1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LazyValueInfo.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DIBuilder.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/PatternMatch.h" 46 #include "llvm/IR/ValueHandle.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/KnownBits.h" 49 #include "llvm/Support/MathExtras.h" 50 #include "llvm/Support/raw_ostream.h" 51 using namespace llvm; 52 using namespace llvm::PatternMatch; 53 54 #define DEBUG_TYPE "local" 55 56 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 57 58 //===----------------------------------------------------------------------===// 59 // Local constant propagation. 60 // 61 62 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 63 /// constant value, convert it into an unconditional branch to the constant 64 /// destination. This is a nontrivial operation because the successors of this 65 /// basic block must have their PHI nodes updated. 66 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 67 /// conditions and indirectbr addresses this might make dead if 68 /// DeleteDeadConditions is true. 69 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 70 const TargetLibraryInfo *TLI) { 71 TerminatorInst *T = BB->getTerminator(); 72 IRBuilder<> Builder(T); 73 74 // Branch - See if we are conditional jumping on constant 75 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 76 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 77 BasicBlock *Dest1 = BI->getSuccessor(0); 78 BasicBlock *Dest2 = BI->getSuccessor(1); 79 80 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 81 // Are we branching on constant? 82 // YES. Change to unconditional branch... 83 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 84 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 85 86 //cerr << "Function: " << T->getParent()->getParent() 87 // << "\nRemoving branch from " << T->getParent() 88 // << "\n\nTo: " << OldDest << endl; 89 90 // Let the basic block know that we are letting go of it. Based on this, 91 // it will adjust it's PHI nodes. 92 OldDest->removePredecessor(BB); 93 94 // Replace the conditional branch with an unconditional one. 95 Builder.CreateBr(Destination); 96 BI->eraseFromParent(); 97 return true; 98 } 99 100 if (Dest2 == Dest1) { // Conditional branch to same location? 101 // This branch matches something like this: 102 // br bool %cond, label %Dest, label %Dest 103 // and changes it into: br label %Dest 104 105 // Let the basic block know that we are letting go of one copy of it. 106 assert(BI->getParent() && "Terminator not inserted in block!"); 107 Dest1->removePredecessor(BI->getParent()); 108 109 // Replace the conditional branch with an unconditional one. 110 Builder.CreateBr(Dest1); 111 Value *Cond = BI->getCondition(); 112 BI->eraseFromParent(); 113 if (DeleteDeadConditions) 114 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 115 return true; 116 } 117 return false; 118 } 119 120 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 121 // If we are switching on a constant, we can convert the switch to an 122 // unconditional branch. 123 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 124 BasicBlock *DefaultDest = SI->getDefaultDest(); 125 BasicBlock *TheOnlyDest = DefaultDest; 126 127 // If the default is unreachable, ignore it when searching for TheOnlyDest. 128 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 129 SI->getNumCases() > 0) { 130 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 131 } 132 133 // Figure out which case it goes to. 134 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 135 // Found case matching a constant operand? 136 if (i->getCaseValue() == CI) { 137 TheOnlyDest = i->getCaseSuccessor(); 138 break; 139 } 140 141 // Check to see if this branch is going to the same place as the default 142 // dest. If so, eliminate it as an explicit compare. 143 if (i->getCaseSuccessor() == DefaultDest) { 144 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 145 unsigned NCases = SI->getNumCases(); 146 // Fold the case metadata into the default if there will be any branches 147 // left, unless the metadata doesn't match the switch. 148 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 149 // Collect branch weights into a vector. 150 SmallVector<uint32_t, 8> Weights; 151 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 152 ++MD_i) { 153 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 154 Weights.push_back(CI->getValue().getZExtValue()); 155 } 156 // Merge weight of this case to the default weight. 157 unsigned idx = i->getCaseIndex(); 158 Weights[0] += Weights[idx+1]; 159 // Remove weight for this case. 160 std::swap(Weights[idx+1], Weights.back()); 161 Weights.pop_back(); 162 SI->setMetadata(LLVMContext::MD_prof, 163 MDBuilder(BB->getContext()). 164 createBranchWeights(Weights)); 165 } 166 // Remove this entry. 167 DefaultDest->removePredecessor(SI->getParent()); 168 i = SI->removeCase(i); 169 e = SI->case_end(); 170 continue; 171 } 172 173 // Otherwise, check to see if the switch only branches to one destination. 174 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 175 // destinations. 176 if (i->getCaseSuccessor() != TheOnlyDest) 177 TheOnlyDest = nullptr; 178 179 // Increment this iterator as we haven't removed the case. 180 ++i; 181 } 182 183 if (CI && !TheOnlyDest) { 184 // Branching on a constant, but not any of the cases, go to the default 185 // successor. 186 TheOnlyDest = SI->getDefaultDest(); 187 } 188 189 // If we found a single destination that we can fold the switch into, do so 190 // now. 191 if (TheOnlyDest) { 192 // Insert the new branch. 193 Builder.CreateBr(TheOnlyDest); 194 BasicBlock *BB = SI->getParent(); 195 196 // Remove entries from PHI nodes which we no longer branch to... 197 for (BasicBlock *Succ : SI->successors()) { 198 // Found case matching a constant operand? 199 if (Succ == TheOnlyDest) 200 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 201 else 202 Succ->removePredecessor(BB); 203 } 204 205 // Delete the old switch. 206 Value *Cond = SI->getCondition(); 207 SI->eraseFromParent(); 208 if (DeleteDeadConditions) 209 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 210 return true; 211 } 212 213 if (SI->getNumCases() == 1) { 214 // Otherwise, we can fold this switch into a conditional branch 215 // instruction if it has only one non-default destination. 216 auto FirstCase = *SI->case_begin(); 217 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 218 FirstCase.getCaseValue(), "cond"); 219 220 // Insert the new branch. 221 BranchInst *NewBr = Builder.CreateCondBr(Cond, 222 FirstCase.getCaseSuccessor(), 223 SI->getDefaultDest()); 224 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 225 if (MD && MD->getNumOperands() == 3) { 226 ConstantInt *SICase = 227 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 228 ConstantInt *SIDef = 229 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 230 assert(SICase && SIDef); 231 // The TrueWeight should be the weight for the single case of SI. 232 NewBr->setMetadata(LLVMContext::MD_prof, 233 MDBuilder(BB->getContext()). 234 createBranchWeights(SICase->getValue().getZExtValue(), 235 SIDef->getValue().getZExtValue())); 236 } 237 238 // Update make.implicit metadata to the newly-created conditional branch. 239 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 240 if (MakeImplicitMD) 241 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 242 243 // Delete the old switch. 244 SI->eraseFromParent(); 245 return true; 246 } 247 return false; 248 } 249 250 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 251 // indirectbr blockaddress(@F, @BB) -> br label @BB 252 if (BlockAddress *BA = 253 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 254 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 255 // Insert the new branch. 256 Builder.CreateBr(TheOnlyDest); 257 258 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 259 if (IBI->getDestination(i) == TheOnlyDest) 260 TheOnlyDest = nullptr; 261 else 262 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 263 } 264 Value *Address = IBI->getAddress(); 265 IBI->eraseFromParent(); 266 if (DeleteDeadConditions) 267 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 268 269 // If we didn't find our destination in the IBI successor list, then we 270 // have undefined behavior. Replace the unconditional branch with an 271 // 'unreachable' instruction. 272 if (TheOnlyDest) { 273 BB->getTerminator()->eraseFromParent(); 274 new UnreachableInst(BB->getContext(), BB); 275 } 276 277 return true; 278 } 279 } 280 281 return false; 282 } 283 284 285 //===----------------------------------------------------------------------===// 286 // Local dead code elimination. 287 // 288 289 /// isInstructionTriviallyDead - Return true if the result produced by the 290 /// instruction is not used, and the instruction has no side effects. 291 /// 292 bool llvm::isInstructionTriviallyDead(Instruction *I, 293 const TargetLibraryInfo *TLI) { 294 if (!I->use_empty()) 295 return false; 296 return wouldInstructionBeTriviallyDead(I, TLI); 297 } 298 299 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 300 const TargetLibraryInfo *TLI) { 301 if (isa<TerminatorInst>(I)) 302 return false; 303 304 // We don't want the landingpad-like instructions removed by anything this 305 // general. 306 if (I->isEHPad()) 307 return false; 308 309 // We don't want debug info removed by anything this general, unless 310 // debug info is empty. 