1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/AssumeBundleQueries.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/LazyValueInfo.h"
34 #include "llvm/Analysis/MemoryBuiltins.h"
35 #include "llvm/Analysis/MemorySSAUpdater.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/BinaryFormat/Dwarf.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/PseudoProbe.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/ErrorHandling.h"
77 #include "llvm/Support/KnownBits.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
80 #include "llvm/Transforms/Utils/ValueMapper.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <climits>
84 #include <cstdint>
85 #include <iterator>
86 #include <map>
87 #include <utility>
88 
89 using namespace llvm;
90 using namespace llvm::PatternMatch;
91 
92 #define DEBUG_TYPE "local"
93 
94 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
95 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
96 
97 static cl::opt<bool> PHICSEDebugHash(
98     "phicse-debug-hash",
99 #ifdef EXPENSIVE_CHECKS
100     cl::init(true),
101 #else
102     cl::init(false),
103 #endif
104     cl::Hidden,
105     cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
106              "function is well-behaved w.r.t. its isEqual predicate"));
107 
108 static cl::opt<unsigned> PHICSENumPHISmallSize(
109     "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
110     cl::desc(
111         "When the basic block contains not more than this number of PHI nodes, "
112         "perform a (faster!) exhaustive search instead of set-driven one."));
113 
114 // Max recursion depth for collectBitParts used when detecting bswap and
115 // bitreverse idioms
116 static const unsigned BitPartRecursionMaxDepth = 64;
117 
118 //===----------------------------------------------------------------------===//
119 //  Local constant propagation.
120 //
121 
122 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
123 /// constant value, convert it into an unconditional branch to the constant
124 /// destination.  This is a nontrivial operation because the successors of this
125 /// basic block must have their PHI nodes updated.
126 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
127 /// conditions and indirectbr addresses this might make dead if
128 /// DeleteDeadConditions is true.
129 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
130                                   const TargetLibraryInfo *TLI,
131                                   DomTreeUpdater *DTU) {
132   Instruction *T = BB->getTerminator();
133   IRBuilder<> Builder(T);
134 
135   // Branch - See if we are conditional jumping on constant
136   if (auto *BI = dyn_cast<BranchInst>(T)) {
137     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
138 
139     BasicBlock *Dest1 = BI->getSuccessor(0);
140     BasicBlock *Dest2 = BI->getSuccessor(1);
141 
142     if (Dest2 == Dest1) {       // Conditional branch to same location?
143       // This branch matches something like this:
144       //     br bool %cond, label %Dest, label %Dest
145       // and changes it into:  br label %Dest
146 
147       // Let the basic block know that we are letting go of one copy of it.
148       assert(BI->getParent() && "Terminator not inserted in block!");
149       Dest1->removePredecessor(BI->getParent());
150 
151       // Replace the conditional branch with an unconditional one.
152       Builder.CreateBr(Dest1);
153       Value *Cond = BI->getCondition();
154       BI->eraseFromParent();
155       if (DeleteDeadConditions)
156         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
157       return true;
158     }
159 
160     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
161       // Are we branching on constant?
162       // YES.  Change to unconditional branch...
163       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
164       BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
165 
166       // Let the basic block know that we are letting go of it.  Based on this,
167       // it will adjust it's PHI nodes.
168       OldDest->removePredecessor(BB);
169 
170       // Replace the conditional branch with an unconditional one.
171       Builder.CreateBr(Destination);
172       BI->eraseFromParent();
173       if (DTU)
174         DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
175       return true;
176     }
177 
178     return false;
179   }
180 
181   if (auto *SI = dyn_cast<SwitchInst>(T)) {
182     // If we are switching on a constant, we can convert the switch to an
183     // unconditional branch.
184     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
185     BasicBlock *DefaultDest = SI->getDefaultDest();
186     BasicBlock *TheOnlyDest = DefaultDest;
187 
188     // If the default is unreachable, ignore it when searching for TheOnlyDest.
189     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
190         SI->getNumCases() > 0) {
191       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
192     }
193 
194     bool Changed = false;
195 
196     // Figure out which case it goes to.
197     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
198       // Found case matching a constant operand?
199       if (i->getCaseValue() == CI) {
200         TheOnlyDest = i->getCaseSuccessor();
201         break;
202       }
203 
204       // Check to see if this branch is going to the same place as the default
205       // dest.  If so, eliminate it as an explicit compare.
206       if (i->getCaseSuccessor() == DefaultDest) {
207         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
208         unsigned NCases = SI->getNumCases();
209         // Fold the case metadata into the default if there will be any branches
210         // left, unless the metadata doesn't match the switch.
211         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
212           // Collect branch weights into a vector.
213           SmallVector<uint32_t, 8> Weights;
214           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
215                ++MD_i) {
216             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
217             Weights.push_back(CI->getValue().getZExtValue());
218           }
219           // Merge weight of this case to the default weight.
220           unsigned idx = i->getCaseIndex();
221           Weights[0] += Weights[idx+1];
222           // Remove weight for this case.
223           std::swap(Weights[idx+1], Weights.back());
224           Weights.pop_back();
225           SI->setMetadata(LLVMContext::MD_prof,
226                           MDBuilder(BB->getContext()).
227                           createBranchWeights(Weights));
228         }
229         // Remove this entry.
230         BasicBlock *ParentBB = SI->getParent();
231         DefaultDest->removePredecessor(ParentBB);
232         i = SI->removeCase(i);
233         e = SI->case_end();
234         Changed = true;
235         continue;
236       }
237 
238       // Otherwise, check to see if the switch only branches to one destination.
239       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
240       // destinations.
241       if (i->getCaseSuccessor() != TheOnlyDest)
242         TheOnlyDest = nullptr;
243 
244       // Increment this iterator as we haven't removed the case.
245       ++i;
246     }
247 
248     if (CI && !TheOnlyDest) {
249       // Branching on a constant, but not any of the cases, go to the default
250       // successor.
251       TheOnlyDest = SI->getDefaultDest();
252     }
253 
254     // If we found a single destination that we can fold the switch into, do so
255     // now.
256     if (TheOnlyDest) {
257       // Insert the new branch.
258       Builder.CreateBr(TheOnlyDest);
259       BasicBlock *BB = SI->getParent();
260 
261       SmallSetVector<BasicBlock *, 8> RemovedSuccessors;
262 
263       // Remove entries from PHI nodes which we no longer branch to...
264       BasicBlock *SuccToKeep = TheOnlyDest;
265       for (BasicBlock *Succ : successors(SI)) {
266         if (DTU && Succ != TheOnlyDest)
267           RemovedSuccessors.insert(Succ);
268         // Found case matching a constant operand?
269         if (Succ == SuccToKeep) {
270           SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
271         } else {
272           Succ->removePredecessor(BB);
273         }
274       }
275 
276       // Delete the old switch.
277       Value *Cond = SI->getCondition();
278       SI->eraseFromParent();
279       if (DeleteDeadConditions)
280         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
281       if (DTU) {
282         std::vector<DominatorTree::UpdateType> Updates;
283         Updates.reserve(RemovedSuccessors.size());
284         for (auto *RemovedSuccessor : RemovedSuccessors)
285           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
286         DTU->applyUpdates(Updates);
287       }
288       return true;
289     }
290 
291     if (SI->getNumCases() == 1) {
292       // Otherwise, we can fold this switch into a conditional branch
293       // instruction if it has only one non-default destination.
294       auto FirstCase = *SI->case_begin();
295       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
296           FirstCase.getCaseValue(), "cond");
297 
298       // Insert the new branch.
299       BranchInst *NewBr = Builder.CreateCondBr(Cond,
300                                                FirstCase.getCaseSuccessor(),
301                                                SI->getDefaultDest());
302       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
303       if (MD && MD->getNumOperands() == 3) {
304         ConstantInt *SICase =
305             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
306         ConstantInt *SIDef =
307             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
308         assert(SICase && SIDef);
309         // The TrueWeight should be the weight for the single case of SI.
310         NewBr->setMetadata(LLVMContext::MD_prof,
311                         MDBuilder(BB->getContext()).
312                         createBranchWeights(SICase->getValue().getZExtValue(),
313                                             SIDef->getValue().getZExtValue()));
314       }
315 
316       // Update make.implicit metadata to the newly-created conditional branch.
317       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
318       if (MakeImplicitMD)
319         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
320 
321       // Delete the old switch.
322       SI->eraseFromParent();
323       return true;
324     }
325     return Changed;
326   }
327 
328   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
329     // indirectbr blockaddress(@F, @BB) -> br label @BB
330     if (auto *BA =
331           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
332       BasicBlock *TheOnlyDest = BA->getBasicBlock();
333       SmallSetVector<BasicBlock *, 8> RemovedSuccessors;
334 
335       // Insert the new branch.
336       Builder.CreateBr(TheOnlyDest);
337 
338       BasicBlock *SuccToKeep = TheOnlyDest;
339       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
340         BasicBlock *DestBB = IBI->getDestination(i);
341         if (DTU && DestBB != TheOnlyDest)
342           RemovedSuccessors.insert(DestBB);
343         if (IBI->getDestination(i) == SuccToKeep) {
344           SuccToKeep = nullptr;
345         } else {
346           DestBB->removePredecessor(BB);
347         }
348       }
349       Value *Address = IBI->getAddress();
350       IBI->eraseFromParent();
351       if (DeleteDeadConditions)
352         // Delete pointer cast instructions.
353         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
354 
355       // Also zap the blockaddress constant if there are no users remaining,
356       // otherwise the destination is still marked as having its address taken.
357       if (BA->use_empty())
358         BA->destroyConstant();
359 
360       // If we didn't find our destination in the IBI successor list, then we
361       // have undefined behavior.  Replace the unconditional branch with an
362       // 'unreachable' instruction.
363       if (SuccToKeep) {
364         BB->getTerminator()->eraseFromParent();
365         new UnreachableInst(BB->getContext(), BB);
366       }
367 
368       if (DTU) {
369         std::vector<DominatorTree::UpdateType> Updates;
370         Updates.reserve(RemovedSuccessors.size());
371         for (auto *RemovedSuccessor : RemovedSuccessors)
372           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
373         DTU->applyUpdates(Updates);
374       }
375       return true;
376     }
377   }
378 
379   return false;
380 }
381 
382 //===----------------------------------------------------------------------===//
383 //  Local dead code elimination.
384 //
385 
386 /// isInstructionTriviallyDead - Return true if the result produced by the
387 /// instruction is not used, and the instruction has no side effects.
388 ///
389 bool llvm::isInstructionTriviallyDead(Instruction *I,
390                                       const TargetLibraryInfo *TLI) {
391   if (!I->use_empty())
392     return false;
393   return wouldInstructionBeTriviallyDead(I, TLI);
394 }
395 
396 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
397                                            const TargetLibraryInfo *TLI) {
398   if (I->isTerminator())
399     return false;
400 
401   // We don't want the landingpad-like instructions removed by anything this
402   // general.
403   if (I->isEHPad())
404     return false;
405 
406   // We don't want debug info removed by anything this general, unless
407   // debug info is empty.
408   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
409     if (DDI->getAddress())
410       return false;
411     return true;
412   }
413   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
414     if (DVI->getValue())
415       return false;
416     return true;
417   }
418   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
419     if (DLI->getLabel())
420       return false;
421     return true;
422   }
423 
424   if (!I->willReturn())
425     return false;
426 
427   if (!I->mayHaveSideEffects())
428     return true;
429 
430   // Special case intrinsics that "may have side effects" but can be deleted
431   // when dead.
432   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
433     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
434     if (II->getIntrinsicID() == Intrinsic::stacksave ||
435         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
436       return true;
437 
438     if (II->isLifetimeStartOrEnd()) {
439       auto *Arg = II->getArgOperand(1);
440       // Lifetime intrinsics are dead when their right-hand is undef.
441       if (isa<UndefValue>(Arg))
442         return true;
443       // If the right-hand is an alloc, global, or argument and the only uses
444       // are lifetime intrinsics then the intrinsics are dead.
445       if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
446         return llvm::all_of(Arg->uses(), [](Use &Use) {
447           if (IntrinsicInst *IntrinsicUse =
448                   dyn_cast<IntrinsicInst>(Use.getUser()))
449             return IntrinsicUse->isLifetimeStartOrEnd();
450           return false;
451         });
452       return false;
453     }
454 
455     // Assumptions are dead if their condition is trivially true.  Guards on
456     // true are operationally no-ops.  In the future we can consider more
457     // sophisticated tradeoffs for guards considering potential for check
458     // widening, but for now we keep things simple.
459     if ((II->getIntrinsicID() == Intrinsic::assume &&
460          isAssumeWithEmptyBundle(*II)) ||
461         II->getIntrinsicID() == Intrinsic::experimental_guard) {
462       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
463         return !Cond->isZero();
464 
465       return false;
466     }
467   }
468 
469   if (isAllocLikeFn(I, TLI))
470     return true;
471 
472   if (CallInst *CI = isFreeCall(I, TLI))
473     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
474       return C->isNullValue() || isa<UndefValue>(C);
475 
476   if (auto *Call = dyn_cast<CallBase>(I))
477     if (isMathLibCallNoop(Call, TLI))
478       return true;
479 
480   return false;
481 }
482 
483 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
484 /// trivially dead instruction, delete it.  If that makes any of its operands
485 /// trivially dead, delete them too, recursively.  Return true if any
486 /// instructions were deleted.
