1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/TinyPtrVector.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/IR/Argument.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/CFG.h" 41 #include "llvm/IR/CallSite.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DIBuilder.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalObject.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InstrTypes.h" 56 #include "llvm/IR/Instruction.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/Metadata.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/Operator.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/KnownBits.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/ValueMapper.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <climits> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <utility> 84 85 using namespace llvm; 86 using namespace llvm::PatternMatch; 87 88 #define DEBUG_TYPE "local" 89 90 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 91 92 //===----------------------------------------------------------------------===// 93 // Local constant propagation. 94 // 95 96 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 97 /// constant value, convert it into an unconditional branch to the constant 98 /// destination. This is a nontrivial operation because the successors of this 99 /// basic block must have their PHI nodes updated. 100 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 101 /// conditions and indirectbr addresses this might make dead if 102 /// DeleteDeadConditions is true. 103 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 104 const TargetLibraryInfo *TLI, 105 DeferredDominance *DDT) { 106 TerminatorInst *T = BB->getTerminator(); 107 IRBuilder<> Builder(T); 108 109 // Branch - See if we are conditional jumping on constant 110 if (auto *BI = dyn_cast<BranchInst>(T)) { 111 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 112 BasicBlock *Dest1 = BI->getSuccessor(0); 113 BasicBlock *Dest2 = BI->getSuccessor(1); 114 115 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 116 // Are we branching on constant? 117 // YES. Change to unconditional branch... 118 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 119 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 120 121 // Let the basic block know that we are letting go of it. Based on this, 122 // it will adjust it's PHI nodes. 123 OldDest->removePredecessor(BB); 124 125 // Replace the conditional branch with an unconditional one. 126 Builder.CreateBr(Destination); 127 BI->eraseFromParent(); 128 if (DDT) 129 DDT->deleteEdge(BB, OldDest); 130 return true; 131 } 132 133 if (Dest2 == Dest1) { // Conditional branch to same location? 134 // This branch matches something like this: 135 // br bool %cond, label %Dest, label %Dest 136 // and changes it into: br label %Dest 137 138 // Let the basic block know that we are letting go of one copy of it. 139 assert(BI->getParent() && "Terminator not inserted in block!"); 140 Dest1->removePredecessor(BI->getParent()); 141 142 // Replace the conditional branch with an unconditional one. 143 Builder.CreateBr(Dest1); 144 Value *Cond = BI->getCondition(); 145 BI->eraseFromParent(); 146 if (DeleteDeadConditions) 147 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 148 return true; 149 } 150 return false; 151 } 152 153 if (auto *SI = dyn_cast<SwitchInst>(T)) { 154 // If we are switching on a constant, we can convert the switch to an 155 // unconditional branch. 156 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 157 BasicBlock *DefaultDest = SI->getDefaultDest(); 158 BasicBlock *TheOnlyDest = DefaultDest; 159 160 // If the default is unreachable, ignore it when searching for TheOnlyDest. 161 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 162 SI->getNumCases() > 0) { 163 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 164 } 165 166 // Figure out which case it goes to. 167 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 168 // Found case matching a constant operand? 169 if (i->getCaseValue() == CI) { 170 TheOnlyDest = i->getCaseSuccessor(); 171 break; 172 } 173 174 // Check to see if this branch is going to the same place as the default 175 // dest. If so, eliminate it as an explicit compare. 176 if (i->getCaseSuccessor() == DefaultDest) { 177 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 178 unsigned NCases = SI->getNumCases(); 179 // Fold the case metadata into the default if there will be any branches 180 // left, unless the metadata doesn't match the switch. 181 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 182 // Collect branch weights into a vector. 183 SmallVector<uint32_t, 8> Weights; 184 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 185 ++MD_i) { 186 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 187 Weights.push_back(CI->getValue().getZExtValue()); 188 } 189 // Merge weight of this case to the default weight. 190 unsigned idx = i->getCaseIndex(); 191 Weights[0] += Weights[idx+1]; 192 // Remove weight for this case. 193 std::swap(Weights[idx+1], Weights.back()); 194 Weights.pop_back(); 195 SI->setMetadata(LLVMContext::MD_prof, 196 MDBuilder(BB->getContext()). 197 createBranchWeights(Weights)); 198 } 199 // Remove this entry. 200 BasicBlock *ParentBB = SI->getParent(); 201 DefaultDest->removePredecessor(ParentBB); 202 i = SI->removeCase(i); 203 e = SI->case_end(); 204 if (DDT) 205 DDT->deleteEdge(ParentBB, DefaultDest); 206 continue; 207 } 208 209 // Otherwise, check to see if the switch only branches to one destination. 210 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 211 // destinations. 212 if (i->getCaseSuccessor() != TheOnlyDest) 213 TheOnlyDest = nullptr; 214 215 // Increment this iterator as we haven't removed the case. 216 ++i; 217 } 218 219 if (CI && !TheOnlyDest) { 220 // Branching on a constant, but not any of the cases, go to the default 221 // successor. 