311 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 312 if (DDI->getAddress()) 313 return false; 314 return true; 315 } 316 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 317 if (DVI->getValue()) 318 return false; 319 return true; 320 } 321 322 if (!I->mayHaveSideEffects()) 323 return true; 324 325 // Special case intrinsics that "may have side effects" but can be deleted 326 // when dead. 327 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 328 // Safe to delete llvm.stacksave if dead. 329 if (II->getIntrinsicID() == Intrinsic::stacksave) 330 return true; 331 332 // Lifetime intrinsics are dead when their right-hand is undef. 333 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 334 II->getIntrinsicID() == Intrinsic::lifetime_end) 335 return isa<UndefValue>(II->getArgOperand(1)); 336 337 // Assumptions are dead if their condition is trivially true. Guards on 338 // true are operationally no-ops. In the future we can consider more 339 // sophisticated tradeoffs for guards considering potential for check 340 // widening, but for now we keep things simple. 341 if (II->getIntrinsicID() == Intrinsic::assume || 342 II->getIntrinsicID() == Intrinsic::experimental_guard) { 343 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 344 return !Cond->isZero(); 345 346 return false; 347 } 348 } 349 350 if (isAllocLikeFn(I, TLI)) 351 return true; 352 353 if (CallInst *CI = isFreeCall(I, TLI)) 354 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 355 return C->isNullValue() || isa<UndefValue>(C); 356 357 if (CallSite CS = CallSite(I)) 358 if (isMathLibCallNoop(CS, TLI)) 359 return true; 360 361 return false; 362 } 363 364 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 365 /// trivially dead instruction, delete it. If that makes any of its operands 366 /// trivially dead, delete them too, recursively. Return true if any 367 /// instructions were deleted. 368 bool 369 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 370 const TargetLibraryInfo *TLI) { 371 Instruction *I = dyn_cast<Instruction>(V); 372 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 373 return false; 374 375 SmallVector<Instruction*, 16> DeadInsts; 376 DeadInsts.push_back(I); 377 378 do { 379 I = DeadInsts.pop_back_val(); 380 381 // Null out all of the instruction's operands to see if any operand becomes 382 // dead as we go. 383 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 384 Value *OpV = I->getOperand(i); 385 I->setOperand(i, nullptr); 386 387 if (!OpV->use_empty()) continue; 388 389 // If the operand is an instruction that became dead as we nulled out the 390 // operand, and if it is 'trivially' dead, delete it in a future loop 391 // iteration. 392 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 393 if (isInstructionTriviallyDead(OpI, TLI)) 394 DeadInsts.push_back(OpI); 395 } 396 397 I->eraseFromParent(); 398 } while (!DeadInsts.empty()); 399 400 return true; 401 } 402 403 /// areAllUsesEqual - Check whether the uses of a value are all the same. 404 /// This is similar to Instruction::hasOneUse() except this will also return 405 /// true when there are no uses or multiple uses that all refer to the same 406 /// value. 407 static bool areAllUsesEqual(Instruction *I) { 408 Value::user_iterator UI = I->user_begin(); 409 Value::user_iterator UE = I->user_end(); 410 if (UI == UE) 411 return true; 412 413 User *TheUse = *UI; 414 for (++UI; UI != UE; ++UI) { 415 if (*UI != TheUse) 416 return false; 417 } 418 return true; 419 } 420 421 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 422 /// dead PHI node, due to being a def-use chain of single-use nodes that 423 /// either forms a cycle or is terminated by a trivially dead instruction, 424 /// delete it. If that makes any of its operands trivially dead, delete them 425 /// too, recursively. Return true if a change was made. 426 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 427 const TargetLibraryInfo *TLI) { 428 SmallPtrSet<Instruction*, 4> Visited; 429 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 430 I = cast<Instruction>(*I->user_begin())) { 431 if (I->use_empty()) 432 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 433 434 // If we find an instruction more than once, we're on a cycle that 435 // won't prove fruitful. 436 if (!Visited.insert(I).second) { 437 // Break the cycle and delete the instruction and its operands. 438 I->replaceAllUsesWith(UndefValue::get(I->getType())); 439 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 440 return true; 441 } 442 } 443 return false; 444 } 445 446 static bool 447 simplifyAndDCEInstruction(Instruction *I, 448 SmallSetVector<Instruction *, 16> &WorkList, 449 const DataLayout &DL, 450 const TargetLibraryInfo *TLI) { 451 if (isInstructionTriviallyDead(I, TLI)) { 452 // Null out all of the instruction's operands to see if any operand becomes 453 // dead as we go. 454 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 455 Value *OpV = I->getOperand(i); 456 I->setOperand(i, nullptr); 457 458 if (!OpV->use_empty() || I == OpV) 459 continue; 460 461 // If the operand is an instruction that became dead as we nulled out the 462 // operand, and if it is 'trivially' dead, delete it in a future loop 463 // iteration. 464 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 465 if (isInstructionTriviallyDead(OpI, TLI)) 466 WorkList.insert(OpI); 467 } 468 469 I->eraseFromParent(); 470 471 return true; 472 } 473 474 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 475 // Add the users to the worklist. CAREFUL: an instruction can use itself, 476 // in the case of a phi node. 477 for (User *U : I->users()) { 478 if (U != I) { 479 WorkList.insert(cast<Instruction>(U)); 480 } 481 } 482 483 // Replace the instruction with its simplified value. 484 bool Changed = false; 485 if (!I->use_empty()) { 486 I->replaceAllUsesWith(SimpleV); 487 Changed = true; 488 } 489 if (isInstructionTriviallyDead(I, TLI)) { 490 I->eraseFromParent(); 491 Changed = true; 492 } 493 return Changed; 494 } 495 return false; 496 } 497 498 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 499 /// simplify any instructions in it and recursively delete dead instructions. 500 /// 501 /// This returns true if it changed the code, note that it can delete 502 /// instructions in other blocks as well in this block. 503 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 504 const TargetLibraryInfo *TLI) { 505 bool MadeChange = false; 506 const DataLayout &DL = BB->getModule()->getDataLayout(); 507 508 #ifndef NDEBUG 509 // In debug builds, ensure that the terminator of the block is never replaced 510 // or deleted by these simplifications. The idea of simplification is that it 511 // cannot introduce new instructions, and there is no way to replace the 512 // terminator of a block without introducing a new instruction. 513 AssertingVH<Instruction> TerminatorVH(&BB->back()); 514 #endif 515 516 SmallSetVector<Instruction *, 16> WorkList; 517 // Iterate over the original function, only adding insts to the worklist 518 // if they actually need to be revisited. This avoids having to pre-init 519 // the worklist with the entire function's worth of instructions. 520 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 521 BI != E;) { 522 assert(!BI->isTerminator()); 523 Instruction *I = &*BI; 524 ++BI; 525 526 // We're visiting this instruction now, so make sure it's not in the 527 // worklist from an earlier visit. 528 if (!WorkList.count(I)) 529 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 530 } 531 532 while (!WorkList.empty()) { 533 Instruction *I = WorkList.pop_back_val(); 534 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 535 } 536 return MadeChange; 537 } 538 539 //===----------------------------------------------------------------------===// 540 // Control Flow Graph Restructuring. 541 // 542 543 544 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 545 /// method is called when we're about to delete Pred as a predecessor of BB. If 546 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 547 /// 548 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 549 /// nodes that collapse into identity values. For example, if we have: 550 /// x = phi(1, 0, 0, 0) 551 /// y = and x, z 552 /// 553 /// .. and delete the predecessor corresponding to the '1', this will attempt to 554 /// recursively fold the and to 0. 555 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 556 // This only adjusts blocks with PHI nodes. 557 if (!isa<PHINode>(BB->begin())) 558 return; 559 560 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 561 // them down. This will leave us with single entry phi nodes and other phis 562 // that can be removed. 563 BB->removePredecessor(Pred, true); 564 565 WeakTrackingVH PhiIt = &BB->front(); 566 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 567 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 568 Value *OldPhiIt = PhiIt; 569 570 if (!recursivelySimplifyInstruction(PN)) 571 continue; 572 573 // If recursive simplification ended up deleting the next PHI node we would 574 // iterate to, then our iterator is invalid, restart scanning from the top 575 // of the block. 576 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 577 } 578 } 579 580 581 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 582 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 583 /// between them, moving the instructions in the predecessor into DestBB and 584 /// deleting the predecessor block. 585 /// 586 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 587 // If BB has single-entry PHI nodes, fold them. 588 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 589 Value *NewVal = PN->getIncomingValue(0); 590 // Replace self referencing PHI with undef, it must be dead. 591 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 592 PN->replaceAllUsesWith(NewVal); 593 PN->eraseFromParent(); 594 } 595 596 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 597 assert(PredBB && "Block doesn't have a single predecessor!"); 598 599 // Zap anything that took the address of DestBB. Not doing this will give the 600 // address an invalid value. 