { 1390 findDbgValues(DbgValues, &I); 1391 for (auto *DVI : DbgValues) { 1392 // Rewrite the load into DW_OP_deref. 1393 auto *DIExpr = DVI->getExpression(); 1394 DIBuilder DIB(M, /*AllowUnresolved*/ false); 1395 DIExpr = prependDIExpr(DIB, DIExpr, WithDeref, 0); 1396 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1397 DVI->setOperand(3, MetadataAsValue::get(I.getContext(), DIExpr)); 1398 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1399 } 1400 } 1401 } 1402 1403 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1404 unsigned NumDeadInst = 0; 1405 // Delete the instructions backwards, as it has a reduced likelihood of 1406 // having to update as many def-use and use-def chains. 1407 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1408 while (EndInst != &BB->front()) { 1409 // Delete the next to last instruction. 1410 Instruction *Inst = &*--EndInst->getIterator(); 1411 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1412 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1413 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1414 EndInst = Inst; 1415 continue; 1416 } 1417 if (!isa<DbgInfoIntrinsic>(Inst)) 1418 ++NumDeadInst; 1419 Inst->eraseFromParent(); 1420 } 1421 return NumDeadInst; 1422 } 1423 1424 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1425 bool PreserveLCSSA) { 1426 BasicBlock *BB = I->getParent(); 1427 // Loop over all of the successors, removing BB's entry from any PHI 1428 // nodes. 1429 for (BasicBlock *Successor : successors(BB)) 1430 Successor->removePredecessor(BB, PreserveLCSSA); 1431 1432 // Insert a call to llvm.trap right before this. This turns the undefined 1433 // behavior into a hard fail instead of falling through into random code. 1434 if (UseLLVMTrap) { 1435 Function *TrapFn = 1436 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1437 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1438 CallTrap->setDebugLoc(I->getDebugLoc()); 1439 } 1440 new UnreachableInst(I->getContext(), I); 1441 1442 // All instructions after this are dead. 1443 unsigned NumInstrsRemoved = 0; 1444 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1445 while (BBI != BBE) { 1446 if (!BBI->use_empty()) 1447 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1448 BB->getInstList().erase(BBI++); 1449 ++NumInstrsRemoved; 1450 } 1451 return NumInstrsRemoved; 1452 } 1453 1454 /// changeToCall - Convert the specified invoke into a normal call. 1455 static void changeToCall(InvokeInst *II) { 1456 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1457 SmallVector<OperandBundleDef, 1> OpBundles; 1458 II->getOperandBundlesAsDefs(OpBundles); 1459 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1460 "", II); 1461 NewCall->takeName(II); 1462 NewCall->setCallingConv(II->getCallingConv()); 1463 NewCall->setAttributes(II->getAttributes()); 1464 NewCall->setDebugLoc(II->getDebugLoc()); 1465 II->replaceAllUsesWith(NewCall); 1466 1467 // Follow the call by a branch to the normal destination. 1468 BranchInst::Create(II->getNormalDest(), II); 1469 1470 // Update PHI nodes in the unwind destination 1471 II->getUnwindDest()->removePredecessor(II->getParent()); 1472 II->eraseFromParent(); 1473 } 1474 1475 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1476 BasicBlock *UnwindEdge) { 1477 BasicBlock *BB = CI->getParent(); 1478 1479 // Convert this function call into an invoke instruction. First, split the 1480 // basic block. 1481 BasicBlock *Split = 1482 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1483 1484 // Delete the unconditional branch inserted by splitBasicBlock 1485 BB->getInstList().pop_back(); 1486 1487 // Create the new invoke instruction. 1488 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1489 SmallVector<OperandBundleDef, 1> OpBundles; 1490 1491 CI->getOperandBundlesAsDefs(OpBundles); 1492 1493 // Note: we're round tripping operand bundles through memory here, and that 1494 // can potentially be avoided with a cleverer API design that we do not have 1495 // as of this time. 1496 1497 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1498 InvokeArgs, OpBundles, CI->getName(), BB); 1499 II->setDebugLoc(CI->getDebugLoc()); 1500 II->setCallingConv(CI->getCallingConv()); 1501 II->setAttributes(CI->getAttributes()); 1502 1503 // Make sure that anything using the call now uses the invoke! This also 1504 // updates the CallGraph if present, because it uses a WeakVH. 