222 TheOnlyDest = SI->getDefaultDest(); 223 } 224 225 // If we found a single destination that we can fold the switch into, do so 226 // now. 227 if (TheOnlyDest) { 228 // Insert the new branch. 229 Builder.CreateBr(TheOnlyDest); 230 BasicBlock *BB = SI->getParent(); 231 std::vector <DominatorTree::UpdateType> Updates; 232 if (DDT) 233 Updates.reserve(SI->getNumSuccessors() - 1); 234 235 // Remove entries from PHI nodes which we no longer branch to... 236 for (BasicBlock *Succ : SI->successors()) { 237 // Found case matching a constant operand? 238 if (Succ == TheOnlyDest) { 239 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 240 } else { 241 Succ->removePredecessor(BB); 242 if (DDT) 243 Updates.push_back({DominatorTree::Delete, BB, Succ}); 244 } 245 } 246 247 // Delete the old switch. 248 Value *Cond = SI->getCondition(); 249 SI->eraseFromParent(); 250 if (DeleteDeadConditions) 251 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 252 if (DDT) 253 DDT->applyUpdates(Updates); 254 return true; 255 } 256 257 if (SI->getNumCases() == 1) { 258 // Otherwise, we can fold this switch into a conditional branch 259 // instruction if it has only one non-default destination. 260 auto FirstCase = *SI->case_begin(); 261 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 262 FirstCase.getCaseValue(), "cond"); 263 264 // Insert the new branch. 265 BranchInst *NewBr = Builder.CreateCondBr(Cond, 266 FirstCase.getCaseSuccessor(), 267 SI->getDefaultDest()); 268 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 269 if (MD && MD->getNumOperands() == 3) { 270 ConstantInt *SICase = 271 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 272 ConstantInt *SIDef = 273 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 274 assert(SICase && SIDef); 275 // The TrueWeight should be the weight for the single case of SI. 276 NewBr->setMetadata(LLVMContext::MD_prof, 277 MDBuilder(BB->getContext()). 278 createBranchWeights(SICase->getValue().getZExtValue(), 279 SIDef->getValue().getZExtValue())); 280 } 281 282 // Update make.implicit metadata to the newly-created conditional branch. 283 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 284 if (MakeImplicitMD) 285 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 286 287 // Delete the old switch. 288 SI->eraseFromParent(); 289 return true; 290 } 291 return false; 292 } 293 294 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 295 // indirectbr blockaddress(@F, @BB) -> br label @BB 296 if (auto *BA = 297 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 298 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 299 std::vector <DominatorTree::UpdateType> Updates; 300 if (DDT) 301 Updates.reserve(IBI->getNumDestinations() - 1); 302 303 // Insert the new branch. 304 Builder.CreateBr(TheOnlyDest); 305 306 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 307 if (IBI->getDestination(i) == TheOnlyDest) { 308 TheOnlyDest = nullptr; 309 } else { 310 BasicBlock *ParentBB = IBI->getParent(); 311 BasicBlock *DestBB = IBI->getDestination(i); 312 DestBB->removePredecessor(ParentBB); 313 if (DDT) 314 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 315 } 316 } 317 Value *Address = IBI->getAddress(); 318 IBI->eraseFromParent(); 319 if (DeleteDeadConditions) 320 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 321 322 // If we didn't find our destination in the IBI successor list, then we 323 // have undefined behavior. Replace the unconditional branch with an 324 // 'unreachable' instruction. 325 if (TheOnlyDest) { 326 BB->getTerminator()->eraseFromParent(); 327 new UnreachableInst(BB->getContext(), BB); 328 } 329 330 if (DDT) 331 DDT->applyUpdates(Updates); 332 return true; 333 } 334 } 335 336 return false; 337 } 338 339 //===----------------------------------------------------------------------===// 340 // Local dead code elimination. 341 // 342 343 /// isInstructionTriviallyDead - Return true if the result produced by the 344 /// instruction is not used, and the instruction has no side effects. 345 /// 346 bool llvm::isInstructionTriviallyDead(Instruction *I, 347 const TargetLibraryInfo *TLI) { 348 if (!I->use_empty()) 349 return false; 350 return wouldInstructionBeTriviallyDead(I, TLI); 351 } 352 353 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 354 const TargetLibraryInfo *TLI) { 355 if (isa<TerminatorInst>(I)) 356 return false; 357 358 // We don't want the landingpad-like instructions removed by anything this 359 // general. 360 if (I->isEHPad()) 361 return false; 362 363 // We don't want debug info removed by anything this general, unless 364 // debug info is empty. 365 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 366 if (DDI->getAddress()) 367 return false; 368 return true; 369 } 370 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 371 if (DVI->getValue()) 372 return false; 373 return true; 374 } 375 376 if (!I->mayHaveSideEffects()) 377 return true; 378 379 // Special case intrinsics that "may have side effects" but can be deleted 380 // when dead. 381 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 382 // Safe to delete llvm.stacksave if dead. 383 if (II->getIntrinsicID() == Intrinsic::stacksave) 384 return true; 385 386 // Lifetime intrinsics are dead when their right-hand is undef. 387 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 388 II->getIntrinsicID() == Intrinsic::lifetime_end) 389 return isa<UndefValue>(II->getArgOperand(1)); 390 391 // Assumptions are dead if their condition is trivially true. Guards on 392 // true are operationally no-ops. In the future we can consider more 393 // sophisticated tradeoffs for guards considering potential for check 394 // widening, but for now we keep things simple. 