601 if (DestBB->hasAddressTaken()) { 602 BlockAddress *BA = BlockAddress::get(DestBB); 603 Constant *Replacement = 604 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 605 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 606 BA->getType())); 607 BA->destroyConstant(); 608 } 609 610 // Anything that branched to PredBB now branches to DestBB. 611 PredBB->replaceAllUsesWith(DestBB); 612 613 // Splice all the instructions from PredBB to DestBB. 614 PredBB->getTerminator()->eraseFromParent(); 615 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 616 617 // If the PredBB is the entry block of the function, move DestBB up to 618 // become the entry block after we erase PredBB. 619 if (PredBB == &DestBB->getParent()->getEntryBlock()) 620 DestBB->moveAfter(PredBB); 621 622 if (DT) { 623 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 624 DT->changeImmediateDominator(DestBB, PredBBIDom); 625 DT->eraseNode(PredBB); 626 } 627 // Nuke BB. 628 PredBB->eraseFromParent(); 629 } 630 631 /// CanMergeValues - Return true if we can choose one of these values to use 632 /// in place of the other. Note that we will always choose the non-undef 633 /// value to keep. 634 static bool CanMergeValues(Value *First, Value *Second) { 635 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 636 } 637 638 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 639 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 640 /// 641 /// Assumption: Succ is the single successor for BB. 642 /// 643 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 644 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 645 646 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 647 << Succ->getName() << "\n"); 648 // Shortcut, if there is only a single predecessor it must be BB and merging 649 // is always safe 650 if (Succ->getSinglePredecessor()) return true; 651 652 // Make a list of the predecessors of BB 653 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 654 655 // Look at all the phi nodes in Succ, to see if they present a conflict when 656 // merging these blocks 657 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 658 PHINode *PN = cast<PHINode>(I); 659 660 // If the incoming value from BB is again a PHINode in 661 // BB which has the same incoming value for *PI as PN does, we can 662 // merge the phi nodes and then the blocks can still be merged 663 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 664 if (BBPN && BBPN->getParent() == BB) { 665 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 666 BasicBlock *IBB = PN->getIncomingBlock(PI); 667 if (BBPreds.count(IBB) && 668 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 669 PN->getIncomingValue(PI))) { 670 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 671 << Succ->getName() << " is conflicting with " 672 << BBPN->getName() << " with regard to common predecessor " 673 << IBB->getName() << "\n"); 674 return false; 675 } 676 } 677 } else { 678 Value* Val = PN->getIncomingValueForBlock(BB); 679 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 680 // See if the incoming value for the common predecessor is equal to the 681 // one for BB, in which case this phi node will not prevent the merging 682 // of the block. 683 BasicBlock *IBB = PN->getIncomingBlock(PI); 684 if (BBPreds.count(IBB) && 685 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 686 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 687 << Succ->getName() << " is conflicting with regard to common " 688 << "predecessor " << IBB->getName() << "\n"); 689 return false; 690 } 691 } 692 } 693 } 694 695 return true; 696 } 697 698 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 699 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 700 701 /// \brief Determines the value to use as the phi node input for a block. 702 /// 703 /// Select between \p OldVal any value that we know flows from \p BB 704 /// to a particular phi on the basis of which one (if either) is not 705 /// undef. Update IncomingValues based on the selected value. 706 /// 707 /// \param OldVal The value we are considering selecting. 708 /// \param BB The block that the value flows in from. 709 /// \param IncomingValues A map from block-to-value for other phi inputs 710 /// that we have examined. 711 /// 712 /// \returns the selected value. 713 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 714 IncomingValueMap &IncomingValues) { 715 if (!isa<UndefValue>(OldVal)) { 716 assert((!IncomingValues.count(BB) || 717 IncomingValues.find(BB)->second == OldVal) && 718 "Expected OldVal to match incoming value from BB!"); 719 720 IncomingValues.insert(std::make_pair(BB, OldVal)); 721 return OldVal; 722 } 723 724 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 725 if (It != IncomingValues.end()) return It->second; 726 727 return OldVal; 728 } 729 730 /// \brief Create a map from block to value for the operands of a 731 /// given phi. 732 /// 733 /// Create a map from block to value for each non-undef value flowing 734 /// into \p PN. 735 /// 736 /// \param PN The phi we are collecting the map for. 737 /// \param IncomingValues [out] The map from block to value for this phi. 738 static void gatherIncomingValuesToPhi(PHINode *PN, 739 IncomingValueMap &IncomingValues) { 740 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 741 BasicBlock *BB = PN->getIncomingBlock(i); 742 Value *V = PN->getIncomingValue(i); 743 744 if (!isa<UndefValue>(V)) 745 IncomingValues.insert(std::make_pair(BB, V)); 746 } 747 } 748 749 /// \brief Replace the incoming undef values to a phi with the values 750 /// from a block-to-value map. 751 /// 752 /// \param PN The phi we are replacing the undefs in. 753 /// \param IncomingValues A map from block to value. 754 static void replaceUndefValuesInPhi(PHINode *PN, 755 const IncomingValueMap &IncomingValues) { 756 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 757 Value *V = PN->getIncomingValue(i); 758 759 if (!isa<UndefValue>(V)) continue; 760 761 BasicBlock *BB = PN->getIncomingBlock(i); 762 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 763 if (It == IncomingValues.end()) continue; 764 765 PN->setIncomingValue(i, It->second); 766 } 767 } 768 769 /// \brief Replace a value flowing from a block to a phi with 770 /// potentially multiple instances of that value flowing from the 771 /// block's predecessors to the phi. 772 /// 773 /// \param BB The block with the value flowing into the phi. 774 /// \param BBPreds The predecessors of BB. 775 /// \param PN The phi that we are updating. 776 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 777 const PredBlockVector &BBPreds, 778 PHINode *PN) { 779 Value *OldVal = PN->removeIncomingValue(BB, false); 780 assert(OldVal && "No entry in PHI for Pred BB!"); 781 782 IncomingValueMap IncomingValues; 783 784 // We are merging two blocks - BB, and the block containing PN - and 785 // as a result we need to redirect edges from the predecessors of BB 786 // to go to the block containing PN, and update PN 787 // accordingly. Since we allow merging blocks in the case where the 788 // predecessor and successor blocks both share some predecessors, 789 // and where some of those common predecessors might have undef 790 // values flowing into PN, we want to rewrite those values to be 791 // consistent with the non-undef values. 792 793 gatherIncomingValuesToPhi(PN, IncomingValues); 794 795 // If this incoming value is one of the PHI nodes in BB, the new entries 796 // in the PHI node are the entries from the old PHI. 797 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 798 PHINode *OldValPN = cast<PHINode>(OldVal); 799 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 800 // Note that, since we are merging phi nodes and BB and Succ might 801 // have common predecessors, we could end up with a phi node with 802 // identical incoming branches. This will be cleaned up later (and 803 // will trigger asserts if we try to clean it up now, without also 804 // simplifying the corresponding conditional branch). 805 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 806 Value *PredVal = OldValPN->getIncomingValue(i); 807 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 808 IncomingValues); 809 810 // And add a new incoming value for this predecessor for the 811 // newly retargeted branch. 812 PN->addIncoming(Selected, PredBB); 813 } 814 } else { 815 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 816 // Update existing incoming values in PN for this 817 // predecessor of BB. 818 BasicBlock *PredBB = BBPreds[i]; 819 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 820 IncomingValues); 821 822 // And add a new incoming value for this predecessor for the 823 // newly retargeted branch. 824 PN->addIncoming(Selected, PredBB); 825 } 826 } 827 828 replaceUndefValuesInPhi(PN, IncomingValues); 829 } 830 831 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 832 /// unconditional branch, and contains no instructions other than PHI nodes, 833 /// potential side-effect free intrinsics and the branch. If possible, 834 /// eliminate BB by rewriting all the predecessors to branch to the successor 835 /// block and return true. If we can't transform, return false. 836 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 837 assert(BB != &BB->getParent()->getEntryBlock() && 838 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 839 840 // We can't eliminate infinite loops. 