487 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
488     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
489     std::function<void(Value *)> AboutToDeleteCallback) {
490   Instruction *I = dyn_cast<Instruction>(V);
491   if (!I || !isInstructionTriviallyDead(I, TLI))
492     return false;
493 
494   SmallVector<WeakTrackingVH, 16> DeadInsts;
495   DeadInsts.push_back(I);
496   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
497                                              AboutToDeleteCallback);
498 
499   return true;
500 }
501 
502 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
503     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
504     MemorySSAUpdater *MSSAU,
505     std::function<void(Value *)> AboutToDeleteCallback) {
506   unsigned S = 0, E = DeadInsts.size(), Alive = 0;
507   for (; S != E; ++S) {
508     auto *I = cast<Instruction>(DeadInsts[S]);
509     if (!isInstructionTriviallyDead(I)) {
510       DeadInsts[S] = nullptr;
511       ++Alive;
512     }
513   }
514   if (Alive == E)
515     return false;
516   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
517                                              AboutToDeleteCallback);
518   return true;
519 }
520 
521 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
522     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
523     MemorySSAUpdater *MSSAU,
524     std::function<void(Value *)> AboutToDeleteCallback) {
525   // Process the dead instruction list until empty.
526   while (!DeadInsts.empty()) {
527     Value *V = DeadInsts.pop_back_val();
528     Instruction *I = cast_or_null<Instruction>(V);
529     if (!I)
530       continue;
531     assert(isInstructionTriviallyDead(I, TLI) &&
532            "Live instruction found in dead worklist!");
533     assert(I->use_empty() && "Instructions with uses are not dead.");
534 
535     // Don't lose the debug info while deleting the instructions.
536     salvageDebugInfo(*I);
537 
538     if (AboutToDeleteCallback)
539       AboutToDeleteCallback(I);
540 
541     // Null out all of the instruction's operands to see if any operand becomes
542     // dead as we go.
543     for (Use &OpU : I->operands()) {
544       Value *OpV = OpU.get();
545       OpU.set(nullptr);
546 
547       if (!OpV->use_empty())
548         continue;
549 
550       // If the operand is an instruction that became dead as we nulled out the
551       // operand, and if it is 'trivially' dead, delete it in a future loop
552       // iteration.
553       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
554         if (isInstructionTriviallyDead(OpI, TLI))
555           DeadInsts.push_back(OpI);
556     }
557     if (MSSAU)
558       MSSAU->removeMemoryAccess(I);
559 
560     I->eraseFromParent();
561   }
562 }
563 
564 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
565   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
566   findDbgUsers(DbgUsers, I);
567   for (auto *DII : DbgUsers) {
568     Value *Undef = UndefValue::get(I->getType());
569     DII->replaceVariableLocationOp(I, Undef);
570   }
571   return !DbgUsers.empty();
572 }
573 
574 /// areAllUsesEqual - Check whether the uses of a value are all the same.
575 /// This is similar to Instruction::hasOneUse() except this will also return
576 /// true when there are no uses or multiple uses that all refer to the same
577 /// value.
578 static bool areAllUsesEqual(Instruction *I) {
579   Value::user_iterator UI = I->user_begin();
580   Value::user_iterator UE = I->user_end();
581   if (UI == UE)
582     return true;
583 
584   User *TheUse = *UI;
585   for (++UI; UI != UE; ++UI) {
586     if (*UI != TheUse)
587       return false;
588   }
589   return true;
590 }
591 
592 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
593 /// dead PHI node, due to being a def-use chain of single-use nodes that
594 /// either forms a cycle or is terminated by a trivially dead instruction,
595 /// delete it.  If that makes any of its operands trivially dead, delete them
596 /// too, recursively.  Return true if a change was made.
597 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
598                                         const TargetLibraryInfo *TLI,
599                                         llvm::MemorySSAUpdater *MSSAU) {
600   SmallPtrSet<Instruction*, 4> Visited;
601   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
602        I = cast<Instruction>(*I->user_begin())) {
603     if (I->use_empty())
604       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
605 
606     // If we find an instruction more than once, we're on a cycle that
607     // won't prove fruitful.
608     if (!Visited.insert(I).second) {
609       // Break the cycle and delete the instruction and its operands.
610       I->replaceAllUsesWith(UndefValue::get(I->getType()));
611       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
612       return true;
613     }
614   }
615   return false;
616 }
617 
618 static bool
619 simplifyAndDCEInstruction(Instruction *I,
620                           SmallSetVector<Instruction *, 16> &WorkList,
621                           const DataLayout &DL,
622                           const TargetLibraryInfo *TLI) {
623   if (isInstructionTriviallyDead(I, TLI)) {
624     salvageDebugInfo(*I);
625 
626     // Null out all of the instruction's operands to see if any operand becomes
627     // dead as we go.
628     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
629       Value *OpV = I->getOperand(i);
630       I->setOperand(i, nullptr);
631 
632       if (!OpV->use_empty() || I == OpV)
633         continue;
634 
635       // If the operand is an instruction that became dead as we nulled out the
636       // operand, and if it is 'trivially' dead, delete it in a future loop
637       // iteration.
638       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
639         if (isInstructionTriviallyDead(OpI, TLI))
640           WorkList.insert(OpI);
641     }
642 
643     I->eraseFromParent();
644 
645     return true;
646   }
647 
648   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
649     // Add the users to the worklist. CAREFUL: an instruction can use itself,
650     // in the case of a phi node.
651     for (User *U : I->users()) {
652       if (U != I) {
653         WorkList.insert(cast<Instruction>(U));
654       }
655     }
656 
657     // Replace the instruction with its simplified value.
658     bool Changed = false;
659     if (!I->use_empty()) {
660       I->replaceAllUsesWith(SimpleV);
661       Changed = true;
662     }
663     if (isInstructionTriviallyDead(I, TLI)) {
664       I->eraseFromParent();
665       Changed = true;
666     }
667     return Changed;
668   }
669   return false;
670 }
671 
672 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
673 /// simplify any instructions in it and recursively delete dead instructions.
674 ///
675 /// This returns true if it changed the code, note that it can delete
676 /// instructions in other blocks as well in this block.
677 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
678                                        const TargetLibraryInfo *TLI) {
679   bool MadeChange = false;
680   const DataLayout &DL = BB->getModule()->getDataLayout();
681 
682 #ifndef NDEBUG
683   // In debug builds, ensure that the terminator of the block is never replaced
684   // or deleted by these simplifications. The idea of simplification is that it
685   // cannot introduce new instructions, and there is no way to replace the
686   // terminator of a block without introducing a new instruction.
687   AssertingVH<Instruction> TerminatorVH(&BB->back());
688 #endif
689 
690   SmallSetVector<Instruction *, 16> WorkList;
691   // Iterate over the original function, only adding insts to the worklist
692   // if they actually need to be revisited. This avoids having to pre-init
693   // the worklist with the entire function's worth of instructions.
694   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
695        BI != E;) {
696     assert(!BI->isTerminator());
697     Instruction *I = &*BI;
698     ++BI;
699 
700     // We're visiting this instruction now, so make sure it's not in the
701     // worklist from an earlier visit.
702     if (!WorkList.count(I))
703       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
704   }
705 
706   while (!WorkList.empty()) {
707     Instruction *I = WorkList.pop_back_val();
708     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
709   }
710   return MadeChange;
711 }
712 
713 //===----------------------------------------------------------------------===//
714 //  Control Flow Graph Restructuring.
715 //
716 
717 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
718                                        DomTreeUpdater *DTU) {
719 
720   // If BB has single-entry PHI nodes, fold them.
721   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
722     Value *NewVal = PN->getIncomingValue(0);
723     // Replace self referencing PHI with undef, it must be dead.
724     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
725     PN->replaceAllUsesWith(NewVal);
726     PN->eraseFromParent();
727   }
728 
729   BasicBlock *PredBB = DestBB->getSinglePredecessor();
730   assert(PredBB && "Block doesn't have a single predecessor!");
731 
732   bool ReplaceEntryBB = false;
733   if (PredBB == &DestBB->getParent()->getEntryBlock())
734     ReplaceEntryBB = true;
735 
736   // DTU updates: Collect all the edges that enter
737   // PredBB. These dominator edges will be redirected to DestBB.
738   SmallVector<DominatorTree::UpdateType, 32> Updates;
739 
740   if (DTU) {
741     for (BasicBlock *PredPredBB : predecessors(PredBB)) {
742       // This predecessor of PredBB may already have DestBB as a successor.
743       if (!llvm::is_contained(successors(PredPredBB), DestBB))
744         Updates.push_back({DominatorTree::Insert, PredPredBB, DestBB});
745       Updates.push_back({DominatorTree::Delete, PredPredBB, PredBB});
746     }
747     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
748   }
749 
750   // Zap anything that took the address of DestBB.  Not doing this will give the
751   // address an invalid value.
752   if (DestBB->hasAddressTaken()) {
753     BlockAddress *BA = BlockAddress::get(DestBB);
754     Constant *Replacement =
755       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
756     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
757                                                      BA->getType()));
758     BA->destroyConstant();
759   }
760 
761   // Anything that branched to PredBB now branches to DestBB.
762   PredBB->replaceAllUsesWith(DestBB);
763 
764   // Splice all the instructions from PredBB to DestBB.
765   PredBB->getTerminator()->eraseFromParent();
766   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
767   new UnreachableInst(PredBB->getContext(), PredBB);
768 
769   // If the PredBB is the entry block of the function, move DestBB up to
770   // become the entry block after we erase PredBB.
771   if (ReplaceEntryBB)
772     DestBB->moveAfter(PredBB);
773 
774   if (DTU) {
775     assert(PredBB->getInstList().size() == 1 &&
776            isa<UnreachableInst>(PredBB->getTerminator()) &&
777            "The successor list of PredBB isn't empty before "
778            "applying corresponding DTU updates.");
779     DTU->applyUpdatesPermissive(Updates);
780     DTU->deleteBB(PredBB);
781     // Recalculation of DomTree is needed when updating a forward DomTree and
782     // the Entry BB is replaced.
783     if (ReplaceEntryBB && DTU->hasDomTree()) {
784       // The entry block was removed and there is no external interface for
785       // the dominator tree to be notified of this change. In this corner-case
786       // we recalculate the entire tree.
787       DTU->recalculate(*(DestBB->getParent()));
788     }
789   }
790 
791   else {
792     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
793   }
794 }
795 
796 /// Return true if we can choose one of these values to use in place of the
797 /// other. Note that we will always choose the non-undef value to keep.
798 static bool CanMergeValues(Value *First, Value *Second) {
799   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
800 }
801 
802 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
803 /// branch to Succ, into Succ.
804 ///
805 /// Assumption: Succ is the single successor for BB.
806 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
807   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
808 
809   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
810                     << Succ->getName() << "\n");
811   // Shortcut, if there is only a single predecessor it must be BB and merging
812   // is always safe
813   if (Succ->getSinglePredecessor()) return true;
814 
815   // Make a list of the predecessors of BB
816   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
817 
818   // Look at all the phi nodes in Succ, to see if they present a conflict when
819   // merging these blocks
820   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
821     PHINode *PN = cast<PHINode>(I);
822 
823     // If the incoming value from BB is again a PHINode in
824     // BB which has the same incoming value for *PI as PN does, we can
825     // merge the phi nodes and then the blocks can still be merged
826     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
827     if (BBPN && BBPN->getParent() == BB) {
828       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
829         BasicBlock *IBB = PN->getIncomingBlock(PI);
830         if (BBPreds.count(IBB) &&
831             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
832                             PN->getIncomingValue(PI))) {
833           LLVM_DEBUG(dbgs()
834                      << "Can't fold, phi node " << PN->getName() << " in "
835                      << Succ->getName() << " is conflicting with "
836                      << BBPN->getName() << " with regard to common predecessor "
837                      << IBB->getName() << "\n");
838           return false;
839         }
840       }
841     } else {
842       Value* Val = PN->getIncomingValueForBlock(BB);
843       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
844         // See if the incoming value for the common predecessor is equal to the
845         // one for BB, in which case this phi node will not prevent the merging
846         // of the block.
847         BasicBlock *IBB = PN->getIncomingBlock(PI);
848         if (BBPreds.count(IBB) &&
849             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
850           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
851                             << " in " << Succ->getName()
852                             << " is conflicting with regard to common "
853                             << "predecessor " << IBB->getName() << "\n");
854           return false;
855         }
856       }
857     }
858   }
859 
860   return true;
861 }
862 
863 using PredBlockVector = SmallVector<BasicBlock *, 16>;
864 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
865 
866 /// Determines the value to use as the phi node input for a block.
867 ///
868 /// Select between \p OldVal any value that we know flows from \p BB
869 /// to a particular phi on the basis of which one (if either) is not
870 /// undef. Update IncomingValues based on the selected value.
871 ///
872 /// \param OldVal The value we are considering selecting.
873 /// \param BB The block that the value flows in from.
874 /// \param IncomingValues A map from block-to-value for other phi inputs
875 /// that we have examined.
876 ///
877 /// \returns the selected value.
878 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
879                                           IncomingValueMap &IncomingValues) {
880   if (!isa<UndefValue>(OldVal)) {
881     assert((!IncomingValues.count(BB) ||
882             IncomingValues.find(BB)->second == OldVal) &&
883            "Expected OldVal to match incoming value from BB!");
884 
885     IncomingValues.insert(std::make_pair(BB, OldVal));
886     return OldVal;
887   }
888 
889   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
890   if (It != IncomingValues.end()) return It->second;
891 
892   return OldVal;
893 }
894 
895 /// Create a map from block to value for the operands of a
896 /// given phi.