395 if (II->getIntrinsicID() == Intrinsic::assume || 396 II->getIntrinsicID() == Intrinsic::experimental_guard) { 397 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 398 return !Cond->isZero(); 399 400 return false; 401 } 402 } 403 404 if (isAllocLikeFn(I, TLI)) 405 return true; 406 407 if (CallInst *CI = isFreeCall(I, TLI)) 408 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 409 return C->isNullValue() || isa<UndefValue>(C); 410 411 if (CallSite CS = CallSite(I)) 412 if (isMathLibCallNoop(CS, TLI)) 413 return true; 414 415 return false; 416 } 417 418 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 419 /// trivially dead instruction, delete it. If that makes any of its operands 420 /// trivially dead, delete them too, recursively. Return true if any 421 /// instructions were deleted. 422 bool 423 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 424 const TargetLibraryInfo *TLI) { 425 Instruction *I = dyn_cast<Instruction>(V); 426 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 427 return false; 428 429 SmallVector<Instruction*, 16> DeadInsts; 430 DeadInsts.push_back(I); 431 432 do { 433 I = DeadInsts.pop_back_val(); 434 435 // Null out all of the instruction's operands to see if any operand becomes 436 // dead as we go. 437 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 438 Value *OpV = I->getOperand(i); 439 I->setOperand(i, nullptr); 440 441 if (!OpV->use_empty()) continue; 442 443 // If the operand is an instruction that became dead as we nulled out the 444 // operand, and if it is 'trivially' dead, delete it in a future loop 445 // iteration. 446 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 447 if (isInstructionTriviallyDead(OpI, TLI)) 448 DeadInsts.push_back(OpI); 449 } 450 451 I->eraseFromParent(); 452 } while (!DeadInsts.empty()); 453 454 return true; 455 } 456 457 /// areAllUsesEqual - Check whether the uses of a value are all the same. 458 /// This is similar to Instruction::hasOneUse() except this will also return 459 /// true when there are no uses or multiple uses that all refer to the same 460 /// value. 461 static bool areAllUsesEqual(Instruction *I) { 462 Value::user_iterator UI = I->user_begin(); 463 Value::user_iterator UE = I->user_end(); 464 if (UI == UE) 465 return true; 466 467 User *TheUse = *UI; 468 for (++UI; UI != UE; ++UI) { 469 if (*UI != TheUse) 470 return false; 471 } 472 return true; 473 } 474 475 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 476 /// dead PHI node, due to being a def-use chain of single-use nodes that 477 /// either forms a cycle or is terminated by a trivially dead instruction, 478 /// delete it. If that makes any of its operands trivially dead, delete them 479 /// too, recursively. Return true if a change was made. 480 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 481 const TargetLibraryInfo *TLI) { 482 SmallPtrSet<Instruction*, 4> Visited; 483 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 484 I = cast<Instruction>(*I->user_begin())) { 485 if (I->use_empty()) 486 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 487 488 // If we find an instruction more than once, we're on a cycle that 489 // won't prove fruitful. 490 if (!Visited.insert(I).second) { 491 // Break the cycle and delete the instruction and its operands. 492 I->replaceAllUsesWith(UndefValue::get(I->getType())); 493 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 494 return true; 495 } 496 } 497 return false; 498 } 499 500 static bool 501 simplifyAndDCEInstruction(Instruction *I, 502 SmallSetVector<Instruction *, 16> &WorkList, 503 const DataLayout &DL, 504 const TargetLibraryInfo *TLI) { 505 if (isInstructionTriviallyDead(I, TLI)) { 506 // Null out all of the instruction's operands to see if any operand becomes 507 // dead as we go. 508 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 509 Value *OpV = I->getOperand(i); 510 I->setOperand(i, nullptr); 511 512 if (!OpV->use_empty() || I == OpV) 513 continue; 514 515 // If the operand is an instruction that became dead as we nulled out the 516 // operand, and if it is 'trivially' dead, delete it in a future loop 517 // iteration. 518 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 519 if (isInstructionTriviallyDead(OpI, TLI)) 520 WorkList.insert(OpI); 521 } 522 523 I->eraseFromParent(); 524 525 return true; 526 } 527 528 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 529 // Add the users to the worklist. CAREFUL: an instruction can use itself, 530 // in the case of a phi node. 531 for (User *U : I->users()) { 532 if (U != I) { 533 WorkList.insert(cast<Instruction>(U)); 534 } 535 } 536 537 // Replace the instruction with its simplified value. 538 bool Changed = false; 539 if (!I->use_empty()) { 540 I->replaceAllUsesWith(SimpleV); 541 Changed = true; 542 } 543 if (isInstructionTriviallyDead(I, TLI)) { 544 I->eraseFromParent(); 545 Changed = true; 546 } 547 return Changed; 548 } 549 return false; 550 } 551 552 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 553 /// simplify any instructions in it and recursively delete dead instructions. 554 /// 555 /// This returns true if it changed the code, note that it can delete 556 /// instructions in other blocks as well in this block. 557 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 558 const TargetLibraryInfo *TLI) { 559 bool MadeChange = false; 560 const DataLayout &DL = BB->getModule()->getDataLayout(); 561 562 #ifndef NDEBUG 563 // In debug builds, ensure that the terminator of the block is never replaced 564 // or deleted by these simplifications. The idea of simplification is that it 565 // cannot introduce new instructions, and there is no way to replace the 566 // terminator of a block without introducing a new instruction. 567 AssertingVH<Instruction> TerminatorVH(&BB->back()); 568 #endif 569 570 SmallSetVector<Instruction *, 16> WorkList; 571 // Iterate over the original function, only adding insts to the worklist 572 // if they actually need to be revisited. This avoids having to pre-init 573 // the worklist with the entire function's worth of instructions. 