1505 CI->replaceAllUsesWith(II); 1506 1507 // Delete the original call 1508 Split->getInstList().pop_front(); 1509 return Split; 1510 } 1511 1512 static bool markAliveBlocks(Function &F, 1513 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1514 1515 SmallVector<BasicBlock*, 128> Worklist; 1516 BasicBlock *BB = &F.front(); 1517 Worklist.push_back(BB); 1518 Reachable.insert(BB); 1519 bool Changed = false; 1520 do { 1521 BB = Worklist.pop_back_val(); 1522 1523 // Do a quick scan of the basic block, turning any obviously unreachable 1524 // instructions into LLVM unreachable insts. The instruction combining pass 1525 // canonicalizes unreachable insts into stores to null or undef. 1526 for (Instruction &I : *BB) { 1527 // Assumptions that are known to be false are equivalent to unreachable. 1528 // Also, if the condition is undefined, then we make the choice most 1529 // beneficial to the optimizer, and choose that to also be unreachable. 1530 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1531 if (II->getIntrinsicID() == Intrinsic::assume) { 1532 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 1533 // Don't insert a call to llvm.trap right before the unreachable. 1534 changeToUnreachable(II, false); 1535 Changed = true; 1536 break; 1537 } 1538 } 1539 1540 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1541 // A call to the guard intrinsic bails out of the current compilation 1542 // unit if the predicate passed to it is false. If the predicate is a 1543 // constant false, then we know the guard will bail out of the current 1544 // compile unconditionally, so all code following it is dead. 1545 // 1546 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1547 // guards to treat `undef` as `false` since a guard on `undef` can 1548 // still be useful for widening. 1549 if (match(II->getArgOperand(0), m_Zero())) 1550 if (!isa<UnreachableInst>(II->getNextNode())) { 1551 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false); 1552 Changed = true; 1553 break; 1554 } 1555 } 1556 } 1557 1558 if (auto *CI = dyn_cast<CallInst>(&I)) { 1559 Value *Callee = CI->getCalledValue(); 1560 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1561 changeToUnreachable(CI, /*UseLLVMTrap=*/false); 1562 Changed = true; 1563 break; 1564 } 1565 if (CI->doesNotReturn()) { 1566 // If we found a call to a no-return function, insert an unreachable 1567 // instruction after it. Make sure there isn't *already* one there 1568 // though. 1569 if (!isa<UnreachableInst>(CI->getNextNode())) { 1570 // Don't insert a call to llvm.trap right before the unreachable. 1571 changeToUnreachable(CI->getNextNode(), false); 1572 Changed = true; 1573 } 1574 break; 1575 } 1576 } 1577 1578 // Store to undef and store to null are undefined and used to signal that 1579 // they should be changed to unreachable by passes that can't modify the 1580 // CFG. 1581 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1582 // Don't touch volatile stores. 1583 if (SI->isVolatile()) continue; 1584 1585 Value *Ptr = SI->getOperand(1); 1586 1587 if (isa<UndefValue>(Ptr) || 1588 (isa<ConstantPointerNull>(Ptr) && 1589 SI->getPointerAddressSpace() == 0)) { 1590 changeToUnreachable(SI, true); 1591 Changed = true; 1592 break; 1593 } 1594 } 1595 } 1596 1597 TerminatorInst *Terminator = BB->getTerminator(); 1598 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1599 // Turn invokes that call 'nounwind' functions into ordinary calls. 1600 Value *Callee = II->getCalledValue(); 1601 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1602 changeToUnreachable(II, true); 1603 Changed = true; 1604 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1605 if (II->use_empty() && II->onlyReadsMemory()) { 1606 // jump to the normal destination branch. 1607 BranchInst::Create(II->getNormalDest(), II); 1608 II->getUnwindDest()->removePredecessor(II->getParent()); 1609 II->eraseFromParent(); 1610 } else 1611 changeToCall(II); 1612 Changed = true; 1613 } 1614 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1615 // Remove catchpads which cannot be reached. 1616 struct CatchPadDenseMapInfo { 1617 static CatchPadInst *getEmptyKey() { 1618 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1619 } 1620 static CatchPadInst *getTombstoneKey() { 1621 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1622 } 1623 static unsigned getHashValue(CatchPadInst *CatchPad) { 1624 return static_cast<unsigned>(hash_combine_range( 1625 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1626 } 1627 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1628 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1629 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1630 return LHS == RHS; 1631 return LHS->isIdenticalTo(RHS); 1632 } 1633 }; 1634 1635 // Set of unique CatchPads. 