841 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 842 if (BB == Succ) return false; 843 844 // Check to see if merging these blocks would cause conflicts for any of the 845 // phi nodes in BB or Succ. If not, we can safely merge. 846 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 847 848 // Check for cases where Succ has multiple predecessors and a PHI node in BB 849 // has uses which will not disappear when the PHI nodes are merged. It is 850 // possible to handle such cases, but difficult: it requires checking whether 851 // BB dominates Succ, which is non-trivial to calculate in the case where 852 // Succ has multiple predecessors. Also, it requires checking whether 853 // constructing the necessary self-referential PHI node doesn't introduce any 854 // conflicts; this isn't too difficult, but the previous code for doing this 855 // was incorrect. 856 // 857 // Note that if this check finds a live use, BB dominates Succ, so BB is 858 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 859 // folding the branch isn't profitable in that case anyway. 860 if (!Succ->getSinglePredecessor()) { 861 BasicBlock::iterator BBI = BB->begin(); 862 while (isa<PHINode>(*BBI)) { 863 for (Use &U : BBI->uses()) { 864 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 865 if (PN->getIncomingBlock(U) != BB) 866 return false; 867 } else { 868 return false; 869 } 870 } 871 ++BBI; 872 } 873 } 874 875 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 876 877 if (isa<PHINode>(Succ->begin())) { 878 // If there is more than one pred of succ, and there are PHI nodes in 879 // the successor, then we need to add incoming edges for the PHI nodes 880 // 881 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 882 883 // Loop over all of the PHI nodes in the successor of BB. 884 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 885 PHINode *PN = cast<PHINode>(I); 886 887 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 888 } 889 } 890 891 if (Succ->getSinglePredecessor()) { 892 // BB is the only predecessor of Succ, so Succ will end up with exactly 893 // the same predecessors BB had. 894 895 // Copy over any phi, debug or lifetime instruction. 896 BB->getTerminator()->eraseFromParent(); 897 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 898 BB->getInstList()); 899 } else { 900 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 901 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 902 assert(PN->use_empty() && "There shouldn't be any uses here!"); 903 PN->eraseFromParent(); 904 } 905 } 906 907 // If the unconditional branch we replaced contains llvm.loop metadata, we 908 // add the metadata to the branch instructions in the predecessors. 909 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 910 Instruction *TI = BB->getTerminator(); 911 if (TI) 912 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 913 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 914 BasicBlock *Pred = *PI; 915 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 916 } 917 918 // Everything that jumped to BB now goes to Succ. 919 BB->replaceAllUsesWith(Succ); 920 if (!Succ->hasName()) Succ->takeName(BB); 921 BB->eraseFromParent(); // Delete the old basic block. 922 return true; 923 } 924 925 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 926 /// nodes in this block. This doesn't try to be clever about PHI nodes 927 /// which differ only in the order of the incoming values, but instcombine 928 /// orders them so it usually won't matter. 929 /// 930 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 931 // This implementation doesn't currently consider undef operands 932 // specially. Theoretically, two phis which are identical except for 933 // one having an undef where the other doesn't could be collapsed. 934 935 struct PHIDenseMapInfo { 936 static PHINode *getEmptyKey() { 937 return DenseMapInfo<PHINode *>::getEmptyKey(); 938 } 939 static PHINode *getTombstoneKey() { 940 return DenseMapInfo<PHINode *>::getTombstoneKey(); 941 } 942 static unsigned getHashValue(PHINode *PN) { 943 // Compute a hash value on the operands. Instcombine will likely have 944 // sorted them, which helps expose duplicates, but we have to check all 945 // the operands to be safe in case instcombine hasn't run. 946 return static_cast<unsigned>(hash_combine( 947 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 948 hash_combine_range(PN->block_begin(), PN->block_end()))); 949 } 950 static bool isEqual(PHINode *LHS, PHINode *RHS) { 951 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 952 RHS == getEmptyKey() || RHS == getTombstoneKey()) 953 return LHS == RHS; 954 return LHS->isIdenticalTo(RHS); 955 } 956 }; 957 958 // Set of unique PHINodes. 959 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 960 961 // Examine each PHI. 962 bool Changed = false; 963 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 964 auto Inserted = PHISet.insert(PN); 965 if (!Inserted.second) { 966 // A duplicate. Replace this PHI with its duplicate. 967 PN->replaceAllUsesWith(*Inserted.first); 968 PN->eraseFromParent(); 969 Changed = true; 970 971 // The RAUW can change PHIs that we already visited. Start over from the 972 // beginning. 973 PHISet.clear(); 974 I = BB->begin(); 975 } 976 } 977 978 return Changed; 979 } 980 981 /// enforceKnownAlignment - If the specified pointer points to an object that 982 /// we control, modify the object's alignment to PrefAlign. This isn't 983 /// often possible though. If alignment is important, a more reliable approach 984 /// is to simply align all global variables and allocation instructions to 985 /// their preferred alignment from the beginning. 986 /// 987 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 988 unsigned PrefAlign, 989 const DataLayout &DL) { 990 assert(PrefAlign > Align); 991 992 V = V->stripPointerCasts(); 993 994 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 995 // TODO: ideally, computeKnownBits ought to have used 996 // AllocaInst::getAlignment() in its computation already, making 997 // the below max redundant. But, as it turns out, 998 // stripPointerCasts recurses through infinite layers of bitcasts, 999 // while computeKnownBits is not allowed to traverse more than 6 1000 // levels. 1001 Align = std::max(AI->getAlignment(), Align); 1002 if (PrefAlign <= Align) 1003 return Align; 1004 1005 // If the preferred alignment is greater than the natural stack alignment 1006 // then don't round up. This avoids dynamic stack realignment. 1007 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1008 return Align; 1009 AI->setAlignment(PrefAlign); 1010 return PrefAlign; 1011 } 1012 1013 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1014 // TODO: as above, this shouldn't be necessary. 1015 Align = std::max(GO->getAlignment(), Align); 1016 if (PrefAlign <= Align) 1017 return Align; 1018 1019 // If there is a large requested alignment and we can, bump up the alignment 1020 // of the global. If the memory we set aside for the global may not be the 1021 // memory used by the final program then it is impossible for us to reliably 1022 // enforce the preferred alignment. 1023 if (!GO->canIncreaseAlignment()) 1024 return Align; 1025 1026 GO->setAlignment(PrefAlign); 1027 return PrefAlign; 1028 } 1029 1030 return Align; 1031 } 1032 1033 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1034 const DataLayout &DL, 1035 const Instruction *CxtI, 1036 AssumptionCache *AC, 1037 const DominatorTree *DT) { 1038 assert(V->getType()->isPointerTy() && 1039 "getOrEnforceKnownAlignment expects a pointer!"); 1040 1041 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1042 unsigned TrailZ = Known.countMinTrailingZeros(); 1043 1044 // Avoid trouble with ridiculously large TrailZ values, such as 1045 // those computed from a null pointer. 1046 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1047 1048 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1049 1050 // LLVM doesn't support alignments larger than this currently. 1051 Align = std::min(Align, +Value::MaximumAlignment); 1052 1053 if (PrefAlign > Align) 1054 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1055 1056 // We don't need to make any adjustment. 1057 return Align; 1058 } 1059 1060 ///===---------------------------------------------------------------------===// 1061 /// Dbg Intrinsic utilities 1062 /// 1063 1064 /// See if there is a dbg.value intrinsic for DIVar before I. 1065 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1066 Instruction *I) { 1067 // Since we can't guarantee that the original dbg.declare instrinsic 1068 // is removed by LowerDbgDeclare(), we need to make sure that we are 1069 // not inserting the same dbg.value intrinsic over and over. 1070 llvm::BasicBlock::InstListType::iterator PrevI(I); 1071 if (PrevI != I->getParent()->getInstList().begin()) { 1072 --PrevI; 1073 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1074 if (DVI->getValue() == I->getOperand(0) && 1075 DVI->getOffset() == 0 && 1076 DVI->getVariable() == DIVar && 1077 DVI->getExpression() == DIExpr) 1078 return true; 1079 } 1080 return false; 1081 } 1082 1083 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1084 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1085 DIExpression *DIExpr, 1086 PHINode *APN) { 1087 // Since we can't guarantee that the original dbg.declare instrinsic 1088 // is removed by LowerDbgDeclare(), we need to make sure that we are 1089 // not inserting the same dbg.value intrinsic over and over. 1090 SmallVector<DbgValueInst *, 1> DbgValues; 1091 findDbgValues(DbgValues, APN); 1092 for (auto *DVI : DbgValues) { 1093 assert(DVI->getValue() == APN); 1094 assert(DVI->getOffset() == 0); 1095 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1096 return true; 1097 } 1098 return false; 1099 } 1100 1101 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1102 /// that has an associated llvm.dbg.decl intrinsic. 