574 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 575 BI != E;) { 576 assert(!BI->isTerminator()); 577 Instruction *I = &*BI; 578 ++BI; 579 580 // We're visiting this instruction now, so make sure it's not in the 581 // worklist from an earlier visit. 582 if (!WorkList.count(I)) 583 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 584 } 585 586 while (!WorkList.empty()) { 587 Instruction *I = WorkList.pop_back_val(); 588 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 589 } 590 return MadeChange; 591 } 592 593 //===----------------------------------------------------------------------===// 594 // Control Flow Graph Restructuring. 595 // 596 597 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 598 /// method is called when we're about to delete Pred as a predecessor of BB. If 599 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 600 /// 601 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 602 /// nodes that collapse into identity values. For example, if we have: 603 /// x = phi(1, 0, 0, 0) 604 /// y = and x, z 605 /// 606 /// .. and delete the predecessor corresponding to the '1', this will attempt to 607 /// recursively fold the and to 0. 608 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 609 DeferredDominance *DDT) { 610 // This only adjusts blocks with PHI nodes. 611 if (!isa<PHINode>(BB->begin())) 612 return; 613 614 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 615 // them down. This will leave us with single entry phi nodes and other phis 616 // that can be removed. 617 BB->removePredecessor(Pred, true); 618 619 WeakTrackingVH PhiIt = &BB->front(); 620 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 621 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 622 Value *OldPhiIt = PhiIt; 623 624 if (!recursivelySimplifyInstruction(PN)) 625 continue; 626 627 // If recursive simplification ended up deleting the next PHI node we would 628 // iterate to, then our iterator is invalid, restart scanning from the top 629 // of the block. 630 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 631 } 632 if (DDT) 633 DDT->deleteEdge(Pred, BB); 634 } 635 636 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 637 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 638 /// between them, moving the instructions in the predecessor into DestBB and 639 /// deleting the predecessor block. 640 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT, 641 DeferredDominance *DDT) { 642 assert(!(DT && DDT) && "Cannot call with both DT and DDT."); 643 644 // If BB has single-entry PHI nodes, fold them. 645 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 646 Value *NewVal = PN->getIncomingValue(0); 647 // Replace self referencing PHI with undef, it must be dead. 648 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 649 PN->replaceAllUsesWith(NewVal); 650 PN->eraseFromParent(); 651 } 652 653 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 654 assert(PredBB && "Block doesn't have a single predecessor!"); 655 656 bool ReplaceEntryBB = false; 657 if (PredBB == &DestBB->getParent()->getEntryBlock()) 658 ReplaceEntryBB = true; 659 660 // Deferred DT update: Collect all the edges that enter PredBB. These 661 // dominator edges will be redirected to DestBB. 662 std::vector <DominatorTree::UpdateType> Updates; 663 if (DDT && !ReplaceEntryBB) { 664 Updates.reserve(1 + 665 (2 * std::distance(pred_begin(PredBB), pred_end(PredBB)))); 666 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 667 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 668 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 669 // This predecessor of PredBB may already have DestBB as a successor. 670 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 671 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 672 } 673 } 674 675 // Zap anything that took the address of DestBB. Not doing this will give the 676 // address an invalid value. 677 if (DestBB->hasAddressTaken()) { 678 BlockAddress *BA = BlockAddress::get(DestBB); 679 Constant *Replacement = 680 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 681 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 682 BA->getType())); 683 BA->destroyConstant(); 684 } 685 686 // Anything that branched to PredBB now branches to DestBB. 687 PredBB->replaceAllUsesWith(DestBB); 688 689 // Splice all the instructions from PredBB to DestBB. 690 PredBB->getTerminator()->eraseFromParent(); 691 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 692 693 // If the PredBB is the entry block of the function, move DestBB up to 694 // become the entry block after we erase PredBB. 695 if (ReplaceEntryBB) 696 DestBB->moveAfter(PredBB); 697 698 if (DT) { 699 // For some irreducible CFG we end up having forward-unreachable blocks 700 // so check if getNode returns a valid node before updating the domtree. 