1636 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1637 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1638 HandlerSet; 1639 detail::DenseSetEmpty Empty; 1640 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1641 E = CatchSwitch->handler_end(); 1642 I != E; ++I) { 1643 BasicBlock *HandlerBB = *I; 1644 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1645 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1646 CatchSwitch->removeHandler(I); 1647 --I; 1648 --E; 1649 Changed = true; 1650 } 1651 } 1652 } 1653 1654 Changed |= ConstantFoldTerminator(BB, true); 1655 for (BasicBlock *Successor : successors(BB)) 1656 if (Reachable.insert(Successor).second) 1657 Worklist.push_back(Successor); 1658 } while (!Worklist.empty()); 1659 return Changed; 1660 } 1661 1662 void llvm::removeUnwindEdge(BasicBlock *BB) { 1663 TerminatorInst *TI = BB->getTerminator(); 1664 1665 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1666 changeToCall(II); 1667 return; 1668 } 1669 1670 TerminatorInst *NewTI; 1671 BasicBlock *UnwindDest; 1672 1673 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1674 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1675 UnwindDest = CRI->getUnwindDest(); 1676 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1677 auto *NewCatchSwitch = CatchSwitchInst::Create( 1678 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1679 CatchSwitch->getName(), CatchSwitch); 1680 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1681 NewCatchSwitch->addHandler(PadBB); 1682 1683 NewTI = NewCatchSwitch; 1684 UnwindDest = CatchSwitch->getUnwindDest(); 1685 } else { 1686 llvm_unreachable("Could not find unwind successor"); 1687 } 1688 1689 NewTI->takeName(TI); 1690 NewTI->setDebugLoc(TI->getDebugLoc()); 1691 UnwindDest->removePredecessor(BB); 1692 TI->replaceAllUsesWith(NewTI); 1693 TI->eraseFromParent(); 1694 } 1695 1696 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1697 /// if they are in a dead cycle. Return true if a change was made, false 1698 /// otherwise. 1699 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) { 1700 SmallPtrSet<BasicBlock*, 16> Reachable; 1701 bool Changed = markAliveBlocks(F, Reachable); 1702 1703 // If there are unreachable blocks in the CFG... 1704 if (Reachable.size() == F.size()) 1705 return Changed; 1706 1707 assert(Reachable.size() < F.size()); 1708 NumRemoved += F.size()-Reachable.size(); 1709 1710 // Loop over all of the basic blocks that are not reachable, dropping all of 1711 // their internal references... 1712 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1713 if (Reachable.count(&*BB)) 1714 continue; 1715 1716 for (BasicBlock *Successor : successors(&*BB)) 1717 if (Reachable.count(Successor)) 1718 Successor->removePredecessor(&*BB); 1719 if (LVI) 1720 LVI->eraseBlock(&*BB); 1721 BB->dropAllReferences(); 1722 } 1723 1724 for (Function::iterator I = ++F.begin(); I != F.end();) 1725 if (!Reachable.count(&*I)) 1726 I = F.getBasicBlockList().erase(I); 1727 else 1728 ++I; 1729 1730 return true; 1731 } 1732 1733 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1734 ArrayRef<unsigned> KnownIDs) { 1735 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1736 K->dropUnknownNonDebugMetadata(KnownIDs); 1737 K->getAllMetadataOtherThanDebugLoc(Metadata); 1738 for (const auto &MD : Metadata) { 1739 unsigned Kind = MD.first; 1740 MDNode *JMD = J->getMetadata(Kind); 1741 MDNode *KMD = MD.second; 1742 1743 switch (Kind) { 1744 default: 1745 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1746 break; 1747 case LLVMContext::MD_dbg: 1748 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1749 case LLVMContext::MD_tbaa: 1750 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1751 break; 1752 case LLVMContext::MD_alias_scope: 1753 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1754 break; 1755 case LLVMContext::MD_noalias: 1756 case LLVMContext::MD_mem_parallel_loop_access: 1757 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1758 break; 1759 case LLVMContext::MD_range: 1760 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1761 break; 1762 case LLVMContext::MD_fpmath: 1763 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1764 break; 1765 case LLVMContext::MD_invariant_load: 1766 // Only set the !invariant.load if it is present in both instructions. 