897 ///
898 /// Create a map from block to value for each non-undef value flowing
899 /// into \p PN.
900 ///
901 /// \param PN The phi we are collecting the map for.
902 /// \param IncomingValues [out] The map from block to value for this phi.
903 static void gatherIncomingValuesToPhi(PHINode *PN,
904                                       IncomingValueMap &IncomingValues) {
905   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
906     BasicBlock *BB = PN->getIncomingBlock(i);
907     Value *V = PN->getIncomingValue(i);
908 
909     if (!isa<UndefValue>(V))
910       IncomingValues.insert(std::make_pair(BB, V));
911   }
912 }
913 
914 /// Replace the incoming undef values to a phi with the values
915 /// from a block-to-value map.
916 ///
917 /// \param PN The phi we are replacing the undefs in.
918 /// \param IncomingValues A map from block to value.
919 static void replaceUndefValuesInPhi(PHINode *PN,
920                                     const IncomingValueMap &IncomingValues) {
921   SmallVector<unsigned> TrueUndefOps;
922   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
923     Value *V = PN->getIncomingValue(i);
924 
925     if (!isa<UndefValue>(V)) continue;
926 
927     BasicBlock *BB = PN->getIncomingBlock(i);
928     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
929 
930     // Keep track of undef/poison incoming values. Those must match, so we fix
931     // them up below if needed.
932     // Note: this is conservatively correct, but we could try harder and group
933     // the undef values per incoming basic block.
934     if (It == IncomingValues.end()) {
935       TrueUndefOps.push_back(i);
936       continue;
937     }
938 
939     // There is a defined value for this incoming block, so map this undef
940     // incoming value to the defined value.
941     PN->setIncomingValue(i, It->second);
942   }
943 
944   // If there are both undef and poison values incoming, then convert those
945   // values to undef. It is invalid to have different values for the same
946   // incoming block.
947   unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) {
948     return isa<PoisonValue>(PN->getIncomingValue(i));
949   });
950   if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) {
951     for (unsigned i : TrueUndefOps)
952       PN->setIncomingValue(i, UndefValue::get(PN->getType()));
953   }
954 }
955 
956 /// Replace a value flowing from a block to a phi with
957 /// potentially multiple instances of that value flowing from the
958 /// block's predecessors to the phi.
959 ///
960 /// \param BB The block with the value flowing into the phi.
961 /// \param BBPreds The predecessors of BB.
962 /// \param PN The phi that we are updating.
963 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
964                                                 const PredBlockVector &BBPreds,
965                                                 PHINode *PN) {
966   Value *OldVal = PN->removeIncomingValue(BB, false);
967   assert(OldVal && "No entry in PHI for Pred BB!");
968 
969   IncomingValueMap IncomingValues;
970 
971   // We are merging two blocks - BB, and the block containing PN - and
972   // as a result we need to redirect edges from the predecessors of BB
973   // to go to the block containing PN, and update PN
974   // accordingly. Since we allow merging blocks in the case where the
975   // predecessor and successor blocks both share some predecessors,
976   // and where some of those common predecessors might have undef
977   // values flowing into PN, we want to rewrite those values to be
978   // consistent with the non-undef values.
979 
980   gatherIncomingValuesToPhi(PN, IncomingValues);
981 
982   // If this incoming value is one of the PHI nodes in BB, the new entries
983   // in the PHI node are the entries from the old PHI.
984   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
985     PHINode *OldValPN = cast<PHINode>(OldVal);
986     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
987       // Note that, since we are merging phi nodes and BB and Succ might
988       // have common predecessors, we could end up with a phi node with
989       // identical incoming branches. This will be cleaned up later (and
990       // will trigger asserts if we try to clean it up now, without also
991       // simplifying the corresponding conditional branch).
992       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
993       Value *PredVal = OldValPN->getIncomingValue(i);
994       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
995                                                     IncomingValues);
996 
997       // And add a new incoming value for this predecessor for the
998       // newly retargeted branch.
999       PN->addIncoming(Selected, PredBB);
1000     }
1001   } else {
1002     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
1003       // Update existing incoming values in PN for this
1004       // predecessor of BB.
1005       BasicBlock *PredBB = BBPreds[i];
1006       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
1007                                                     IncomingValues);
1008 
1009       // And add a new incoming value for this predecessor for the
1010       // newly retargeted branch.
1011       PN->addIncoming(Selected, PredBB);
1012     }
1013   }
1014 
1015   replaceUndefValuesInPhi(PN, IncomingValues);
1016 }
1017 
1018 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
1019                                                    DomTreeUpdater *DTU) {
1020   assert(BB != &BB->getParent()->getEntryBlock() &&
1021          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
1022 
1023   // We can't eliminate infinite loops.
1024   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1025   if (BB == Succ) return false;
1026 
1027   // Check to see if merging these blocks would cause conflicts for any of the
1028   // phi nodes in BB or Succ. If not, we can safely merge.
1029   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
1030 
1031   // Check for cases where Succ has multiple predecessors and a PHI node in BB
1032   // has uses which will not disappear when the PHI nodes are merged.  It is
1033   // possible to handle such cases, but difficult: it requires checking whether
1034   // BB dominates Succ, which is non-trivial to calculate in the case where
1035   // Succ has multiple predecessors.  Also, it requires checking whether
1036   // constructing the necessary self-referential PHI node doesn't introduce any
1037   // conflicts; this isn't too difficult, but the previous code for doing this
1038   // was incorrect.
1039   //
1040   // Note that if this check finds a live use, BB dominates Succ, so BB is
1041   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1042   // folding the branch isn't profitable in that case anyway.
1043   if (!Succ->getSinglePredecessor()) {
1044     BasicBlock::iterator BBI = BB->begin();
1045     while (isa<PHINode>(*BBI)) {
1046       for (Use &U : BBI->uses()) {
1047         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1048           if (PN->getIncomingBlock(U) != BB)
1049             return false;
1050         } else {
1051           return false;
1052         }
1053       }
1054       ++BBI;
1055     }
1056   }
1057 
1058   // We cannot fold the block if it's a branch to an already present callbr
1059   // successor because that creates duplicate successors.
1060   for (BasicBlock *PredBB : predecessors(BB)) {
1061     if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) {
1062       if (Succ == CBI->getDefaultDest())
1063         return false;
1064       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1065         if (Succ == CBI->getIndirectDest(i))
1066           return false;
1067     }
1068   }
1069 
1070   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1071 
1072   SmallVector<DominatorTree::UpdateType, 32> Updates;
1073   if (DTU) {
1074     // All predecessors of BB will be moved to Succ.
1075     SmallSetVector<BasicBlock *, 8> Predecessors(pred_begin(BB), pred_end(BB));
1076     Updates.reserve(Updates.size() + 2 * Predecessors.size());
1077     for (auto *Predecessor : Predecessors) {
1078       // This predecessor of BB may already have Succ as a successor.
1079       if (!llvm::is_contained(successors(Predecessor), Succ))
1080         Updates.push_back({DominatorTree::Insert, Predecessor, Succ});
1081       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
1082     }
1083     Updates.push_back({DominatorTree::Delete, BB, Succ});
1084   }
1085 
1086   if (isa<PHINode>(Succ->begin())) {
1087     // If there is more than one pred of succ, and there are PHI nodes in
1088     // the successor, then we need to add incoming edges for the PHI nodes
1089     //
1090     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1091 
1092     // Loop over all of the PHI nodes in the successor of BB.
1093     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1094       PHINode *PN = cast<PHINode>(I);
1095 
1096       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1097     }
1098   }
1099 
1100   if (Succ->getSinglePredecessor()) {
1101     // BB is the only predecessor of Succ, so Succ will end up with exactly
1102     // the same predecessors BB had.
1103 
1104     // Copy over any phi, debug or lifetime instruction.
1105     BB->getTerminator()->eraseFromParent();
1106     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1107                                BB->getInstList());
1108   } else {
1109     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1110       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1111       assert(PN->use_empty() && "There shouldn't be any uses here!");
1112       PN->eraseFromParent();
1113     }
1114   }
1115 
1116   // If the unconditional branch we replaced contains llvm.loop metadata, we
1117   // add the metadata to the branch instructions in the predecessors.
1118   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1119   Instruction *TI = BB->getTerminator();
1120   if (TI)
1121     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1122       for (BasicBlock *Pred : predecessors(BB))
1123         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1124 
1125   // For AutoFDO, since BB is going to be removed, we won't be able to sample
1126   // it. To avoid assigning a zero weight for BB, move all its pseudo probes
1127   // into Succ and mark them dangling. This should allow the counts inference a
1128   // chance to get a more reasonable weight for BB.
1129   moveAndDanglePseudoProbes(BB, &*Succ->getFirstInsertionPt());
1130 
1131   // Everything that jumped to BB now goes to Succ.
1132   BB->replaceAllUsesWith(Succ);
1133   if (!Succ->hasName()) Succ->takeName(BB);
1134 
1135   // Clear the successor list of BB to match updates applying to DTU later.
1136   if (BB->getTerminator())
1137     BB->getInstList().pop_back();
1138   new UnreachableInst(BB->getContext(), BB);
1139   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1140                            "applying corresponding DTU updates.");
1141 
1142   if (DTU) {
1143     DTU->applyUpdates(Updates);
1144     DTU->deleteBB(BB);
1145   } else {
1146     BB->eraseFromParent(); // Delete the old basic block.
1147   }
1148   return true;
1149 }
1150 
1151 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) {
1152   // This implementation doesn't currently consider undef operands
1153   // specially. Theoretically, two phis which are identical except for
1154   // one having an undef where the other doesn't could be collapsed.
1155 
1156   bool Changed = false;
1157 
1158   // Examine each PHI.
1159   // Note that increment of I must *NOT* be in the iteration_expression, since
1160   // we don't want to immediately advance when we restart from the beginning.
1161   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
1162     ++I;
1163     // Is there an identical PHI node in this basic block?
1164     // Note that we only look in the upper square's triangle,
1165     // we already checked that the lower triangle PHI's aren't identical.
1166     for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
1167       if (!DuplicatePN->isIdenticalToWhenDefined(PN))
1168         continue;
1169       // A duplicate. Replace this PHI with the base PHI.
1170       ++NumPHICSEs;
1171       DuplicatePN->replaceAllUsesWith(PN);
1172       DuplicatePN->eraseFromParent();
1173       Changed = true;
1174 
1175       // The RAUW can change PHIs that we already visited.
1176       I = BB->begin();
1177       break; // Start over from the beginning.
1178     }
1179   }
1180   return Changed;
1181 }
1182 
1183 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) {
1184   // This implementation doesn't currently consider undef operands
1185   // specially. Theoretically, two phis which are identical except for
1186   // one having an undef where the other doesn't could be collapsed.
1187 
1188   struct PHIDenseMapInfo {
1189     static PHINode *getEmptyKey() {
1190       return DenseMapInfo<PHINode *>::getEmptyKey();
1191     }
1192 
1193     static PHINode *getTombstoneKey() {
1194       return DenseMapInfo<PHINode *>::getTombstoneKey();
1195     }
1196 
1197     static bool isSentinel(PHINode *PN) {
1198       return PN == getEmptyKey() || PN == getTombstoneKey();
1199     }
1200 
1201     // WARNING: this logic must be kept in sync with
1202     //          Instruction::isIdenticalToWhenDefined()!
1203     static unsigned getHashValueImpl(PHINode *PN) {
1204       // Compute a hash value on the operands. Instcombine will likely have
1205       // sorted them, which helps expose duplicates, but we have to check all
1206       // the operands to be safe in case instcombine hasn't run.
1207       return static_cast<unsigned>(hash_combine(
1208           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1209           hash_combine_range(PN->block_begin(), PN->block_end())));
1210     }
1211 
1212     static unsigned getHashValue(PHINode *PN) {
1213 #ifndef NDEBUG
1214       // If -phicse-debug-hash was specified, return a constant -- this
1215       // will force all hashing to collide, so we'll exhaustively search
1216       // the table for a match, and the assertion in isEqual will fire if
1217       // there's a bug causing equal keys to hash differently.
1218       if (PHICSEDebugHash)
1219         return 0;
1220 #endif
1221       return getHashValueImpl(PN);
1222     }
1223 
1224     static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
1225       if (isSentinel(LHS) || isSentinel(RHS))
1226         return LHS == RHS;
1227       return LHS->isIdenticalTo(RHS);
1228     }
1229 
1230     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1231       // These comparisons are nontrivial, so assert that equality implies
1232       // hash equality (DenseMap demands this as an invariant).
1233       bool Result = isEqualImpl(LHS, RHS);
1234       assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
1235              getHashValueImpl(LHS) == getHashValueImpl(RHS));
1236       return Result;
1237     }
1238   };
1239 
1240   // Set of unique PHINodes.
1241   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1242   PHISet.reserve(4 * PHICSENumPHISmallSize);
1243 
1244   // Examine each PHI.
1245   bool Changed = false;
1246   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1247     auto Inserted = PHISet.insert(PN);
1248     if (!Inserted.second) {
1249       // A duplicate. Replace this PHI with its duplicate.
1250       ++NumPHICSEs;
1251       PN->replaceAllUsesWith(*Inserted.first);
1252       PN->eraseFromParent();
1253       Changed = true;
1254 
1255       // The RAUW can change PHIs that we already visited. Start over from the
1256       // beginning.