1103 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1104 StoreInst *SI, DIBuilder &Builder) { 1105 auto *DIVar = DDI->getVariable(); 1106 assert(DIVar && "Missing variable"); 1107 auto *DIExpr = DDI->getExpression(); 1108 Value *DV = SI->getOperand(0); 1109 1110 // If an argument is zero extended then use argument directly. The ZExt 1111 // may be zapped by an optimization pass in future. 1112 Argument *ExtendedArg = nullptr; 1113 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1114 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1115 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1116 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1117 if (ExtendedArg) { 1118 // If this DDI was already describing only a fragment of a variable, ensure 1119 // that fragment is appropriately narrowed here. 1120 // But if a fragment wasn't used, describe the value as the original 1121 // argument (rather than the zext or sext) so that it remains described even 1122 // if the sext/zext is optimized away. This widens the variable description, 1123 // leaving it up to the consumer to know how the smaller value may be 1124 // represented in a larger register. 1125 if (auto Fragment = DIExpr->getFragmentInfo()) { 1126 unsigned FragmentOffset = Fragment->OffsetInBits; 1127 SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(), 1128 DIExpr->elements_end() - 3); 1129 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1130 Ops.push_back(FragmentOffset); 1131 const DataLayout &DL = DDI->getModule()->getDataLayout(); 1132 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1133 DIExpr = Builder.createExpression(Ops); 1134 } 1135 DV = ExtendedArg; 1136 } 1137 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1138 Builder.insertDbgValueIntrinsic(DV, 0, DIVar, DIExpr, DDI->getDebugLoc(), 1139 SI); 1140 } 1141 1142 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1143 /// that has an associated llvm.dbg.decl intrinsic. 1144 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1145 LoadInst *LI, DIBuilder &Builder) { 1146 auto *DIVar = DDI->getVariable(); 1147 auto *DIExpr = DDI->getExpression(); 1148 assert(DIVar && "Missing variable"); 1149 1150 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1151 return; 1152 1153 // We are now tracking the loaded value instead of the address. In the 1154 // future if multi-location support is added to the IR, it might be 1155 // preferable to keep tracking both the loaded value and the original 1156 // address in case the alloca can not be elided. 1157 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1158 LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr); 1159 DbgValue->insertAfter(LI); 1160 } 1161 1162 /// Inserts a llvm.dbg.value intrinsic after a phi 1163 /// that has an associated llvm.dbg.decl intrinsic. 1164 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1165 PHINode *APN, DIBuilder &Builder) { 1166 auto *DIVar = DDI->getVariable(); 1167 auto *DIExpr = DDI->getExpression(); 1168 assert(DIVar && "Missing variable"); 1169 1170 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1171 return; 1172 1173 BasicBlock *BB = APN->getParent(); 1174 auto InsertionPt = BB->getFirstInsertionPt(); 1175 1176 // The block may be a catchswitch block, which does not have a valid 1177 // insertion point. 1178 // FIXME: Insert dbg.value markers in the successors when appropriate. 1179 if (InsertionPt != BB->end()) 1180 Builder.insertDbgValueIntrinsic(APN, 0, DIVar, DIExpr, DDI->getDebugLoc(), 1181 &*InsertionPt); 1182 } 1183 1184 /// Determine whether this alloca is either a VLA or an array. 1185 static bool isArray(AllocaInst *AI) { 1186 return AI->isArrayAllocation() || 1187 AI->getType()->getElementType()->isArrayTy(); 1188 } 1189 1190 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1191 /// of llvm.dbg.value intrinsics. 1192 bool llvm::LowerDbgDeclare(Function &F) { 1193 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1194 SmallVector<DbgDeclareInst *, 4> Dbgs; 1195 for (auto &FI : F) 1196 for (Instruction &BI : FI) 1197 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1198 Dbgs.push_back(DDI); 1199 1200 if (Dbgs.empty()) 1201 return false; 1202 1203 for (auto &I : Dbgs) { 1204 DbgDeclareInst *DDI = I; 1205 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1206 // If this is an alloca for a scalar variable, insert a dbg.value 1207 // at each load and store to the alloca and erase the dbg.declare. 1208 // The dbg.values allow tracking a variable even if it is not 1209 // stored on the stack, while the dbg.declare can only describe 1210 // the stack slot (and at a lexical-scope granularity). Later 1211 // passes will attempt to elide the stack slot. 1212 if (AI && !isArray(AI)) { 1213 for (auto &AIUse : AI->uses()) { 1214 User *U = AIUse.getUser(); 1215 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1216 if (AIUse.getOperandNo() == 1) 1217 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1218 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1219 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1220 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1221 // This is a call by-value or some other instruction that 1222 // takes a pointer to the variable. Insert a *value* 1223 // intrinsic that describes the alloca. 1224 DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(), 1225 DDI->getExpression(), DDI->getDebugLoc(), 1226 CI); 1227 } 1228 } 1229 DDI->eraseFromParent(); 1230 } 1231 } 1232 return true; 1233 } 1234 1235 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1236 /// alloca 'V', if any. 1237 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1238 if (auto *L = LocalAsMetadata::getIfExists(V)) 1239 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1240 for (User *U : MDV->users()) 1241 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1242 return DDI; 1243 1244 return nullptr; 1245 } 1246 1247 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1248 if (auto *L = LocalAsMetadata::getIfExists(V)) 1249 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1250 for (User *U : MDV->users()) 1251 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1252 DbgValues.push_back(DVI); 1253 } 1254 1255 1256 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1257 Instruction *InsertBefore, DIBuilder &Builder, 1258 bool Deref, int Offset) { 1259 DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address); 1260 if (!DDI) 1261 return false; 1262 DebugLoc Loc = DDI->getDebugLoc(); 1263 auto *DIVar = DDI->getVariable(); 1264 auto *DIExpr = DDI->getExpression(); 1265 assert(DIVar && "Missing variable"); 1266 DIExpr = DIExpression::prepend(DIExpr, Deref, Offset); 1267 // Insert llvm.dbg.declare immediately after the original alloca, and remove 1268 // old llvm.dbg.declare. 1269 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1270 DDI->eraseFromParent(); 1271 return true; 1272 } 1273 1274 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1275 DIBuilder &Builder, bool Deref, int Offset) { 1276 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1277 Deref, Offset); 1278 } 1279 1280 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1281 DIBuilder &Builder, int Offset) { 1282 DebugLoc Loc = DVI->getDebugLoc(); 1283 auto *DIVar = DVI->getVariable(); 1284 auto *DIExpr = DVI->getExpression(); 1285 assert(DIVar && "Missing variable"); 1286 1287 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1288 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1289 // it and give up. 1290 if (!DIExpr || DIExpr->getNumElements() < 1 || 1291 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1292 return; 1293 1294 // Insert the offset immediately after the first deref. 1295 // We could just change the offset argument of dbg.value, but it's unsigned... 1296 if (Offset) { 1297 SmallVector<uint64_t, 4> Ops; 1298 Ops.push_back(dwarf::DW_OP_deref); 1299 DIExpression::appendOffset(Ops, Offset); 1300 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1301 DIExpr = Builder.createExpression(Ops); 1302 } 1303 1304 Builder.insertDbgValueIntrinsic(NewAddress, DVI->getOffset(), DIVar, DIExpr, 1305 Loc, DVI); 1306 DVI->eraseFromParent(); 1307 } 1308 1309 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1310 DIBuilder &Builder, int Offset) { 1311 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1312 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1313 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1314 Use &U = *UI++; 1315 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1316 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1317 } 1318 } 1319 1320 void llvm::salvageDebugInfo(Instruction &I) { 1321 SmallVector<DbgValueInst *, 1> DbgValues; 1322 auto &M = *I.getModule(); 1323 1324 auto MDWrap = [&](Value *V) { 1325 return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V)); 1326 }; 1327 1328 if (isa<BitCastInst>(&I)) { 1329 findDbgValues(DbgValues, &I); 1330 for (auto *DVI : DbgValues) { 1331 // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value 1332 // to use the cast's source. 1333 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1334 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1335 } 1336 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1337 findDbgValues(DbgValues, &I); 1338 for (auto *DVI : DbgValues) { 1339 unsigned BitWidth = 1340 M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace()); 1341 APInt Offset(BitWidth, 0); 1342 // Rewrite a constant GEP into a DIExpression. Since we are performing 1343 // arithmetic to compute the variable's *value* in the DIExpression, we 1344 // need to mark the expression with a DW_OP_stack_value. 