701 if (DomTreeNode *DTN = DT->getNode(PredBB)) { 702 BasicBlock *PredBBIDom = DTN->getIDom()->getBlock(); 703 DT->changeImmediateDominator(DestBB, PredBBIDom); 704 DT->eraseNode(PredBB); 705 } 706 } 707 708 if (DDT) { 709 DDT->deleteBB(PredBB); // Deferred deletion of BB. 710 if (ReplaceEntryBB) 711 // The entry block was removed and there is no external interface for the 712 // dominator tree to be notified of this change. In this corner-case we 713 // recalculate the entire tree. 714 DDT->recalculate(*(DestBB->getParent())); 715 else 716 DDT->applyUpdates(Updates); 717 } else { 718 PredBB->eraseFromParent(); // Nuke BB. 719 } 720 } 721 722 /// CanMergeValues - Return true if we can choose one of these values to use 723 /// in place of the other. Note that we will always choose the non-undef 724 /// value to keep. 725 static bool CanMergeValues(Value *First, Value *Second) { 726 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 727 } 728 729 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 730 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 731 /// 732 /// Assumption: Succ is the single successor for BB. 733 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 734 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 735 736 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 737 << Succ->getName() << "\n"); 738 // Shortcut, if there is only a single predecessor it must be BB and merging 739 // is always safe 740 if (Succ->getSinglePredecessor()) return true; 741 742 // Make a list of the predecessors of BB 743 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 744 745 // Look at all the phi nodes in Succ, to see if they present a conflict when 746 // merging these blocks 747 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 748 PHINode *PN = cast<PHINode>(I); 749 750 // If the incoming value from BB is again a PHINode in 751 // BB which has the same incoming value for *PI as PN does, we can 752 // merge the phi nodes and then the blocks can still be merged 753 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 754 if (BBPN && BBPN->getParent() == BB) { 755 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 756 BasicBlock *IBB = PN->getIncomingBlock(PI); 757 if (BBPreds.count(IBB) && 758 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 759 PN->getIncomingValue(PI))) { 760 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 761 << Succ->getName() << " is conflicting with " 762 << BBPN->getName() << " with regard to common predecessor " 763 << IBB->getName() << "\n"); 764 return false; 765 } 766 } 767 } else { 768 Value* Val = PN->getIncomingValueForBlock(BB); 769 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 770 // See if the incoming value for the common predecessor is equal to the 771 // one for BB, in which case this phi node will not prevent the merging 772 // of the block. 773 BasicBlock *IBB = PN->getIncomingBlock(PI); 774 if (BBPreds.count(IBB) && 775 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 776 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 777 << Succ->getName() << " is conflicting with regard to common " 778 << "predecessor " << IBB->getName() << "\n"); 779 return false; 780 } 781 } 782 } 783 } 784 785 return true; 786 } 787 788 using PredBlockVector = SmallVector<BasicBlock *, 16>; 789 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 790 791 /// \brief Determines the value to use as the phi node input for a block. 792 /// 793 /// Select between \p OldVal any value that we know flows from \p BB 794 /// to a particular phi on the basis of which one (if either) is not 795 /// undef. Update IncomingValues based on the selected value. 796 /// 797 /// \param OldVal The value we are considering selecting. 798 /// \param BB The block that the value flows in from. 799 /// \param IncomingValues A map from block-to-value for other phi inputs 800 /// that we have examined. 801 /// 802 /// \returns the selected value. 803 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 804 IncomingValueMap &IncomingValues) { 805 if (!isa<UndefValue>(OldVal)) { 806 assert((!IncomingValues.count(BB) || 807 IncomingValues.find(BB)->second == OldVal) && 808 "Expected OldVal to match incoming value from BB!"); 809 810 IncomingValues.insert(std::make_pair(BB, OldVal)); 811 return OldVal; 812 } 813 814 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 815 if (It != IncomingValues.end()) return It->second; 816 817 return OldVal; 818 } 819 820 /// \brief Create a map from block to value for the operands of a 821 /// given phi. 822 /// 823 /// Create a map from block to value for each non-undef value flowing 824 /// into \p PN. 825 /// 826 /// \param PN The phi we are collecting the map for. 827 /// \param IncomingValues [out] The map from block to value for this phi. 828 static void gatherIncomingValuesToPhi(PHINode *PN, 829 IncomingValueMap &IncomingValues) { 830 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 831 BasicBlock *BB = PN->getIncomingBlock(i); 832 Value *V = PN->getIncomingValue(i); 833 834 if (!isa<UndefValue>(V)) 835 IncomingValues.insert(std::make_pair(BB, V)); 836 } 837 } 838 839 /// \brief Replace the incoming undef values to a phi with the values 840 /// from a block-to-value map. 841 /// 842 /// \param PN The phi we are replacing the undefs in. 843 /// \param IncomingValues A map from block to value. 844 static void replaceUndefValuesInPhi(PHINode *PN, 845 const IncomingValueMap &IncomingValues) { 846 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 847 Value *V = PN->getIncomingValue(i); 848 849 if (!isa<UndefValue>(V)) continue; 850 851 BasicBlock *BB = PN->getIncomingBlock(i); 852 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 853 if (It == IncomingValues.end()) continue; 854 855 PN->setIncomingValue(i, It->second); 856 } 857 } 858 859 /// \brief Replace a value flowing from a block to a phi with 860 /// potentially multiple instances of that value flowing from the 861 /// block's predecessors to the phi. 862 /// 863 /// \param BB The block with the value flowing into the phi. 864 /// \param BBPreds The predecessors of BB. 865 /// \param PN The phi that we are updating. 866 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 867 const PredBlockVector &BBPreds, 868 PHINode *PN) { 869 Value *OldVal = PN->removeIncomingValue(BB, false); 870 assert(OldVal && "No entry in PHI for Pred BB!"); 871 872 IncomingValueMap IncomingValues; 873 874 // We are merging two blocks - BB, and the block containing PN - and 875 // as a result we need to redirect edges from the predecessors of BB 876 // to go to the block containing PN, and update PN 877 // accordingly. Since we allow merging blocks in the case where the 878 // predecessor and successor blocks both share some predecessors, 879 // and where some of those common predecessors might have undef 880 // values flowing into PN, we want to rewrite those values to be 881 // consistent with the non-undef values. 