1257       PHISet.clear();
1258       I = BB->begin();
1259     }
1260   }
1261 
1262   return Changed;
1263 }
1264 
1265 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1266   if (
1267 #ifndef NDEBUG
1268       !PHICSEDebugHash &&
1269 #endif
1270       hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
1271     return EliminateDuplicatePHINodesNaiveImpl(BB);
1272   return EliminateDuplicatePHINodesSetBasedImpl(BB);
1273 }
1274 
1275 /// If the specified pointer points to an object that we control, try to modify
1276 /// the object's alignment to PrefAlign. Returns a minimum known alignment of
1277 /// the value after the operation, which may be lower than PrefAlign.
1278 ///
1279 /// Increating value alignment isn't often possible though. If alignment is
1280 /// important, a more reliable approach is to simply align all global variables
1281 /// and allocation instructions to their preferred alignment from the beginning.
1282 static Align tryEnforceAlignment(Value *V, Align PrefAlign,
1283                                  const DataLayout &DL) {
1284   V = V->stripPointerCasts();
1285 
1286   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1287     // TODO: Ideally, this function would not be called if PrefAlign is smaller
1288     // than the current alignment, as the known bits calculation should have
1289     // already taken it into account. However, this is not always the case,
1290     // as computeKnownBits() has a depth limit, while stripPointerCasts()
1291     // doesn't.
1292     Align CurrentAlign = AI->getAlign();
1293     if (PrefAlign <= CurrentAlign)
1294       return CurrentAlign;
1295 
1296     // If the preferred alignment is greater than the natural stack alignment
1297     // then don't round up. This avoids dynamic stack realignment.
1298     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1299       return CurrentAlign;
1300     AI->setAlignment(PrefAlign);
1301     return PrefAlign;
1302   }
1303 
1304   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1305     // TODO: as above, this shouldn't be necessary.
1306     Align CurrentAlign = GO->getPointerAlignment(DL);
1307     if (PrefAlign <= CurrentAlign)
1308       return CurrentAlign;
1309 
1310     // If there is a large requested alignment and we can, bump up the alignment
1311     // of the global.  If the memory we set aside for the global may not be the
1312     // memory used by the final program then it is impossible for us to reliably
1313     // enforce the preferred alignment.
1314     if (!GO->canIncreaseAlignment())
1315       return CurrentAlign;
1316 
1317     GO->setAlignment(PrefAlign);
1318     return PrefAlign;
1319   }
1320 
1321   return Align(1);
1322 }
1323 
1324 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1325                                        const DataLayout &DL,
1326                                        const Instruction *CxtI,
1327                                        AssumptionCache *AC,
1328                                        const DominatorTree *DT) {
1329   assert(V->getType()->isPointerTy() &&
1330          "getOrEnforceKnownAlignment expects a pointer!");
1331 
1332   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1333   unsigned TrailZ = Known.countMinTrailingZeros();
1334 
1335   // Avoid trouble with ridiculously large TrailZ values, such as
1336   // those computed from a null pointer.
1337   // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1338   TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1339 
1340   Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1341 
1342   if (PrefAlign && *PrefAlign > Alignment)
1343     Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
1344 
1345   // We don't need to make any adjustment.
1346   return Alignment;
1347 }
1348 
1349 ///===---------------------------------------------------------------------===//
1350 ///  Dbg Intrinsic utilities
1351 ///
1352 
1353 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1354 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1355                              DIExpression *DIExpr,
1356                              PHINode *APN) {
1357   // Since we can't guarantee that the original dbg.declare instrinsic
1358   // is removed by LowerDbgDeclare(), we need to make sure that we are
1359   // not inserting the same dbg.value intrinsic over and over.
1360   SmallVector<DbgValueInst *, 1> DbgValues;
1361   findDbgValues(DbgValues, APN);
1362   for (auto *DVI : DbgValues) {
1363     assert(DVI->getValue() == APN);
1364     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1365       return true;
1366   }
1367   return false;
1368 }
1369 
1370 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1371 /// (or fragment of the variable) described by \p DII.
1372 ///
1373 /// This is primarily intended as a helper for the different
1374 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1375 /// converted describes an alloca'd variable, so we need to use the
1376 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1377 /// identified as covering an n-bit fragment, if the store size of i1 is at
1378 /// least n bits.
1379 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1380   const DataLayout &DL = DII->getModule()->getDataLayout();
1381   TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1382   if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) {
1383     assert(!ValueSize.isScalable() &&
1384            "Fragments don't work on scalable types.");
1385     return ValueSize.getFixedSize() >= *FragmentSize;
1386   }
1387   // We can't always calculate the size of the DI variable (e.g. if it is a
1388   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1389   // intead.
1390   if (DII->isAddressOfVariable())
1391     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0)))
1392       if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
1393         assert(ValueSize.isScalable() == FragmentSize->isScalable() &&
1394                "Both sizes should agree on the scalable flag.");
1395         return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1396       }
1397   // Could not determine size of variable. Conservatively return false.
1398   return false;
1399 }
1400 
1401 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1402 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1403 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1404 /// case this DebugLoc leaks into any adjacent instructions.
1405 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1406   // Original dbg.declare must have a location.
1407   DebugLoc DeclareLoc = DII->getDebugLoc();
1408   MDNode *Scope = DeclareLoc.getScope();
1409   DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1410   // Produce an unknown location with the correct scope / inlinedAt fields.
1411   return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt);
1412 }
1413 
1414 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1415 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1416 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1417                                            StoreInst *SI, DIBuilder &Builder) {
1418   assert(DII->isAddressOfVariable());
1419   auto *DIVar = DII->getVariable();
1420   assert(DIVar && "Missing variable");
1421   auto *DIExpr = DII->getExpression();
1422   Value *DV = SI->getValueOperand();
1423 
1424   DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1425 
1426   if (!valueCoversEntireFragment(DV->getType(), DII)) {
1427     // FIXME: If storing to a part of the variable described by the dbg.declare,
1428     // then we want to insert a dbg.value for the corresponding fragment.
1429     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1430                       << *DII << '\n');
1431     // For now, when there is a store to parts of the variable (but we do not
1432     // know which part) we insert an dbg.value instrinsic to indicate that we
1433     // know nothing about the variable's content.
1434     DV = UndefValue::get(DV->getType());
1435     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1436     return;
1437   }
1438 
1439   Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1440 }
1441 
1442 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1443 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1444 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1445                                            LoadInst *LI, DIBuilder &Builder) {
1446   auto *DIVar = DII->getVariable();
1447   auto *DIExpr = DII->getExpression();
1448   assert(DIVar && "Missing variable");
1449 
1450   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1451     // FIXME: If only referring to a part of the variable described by the
1452     // dbg.declare, then we want to insert a dbg.value for the corresponding
1453     // fragment.
1454     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1455                       << *DII << '\n');
1456     return;
1457   }
1458 
1459   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1460 
1461   // We are now tracking the loaded value instead of the address. In the
1462   // future if multi-location support is added to the IR, it might be
1463   // preferable to keep tracking both the loaded value and the original
1464   // address in case the alloca can not be elided.
1465   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1466       LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1467   DbgValue->insertAfter(LI);
1468 }
1469 
1470 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1471 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1472 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1473                                            PHINode *APN, DIBuilder &Builder) {
1474   auto *DIVar = DII->getVariable();
1475   auto *DIExpr = DII->getExpression();
1476   assert(DIVar && "Missing variable");
1477 
1478   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1479     return;
1480 
1481   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1482     // FIXME: If only referring to a part of the variable described by the
1483     // dbg.declare, then we want to insert a dbg.value for the corresponding
1484     // fragment.
1485     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1486                       << *DII << '\n');
1487     return;
1488   }
1489 
1490   BasicBlock *BB = APN->getParent();
1491   auto InsertionPt = BB->getFirstInsertionPt();
1492 
1493   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1494 
1495   // The block may be a catchswitch block, which does not have a valid
1496   // insertion point.
1497   // FIXME: Insert dbg.value markers in the successors when appropriate.
1498   if (InsertionPt != BB->end())
1499     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1500 }
1501 
1502 /// Determine whether this alloca is either a VLA or an array.
1503 static bool isArray(AllocaInst *AI) {
1504   return AI->isArrayAllocation() ||
1505          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1506 }
1507 
1508 /// Determine whether this alloca is a structure.
1509 static bool isStructure(AllocaInst *AI) {
1510   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1511 }
1512 
1513 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1514 /// of llvm.dbg.value intrinsics.
1515 bool llvm::LowerDbgDeclare(Function &F) {
1516   bool Changed = false;
1517   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1518   SmallVector<DbgDeclareInst *, 4> Dbgs;
1519   for (auto &FI : F)
1520     for (Instruction &BI : FI)
1521       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1522         Dbgs.push_back(DDI);
1523 
1524   if (Dbgs.empty())
1525     return Changed;
1526 
1527   for (auto &I : Dbgs) {
1528     DbgDeclareInst *DDI = I;
1529     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1530     // If this is an alloca for a scalar variable, insert a dbg.value
1531     // at each load and store to the alloca and erase the dbg.declare.
1532     // The dbg.values allow tracking a variable even if it is not
1533     // stored on the stack, while the dbg.declare can only describe
1534     // the stack slot (and at a lexical-scope granularity). Later
1535     // passes will attempt to elide the stack slot.
1536     if (!AI || isArray(AI) || isStructure(AI))
1537       continue;
1538 
1539     // A volatile load/store means that the alloca can't be elided anyway.
1540     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1541           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1542             return LI->isVolatile();
1543           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1544             return SI->isVolatile();
1545           return false;
1546         }))
1547       continue;
1548 
1549     SmallVector<const Value *, 8> WorkList;
1550     WorkList.push_back(AI);
1551     while (!WorkList.empty()) {
1552       const Value *V = WorkList.pop_back_val();
1553       for (auto &AIUse : V->uses()) {
1554         User *U = AIUse.getUser();
1555         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1556           if (AIUse.getOperandNo() == 1)
1557             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1558         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1559           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1560         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1561           // This is a call by-value or some other instruction that takes a
1562           // pointer to the variable. Insert a *value* intrinsic that describes
1563           // the variable by dereferencing the alloca.
1564           if (!CI->isLifetimeStartOrEnd()) {
1565             DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1566             auto *DerefExpr =
1567                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1568             DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1569                                         NewLoc, CI);
1570           }
1571         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1572           if (BI->getType()->isPointerTy())
1573             WorkList.push_back(BI);
1574         }
1575       }
1576     }
1577     DDI->eraseFromParent();
1578     Changed = true;
1579   }
1580 
1581   if (Changed)
1582   for (BasicBlock &BB : F)
1583     RemoveRedundantDbgInstrs(&BB);
1584 
1585   return Changed;
1586 }
1587 
1588 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1589 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1590                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1591   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1592   if (InsertedPHIs.size() == 0)
1593     return;
1594 
1595   // Map existing PHI nodes to their dbg.values.
1596   ValueToValueMapTy DbgValueMap;
1597   for (auto &I : *BB) {
1598     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1599       if (auto *Loc =
1600               dyn_cast_or_null<PHINode>(DbgII->getVariableLocationOp(0)))
1601         DbgValueMap.insert({Loc, DbgII});
1602     }
1603   }
1604   if (DbgValueMap.size() == 0)
1605     return;
1606 
1607   // Then iterate through the new PHIs and look to see if they use one of the
1608   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1609   // propagate the info through the new PHI.
1610   for (auto PHI : InsertedPHIs) {
1611     BasicBlock *Parent = PHI->getParent();
1612     // Avoid inserting an intrinsic into an EH block.
1613     if (Parent->getFirstNonPHI()->isEHPad())
1614       continue;
1615     for (auto VI : PHI->operand_values()) {
1616       auto V = DbgValueMap.find(VI);
1617       if (V != DbgValueMap.end()) {
1618         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1619         DbgVariableIntrinsic *NewDbgII =
1620             cast<DbgVariableIntrinsic>(DbgII->clone());
1621         NewDbgII->replaceVariableLocationOp(VI, PHI);
1622         auto InsertionPt = Parent->getFirstInsertionPt();
1623         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1624         NewDbgII->insertBefore(&*InsertionPt);
1625       }
1626     }
1627   }
1628 }
1629 
1630 /// Finds all intrinsics declaring local variables as living in the memory that
1631 /// 'V' points to. This may include a mix of dbg.declare and
1632 /// dbg.addr intrinsics.
1633 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1634   // This function is hot. Check whether the value has any metadata to avoid a
1635   // DenseMap lookup.
1636   if (!V->isUsedByMetadata())
1637     return {};
1638   auto *L = LocalAsMetadata::getIfExists(V);
1639   if (!L)
1640     return {};
1641   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1642   if (!MDV)
1643     return {};
1644 
1645   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1646   for (User *U : MDV->users()) {
1647     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1648       if (DII->isAddressOfVariable())
1649         Declares.push_back(DII);
1650   }
1651 
1652   return Declares;
1653 }
1654 
1655 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) {
1656   TinyPtrVector<DbgDeclareInst *> DDIs;
1657   for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V))
1658     if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI))
1659       DDIs.push_back(DDI);
1660   return DDIs;
1661 }
1662 
1663 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1664   // This function is hot. Check whether the value has any metadata to avoid a
1665   // DenseMap lookup.
1666   if (!V->isUsedByMetadata())
1667     return;
1668   if (auto *L = LocalAsMetadata::getIfExists(V))
1669     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1670       for (User *U : MDV->users())
1671         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1672           DbgValues.push_back(DVI);
1673 }
1674 
1675 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1676                         Value *V) {
1677   // This function is hot. Check whether the value has any metadata to avoid a
1678   // DenseMap lookup.