1345 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1346 auto *DIExpr = DVI->getExpression(); 1347 DIBuilder DIB(M, /*AllowUnresolved*/ false); 1348 // GEP offsets are i32 and thus always fit into an int64_t. 1349 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, 1350 Offset.getSExtValue(), 1351 DIExpression::WithStackValue); 1352 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1353 DVI->setOperand(3, MetadataAsValue::get(I.getContext(), DIExpr)); 1354 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1355 } 1356 } 1357 } else if (isa<LoadInst>(&I)) { 1358 findDbgValues(DbgValues, &I); 1359 for (auto *DVI : DbgValues) { 1360 // Rewrite the load into DW_OP_deref. 1361 auto *DIExpr = DVI->getExpression(); 1362 DIBuilder DIB(M, /*AllowUnresolved*/ false); 1363 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref); 1364 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1365 DVI->setOperand(3, MetadataAsValue::get(I.getContext(), DIExpr)); 1366 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1367 } 1368 } 1369 } 1370 1371 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1372 unsigned NumDeadInst = 0; 1373 // Delete the instructions backwards, as it has a reduced likelihood of 1374 // having to update as many def-use and use-def chains. 1375 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1376 while (EndInst != &BB->front()) { 1377 // Delete the next to last instruction. 1378 Instruction *Inst = &*--EndInst->getIterator(); 1379 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1380 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1381 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1382 EndInst = Inst; 1383 continue; 1384 } 1385 if (!isa<DbgInfoIntrinsic>(Inst)) 1386 ++NumDeadInst; 1387 Inst->eraseFromParent(); 1388 } 1389 return NumDeadInst; 1390 } 1391 1392 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1393 bool PreserveLCSSA) { 1394 BasicBlock *BB = I->getParent(); 1395 // Loop over all of the successors, removing BB's entry from any PHI 1396 // nodes. 1397 for (BasicBlock *Successor : successors(BB)) 1398 Successor->removePredecessor(BB, PreserveLCSSA); 1399 1400 // Insert a call to llvm.trap right before this. This turns the undefined 1401 // behavior into a hard fail instead of falling through into random code. 1402 if (UseLLVMTrap) { 1403 Function *TrapFn = 1404 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1405 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1406 CallTrap->setDebugLoc(I->getDebugLoc()); 1407 } 1408 new UnreachableInst(I->getContext(), I); 1409 1410 // All instructions after this are dead. 1411 unsigned NumInstrsRemoved = 0; 1412 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1413 while (BBI != BBE) { 1414 if (!BBI->use_empty()) 1415 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1416 BB->getInstList().erase(BBI++); 1417 ++NumInstrsRemoved; 1418 } 1419 return NumInstrsRemoved; 1420 } 1421 1422 /// changeToCall - Convert the specified invoke into a normal call. 1423 static void changeToCall(InvokeInst *II) { 1424 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1425 SmallVector<OperandBundleDef, 1> OpBundles; 1426 II->getOperandBundlesAsDefs(OpBundles); 1427 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1428 "", II); 1429 NewCall->takeName(II); 1430 NewCall->setCallingConv(II->getCallingConv()); 1431 NewCall->setAttributes(II->getAttributes()); 1432 NewCall->setDebugLoc(II->getDebugLoc()); 1433 II->replaceAllUsesWith(NewCall); 1434 1435 // Follow the call by a branch to the normal destination. 1436 BranchInst::Create(II->getNormalDest(), II); 1437 1438 // Update PHI nodes in the unwind destination 1439 II->getUnwindDest()->removePredecessor(II->getParent()); 1440 II->eraseFromParent(); 1441 } 1442 1443 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1444 BasicBlock *UnwindEdge) { 1445 BasicBlock *BB = CI->getParent(); 1446 1447 // Convert this function call into an invoke instruction. First, split the 1448 // basic block. 1449 BasicBlock *Split = 1450 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1451 1452 // Delete the unconditional branch inserted by splitBasicBlock 1453 BB->getInstList().pop_back(); 1454 1455 // Create the new invoke instruction. 1456 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1457 SmallVector<OperandBundleDef, 1> OpBundles; 1458 1459 CI->getOperandBundlesAsDefs(OpBundles); 1460 1461 // Note: we're round tripping operand bundles through memory here, and that 1462 // can potentially be avoided with a cleverer API design that we do not have 1463 // as of this time. 1464 1465 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1466 InvokeArgs, OpBundles, CI->getName(), BB); 1467 II->setDebugLoc(CI->getDebugLoc()); 1468 II->setCallingConv(CI->getCallingConv()); 1469 II->setAttributes(CI->getAttributes()); 1470 1471 // Make sure that anything using the call now uses the invoke! This also 1472 // updates the CallGraph if present, because it uses a WeakTrackingVH. 1473 CI->replaceAllUsesWith(II); 1474 1475 // Delete the original call 1476 Split->getInstList().pop_front(); 1477 return Split; 1478 } 1479 1480 static bool markAliveBlocks(Function &F, 1481 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1482 1483 SmallVector<BasicBlock*, 128> Worklist; 1484 BasicBlock *BB = &F.front(); 1485 Worklist.push_back(BB); 1486 Reachable.insert(BB); 1487 bool Changed = false; 1488 do { 1489 BB = Worklist.pop_back_val(); 1490 1491 // Do a quick scan of the basic block, turning any obviously unreachable 1492 // instructions into LLVM unreachable insts. The instruction combining pass 1493 // canonicalizes unreachable insts into stores to null or undef. 1494 for (Instruction &I : *BB) { 1495 // Assumptions that are known to be false are equivalent to unreachable. 1496 // Also, if the condition is undefined, then we make the choice most 1497 // beneficial to the optimizer, and choose that to also be unreachable. 1498 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1499 if (II->getIntrinsicID() == Intrinsic::assume) { 1500 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 1501 // Don't insert a call to llvm.trap right before the unreachable. 1502 changeToUnreachable(II, false); 1503 Changed = true; 1504 break; 1505 } 1506 } 1507 1508 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1509 // A call to the guard intrinsic bails out of the current compilation 1510 // unit if the predicate passed to it is false. If the predicate is a 1511 // constant false, then we know the guard will bail out of the current 1512 // compile unconditionally, so all code following it is dead. 1513 // 1514 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1515 // guards to treat `undef` as `false` since a guard on `undef` can 1516 // still be useful for widening. 1517 if (match(II->getArgOperand(0), m_Zero())) 1518 if (!isa<UnreachableInst>(II->getNextNode())) { 1519 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false); 1520 Changed = true; 1521 break; 1522 } 1523 } 1524 } 1525 1526 if (auto *CI = dyn_cast<CallInst>(&I)) { 1527 Value *Callee = CI->getCalledValue(); 1528 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1529 changeToUnreachable(CI, /*UseLLVMTrap=*/false); 1530 Changed = true; 1531 break; 1532 } 1533 if (CI->doesNotReturn()) { 1534 // If we found a call to a no-return function, insert an unreachable 1535 // instruction after it. Make sure there isn't *already* one there 1536 // though. 1537 if (!isa<UnreachableInst>(CI->getNextNode())) { 1538 // Don't insert a call to llvm.trap right before the unreachable. 1539 changeToUnreachable(CI->getNextNode(), false); 1540 Changed = true; 1541 } 1542 break; 1543 } 1544 } 1545 1546 // Store to undef and store to null are undefined and used to signal that 1547 // they should be changed to unreachable by passes that can't modify the 1548 // CFG. 1549 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1550 // Don't touch volatile stores. 1551 if (SI->isVolatile()) continue; 1552 1553 Value *Ptr = SI->getOperand(1); 1554 1555 if (isa<UndefValue>(Ptr) || 1556 (isa<ConstantPointerNull>(Ptr) && 1557 SI->getPointerAddressSpace() == 0)) { 1558 changeToUnreachable(SI, true); 1559 Changed = true; 1560 break; 1561 } 1562 } 1563 } 1564 1565 TerminatorInst *Terminator = BB->getTerminator(); 1566 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1567 // Turn invokes that call 'nounwind' functions into ordinary calls. 1568 Value *Callee = II->getCalledValue(); 1569 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1570 changeToUnreachable(II, true); 1571 Changed = true; 1572 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1573 if (II->use_empty() && II->onlyReadsMemory()) { 1574 // jump to the normal destination branch. 1575 BranchInst::Create(II->getNormalDest(), II); 1576 II->getUnwindDest()->removePredecessor(II->getParent()); 1577 II->eraseFromParent(); 1578 } else 1579 changeToCall(II); 1580 Changed = true; 1581 } 1582 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1583 // Remove catchpads which cannot be reached. 1584 struct CatchPadDenseMapInfo { 1585 static CatchPadInst *getEmptyKey() { 1586 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1587 } 1588 static CatchPadInst *getTombstoneKey() { 1589 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1590 } 1591 static unsigned getHashValue(CatchPadInst *CatchPad) { 1592 return static_cast<unsigned>(hash_combine_range( 1593 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1594 } 1595 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1596 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1597 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1598 return LHS == RHS; 1599 return LHS->isIdenticalTo(RHS); 1600 } 1601 }; 1602 1603 // Set of unique CatchPads. 