882 883 gatherIncomingValuesToPhi(PN, IncomingValues); 884 885 // If this incoming value is one of the PHI nodes in BB, the new entries 886 // in the PHI node are the entries from the old PHI. 887 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 888 PHINode *OldValPN = cast<PHINode>(OldVal); 889 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 890 // Note that, since we are merging phi nodes and BB and Succ might 891 // have common predecessors, we could end up with a phi node with 892 // identical incoming branches. This will be cleaned up later (and 893 // will trigger asserts if we try to clean it up now, without also 894 // simplifying the corresponding conditional branch). 895 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 896 Value *PredVal = OldValPN->getIncomingValue(i); 897 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 898 IncomingValues); 899 900 // And add a new incoming value for this predecessor for the 901 // newly retargeted branch. 902 PN->addIncoming(Selected, PredBB); 903 } 904 } else { 905 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 906 // Update existing incoming values in PN for this 907 // predecessor of BB. 908 BasicBlock *PredBB = BBPreds[i]; 909 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 910 IncomingValues); 911 912 // And add a new incoming value for this predecessor for the 913 // newly retargeted branch. 914 PN->addIncoming(Selected, PredBB); 915 } 916 } 917 918 replaceUndefValuesInPhi(PN, IncomingValues); 919 } 920 921 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 922 /// unconditional branch, and contains no instructions other than PHI nodes, 923 /// potential side-effect free intrinsics and the branch. If possible, 924 /// eliminate BB by rewriting all the predecessors to branch to the successor 925 /// block and return true. If we can't transform, return false. 926 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 927 DeferredDominance *DDT) { 928 assert(BB != &BB->getParent()->getEntryBlock() && 929 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 930 931 // We can't eliminate infinite loops. 932 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 933 if (BB == Succ) return false; 934 935 // Check to see if merging these blocks would cause conflicts for any of the 936 // phi nodes in BB or Succ. If not, we can safely merge. 937 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 938 939 // Check for cases where Succ has multiple predecessors and a PHI node in BB 940 // has uses which will not disappear when the PHI nodes are merged. It is 941 // possible to handle such cases, but difficult: it requires checking whether 942 // BB dominates Succ, which is non-trivial to calculate in the case where 943 // Succ has multiple predecessors. Also, it requires checking whether 944 // constructing the necessary self-referential PHI node doesn't introduce any 945 // conflicts; this isn't too difficult, but the previous code for doing this 946 // was incorrect. 947 // 948 // Note that if this check finds a live use, BB dominates Succ, so BB is 949 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 950 // folding the branch isn't profitable in that case anyway. 951 if (!Succ->getSinglePredecessor()) { 952 BasicBlock::iterator BBI = BB->begin(); 953 while (isa<PHINode>(*BBI)) { 954 for (Use &U : BBI->uses()) { 955 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 956 if (PN->getIncomingBlock(U) != BB) 957 return false; 958 } else { 959 return false; 960 } 961 } 962 ++BBI; 963 } 964 } 965 966 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 967 968 std::vector<DominatorTree::UpdateType> Updates; 969 if (DDT) { 970 Updates.reserve(1 + (2 * std::distance(pred_begin(BB), pred_end(BB)))); 971 Updates.push_back({DominatorTree::Delete, BB, Succ}); 972 // All predecessors of BB will be moved to Succ. 973 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 974 Updates.push_back({DominatorTree::Delete, *I, BB}); 975 // This predecessor of BB may already have Succ as a successor. 976 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 977 Updates.push_back({DominatorTree::Insert, *I, Succ}); 978 } 979 } 980 981 if (isa<PHINode>(Succ->begin())) { 982 // If there is more than one pred of succ, and there are PHI nodes in 983 // the successor, then we need to add incoming edges for the PHI nodes 984 // 985 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 986 987 // Loop over all of the PHI nodes in the successor of BB. 988 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 989 PHINode *PN = cast<PHINode>(I); 990 991 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 992 } 993 } 994 995 if (Succ->getSinglePredecessor()) { 996 // BB is the only predecessor of Succ, so Succ will end up with exactly 997 // the same predecessors BB had. 998 999 // Copy over any phi, debug or lifetime instruction. 1000 BB->getTerminator()->eraseFromParent(); 1001 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1002 BB->getInstList()); 1003 } else { 1004 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1005 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1006 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1007 PN->eraseFromParent(); 1008 } 1009 } 1010 1011 // If the unconditional branch we replaced contains llvm.loop metadata, we 1012 // add the metadata to the branch instructions in the predecessors. 