1679   if (!V->isUsedByMetadata())
1680     return;
1681   if (auto *L = LocalAsMetadata::getIfExists(V))
1682     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1683       for (User *U : MDV->users())
1684         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1685           DbgUsers.push_back(DII);
1686 }
1687 
1688 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1689                              DIBuilder &Builder, uint8_t DIExprFlags,
1690                              int Offset) {
1691   auto DbgAddrs = FindDbgAddrUses(Address);
1692   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1693     DebugLoc Loc = DII->getDebugLoc();
1694     auto *DIVar = DII->getVariable();
1695     auto *DIExpr = DII->getExpression();
1696     assert(DIVar && "Missing variable");
1697     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1698     // Insert llvm.dbg.declare immediately before DII, and remove old
1699     // llvm.dbg.declare.
1700     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
1701     DII->eraseFromParent();
1702   }
1703   return !DbgAddrs.empty();
1704 }
1705 
1706 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1707                                         DIBuilder &Builder, int Offset) {
1708   DebugLoc Loc = DVI->getDebugLoc();
1709   auto *DIVar = DVI->getVariable();
1710   auto *DIExpr = DVI->getExpression();
1711   assert(DIVar && "Missing variable");
1712 
1713   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1714   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1715   // it and give up.
1716   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1717       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1718     return;
1719 
1720   // Insert the offset before the first deref.
1721   // We could just change the offset argument of dbg.value, but it's unsigned...
1722   if (Offset)
1723     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1724 
1725   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1726   DVI->eraseFromParent();
1727 }
1728 
1729 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1730                                     DIBuilder &Builder, int Offset) {
1731   if (auto *L = LocalAsMetadata::getIfExists(AI))
1732     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1733       for (Use &U : llvm::make_early_inc_range(MDV->uses()))
1734         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1735           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1736 }
1737 
1738 /// Where possible to salvage debug information for \p I do so
1739 /// and return True. If not possible mark undef and return False.
1740 void llvm::salvageDebugInfo(Instruction &I) {
1741   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1742   findDbgUsers(DbgUsers, &I);
1743   salvageDebugInfoForDbgValues(I, DbgUsers);
1744 }
1745 
1746 void llvm::salvageDebugInfoForDbgValues(
1747     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1748   bool Salvaged = false;
1749 
1750   for (auto *DII : DbgUsers) {
1751     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1752     // are implicitly pointing out the value as a DWARF memory location
1753     // description.
1754     bool StackValue = isa<DbgValueInst>(DII);
1755 
1756     DIExpression *DIExpr =
1757         salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1758 
1759     // salvageDebugInfoImpl should fail on examining the first element of
1760     // DbgUsers, or none of them.
1761     if (!DIExpr)
1762       break;
1763 
1764     DII->replaceVariableLocationOp(&I, I.getOperand(0));
1765     DII->setExpression(DIExpr);
1766     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1767     Salvaged = true;
1768   }
1769 
1770   if (Salvaged)
1771     return;
1772 
1773   for (auto *DII : DbgUsers) {
1774     Value *Undef = UndefValue::get(I.getType());
1775     DII->replaceVariableLocationOp(&I, Undef);
1776   }
1777 }
1778 
1779 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1780                                          DIExpression *SrcDIExpr,
1781                                          bool WithStackValue) {
1782   auto &M = *I.getModule();
1783   auto &DL = M.getDataLayout();
1784 
1785   // Apply a vector of opcodes to the source DIExpression.
1786   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1787     DIExpression *DIExpr = SrcDIExpr;
1788     if (!Ops.empty()) {
1789       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1790     }
1791     return DIExpr;
1792   };
1793 
1794   // Apply the given offset to the source DIExpression.
1795   auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1796     SmallVector<uint64_t, 8> Ops;
1797     DIExpression::appendOffset(Ops, Offset);
1798     return doSalvage(Ops);
1799   };
1800 
1801   // initializer-list helper for applying operators to the source DIExpression.
1802   auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * {
1803     SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1804     return doSalvage(Ops);
1805   };
1806 
1807   if (auto *CI = dyn_cast<CastInst>(&I)) {
1808     // No-op casts are irrelevant for debug info.
1809     if (CI->isNoopCast(DL))
1810       return SrcDIExpr;
1811 
1812     Type *Type = CI->getType();
1813     // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
1814     if (Type->isVectorTy() ||
1815         !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I)))
1816       return nullptr;
1817 
1818     Value *FromValue = CI->getOperand(0);
1819     unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1820     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1821 
1822     return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1823                                             isa<SExtInst>(&I)));
1824   }
1825 
1826   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1827     unsigned BitWidth =
1828         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1829     // Rewrite a constant GEP into a DIExpression.
1830     APInt Offset(BitWidth, 0);
1831     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1832       return applyOffset(Offset.getSExtValue());
1833     } else {
1834       return nullptr;
1835     }
1836   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1837     // Rewrite binary operations with constant integer operands.
1838     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1839     if (!ConstInt || ConstInt->getBitWidth() > 64)
1840       return nullptr;
1841 
1842     uint64_t Val = ConstInt->getSExtValue();
1843     switch (BI->getOpcode()) {
1844     case Instruction::Add:
1845       return applyOffset(Val);
1846     case Instruction::Sub:
1847       return applyOffset(-int64_t(Val));
1848     case Instruction::Mul:
1849       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1850     case Instruction::SDiv:
1851       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1852     case Instruction::SRem:
1853       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1854     case Instruction::Or:
1855       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1856     case Instruction::And:
1857       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1858     case Instruction::Xor:
1859       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1860     case Instruction::Shl:
1861       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1862     case Instruction::LShr:
1863       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1864     case Instruction::AShr:
1865       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1866     default:
1867       // TODO: Salvage constants from each kind of binop we know about.
1868       return nullptr;
1869     }
1870     // *Not* to do: we should not attempt to salvage load instructions,
1871     // because the validity and lifetime of a dbg.value containing
1872     // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1873   }
1874   return nullptr;
1875 }
1876 
1877 /// A replacement for a dbg.value expression.
1878 using DbgValReplacement = Optional<DIExpression *>;
1879 
1880 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1881 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1882 /// changes are made.
1883 static bool rewriteDebugUsers(
1884     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1885     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1886   // Find debug users of From.
1887   SmallVector<DbgVariableIntrinsic *, 1> Users;
1888   findDbgUsers(Users, &From);
1889   if (Users.empty())
1890     return false;
1891 
1892   // Prevent use-before-def of To.
1893   bool Changed = false;
1894   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1895   if (isa<Instruction>(&To)) {
1896     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1897 
1898     for (auto *DII : Users) {
1899       // It's common to see a debug user between From and DomPoint. Move it
1900       // after DomPoint to preserve the variable update without any reordering.
1901       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1902         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1903         DII->moveAfter(&DomPoint);
1904         Changed = true;
1905 
1906       // Users which otherwise aren't dominated by the replacement value must
1907       // be salvaged or deleted.
1908       } else if (!DT.dominates(&DomPoint, DII)) {
1909         UndefOrSalvage.insert(DII);
1910       }
1911     }
1912   }
1913 
1914   // Update debug users without use-before-def risk.
1915   for (auto *DII : Users) {
1916     if (UndefOrSalvage.count(DII))
1917       continue;
1918 
1919     DbgValReplacement DVR = RewriteExpr(*DII);
1920     if (!DVR)
1921       continue;
1922 
1923     DII->replaceVariableLocationOp(&From, &To);
1924     DII->setExpression(*DVR);
1925     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1926     Changed = true;
1927   }
1928 
1929   if (!UndefOrSalvage.empty()) {
1930     // Try to salvage the remaining debug users.
1931     salvageDebugInfo(From);
1932     Changed = true;
1933   }
1934 
1935   return Changed;
1936 }
1937 
1938 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1939 /// losslessly preserve the bits and semantics of the value. This predicate is
1940 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1941 ///
1942 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1943 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1944 /// and also does not allow lossless pointer <-> integer conversions.
1945 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1946                                          Type *ToTy) {
1947   // Trivially compatible types.
1948   if (FromTy == ToTy)
1949     return true;
1950 
1951   // Handle compatible pointer <-> integer conversions.
1952   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1953     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1954     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1955                               !DL.isNonIntegralPointerType(ToTy);
1956     return SameSize && LosslessConversion;
1957   }
1958 
1959   // TODO: This is not exhaustive.
1960   return false;
1961 }
1962 
1963 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1964                                  Instruction &DomPoint, DominatorTree &DT) {
1965   // Exit early if From has no debug users.
1966   if (!From.isUsedByMetadata())
1967     return false;
1968 
1969   assert(&From != &To && "Can't replace something with itself");
1970 
1971   Type *FromTy = From.getType();
1972   Type *ToTy = To.getType();
1973 
1974   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1975     return DII.getExpression();
1976   };
1977 
1978   // Handle no-op conversions.
1979   Module &M = *From.getModule();
1980   const DataLayout &DL = M.getDataLayout();
1981   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1982     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1983 
1984   // Handle integer-to-integer widening and narrowing.
1985   // FIXME: Use DW_OP_convert when it's available everywhere.
1986   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1987     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1988     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1989     assert(FromBits != ToBits && "Unexpected no-op conversion");
1990 
1991     // When the width of the result grows, assume that a debugger will only
1992     // access the low `FromBits` bits when inspecting the source variable.
1993     if (FromBits < ToBits)
1994       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1995 
1996     // The width of the result has shrunk. Use sign/zero extension to describe
1997     // the source variable's high bits.
1998     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1999       DILocalVariable *Var = DII.getVariable();
2000 
2001       // Without knowing signedness, sign/zero extension isn't possible.
2002       auto Signedness = Var->getSignedness();
2003       if (!Signedness)
2004         return None;
2005 
2006       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2007       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
2008                                      Signed);
2009     };
2010     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
2011   }
2012 
2013   // TODO: Floating-point conversions, vectors.
2014   return false;
2015 }
2016 
2017 std::pair<unsigned, unsigned>
2018 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
2019   unsigned NumDeadInst = 0;
2020   unsigned NumDeadDbgInst = 0;
2021   // Delete the instructions backwards, as it has a reduced likelihood of
2022   // having to update as many def-use and use-def chains.
2023   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2024   while (EndInst != &BB->front()) {
2025     // Delete the next to last instruction.
2026     Instruction *Inst = &*--EndInst->getIterator();
2027     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
2028       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2029     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
2030       EndInst = Inst;
2031       continue;
2032     }
2033     if (isa<DbgInfoIntrinsic>(Inst))
2034       ++NumDeadDbgInst;
2035     else
2036       ++NumDeadInst;
2037     Inst->eraseFromParent();
2038   }
2039   return {NumDeadInst, NumDeadDbgInst};
2040 }
2041 
2042 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
2043                                    bool PreserveLCSSA, DomTreeUpdater *DTU,
2044                                    MemorySSAUpdater *MSSAU) {
2045   BasicBlock *BB = I->getParent();
2046 
2047   if (MSSAU)
2048     MSSAU->changeToUnreachable(I);
2049 
2050   SmallSetVector<BasicBlock *, 8> UniqueSuccessors;
2051 
2052   // Loop over all of the successors, removing BB's entry from any PHI
2053   // nodes.
2054   for (BasicBlock *Successor : successors(BB)) {
2055     Successor->removePredecessor(BB, PreserveLCSSA);
2056     if (DTU)
2057       UniqueSuccessors.insert(Successor);
2058   }
2059   // Insert a call to llvm.trap right before this.  This turns the undefined
2060   // behavior into a hard fail instead of falling through into random code.
2061   if (UseLLVMTrap) {
2062     Function *TrapFn =
2063       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
2064     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
2065     CallTrap->setDebugLoc(I->getDebugLoc());
2066   }
2067   auto *UI = new UnreachableInst(I->getContext(), I);
2068   UI->setDebugLoc(I->getDebugLoc());
2069 
2070   // All instructions after this are dead.
2071   unsigned NumInstrsRemoved = 0;
2072   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
2073   while (BBI != BBE) {
2074     if (!BBI->use_empty())
2075       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2076     BB->getInstList().erase(BBI++);
2077     ++NumInstrsRemoved;
2078   }
2079   if (DTU) {
2080     SmallVector<DominatorTree::UpdateType, 8> Updates;
2081     Updates.reserve(UniqueSuccessors.size());
2082     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
2083       Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2084     DTU->applyUpdates(Updates);
2085   }
2086   return NumInstrsRemoved;
2087 }
2088 
2089 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
2090   SmallVector<Value *, 8> Args(II->args());
2091   SmallVector<OperandBundleDef, 1> OpBundles;
2092   II->getOperandBundlesAsDefs(OpBundles);
2093   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
2094                                        II->getCalledOperand(), Args, OpBundles);
2095   NewCall->setCallingConv(II->getCallingConv());
2096   NewCall->setAttributes(II->getAttributes());
2097   NewCall->setDebugLoc(II->getDebugLoc());
2098   NewCall->copyMetadata(*II);
2099 
2100   // If the invoke had profile metadata, try converting them for CallInst.
2101   uint64_t TotalWeight;
2102   if (NewCall->extractProfTotalWeight(TotalWeight)) {
2103     // Set the total weight if it fits into i32, otherwise reset.
2104     MDBuilder MDB(NewCall->getContext());
2105     auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2106                           ? nullptr
2107                           : MDB.createBranchWeights({uint32_t(TotalWeight)});
2108     NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2109   }
2110 
2111   return NewCall;
2112 }
2113 
2114 /// changeToCall - Convert the specified invoke into a normal call.