1767 K->setMetadata(Kind, JMD); 1768 break; 1769 case LLVMContext::MD_nonnull: 1770 // Only set the !nonnull if it is present in both instructions. 1771 K->setMetadata(Kind, JMD); 1772 break; 1773 case LLVMContext::MD_invariant_group: 1774 // Preserve !invariant.group in K. 1775 break; 1776 case LLVMContext::MD_align: 1777 K->setMetadata(Kind, 1778 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1779 break; 1780 case LLVMContext::MD_dereferenceable: 1781 case LLVMContext::MD_dereferenceable_or_null: 1782 K->setMetadata(Kind, 1783 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1784 break; 1785 } 1786 } 1787 // Set !invariant.group from J if J has it. If both instructions have it 1788 // then we will just pick it from J - even when they are different. 1789 // Also make sure that K is load or store - f.e. combining bitcast with load 1790 // could produce bitcast with invariant.group metadata, which is invalid. 1791 // FIXME: we should try to preserve both invariant.group md if they are 1792 // different, but right now instruction can only have one invariant.group. 1793 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1794 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1795 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1796 } 1797 1798 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 1799 unsigned KnownIDs[] = { 1800 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1801 LLVMContext::MD_noalias, LLVMContext::MD_range, 1802 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 1803 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 1804 LLVMContext::MD_dereferenceable, 1805 LLVMContext::MD_dereferenceable_or_null}; 1806 combineMetadata(K, J, KnownIDs); 1807 } 1808 1809 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1810 DominatorTree &DT, 1811 const BasicBlockEdge &Root) { 1812 assert(From->getType() == To->getType()); 1813 1814 unsigned Count = 0; 1815 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1816 UI != UE; ) { 1817 Use &U = *UI++; 1818 if (DT.dominates(Root, U)) { 1819 U.set(To); 1820 DEBUG(dbgs() << "Replace dominated use of '" 1821 << From->getName() << "' as " 1822 << *To << " in " << *U << "\n"); 1823 ++Count; 1824 } 1825 } 1826 return Count; 1827 } 1828 1829 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1830 DominatorTree &DT, 1831 const BasicBlock *BB) { 1832 assert(From->getType() == To->getType()); 1833 1834 unsigned Count = 0; 1835 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1836 UI != UE;) { 1837 Use &U = *UI++; 1838 auto *I = cast<Instruction>(U.getUser()); 1839 if (DT.properlyDominates(BB, I->getParent())) { 1840 U.set(To); 1841 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1842 << *To << " in " << *U << "\n"); 1843 ++Count; 1844 } 1845 } 1846 return Count; 1847 } 1848 1849 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) { 1850 // Check if the function is specifically marked as a gc leaf function. 1851 if (CS.hasFnAttr("gc-leaf-function")) 1852 return true; 1853 if (const Function *F = CS.getCalledFunction()) { 1854 if (F->hasFnAttribute("gc-leaf-function")) 1855 return true; 1856 1857 if (auto IID = F->getIntrinsicID()) 1858 // Most LLVM intrinsics do not take safepoints. 1859 return IID != Intrinsic::experimental_gc_statepoint && 1860 IID != Intrinsic::experimental_deoptimize; 1861 } 1862 1863 return false; 1864 } 1865 1866 namespace { 1867 /// A potential constituent of a bitreverse or bswap expression. See 1868 /// collectBitParts for a fuller explanation. 1869 struct BitPart { 1870 BitPart(Value *P, unsigned BW) : Provider(P) { 1871 Provenance.resize(BW); 1872 } 1873 1874 /// The Value that this is a bitreverse/bswap of. 1875 Value *Provider; 1876 /// The "provenance" of each bit. Provenance[A] = B means that bit A 1877 /// in Provider becomes bit B in the result of this expression. 