1013 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1014 Instruction *TI = BB->getTerminator(); 1015 if (TI) 1016 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1017 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1018 BasicBlock *Pred = *PI; 1019 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1020 } 1021 1022 // Everything that jumped to BB now goes to Succ. 1023 BB->replaceAllUsesWith(Succ); 1024 if (!Succ->hasName()) Succ->takeName(BB); 1025 1026 if (DDT) { 1027 DDT->deleteBB(BB); // Deferred deletion of the old basic block. 1028 DDT->applyUpdates(Updates); 1029 } else { 1030 BB->eraseFromParent(); // Delete the old basic block. 1031 } 1032 return true; 1033 } 1034 1035 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 1036 /// nodes in this block. This doesn't try to be clever about PHI nodes 1037 /// which differ only in the order of the incoming values, but instcombine 1038 /// orders them so it usually won't matter. 1039 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1040 // This implementation doesn't currently consider undef operands 1041 // specially. Theoretically, two phis which are identical except for 1042 // one having an undef where the other doesn't could be collapsed. 1043 1044 struct PHIDenseMapInfo { 1045 static PHINode *getEmptyKey() { 1046 return DenseMapInfo<PHINode *>::getEmptyKey(); 1047 } 1048 1049 static PHINode *getTombstoneKey() { 1050 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1051 } 1052 1053 static unsigned getHashValue(PHINode *PN) { 1054 // Compute a hash value on the operands. Instcombine will likely have 1055 // sorted them, which helps expose duplicates, but we have to check all 1056 // the operands to be safe in case instcombine hasn't run. 1057 return static_cast<unsigned>(hash_combine( 1058 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1059 hash_combine_range(PN->block_begin(), PN->block_end()))); 1060 } 1061 1062 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1063 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1064 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1065 return LHS == RHS; 1066 return LHS->isIdenticalTo(RHS); 1067 } 1068 }; 1069 1070 // Set of unique PHINodes. 1071 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1072 1073 // Examine each PHI. 1074 bool Changed = false; 1075 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1076 auto Inserted = PHISet.insert(PN); 1077 if (!Inserted.second) { 1078 // A duplicate. Replace this PHI with its duplicate. 1079 PN->replaceAllUsesWith(*Inserted.first); 1080 PN->eraseFromParent(); 1081 Changed = true; 1082 1083 // The RAUW can change PHIs that we already visited. Start over from the 1084 // beginning. 1085 PHISet.clear(); 1086 I = BB->begin(); 1087 } 1088 } 1089 1090 return Changed; 1091 } 1092 1093 /// enforceKnownAlignment - If the specified pointer points to an object that 1094 /// we control, modify the object's alignment to PrefAlign. This isn't 1095 /// often possible though. If alignment is important, a more reliable approach 1096 /// is to simply align all global variables and allocation instructions to 1097 /// their preferred alignment from the beginning. 1098 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 1099 unsigned PrefAlign, 1100 const DataLayout &DL) { 1101 assert(PrefAlign > Align); 1102 1103 V = V->stripPointerCasts(); 1104 1105 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1106 // TODO: ideally, computeKnownBits ought to have used 1107 // AllocaInst::getAlignment() in its computation already, making 1108 // the below max redundant. But, as it turns out, 1109 // stripPointerCasts recurses through infinite layers of bitcasts, 1110 // while computeKnownBits is not allowed to traverse more than 6 1111 // levels. 1112 Align = std::max(AI->getAlignment(), Align); 1113 if (PrefAlign <= Align) 1114 return Align; 1115 1116 // If the preferred alignment is greater than the natural stack alignment 1117 // then don't round up. This avoids dynamic stack realignment. 1118 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1119 return Align; 1120 AI->setAlignment(PrefAlign); 1121 return PrefAlign; 1122 } 1123 1124 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1125 // TODO: as above, this shouldn't be necessary. 1126 Align = std::max(GO->getAlignment(), Align); 1127 if (PrefAlign <= Align) 1128 return Align; 1129 1130 // If there is a large requested alignment and we can, bump up the alignment 1131 // of the global. If the memory we set aside for the global may not be the 1132 // memory used by the final program then it is impossible for us to reliably 1133 // enforce the preferred alignment. 1134 if (!GO->canIncreaseAlignment()) 1135 return Align; 1136 1137 GO->setAlignment(PrefAlign); 1138 return PrefAlign; 1139 } 1140 1141 return Align; 1142 } 1143 1144 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1145 const DataLayout &DL, 1146 const Instruction *CxtI, 1147 AssumptionCache *AC, 1148 const DominatorTree *DT) { 1149 assert(V->getType()->isPointerTy() && 1150 "getOrEnforceKnownAlignment expects a pointer!"); 1151 1152 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1153 unsigned TrailZ = Known.countMinTrailingZeros(); 1154 1155 // Avoid trouble with ridiculously large TrailZ values, such as 1156 // those computed from a null pointer. 1157 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1158 1159 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1160 1161 // LLVM doesn't support alignments larger than this currently. 1162 Align = std::min(Align, +Value::MaximumAlignment); 1163 1164 if (PrefAlign > Align) 1165 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1166 1167 // We don't need to make any adjustment. 