2115 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2116   CallInst *NewCall = createCallMatchingInvoke(II);
2117   NewCall->takeName(II);
2118   NewCall->insertBefore(II);
2119   II->replaceAllUsesWith(NewCall);
2120 
2121   // Follow the call by a branch to the normal destination.
2122   BasicBlock *NormalDestBB = II->getNormalDest();
2123   BranchInst::Create(NormalDestBB, II);
2124 
2125   // Update PHI nodes in the unwind destination
2126   BasicBlock *BB = II->getParent();
2127   BasicBlock *UnwindDestBB = II->getUnwindDest();
2128   UnwindDestBB->removePredecessor(BB);
2129   II->eraseFromParent();
2130   if (DTU)
2131     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2132 }
2133 
2134 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2135                                                    BasicBlock *UnwindEdge,
2136                                                    DomTreeUpdater *DTU) {
2137   BasicBlock *BB = CI->getParent();
2138 
2139   // Convert this function call into an invoke instruction.  First, split the
2140   // basic block.
2141   BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
2142                                  CI->getName() + ".noexc");
2143 
2144   // Delete the unconditional branch inserted by SplitBlock
2145   BB->getInstList().pop_back();
2146 
2147   // Create the new invoke instruction.
2148   SmallVector<Value *, 8> InvokeArgs(CI->args());
2149   SmallVector<OperandBundleDef, 1> OpBundles;
2150 
2151   CI->getOperandBundlesAsDefs(OpBundles);
2152 
2153   // Note: we're round tripping operand bundles through memory here, and that
2154   // can potentially be avoided with a cleverer API design that we do not have
2155   // as of this time.
2156 
2157   InvokeInst *II =
2158       InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2159                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2160   II->setDebugLoc(CI->getDebugLoc());
2161   II->setCallingConv(CI->getCallingConv());
2162   II->setAttributes(CI->getAttributes());
2163 
2164   if (DTU)
2165     DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
2166 
2167   // Make sure that anything using the call now uses the invoke!  This also
2168   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2169   CI->replaceAllUsesWith(II);
2170 
2171   // Delete the original call
2172   Split->getInstList().pop_front();
2173   return Split;
2174 }
2175 
2176 static bool markAliveBlocks(Function &F,
2177                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2178                             DomTreeUpdater *DTU = nullptr) {
2179   SmallVector<BasicBlock*, 128> Worklist;
2180   BasicBlock *BB = &F.front();
2181   Worklist.push_back(BB);
2182   Reachable.insert(BB);
2183   bool Changed = false;
2184   do {
2185     BB = Worklist.pop_back_val();
2186 
2187     // Do a quick scan of the basic block, turning any obviously unreachable
2188     // instructions into LLVM unreachable insts.  The instruction combining pass
2189     // canonicalizes unreachable insts into stores to null or undef.
2190     for (Instruction &I : *BB) {
2191       if (auto *CI = dyn_cast<CallInst>(&I)) {
2192         Value *Callee = CI->getCalledOperand();
2193         // Handle intrinsic calls.
2194         if (Function *F = dyn_cast<Function>(Callee)) {
2195           auto IntrinsicID = F->getIntrinsicID();
2196           // Assumptions that are known to be false are equivalent to
2197           // unreachable. Also, if the condition is undefined, then we make the
2198           // choice most beneficial to the optimizer, and choose that to also be
2199           // unreachable.
2200           if (IntrinsicID == Intrinsic::assume) {
2201             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2202               // Don't insert a call to llvm.trap right before the unreachable.
2203               changeToUnreachable(CI, false, false, DTU);
2204               Changed = true;
2205               break;
2206             }
2207           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2208             // A call to the guard intrinsic bails out of the current
2209             // compilation unit if the predicate passed to it is false. If the
2210             // predicate is a constant false, then we know the guard will bail
2211             // out of the current compile unconditionally, so all code following
2212             // it is dead.
2213             //
2214             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2215             // guards to treat `undef` as `false` since a guard on `undef` can
2216             // still be useful for widening.
2217             if (match(CI->getArgOperand(0), m_Zero()))
2218               if (!isa<UnreachableInst>(CI->getNextNode())) {
2219                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2220                                     false, DTU);
2221                 Changed = true;
2222                 break;
2223               }
2224           }
2225         } else if ((isa<ConstantPointerNull>(Callee) &&
2226                     !NullPointerIsDefined(CI->getFunction())) ||
2227                    isa<UndefValue>(Callee)) {
2228           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2229           Changed = true;
2230           break;
2231         }
2232         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2233           // If we found a call to a no-return function, insert an unreachable
2234           // instruction after it.  Make sure there isn't *already* one there
2235           // though.
2236           if (!isa<UnreachableInst>(CI->getNextNode())) {
2237             // Don't insert a call to llvm.trap right before the unreachable.
2238             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2239             Changed = true;
2240           }
2241           break;
2242         }
2243       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2244         // Store to undef and store to null are undefined and used to signal
2245         // that they should be changed to unreachable by passes that can't
2246         // modify the CFG.
2247 
2248         // Don't touch volatile stores.
2249         if (SI->isVolatile()) continue;
2250 
2251         Value *Ptr = SI->getOperand(1);
2252 
2253         if (isa<UndefValue>(Ptr) ||
2254             (isa<ConstantPointerNull>(Ptr) &&
2255              !NullPointerIsDefined(SI->getFunction(),
2256                                    SI->getPointerAddressSpace()))) {
2257           changeToUnreachable(SI, true, false, DTU);
2258           Changed = true;
2259           break;
2260         }
2261       }
2262     }
2263 
2264     Instruction *Terminator = BB->getTerminator();
2265     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2266       // Turn invokes that call 'nounwind' functions into ordinary calls.
2267       Value *Callee = II->getCalledOperand();
2268       if ((isa<ConstantPointerNull>(Callee) &&
2269            !NullPointerIsDefined(BB->getParent())) ||
2270           isa<UndefValue>(Callee)) {
2271         changeToUnreachable(II, true, false, DTU);
2272         Changed = true;
2273       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2274         if (II->use_empty() && II->onlyReadsMemory()) {
2275           // jump to the normal destination branch.
2276           BasicBlock *NormalDestBB = II->getNormalDest();
2277           BasicBlock *UnwindDestBB = II->getUnwindDest();
2278           BranchInst::Create(NormalDestBB, II);
2279           UnwindDestBB->removePredecessor(II->getParent());
2280           II->eraseFromParent();
2281           if (DTU)
2282             DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2283         } else
2284           changeToCall(II, DTU);
2285         Changed = true;
2286       }
2287     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2288       // Remove catchpads which cannot be reached.
2289       struct CatchPadDenseMapInfo {
2290         static CatchPadInst *getEmptyKey() {
2291           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2292         }
2293 
2294         static CatchPadInst *getTombstoneKey() {
2295           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2296         }
2297 
2298         static unsigned getHashValue(CatchPadInst *CatchPad) {
2299           return static_cast<unsigned>(hash_combine_range(
2300               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2301         }
2302 
2303         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2304           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2305               RHS == getEmptyKey() || RHS == getTombstoneKey())
2306             return LHS == RHS;
2307           return LHS->isIdenticalTo(RHS);
2308         }
2309       };
2310 
2311       SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
2312       // Set of unique CatchPads.
2313       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2314                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2315           HandlerSet;
2316       detail::DenseSetEmpty Empty;
2317       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2318                                              E = CatchSwitch->handler_end();
2319            I != E; ++I) {
2320         BasicBlock *HandlerBB = *I;
2321         ++NumPerSuccessorCases[HandlerBB];
2322         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2323         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2324           --NumPerSuccessorCases[HandlerBB];
2325           CatchSwitch->removeHandler(I);
2326           --I;
2327           --E;
2328           Changed = true;
2329         }
2330       }
2331       std::vector<DominatorTree::UpdateType> Updates;
2332       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
2333         if (I.second == 0)
2334           Updates.push_back({DominatorTree::Delete, BB, I.first});
2335       if (DTU)
2336         DTU->applyUpdates(Updates);
2337     }
2338 
2339     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2340     for (BasicBlock *Successor : successors(BB))
2341       if (Reachable.insert(Successor).second)
2342         Worklist.push_back(Successor);
2343   } while (!Worklist.empty());
2344   return Changed;
2345 }
2346 
2347 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2348   Instruction *TI = BB->getTerminator();
2349 
2350   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2351     changeToCall(II, DTU);
2352     return;
2353   }
2354 
2355   Instruction *NewTI;
2356   BasicBlock *UnwindDest;
2357 
2358   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2359     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2360     UnwindDest = CRI->getUnwindDest();
2361   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2362     auto *NewCatchSwitch = CatchSwitchInst::Create(
2363         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2364         CatchSwitch->getName(), CatchSwitch);
2365     for (BasicBlock *PadBB : CatchSwitch->handlers())
2366       NewCatchSwitch->addHandler(PadBB);
2367 
2368     NewTI = NewCatchSwitch;
2369     UnwindDest = CatchSwitch->getUnwindDest();
2370   } else {
2371     llvm_unreachable("Could not find unwind successor");
2372   }
2373 
2374   NewTI->takeName(TI);
2375   NewTI->setDebugLoc(TI->getDebugLoc());
2376   UnwindDest->removePredecessor(BB);
2377   TI->replaceAllUsesWith(NewTI);
2378   TI->eraseFromParent();
2379   if (DTU)
2380     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
2381 }
2382 
2383 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2384 /// if they are in a dead cycle.  Return true if a change was made, false
2385 /// otherwise.
2386 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2387                                    MemorySSAUpdater *MSSAU) {
2388   SmallPtrSet<BasicBlock *, 16> Reachable;
2389   bool Changed = markAliveBlocks(F, Reachable, DTU);
2390 
2391   // If there are unreachable blocks in the CFG...
2392   if (Reachable.size() == F.size())
2393     return Changed;
2394 
2395   assert(Reachable.size() < F.size());
2396 
2397   // Are there any blocks left to actually delete?
2398   SmallSetVector<BasicBlock *, 8> BlocksToRemove;
2399   for (BasicBlock &BB : F) {
2400     // Skip reachable basic blocks
2401     if (Reachable.count(&BB))
2402       continue;
2403     // Skip already-deleted blocks
2404     if (DTU && DTU->isBBPendingDeletion(&BB))
2405       continue;
2406     BlocksToRemove.insert(&BB);
2407   }
2408 
2409   if (BlocksToRemove.empty())
2410     return Changed;
2411 
2412   Changed = true;
2413   NumRemoved += BlocksToRemove.size();
2414 
2415   if (MSSAU)
2416     MSSAU->removeBlocks(BlocksToRemove);
2417 
2418   // Loop over all of the basic blocks that are up for removal, dropping all of
2419   // their internal references. Update DTU if available.
2420   std::vector<DominatorTree::UpdateType> Updates;
2421   for (auto *BB : BlocksToRemove) {
2422     SmallSetVector<BasicBlock *, 8> UniqueSuccessors;
2423     for (BasicBlock *Successor : successors(BB)) {
2424       // Only remove references to BB in reachable successors of BB.
2425       if (Reachable.count(Successor))
2426         Successor->removePredecessor(BB);
2427       if (DTU)
2428         UniqueSuccessors.insert(Successor);
2429     }
2430     BB->dropAllReferences();
2431     if (DTU) {
2432       Instruction *TI = BB->getTerminator();
2433       assert(TI && "Basic block should have a terminator");
2434       // Terminators like invoke can have users. We have to replace their users,
2435       // before removing them.
2436       if (!TI->use_empty())
2437         TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
2438       TI->eraseFromParent();
2439       new UnreachableInst(BB->getContext(), BB);
2440       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2441                                "applying corresponding DTU updates.");
2442       Updates.reserve(Updates.size() + UniqueSuccessors.size());
2443       for (auto *UniqueSuccessor : UniqueSuccessors)
2444         Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2445     }
2446   }
2447 
2448   if (DTU) {
2449     DTU->applyUpdates(Updates);
2450     for (auto *BB : BlocksToRemove)
2451       DTU->deleteBB(BB);
2452   } else {
2453     for (auto *BB : BlocksToRemove)
2454       BB->eraseFromParent();
2455   }
2456 
2457   return Changed;
2458 }
2459 
2460 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2461                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2462   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2463   K->dropUnknownNonDebugMetadata(KnownIDs);
2464   K->getAllMetadataOtherThanDebugLoc(Metadata);
2465   for (const auto &MD : Metadata) {
2466     unsigned Kind = MD.first;
2467     MDNode *JMD = J->getMetadata(Kind);
2468     MDNode *KMD = MD.second;
2469 
2470     switch (Kind) {
2471       default:
2472         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2473         break;
2474       case LLVMContext::MD_dbg:
2475         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2476       case LLVMContext::MD_tbaa:
2477         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2478         break;
2479       case LLVMContext::MD_alias_scope:
2480         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2481         break;
2482       case LLVMContext::MD_noalias:
2483       case LLVMContext::MD_mem_parallel_loop_access:
2484         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2485         break;
2486       case LLVMContext::MD_access_group:
2487         K->setMetadata(LLVMContext::MD_access_group,
2488                        intersectAccessGroups(K, J));
2489         break;
2490       case LLVMContext::MD_range:
2491 
2492         // If K does move, use most generic range. Otherwise keep the range of
2493         // K.