1878 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 1879 1880 enum { Unset = -1 }; 1881 }; 1882 } // end anonymous namespace 1883 1884 /// Analyze the specified subexpression and see if it is capable of providing 1885 /// pieces of a bswap or bitreverse. The subexpression provides a potential 1886 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 1887 /// the output of the expression came from a corresponding bit in some other 1888 /// value. This function is recursive, and the end result is a mapping of 1889 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 1890 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 1891 /// 1892 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 1893 /// that the expression deposits the low byte of %X into the high byte of the 1894 /// result and that all other bits are zero. This expression is accepted and a 1895 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 1896 /// [0-7]. 1897 /// 1898 /// To avoid revisiting values, the BitPart results are memoized into the 1899 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 1900 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 1901 /// store BitParts objects, not pointers. As we need the concept of a nullptr 1902 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 1903 /// type instead to provide the same functionality. 1904 /// 1905 /// Because we pass around references into \c BPS, we must use a container that 1906 /// does not invalidate internal references (std::map instead of DenseMap). 1907 /// 1908 static const Optional<BitPart> & 1909 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 1910 std::map<Value *, Optional<BitPart>> &BPS) { 1911 auto I = BPS.find(V); 1912 if (I != BPS.end()) 1913 return I->second; 1914 1915 auto &Result = BPS[V] = None; 1916 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1917 1918 if (Instruction *I = dyn_cast<Instruction>(V)) { 1919 // If this is an or instruction, it may be an inner node of the bswap. 1920 if (I->getOpcode() == Instruction::Or) { 1921 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 1922 MatchBitReversals, BPS); 1923 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 1924 MatchBitReversals, BPS); 1925 if (!A || !B) 1926 return Result; 1927 1928 // Try and merge the two together. 1929 if (!A->Provider || A->Provider != B->Provider) 1930 return Result; 1931 1932 Result = BitPart(A->Provider, BitWidth); 1933 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 1934 if (A->Provenance[i] != BitPart::Unset && 1935 B->Provenance[i] != BitPart::Unset && 1936 A->Provenance[i] != B->Provenance[i]) 1937 return Result = None; 1938 1939 if (A->Provenance[i] == BitPart::Unset) 1940 Result->Provenance[i] = B->Provenance[i]; 1941 else 1942 Result->Provenance[i] = A->Provenance[i]; 1943 } 1944 1945 return Result; 1946 } 1947 1948 // If this is a logical shift by a constant, recurse then shift the result. 1949 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 1950 unsigned BitShift = 1951 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 1952 // Ensure the shift amount is defined. 1953 if (BitShift > BitWidth) 1954 return Result; 1955 1956 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1957 MatchBitReversals, BPS); 1958 if (!Res) 1959 return Result; 1960 Result = Res; 1961 1962 // Perform the "shift" on BitProvenance. 1963 auto &P = Result->Provenance; 1964 if (I->getOpcode() == Instruction::Shl) { 1965 P.erase(std::prev(P.end(), BitShift), P.end()); 1966 P.insert(P.begin(), BitShift, BitPart::Unset); 1967 } else { 1968 P.erase(P.begin(), std::next(P.begin(), BitShift)); 1969 P.insert(P.end(), BitShift, BitPart::Unset); 1970 } 1971 1972 return Result; 1973 } 1974 1975 // If this is a logical 'and' with a mask that clears bits, recurse then 1976 // unset the appropriate bits. 1977 if (I->getOpcode() == Instruction::And && 1978 isa<ConstantInt>(I->getOperand(1))) { 1979 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 1980 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 1981 1982 // Check that the mask allows a multiple of 8 bits for a bswap, for an 1983 // early exit. 1984 unsigned NumMaskedBits = AndMask.countPopulation(); 1985 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 1986 return Result; 1987 1988 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1989 MatchBitReversals, BPS); 1990 if (!Res) 1991 return Result; 1992 Result = Res; 1993 1994 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 1995 // If the AndMask is zero for this bit, clear the bit. 1996 if ((AndMask & Bit) == 0) 1997 Result->Provenance[i] = BitPart::Unset; 1998 return Result; 1999 } 2000 2001 // If this is a zext instruction zero extend the result. 