1604 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1605 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1606 HandlerSet; 1607 detail::DenseSetEmpty Empty; 1608 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1609 E = CatchSwitch->handler_end(); 1610 I != E; ++I) { 1611 BasicBlock *HandlerBB = *I; 1612 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1613 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1614 CatchSwitch->removeHandler(I); 1615 --I; 1616 --E; 1617 Changed = true; 1618 } 1619 } 1620 } 1621 1622 Changed |= ConstantFoldTerminator(BB, true); 1623 for (BasicBlock *Successor : successors(BB)) 1624 if (Reachable.insert(Successor).second) 1625 Worklist.push_back(Successor); 1626 } while (!Worklist.empty()); 1627 return Changed; 1628 } 1629 1630 void llvm::removeUnwindEdge(BasicBlock *BB) { 1631 TerminatorInst *TI = BB->getTerminator(); 1632 1633 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1634 changeToCall(II); 1635 return; 1636 } 1637 1638 TerminatorInst *NewTI; 1639 BasicBlock *UnwindDest; 1640 1641 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1642 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1643 UnwindDest = CRI->getUnwindDest(); 1644 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1645 auto *NewCatchSwitch = CatchSwitchInst::Create( 1646 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1647 CatchSwitch->getName(), CatchSwitch); 1648 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1649 NewCatchSwitch->addHandler(PadBB); 1650 1651 NewTI = NewCatchSwitch; 1652 UnwindDest = CatchSwitch->getUnwindDest(); 1653 } else { 1654 llvm_unreachable("Could not find unwind successor"); 1655 } 1656 1657 NewTI->takeName(TI); 1658 NewTI->setDebugLoc(TI->getDebugLoc()); 1659 UnwindDest->removePredecessor(BB); 1660 TI->replaceAllUsesWith(NewTI); 1661 TI->eraseFromParent(); 1662 } 1663 1664 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1665 /// if they are in a dead cycle. Return true if a change was made, false 1666 /// otherwise. 1667 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) { 1668 SmallPtrSet<BasicBlock*, 16> Reachable; 1669 bool Changed = markAliveBlocks(F, Reachable); 1670 1671 // If there are unreachable blocks in the CFG... 1672 if (Reachable.size() == F.size()) 1673 return Changed; 1674 1675 assert(Reachable.size() < F.size()); 1676 NumRemoved += F.size()-Reachable.size(); 1677 1678 // Loop over all of the basic blocks that are not reachable, dropping all of 1679 // their internal references... 1680 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1681 if (Reachable.count(&*BB)) 1682 continue; 1683 1684 for (BasicBlock *Successor : successors(&*BB)) 1685 if (Reachable.count(Successor)) 1686 Successor->removePredecessor(&*BB); 1687 if (LVI) 1688 LVI->eraseBlock(&*BB); 1689 BB->dropAllReferences(); 1690 } 1691 1692 for (Function::iterator I = ++F.begin(); I != F.end();) 1693 if (!Reachable.count(&*I)) 1694 I = F.getBasicBlockList().erase(I); 1695 else 1696 ++I; 1697 1698 return true; 1699 } 1700 1701 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1702 ArrayRef<unsigned> KnownIDs) { 1703 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1704 K->dropUnknownNonDebugMetadata(KnownIDs); 1705 K->getAllMetadataOtherThanDebugLoc(Metadata); 1706 for (const auto &MD : Metadata) { 1707 unsigned Kind = MD.first; 1708 MDNode *JMD = J->getMetadata(Kind); 1709 MDNode *KMD = MD.second; 1710 1711 switch (Kind) { 1712 default: 1713 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1714 break; 1715 case LLVMContext::MD_dbg: 1716 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1717 case LLVMContext::MD_tbaa: 1718 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1719 break; 1720 case LLVMContext::MD_alias_scope: 1721 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1722 break; 1723 case LLVMContext::MD_noalias: 1724 case LLVMContext::MD_mem_parallel_loop_access: 1725 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1726 break; 1727 case LLVMContext::MD_range: 1728 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1729 break; 1730 case LLVMContext::MD_fpmath: 1731 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1732 break; 1733 case LLVMContext::MD_invariant_load: 1734 // Only set the !invariant.load if it is present in both instructions. 1735 K->setMetadata(Kind, JMD); 1736 break; 1737 case LLVMContext::MD_nonnull: 1738 // Only set the !nonnull if it is present in both instructions. 1739 K->setMetadata(Kind, JMD); 1740 break; 1741 case LLVMContext::MD_invariant_group: 1742 // Preserve !invariant.group in K. 1743 break; 1744 case LLVMContext::MD_align: 1745 K->setMetadata(Kind, 1746 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1747 break; 1748 case LLVMContext::MD_dereferenceable: 1749 case LLVMContext::MD_dereferenceable_or_null: 1750 K->setMetadata(Kind, 1751 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1752 break; 1753 } 1754 } 1755 // Set !invariant.group from J if J has it. If both instructions have it 1756 // then we will just pick it from J - even when they are different. 1757 // Also make sure that K is load or store - f.e. combining bitcast with load 1758 // could produce bitcast with invariant.group metadata, which is invalid. 1759 // FIXME: we should try to preserve both invariant.group md if they are 1760 // different, but right now instruction can only have one invariant.group. 1761 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1762 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1763 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1764 } 1765 1766 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 1767 unsigned KnownIDs[] = { 1768 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1769 LLVMContext::MD_noalias, LLVMContext::MD_range, 1770 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 1771 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 1772 LLVMContext::MD_dereferenceable, 1773 LLVMContext::MD_dereferenceable_or_null}; 1774 combineMetadata(K, J, KnownIDs); 1775 } 1776 1777 template <typename RootType, typename DominatesFn> 1778 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 1779 const RootType &Root, 1780 const DominatesFn &Dominates) { 1781 assert(From->getType() == To->getType()); 1782 1783 unsigned Count = 0; 1784 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1785 UI != UE;) { 1786 Use &U = *UI++; 1787 if (!Dominates(Root, U)) 1788 continue; 1789 U.set(To); 1790 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1791 << *To << " in " << *U << "\n"); 1792 ++Count; 1793 } 1794 return Count; 1795 } 1796 1797 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 1798 assert(From->getType() == To->getType()); 1799 auto *BB = From->getParent(); 1800 unsigned Count = 0; 1801 1802 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1803 UI != UE;) { 1804 Use &U = *UI++; 1805 auto *I = cast<Instruction>(U.getUser()); 1806 if (I->getParent() == BB) 1807 continue; 1808 U.set(To); 1809 ++Count; 1810 } 1811 return Count; 1812 } 1813 1814 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1815 DominatorTree &DT, 1816 const BasicBlockEdge &Root) { 1817 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 1818 return DT.dominates(Root, U); 1819 }; 1820 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 1821 } 1822 1823 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1824 DominatorTree &DT, 1825 const BasicBlock *BB) { 1826 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 1827 auto *I = cast<Instruction>(U.getUser())->getParent(); 1828 return DT.properlyDominates(BB, I); 1829 }; 1830 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 1831 } 1832 1833 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) { 1834 // Check if the function is specifically marked as a gc leaf function. 1835 if (CS.hasFnAttr("gc-leaf-function")) 1836 return true; 1837 if (const Function *F = CS.getCalledFunction()) { 1838 if (F->hasFnAttribute("gc-leaf-function")) 1839 return true; 1840 1841 if (auto IID = F->getIntrinsicID()) 1842 // Most LLVM intrinsics do not take safepoints. 1843 return IID != Intrinsic::experimental_gc_statepoint && 1844 IID != Intrinsic::experimental_deoptimize; 1845 } 1846 1847 return false; 1848 } 1849 1850 namespace { 1851 /// A potential constituent of a bitreverse or bswap expression. See 1852 /// collectBitParts for a fuller explanation. 1853 struct BitPart { 1854 BitPart(Value *P, unsigned BW) : Provider(P) { 1855 Provenance.resize(BW); 1856 } 1857 1858 /// The Value that this is a bitreverse/bswap of. 1859 Value *Provider; 1860 /// The "provenance" of each bit. Provenance[A] = B means that bit A 1861 /// in Provider becomes bit B in the result of this expression. 1862 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 1863 1864 enum { Unset = -1 }; 1865 }; 1866 } // end anonymous namespace 1867 1868 /// Analyze the specified subexpression and see if it is capable of providing 1869 /// pieces of a bswap or bitreverse. The subexpression provides a potential 1870 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 1871 /// the output of the expression came from a corresponding bit in some other 1872 /// value. This function is recursive, and the end result is a mapping of 1873 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 1874 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 1875 /// 1876 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 1877 /// that the expression deposits the low byte of %X into the high byte of the 1878 /// result and that all other bits are zero. This expression is accepted and a 1879 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 1880 /// [0-7]. 