2494         if (DoesKMove)
2495           // FIXME: If K does move, we should drop the range info and nonnull.
2496           //        Currently this function is used with DoesKMove in passes
2497           //        doing hoisting/sinking and the current behavior of using the
2498           //        most generic range is correct in those cases.
2499           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2500         break;
2501       case LLVMContext::MD_fpmath:
2502         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2503         break;
2504       case LLVMContext::MD_invariant_load:
2505         // Only set the !invariant.load if it is present in both instructions.
2506         K->setMetadata(Kind, JMD);
2507         break;
2508       case LLVMContext::MD_nonnull:
2509         // If K does move, keep nonull if it is present in both instructions.
2510         if (DoesKMove)
2511           K->setMetadata(Kind, JMD);
2512         break;
2513       case LLVMContext::MD_invariant_group:
2514         // Preserve !invariant.group in K.
2515         break;
2516       case LLVMContext::MD_align:
2517         K->setMetadata(Kind,
2518           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2519         break;
2520       case LLVMContext::MD_dereferenceable:
2521       case LLVMContext::MD_dereferenceable_or_null:
2522         K->setMetadata(Kind,
2523           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2524         break;
2525       case LLVMContext::MD_preserve_access_index:
2526         // Preserve !preserve.access.index in K.
2527         break;
2528     }
2529   }
2530   // Set !invariant.group from J if J has it. If both instructions have it
2531   // then we will just pick it from J - even when they are different.
2532   // Also make sure that K is load or store - f.e. combining bitcast with load
2533   // could produce bitcast with invariant.group metadata, which is invalid.
2534   // FIXME: we should try to preserve both invariant.group md if they are
2535   // different, but right now instruction can only have one invariant.group.
2536   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2537     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2538       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2539 }
2540 
2541 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2542                                  bool KDominatesJ) {
2543   unsigned KnownIDs[] = {
2544       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2545       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2546       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2547       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2548       LLVMContext::MD_dereferenceable,
2549       LLVMContext::MD_dereferenceable_or_null,
2550       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2551   combineMetadata(K, J, KnownIDs, KDominatesJ);
2552 }
2553 
2554 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2555   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2556   Source.getAllMetadata(MD);
2557   MDBuilder MDB(Dest.getContext());
2558   Type *NewType = Dest.getType();
2559   const DataLayout &DL = Source.getModule()->getDataLayout();
2560   for (const auto &MDPair : MD) {
2561     unsigned ID = MDPair.first;
2562     MDNode *N = MDPair.second;
2563     // Note, essentially every kind of metadata should be preserved here! This
2564     // routine is supposed to clone a load instruction changing *only its type*.
2565     // The only metadata it makes sense to drop is metadata which is invalidated
2566     // when the pointer type changes. This should essentially never be the case
2567     // in LLVM, but we explicitly switch over only known metadata to be
2568     // conservatively correct. If you are adding metadata to LLVM which pertains
2569     // to loads, you almost certainly want to add it here.
2570     switch (ID) {
2571     case LLVMContext::MD_dbg:
2572     case LLVMContext::MD_tbaa:
2573     case LLVMContext::MD_prof:
2574     case LLVMContext::MD_fpmath:
2575     case LLVMContext::MD_tbaa_struct:
2576     case LLVMContext::MD_invariant_load:
2577     case LLVMContext::MD_alias_scope:
2578     case LLVMContext::MD_noalias:
2579     case LLVMContext::MD_nontemporal:
2580     case LLVMContext::MD_mem_parallel_loop_access:
2581     case LLVMContext::MD_access_group:
2582       // All of these directly apply.
2583       Dest.setMetadata(ID, N);
2584       break;
2585 
2586     case LLVMContext::MD_nonnull:
2587       copyNonnullMetadata(Source, N, Dest);
2588       break;
2589 
2590     case LLVMContext::MD_align:
2591     case LLVMContext::MD_dereferenceable:
2592     case LLVMContext::MD_dereferenceable_or_null:
2593       // These only directly apply if the new type is also a pointer.
2594       if (NewType->isPointerTy())
2595         Dest.setMetadata(ID, N);
2596       break;
2597 
2598     case LLVMContext::MD_range:
2599       copyRangeMetadata(DL, Source, N, Dest);
2600       break;
2601     }
2602   }
2603 }
2604 
2605 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2606   auto *ReplInst = dyn_cast<Instruction>(Repl);
2607   if (!ReplInst)
2608     return;
2609 
2610   // Patch the replacement so that it is not more restrictive than the value
2611   // being replaced.
2612   // Note that if 'I' is a load being replaced by some operation,
2613   // for example, by an arithmetic operation, then andIRFlags()
2614   // would just erase all math flags from the original arithmetic
2615   // operation, which is clearly not wanted and not needed.
2616   if (!isa<LoadInst>(I))
2617     ReplInst->andIRFlags(I);
2618 
2619   // FIXME: If both the original and replacement value are part of the
2620   // same control-flow region (meaning that the execution of one
2621   // guarantees the execution of the other), then we can combine the
2622   // noalias scopes here and do better than the general conservative
2623   // answer used in combineMetadata().
2624 
2625   // In general, GVN unifies expressions over different control-flow
2626   // regions, and so we need a conservative combination of the noalias
2627   // scopes.
2628   static const unsigned KnownIDs[] = {
2629       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2630       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2631       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2632       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2633       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2634   combineMetadata(ReplInst, I, KnownIDs, false);
2635 }
2636 
2637 template <typename RootType, typename DominatesFn>
2638 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2639                                          const RootType &Root,
2640                                          const DominatesFn &Dominates) {
2641   assert(From->getType() == To->getType());
2642 
2643   unsigned Count = 0;
2644   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2645        UI != UE;) {
2646     Use &U = *UI++;
2647     if (!Dominates(Root, U))
2648       continue;
2649     U.set(To);
2650     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2651                       << "' as " << *To << " in " << *U << "\n");
2652     ++Count;
2653   }
2654   return Count;
2655 }
2656 
2657 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2658    assert(From->getType() == To->getType());
2659    auto *BB = From->getParent();
2660    unsigned Count = 0;
2661 
2662   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2663        UI != UE;) {
2664     Use &U = *UI++;
2665     auto *I = cast<Instruction>(U.getUser());
2666     if (I->getParent() == BB)
2667       continue;
2668     U.set(To);
2669     ++Count;
2670   }
2671   return Count;
2672 }
2673 
2674 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2675                                         DominatorTree &DT,
2676                                         const BasicBlockEdge &Root) {
2677   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2678     return DT.dominates(Root, U);
2679   };
2680   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2681 }
2682 
2683 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2684                                         DominatorTree &DT,
2685                                         const BasicBlock *BB) {
2686   auto Dominates = [&DT](const BasicBlock *BB, const Use &U) {
2687     return DT.dominates(BB, U);
2688   };
2689   return ::replaceDominatedUsesWith(From, To, BB, Dominates);
2690 }
2691 
2692 bool llvm::callsGCLeafFunction(const CallBase *Call,
2693                                const TargetLibraryInfo &TLI) {
2694   // Check if the function is specifically marked as a gc leaf function.
2695   if (Call->hasFnAttr("gc-leaf-function"))
2696     return true;
2697   if (const Function *F = Call->getCalledFunction()) {
2698     if (F->hasFnAttribute("gc-leaf-function"))
2699       return true;
2700 
2701     if (auto IID = F->getIntrinsicID()) {
2702       // Most LLVM intrinsics do not take safepoints.
2703       return IID != Intrinsic::experimental_gc_statepoint &&
2704              IID != Intrinsic::experimental_deoptimize &&
2705              IID != Intrinsic::memcpy_element_unordered_atomic &&
2706              IID != Intrinsic::memmove_element_unordered_atomic;
2707     }
2708   }
2709 
2710   // Lib calls can be materialized by some passes, and won't be
2711   // marked as 'gc-leaf-function.' All available Libcalls are
2712   // GC-leaf.
2713   LibFunc LF;
2714   if (TLI.getLibFunc(*Call, LF)) {
2715     return TLI.has(LF);
2716   }
2717 
2718   return false;
2719 }
2720 
2721 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2722                                LoadInst &NewLI) {
2723   auto *NewTy = NewLI.getType();
2724 
2725   // This only directly applies if the new type is also a pointer.
2726   if (NewTy->isPointerTy()) {
2727     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2728     return;
2729   }
2730 
2731   // The only other translation we can do is to integral loads with !range
2732   // metadata.
2733   if (!NewTy->isIntegerTy())
2734     return;
2735 
2736   MDBuilder MDB(NewLI.getContext());
2737   const Value *Ptr = OldLI.getPointerOperand();
2738   auto *ITy = cast<IntegerType>(NewTy);
2739   auto *NullInt = ConstantExpr::getPtrToInt(
2740       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2741   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2742   NewLI.setMetadata(LLVMContext::MD_range,
2743                     MDB.createRange(NonNullInt, NullInt));
2744 }
2745 
2746 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2747                              MDNode *N, LoadInst &NewLI) {
2748   auto *NewTy = NewLI.getType();
2749 
2750   // Give up unless it is converted to a pointer where there is a single very
2751   // valuable mapping we can do reliably.
2752   // FIXME: It would be nice to propagate this in more ways, but the type
2753   // conversions make it hard.
2754   if (!NewTy->isPointerTy())
2755     return;
2756 
2757   unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2758   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2759     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2760     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2761   }
2762 }
2763 
2764 void llvm::dropDebugUsers(Instruction &I) {
2765   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2766   findDbgUsers(DbgUsers, &I);
2767   for (auto *DII : DbgUsers)
2768     DII->eraseFromParent();
2769 }
2770 
2771 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2772                                     BasicBlock *BB) {
2773   // Since we are moving the instructions out of its basic block, we do not
2774   // retain their original debug locations (DILocations) and debug intrinsic
2775   // instructions.
2776   //
2777   // Doing so would degrade the debugging experience and adversely affect the
2778   // accuracy of profiling information.
2779   //
2780   // Currently, when hoisting the instructions, we take the following actions:
2781   // - Remove their debug intrinsic instructions.
2782   // - Set their debug locations to the values from the insertion point.
2783   //
2784   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2785   // need to be deleted, is because there will not be any instructions with a
2786   // DILocation in either branch left after performing the transformation. We
2787   // can only insert a dbg.value after the two branches are joined again.
2788   //
2789   // See PR38762, PR39243 for more details.
2790   //
2791   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2792   // encode predicated DIExpressions that yield different results on different
2793   // code paths.
2794 
2795   // A hoisted conditional probe should be treated as dangling so that it will
2796   // not be over-counted when the samples collected on the non-conditional path
2797   // are counted towards the conditional path. We leave it for the counts
2798   // inference algorithm to figure out a proper count for a danglng probe.
2799   moveAndDanglePseudoProbes(BB, InsertPt);
2800 
2801   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2802     Instruction *I = &*II;
2803     I->dropUnknownNonDebugMetadata();
2804     if (I->isUsedByMetadata())
2805       dropDebugUsers(*I);
2806     if (isa<DbgInfoIntrinsic>(I)) {
2807       // Remove DbgInfo Intrinsics.
2808       II = I->eraseFromParent();
2809       continue;
2810     }
2811     I->setDebugLoc(InsertPt->getDebugLoc());
2812     ++II;
2813   }
2814   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2815                                  BB->begin(),
2816                                  BB->getTerminator()->getIterator());
2817 }
2818 
2819 namespace {
2820 
2821 /// A potential constituent of a bitreverse or bswap expression. See
2822 /// collectBitParts for a fuller explanation.
2823 struct BitPart {
2824   BitPart(Value *P, unsigned BW) : Provider(P) {
2825     Provenance.resize(BW);
2826   }
2827 
2828   /// The Value that this is a bitreverse/bswap of.
2829   Value *Provider;
2830 
2831   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2832   /// in Provider becomes bit B in the result of this expression.
2833   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2834 
2835   enum { Unset = -1 };
2836 };
2837 
2838 } // end anonymous namespace
2839 
2840 /// Analyze the specified subexpression and see if it is capable of providing
2841 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2842 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
2843 /// the output of the expression came from a corresponding bit in some other
2844 /// value. This function is recursive, and the end result is a mapping of
2845 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2846 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2847 ///
2848 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2849 /// that the expression deposits the low byte of %X into the high byte of the
2850 /// result and that all other bits are zero. This expression is accepted and a
2851 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2852 /// [0-7].
2853 ///
2854 /// For vector types, all analysis is performed at the per-element level. No
2855 /// cross-element analysis is supported (shuffle/insertion/reduction), and all
2856 /// constant masks must be splatted across all elements.
2857 ///
2858 /// To avoid revisiting values, the BitPart results are memoized into the
2859 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2860 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2861 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2862 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2863 /// type instead to provide the same functionality.
2864 ///
2865 /// Because we pass around references into \c BPS, we must use a container that
2866 /// does not invalidate internal references (std::map instead of DenseMap).
2867 static const Optional<BitPart> &
2868 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2869                 std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
2870   auto I = BPS.find(V);
2871   if (I != BPS.end())
2872     return I->second;
2873 
2874   auto &Result = BPS[V] = None;
2875   auto BitWidth = V->getType()->getScalarSizeInBits();
2876 
2877   // Can't do integer/elements > 128 bits.
2878   if (BitWidth > 128)
2879     return Result;
2880 
2881   // Prevent stack overflow by limiting the recursion depth
2882   if (Depth == BitPartRecursionMaxDepth) {
2883     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2884     return Result;
2885   }
2886 
2887   if (auto *I = dyn_cast<Instruction>(V)) {
2888     Value *X, *Y;
2889     const APInt *C;
2890 
2891     // If this is an or instruction, it may be an inner node of the bswap.