2002 if (I->getOpcode() == Instruction::ZExt) { 2003 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2004 MatchBitReversals, BPS); 2005 if (!Res) 2006 return Result; 2007 2008 Result = BitPart(Res->Provider, BitWidth); 2009 auto NarrowBitWidth = 2010 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2011 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2012 Result->Provenance[i] = Res->Provenance[i]; 2013 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2014 Result->Provenance[i] = BitPart::Unset; 2015 return Result; 2016 } 2017 } 2018 2019 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2020 // the input value to the bswap/bitreverse. 2021 Result = BitPart(V, BitWidth); 2022 for (unsigned i = 0; i < BitWidth; ++i) 2023 Result->Provenance[i] = i; 2024 return Result; 2025 } 2026 2027 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2028 unsigned BitWidth) { 2029 if (From % 8 != To % 8) 2030 return false; 2031 // Convert from bit indices to byte indices and check for a byte reversal. 2032 From >>= 3; 2033 To >>= 3; 2034 BitWidth >>= 3; 2035 return From == BitWidth - To - 1; 2036 } 2037 2038 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2039 unsigned BitWidth) { 2040 return From == BitWidth - To - 1; 2041 } 2042 2043 /// Given an OR instruction, check to see if this is a bitreverse 2044 /// idiom. If so, insert the new intrinsic and return true. 2045 bool llvm::recognizeBSwapOrBitReverseIdiom( 2046 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2047 SmallVectorImpl<Instruction *> &InsertedInsts) { 2048 if (Operator::getOpcode(I) != Instruction::Or) 2049 return false; 2050 if (!MatchBSwaps && !MatchBitReversals) 2051 return false; 2052 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2053 if (!ITy || ITy->getBitWidth() > 128) 2054 return false; // Can't do vectors or integers > 128 bits. 2055 unsigned BW = ITy->getBitWidth(); 2056 2057 unsigned DemandedBW = BW; 2058 IntegerType *DemandedTy = ITy; 2059 if (I->hasOneUse()) { 2060 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2061 DemandedTy = cast<IntegerType>(Trunc->getType()); 2062 DemandedBW = DemandedTy->getBitWidth(); 2063 } 2064 } 2065 2066 // Try to find all the pieces corresponding to the bswap. 2067 std::map<Value *, Optional<BitPart>> BPS; 2068 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2069 if (!Res) 2070 return false; 2071 auto &BitProvenance = Res->Provenance; 2072 2073 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2074 // only byteswap values with an even number of bytes. 2075 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2076 for (unsigned i = 0; i < DemandedBW; ++i) { 2077 OKForBSwap &= 2078 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2079 OKForBitReverse &= 2080 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2081 } 2082 2083 Intrinsic::ID Intrin; 2084 if (OKForBSwap && MatchBSwaps) 2085 Intrin = Intrinsic::bswap; 2086 else if (OKForBitReverse && MatchBitReversals) 2087 Intrin = Intrinsic::bitreverse; 2088 else 2089 return false; 2090 2091 if (ITy != DemandedTy) { 2092 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2093 Value *Provider = Res->Provider; 2094 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2095 // We may need to truncate the provider. 2096 if (DemandedTy != ProviderTy) { 2097 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2098 "trunc", I); 2099 InsertedInsts.push_back(Trunc); 2100 Provider = Trunc; 2101 } 2102 auto *CI = CallInst::Create(F, Provider, "rev", I); 2103 InsertedInsts.push_back(CI); 2104 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2105 InsertedInsts.push_back(ExtInst); 2106 return true; 2107 } 2108 2109 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2110 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2111 return true; 2112 } 2113 2114 // CodeGen has special handling for some string functions that may replace 2115 // them with target-specific intrinsics. Since that'd skip our interceptors 2116 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2117 // we mark affected calls as NoBuiltin, which will disable optimization 2118 // in CodeGen. 2119 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2120 CallInst *CI, const TargetLibraryInfo *TLI) { 2121 Function *F = CI->getCalledFunction(); 2122 LibFunc Func; 2123 if (F && !F->hasLocalLinkage() && F->hasName() && 2124 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2125 !F->doesNotAccessMemory()) 2126 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2127 } 2128