1881 /// 1882 /// To avoid revisiting values, the BitPart results are memoized into the 1883 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 1884 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 1885 /// store BitParts objects, not pointers. As we need the concept of a nullptr 1886 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 1887 /// type instead to provide the same functionality. 1888 /// 1889 /// Because we pass around references into \c BPS, we must use a container that 1890 /// does not invalidate internal references (std::map instead of DenseMap). 1891 /// 1892 static const Optional<BitPart> & 1893 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 1894 std::map<Value *, Optional<BitPart>> &BPS) { 1895 auto I = BPS.find(V); 1896 if (I != BPS.end()) 1897 return I->second; 1898 1899 auto &Result = BPS[V] = None; 1900 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1901 1902 if (Instruction *I = dyn_cast<Instruction>(V)) { 1903 // If this is an or instruction, it may be an inner node of the bswap. 1904 if (I->getOpcode() == Instruction::Or) { 1905 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 1906 MatchBitReversals, BPS); 1907 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 1908 MatchBitReversals, BPS); 1909 if (!A || !B) 1910 return Result; 1911 1912 // Try and merge the two together. 1913 if (!A->Provider || A->Provider != B->Provider) 1914 return Result; 1915 1916 Result = BitPart(A->Provider, BitWidth); 1917 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 1918 if (A->Provenance[i] != BitPart::Unset && 1919 B->Provenance[i] != BitPart::Unset && 1920 A->Provenance[i] != B->Provenance[i]) 1921 return Result = None; 1922 1923 if (A->Provenance[i] == BitPart::Unset) 1924 Result->Provenance[i] = B->Provenance[i]; 1925 else 1926 Result->Provenance[i] = A->Provenance[i]; 1927 } 1928 1929 return Result; 1930 } 1931 1932 // If this is a logical shift by a constant, recurse then shift the result. 1933 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 1934 unsigned BitShift = 1935 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 1936 // Ensure the shift amount is defined. 1937 if (BitShift > BitWidth) 1938 return Result; 1939 1940 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1941 MatchBitReversals, BPS); 1942 if (!Res) 1943 return Result; 1944 Result = Res; 1945 1946 // Perform the "shift" on BitProvenance. 1947 auto &P = Result->Provenance; 1948 if (I->getOpcode() == Instruction::Shl) { 1949 P.erase(std::prev(P.end(), BitShift), P.end()); 1950 P.insert(P.begin(), BitShift, BitPart::Unset); 1951 } else { 1952 P.erase(P.begin(), std::next(P.begin(), BitShift)); 1953 P.insert(P.end(), BitShift, BitPart::Unset); 1954 } 1955 1956 return Result; 1957 } 1958 1959 // If this is a logical 'and' with a mask that clears bits, recurse then 1960 // unset the appropriate bits. 1961 if (I->getOpcode() == Instruction::And && 1962 isa<ConstantInt>(I->getOperand(1))) { 1963 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 1964 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 1965 1966 // Check that the mask allows a multiple of 8 bits for a bswap, for an 1967 // early exit. 1968 unsigned NumMaskedBits = AndMask.countPopulation(); 1969 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 1970 return Result; 1971 1972 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1973 MatchBitReversals, BPS); 1974 if (!Res) 1975 return Result; 1976 Result = Res; 1977 1978 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 1979 // If the AndMask is zero for this bit, clear the bit. 1980 if ((AndMask & Bit) == 0) 1981 Result->Provenance[i] = BitPart::Unset; 1982 return Result; 1983 } 1984 1985 // If this is a zext instruction zero extend the result. 1986 if (I->getOpcode() == Instruction::ZExt) { 1987 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1988 MatchBitReversals, BPS); 1989 if (!Res) 1990 return Result; 1991 1992 Result = BitPart(Res->Provider, BitWidth); 1993 auto NarrowBitWidth = 1994 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 1995 for (unsigned i = 0; i < NarrowBitWidth; ++i) 1996 Result->Provenance[i] = Res->Provenance[i]; 1997 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 1998 Result->Provenance[i] = BitPart::Unset; 1999 return Result; 2000 } 2001 } 2002 2003 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2004 // the input value to the bswap/bitreverse. 2005 Result = BitPart(V, BitWidth); 2006 for (unsigned i = 0; i < BitWidth; ++i) 2007 Result->Provenance[i] = i; 2008 return Result; 2009 } 2010 2011 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2012 unsigned BitWidth) { 2013 if (From % 8 != To % 8) 2014 return false; 2015 // Convert from bit indices to byte indices and check for a byte reversal. 2016 From >>= 3; 2017 To >>= 3; 2018 BitWidth >>= 3; 2019 return From == BitWidth - To - 1; 2020 } 2021 2022 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2023 unsigned BitWidth) { 2024 return From == BitWidth - To - 1; 2025 } 2026 2027 /// Given an OR instruction, check to see if this is a bitreverse 2028 /// idiom. If so, insert the new intrinsic and return true. 2029 bool llvm::recognizeBSwapOrBitReverseIdiom( 2030 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2031 SmallVectorImpl<Instruction *> &InsertedInsts) { 2032 if (Operator::getOpcode(I) != Instruction::Or) 2033 return false; 2034 if (!MatchBSwaps && !MatchBitReversals) 2035 return false; 2036 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2037 if (!ITy || ITy->getBitWidth() > 128) 2038 return false; // Can't do vectors or integers > 128 bits. 2039 unsigned BW = ITy->getBitWidth(); 2040 2041 unsigned DemandedBW = BW; 2042 IntegerType *DemandedTy = ITy; 2043 if (I->hasOneUse()) { 2044 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2045 DemandedTy = cast<IntegerType>(Trunc->getType()); 2046 DemandedBW = DemandedTy->getBitWidth(); 2047 } 2048 } 2049 2050 // Try to find all the pieces corresponding to the bswap. 2051 std::map<Value *, Optional<BitPart>> BPS; 2052 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2053 if (!Res) 2054 return false; 2055 auto &BitProvenance = Res->Provenance; 2056 2057 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2058 // only byteswap values with an even number of bytes. 2059 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2060 for (unsigned i = 0; i < DemandedBW; ++i) { 2061 OKForBSwap &= 2062 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2063 OKForBitReverse &= 2064 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2065 } 2066 2067 Intrinsic::ID Intrin; 2068 if (OKForBSwap && MatchBSwaps) 2069 Intrin = Intrinsic::bswap; 2070 else if (OKForBitReverse && MatchBitReversals) 2071 Intrin = Intrinsic::bitreverse; 2072 else 2073 return false; 2074 2075 if (ITy != DemandedTy) { 2076 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2077 Value *Provider = Res->Provider; 2078 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2079 // We may need to truncate the provider. 2080 if (DemandedTy != ProviderTy) { 2081 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2082 "trunc", I); 2083 InsertedInsts.push_back(Trunc); 2084 Provider = Trunc; 2085 } 2086 auto *CI = CallInst::Create(F, Provider, "rev", I); 2087 InsertedInsts.push_back(CI); 2088 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2089 InsertedInsts.push_back(ExtInst); 2090 return true; 2091 } 2092 2093 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2094 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2095 return true; 2096 } 2097 2098 // CodeGen has special handling for some string functions that may replace 2099 // them with target-specific intrinsics. Since that'd skip our interceptors 2100 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2101 // we mark affected calls as NoBuiltin, which will disable optimization 2102 // in CodeGen. 2103 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2104 CallInst *CI, const TargetLibraryInfo *TLI) { 2105 Function *F = CI->getCalledFunction(); 2106 LibFunc Func; 2107 if (F && !F->hasLocalLinkage() && F->hasName() && 2108 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2109 !F->doesNotAccessMemory()) 2110 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2111 } 2112 2113 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2114 // We can't have a PHI with a metadata type. 2115 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2116 return false; 2117 2118 // Early exit. 2119 if (!isa<Constant>(I->getOperand(OpIdx))) 2120 return true; 2121 2122 switch (I->getOpcode()) { 2123 default: 2124 return true; 2125 case Instruction::Call: 2126 case Instruction::Invoke: 2127 // Many arithmetic intrinsics have no issue taking a 2128 // variable, however it's hard to distingish these from 2129 // specials such as @llvm.frameaddress that require a constant. 2130 if (isa<IntrinsicInst>(I)) 2131 return false; 2132 2133 // Constant bundle operands may need to retain their constant-ness for 2134 // correctness. 2135 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2136 return false; 2137 return true; 2138 case Instruction::ShuffleVector: 2139 // Shufflevector masks are constant. 2140 return OpIdx != 2; 2141 case Instruction::ExtractValue: 2142 case Instruction::InsertValue: 2143 // All operands apart from the first are constant. 2144 return OpIdx == 0; 2145 case Instruction::Alloca: 2146 return false; 2147 case Instruction::GetElementPtr: 2148 if (OpIdx == 0) 2149 return true; 2150 gep_type_iterator It = gep_type_begin(I); 2151 for (auto E = std::next(It, OpIdx); It != E; ++It) 2152 if (It.isStruct()) 2153 return false; 2154 return true; 2155 } 2156 } 2157