2892     if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
2893       const auto &A =
2894           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2895       const auto &B =
2896           collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2897       if (!A || !B)
2898         return Result;
2899 
2900       // Try and merge the two together.
2901       if (!A->Provider || A->Provider != B->Provider)
2902         return Result;
2903 
2904       Result = BitPart(A->Provider, BitWidth);
2905       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
2906         if (A->Provenance[BitIdx] != BitPart::Unset &&
2907             B->Provenance[BitIdx] != BitPart::Unset &&
2908             A->Provenance[BitIdx] != B->Provenance[BitIdx])
2909           return Result = None;
2910 
2911         if (A->Provenance[BitIdx] == BitPart::Unset)
2912           Result->Provenance[BitIdx] = B->Provenance[BitIdx];
2913         else
2914           Result->Provenance[BitIdx] = A->Provenance[BitIdx];
2915       }
2916 
2917       return Result;
2918     }
2919 
2920     // If this is a logical shift by a constant, recurse then shift the result.
2921     if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
2922       const APInt &BitShift = *C;
2923 
2924       // Ensure the shift amount is defined.
2925       if (BitShift.uge(BitWidth))
2926         return Result;
2927 
2928       const auto &Res =
2929           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2930       if (!Res)
2931         return Result;
2932       Result = Res;
2933 
2934       // Perform the "shift" on BitProvenance.
2935       auto &P = Result->Provenance;
2936       if (I->getOpcode() == Instruction::Shl) {
2937         P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
2938         P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
2939       } else {
2940         P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
2941         P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
2942       }
2943 
2944       return Result;
2945     }
2946 
2947     // If this is a logical 'and' with a mask that clears bits, recurse then
2948     // unset the appropriate bits.
2949     if (match(V, m_And(m_Value(X), m_APInt(C)))) {
2950       const APInt &AndMask = *C;
2951 
2952       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2953       // early exit.
2954       unsigned NumMaskedBits = AndMask.countPopulation();
2955       if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
2956         return Result;
2957 
2958       const auto &Res =
2959           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2960       if (!Res)
2961         return Result;
2962       Result = Res;
2963 
2964       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
2965         // If the AndMask is zero for this bit, clear the bit.
2966         if (AndMask[BitIdx] == 0)
2967           Result->Provenance[BitIdx] = BitPart::Unset;
2968       return Result;
2969     }
2970 
2971     // If this is a zext instruction zero extend the result.
2972     if (match(V, m_ZExt(m_Value(X)))) {
2973       const auto &Res =
2974           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2975       if (!Res)
2976         return Result;
2977 
2978       Result = BitPart(Res->Provider, BitWidth);
2979       auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
2980       for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
2981         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
2982       for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
2983         Result->Provenance[BitIdx] = BitPart::Unset;
2984       return Result;
2985     }
2986 
2987     // If this is a truncate instruction, extract the lower bits.
2988     if (match(V, m_Trunc(m_Value(X)))) {
2989       const auto &Res =
2990           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2991       if (!Res)
2992         return Result;
2993 
2994       Result = BitPart(Res->Provider, BitWidth);
2995       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
2996         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
2997       return Result;
2998     }
2999 
3000     // BITREVERSE - most likely due to us previous matching a partial
3001     // bitreverse.
3002     if (match(V, m_BitReverse(m_Value(X)))) {
3003       const auto &Res =
3004           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3005       if (!Res)
3006         return Result;
3007 
3008       Result = BitPart(Res->Provider, BitWidth);
3009       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3010         Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
3011       return Result;
3012     }
3013 
3014     // BSWAP - most likely due to us previous matching a partial bswap.
3015     if (match(V, m_BSwap(m_Value(X)))) {
3016       const auto &Res =
3017           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3018       if (!Res)
3019         return Result;
3020 
3021       unsigned ByteWidth = BitWidth / 8;
3022       Result = BitPart(Res->Provider, BitWidth);
3023       for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
3024         unsigned ByteBitOfs = ByteIdx * 8;
3025         for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
3026           Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
3027               Res->Provenance[ByteBitOfs + BitIdx];
3028       }
3029       return Result;
3030     }
3031 
3032     // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
3033     // amount (modulo).
3034     // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3035     // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3036     if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
3037         match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
3038       // We can treat fshr as a fshl by flipping the modulo amount.
3039       unsigned ModAmt = C->urem(BitWidth);
3040       if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
3041         ModAmt = BitWidth - ModAmt;
3042 
3043       const auto &LHS =
3044           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3045       const auto &RHS =
3046           collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3047 
3048       // Check we have both sources and they are from the same provider.
3049       if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider)
3050         return Result;
3051 
3052       unsigned StartBitRHS = BitWidth - ModAmt;
3053       Result = BitPart(LHS->Provider, BitWidth);
3054       for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
3055         Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
3056       for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
3057         Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
3058       return Result;
3059     }
3060   }
3061 
3062   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
3063   // the input value to the bswap/bitreverse.
3064   Result = BitPart(V, BitWidth);
3065   for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3066     Result->Provenance[BitIdx] = BitIdx;
3067   return Result;
3068 }
3069 
3070 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
3071                                           unsigned BitWidth) {
3072   if (From % 8 != To % 8)
3073     return false;
3074   // Convert from bit indices to byte indices and check for a byte reversal.
3075   From >>= 3;
3076   To >>= 3;
3077   BitWidth >>= 3;
3078   return From == BitWidth - To - 1;
3079 }
3080 
3081 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
3082                                                unsigned BitWidth) {
3083   return From == BitWidth - To - 1;
3084 }
3085 
3086 bool llvm::recognizeBSwapOrBitReverseIdiom(
3087     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
3088     SmallVectorImpl<Instruction *> &InsertedInsts) {
3089   if (Operator::getOpcode(I) != Instruction::Or)
3090     return false;
3091   if (!MatchBSwaps && !MatchBitReversals)
3092     return false;
3093   Type *ITy = I->getType();
3094   if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
3095     return false;  // Can't do integer/elements > 128 bits.
3096 
3097   Type *DemandedTy = ITy;
3098   if (I->hasOneUse())
3099     if (auto *Trunc = dyn_cast<TruncInst>(I->user_back()))
3100       DemandedTy = Trunc->getType();
3101 
3102   // Try to find all the pieces corresponding to the bswap.
3103   std::map<Value *, Optional<BitPart>> BPS;
3104   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
3105   if (!Res)
3106     return false;
3107   ArrayRef<int8_t> BitProvenance = Res->Provenance;
3108   assert(all_of(BitProvenance,
3109                 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
3110          "Illegal bit provenance index");
3111 
3112   // If the upper bits are zero, then attempt to perform as a truncated op.
3113   if (BitProvenance.back() == BitPart::Unset) {
3114     while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
3115       BitProvenance = BitProvenance.drop_back();
3116     if (BitProvenance.empty())
3117       return false; // TODO - handle null value?
3118     DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
3119     if (auto *IVecTy = dyn_cast<VectorType>(ITy))
3120       DemandedTy = VectorType::get(DemandedTy, IVecTy);
3121   }
3122 
3123   // Check BitProvenance hasn't found a source larger than the result type.
3124   unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
3125   if (DemandedBW > ITy->getScalarSizeInBits())
3126     return false;
3127 
3128   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
3129   // only byteswap values with an even number of bytes.
3130   APInt DemandedMask = APInt::getAllOnesValue(DemandedBW);
3131   bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
3132   bool OKForBitReverse = MatchBitReversals;
3133   for (unsigned BitIdx = 0;
3134        (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
3135     if (BitProvenance[BitIdx] == BitPart::Unset) {
3136       DemandedMask.clearBit(BitIdx);
3137       continue;
3138     }
3139     OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
3140                                                 DemandedBW);
3141     OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
3142                                                           BitIdx, DemandedBW);
3143   }
3144 
3145   Intrinsic::ID Intrin;
3146   if (OKForBSwap)
3147     Intrin = Intrinsic::bswap;
3148   else if (OKForBitReverse)
3149     Intrin = Intrinsic::bitreverse;
3150   else
3151     return false;
3152 
3153   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
3154   Value *Provider = Res->Provider;
3155 
3156   // We may need to truncate the provider.
3157   if (DemandedTy != Provider->getType()) {
3158     auto *Trunc =
3159         CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I);
3160     InsertedInsts.push_back(Trunc);
3161     Provider = Trunc;
3162   }
3163 
3164   Instruction *Result = CallInst::Create(F, Provider, "rev", I);
3165   InsertedInsts.push_back(Result);
3166 
3167   if (!DemandedMask.isAllOnesValue()) {
3168     auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
3169     Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I);
3170     InsertedInsts.push_back(Result);
3171   }
3172 
3173   // We may need to zeroextend back to the result type.
3174   if (ITy != Result->getType()) {
3175     auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I);
3176     InsertedInsts.push_back(ExtInst);
3177   }
3178 
3179   return true;
3180 }
3181 
3182 // CodeGen has special handling for some string functions that may replace
3183 // them with target-specific intrinsics.  Since that'd skip our interceptors
3184 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
3185 // we mark affected calls as NoBuiltin, which will disable optimization
3186 // in CodeGen.
3187 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
3188     CallInst *CI, const TargetLibraryInfo *TLI) {
3189   Function *F = CI->getCalledFunction();
3190   LibFunc Func;
3191   if (F && !F->hasLocalLinkage() && F->hasName() &&
3192       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
3193       !F->doesNotAccessMemory())
3194     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
3195 }
3196 
3197 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
3198   // We can't have a PHI with a metadata type.
3199   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
3200     return false;
3201 
3202   // Early exit.
3203   if (!isa<Constant>(I->getOperand(OpIdx)))
3204     return true;
3205 
3206   switch (I->getOpcode()) {
3207   default:
3208     return true;
3209   case Instruction::Call:
3210   case Instruction::Invoke: {
3211     const auto &CB = cast<CallBase>(*I);
3212 
3213     // Can't handle inline asm. Skip it.
3214     if (CB.isInlineAsm())
3215       return false;
3216 
3217     // Constant bundle operands may need to retain their constant-ness for
3218     // correctness.
3219     if (CB.isBundleOperand(OpIdx))
3220       return false;
3221 
3222     if (OpIdx < CB.getNumArgOperands()) {
3223       // Some variadic intrinsics require constants in the variadic arguments,
3224       // which currently aren't markable as immarg.
3225       if (isa<IntrinsicInst>(CB) &&
3226           OpIdx >= CB.getFunctionType()->getNumParams()) {
3227         // This is known to be OK for stackmap.
3228         return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
3229       }
3230 
3231       // gcroot is a special case, since it requires a constant argument which
3232       // isn't also required to be a simple ConstantInt.
3233       if (CB.getIntrinsicID() == Intrinsic::gcroot)
3234         return false;
3235 
3236       // Some intrinsic operands are required to be immediates.
3237       return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
3238     }
3239 
3240     // It is never allowed to replace the call argument to an intrinsic, but it
3241     // may be possible for a call.
3242     return !isa<IntrinsicInst>(CB);
3243   }
3244   case Instruction::ShuffleVector:
3245     // Shufflevector masks are constant.
3246     return OpIdx != 2;
3247   case Instruction::Switch:
3248   case Instruction::ExtractValue:
3249     // All operands apart from the first are constant.
3250     return OpIdx == 0;
3251   case Instruction::InsertValue:
3252     // All operands apart from the first and the second are constant.
3253     return OpIdx < 2;
3254   case Instruction::Alloca:
3255     // Static allocas (constant size in the entry block) are handled by
3256     // prologue/epilogue insertion so they're free anyway. We definitely don't
3257     // want to make them non-constant.
3258     return !cast<AllocaInst>(I)->isStaticAlloca();
3259   case Instruction::GetElementPtr:
3260     if (OpIdx == 0)
3261       return true;
3262     gep_type_iterator It = gep_type_begin(I);
3263     for (auto E = std::next(It, OpIdx); It != E; ++It)
3264       if (It.isStruct())
3265         return false;
3266     return true;
3267   }
3268 }
3269 
3270 Value *llvm::invertCondition(Value *Condition) {
3271   // First: Check if it's a constant
3272   if (Constant *C = dyn_cast<Constant>(Condition))
3273     return ConstantExpr::getNot(C);
3274 
3275   // Second: If the condition is already inverted, return the original value
3276   Value *NotCondition;
3277   if (match(Condition, m_Not(m_Value(NotCondition))))
3278     return NotCondition;
3279 
3280   BasicBlock *Parent = nullptr;
3281   Instruction *Inst = dyn_cast<Instruction>(Condition);
3282   if (Inst)
3283     Parent = Inst->getParent();
3284   else if (Argument *Arg = dyn_cast<Argument>(Condition))
3285     Parent = &Arg->getParent()->getEntryBlock();
3286   assert(Parent && "Unsupported condition to invert");
3287 
3288   // Third: Check all the users for an invert
3289   for (User *U : Condition->users())
3290     if (Instruction *I = dyn_cast<Instruction>(U))
3291       if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
3292         return I;
3293 
3294   // Last option: Create a new instruction
3295   auto *Inverted =
3296       BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
3297   if (Inst && !isa<PHINode>(Inst))
3298     Inverted->insertAfter(Inst);
3299   else
3300     Inverted->insertBefore(&*Parent->getFirstInsertionPt());
3301   return Inverted;
3302 }
3303