1168 return Align; 1169 } 1170 1171 ///===---------------------------------------------------------------------===// 1172 /// Dbg Intrinsic utilities 1173 /// 1174 1175 /// See if there is a dbg.value intrinsic for DIVar before I. 1176 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1177 Instruction *I) { 1178 // Since we can't guarantee that the original dbg.declare instrinsic 1179 // is removed by LowerDbgDeclare(), we need to make sure that we are 1180 // not inserting the same dbg.value intrinsic over and over. 1181 BasicBlock::InstListType::iterator PrevI(I); 1182 if (PrevI != I->getParent()->getInstList().begin()) { 1183 --PrevI; 1184 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1185 if (DVI->getValue() == I->getOperand(0) && 1186 DVI->getVariable() == DIVar && 1187 DVI->getExpression() == DIExpr) 1188 return true; 1189 } 1190 return false; 1191 } 1192 1193 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1194 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1195 DIExpression *DIExpr, 1196 PHINode *APN) { 1197 // Since we can't guarantee that the original dbg.declare instrinsic 1198 // is removed by LowerDbgDeclare(), we need to make sure that we are 1199 // not inserting the same dbg.value intrinsic over and over. 1200 SmallVector<DbgValueInst *, 1> DbgValues; 1201 findDbgValues(DbgValues, APN); 1202 for (auto *DVI : DbgValues) { 1203 assert(DVI->getValue() == APN); 1204 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1205 return true; 1206 } 1207 return false; 1208 } 1209 1210 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1211 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1212 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1213 StoreInst *SI, DIBuilder &Builder) { 1214 assert(DII->isAddressOfVariable()); 1215 auto *DIVar = DII->getVariable(); 1216 assert(DIVar && "Missing variable"); 1217 auto *DIExpr = DII->getExpression(); 1218 Value *DV = SI->getOperand(0); 1219 1220 // If an argument is zero extended then use argument directly. The ZExt 1221 // may be zapped by an optimization pass in future. 1222 Argument *ExtendedArg = nullptr; 1223 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1224 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1225 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1226 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1227 if (ExtendedArg) { 1228 // If this DII was already describing only a fragment of a variable, ensure 1229 // that fragment is appropriately narrowed here. 1230 // But if a fragment wasn't used, describe the value as the original 1231 // argument (rather than the zext or sext) so that it remains described even 1232 // if the sext/zext is optimized away. This widens the variable description, 1233 // leaving it up to the consumer to know how the smaller value may be 1234 // represented in a larger register. 1235 if (auto Fragment = DIExpr->getFragmentInfo()) { 1236 unsigned FragmentOffset = Fragment->OffsetInBits; 1237 SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(), 1238 DIExpr->elements_end() - 3); 1239 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1240 Ops.push_back(FragmentOffset); 1241 const DataLayout &DL = DII->getModule()->getDataLayout(); 1242 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1243 DIExpr = Builder.createExpression(Ops); 1244 } 1245 DV = ExtendedArg; 1246 } 1247 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1248 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1249 SI); 1250 } 1251 1252 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1253 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1254 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1255 LoadInst *LI, DIBuilder &Builder) { 1256 auto *DIVar = DII->getVariable(); 1257 auto *DIExpr = DII->getExpression(); 1258 assert(DIVar && "Missing variable"); 1259 1260 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1261 return; 1262 1263 // We are now tracking the loaded value instead of the address. In the 1264 // future if multi-location support is added to the IR, it might be 1265 // preferable to keep tracking both the loaded value and the original 1266 // address in case the alloca can not be elided. 1267 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1268 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); 1269 DbgValue->insertAfter(LI); 1270 } 1271 1272 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1273 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1274 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1275 PHINode *APN, DIBuilder &Builder) { 1276 auto *DIVar = DII->getVariable(); 1277 auto *DIExpr = DII->getExpression(); 1278 assert(DIVar && "Missing variable"); 1279 1280 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1281 return; 1282 1283 BasicBlock *BB = APN->getParent(); 1284 auto InsertionPt = BB->getFirstInsertionPt(); 1285 1286 // The block may be a catchswitch block, which does not have a valid 1287 // insertion point. 1288 // FIXME: Insert dbg.value markers in the successors when appropriate. 1289 if (InsertionPt != BB->end()) 1290 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), 1291 &*InsertionPt); 1292 } 1293 1294 /// Determine whether this alloca is either a VLA or an array. 1295 static bool isArray(AllocaInst *AI) { 1296 return AI->isArrayAllocation() || 1297 AI->getType()->getElementType()->isArrayTy(); 1298 } 1299 1300 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1301 /// of llvm.dbg.value intrinsics. 1302 bool llvm::LowerDbgDeclare(Function &F) { 1303 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1304 SmallVector<DbgDeclareInst *, 4> Dbgs; 1305 for (auto &FI : F) 1306 for (Instruction &BI : FI) 1307 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1308 Dbgs.push_back(DDI); 1309 1310 if (Dbgs.empty()) 1311 return false; 1312 1313 for (auto &I : Dbgs) { 1314 DbgDeclareInst *DDI = I; 1315 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1316 // If this is an alloca for a scalar variable, insert a dbg.value 1317 // at each load and store to the alloca and erase the dbg.declare. 1318 // The dbg.values allow tracking a variable even if it is not 1319 // stored on the stack, while the dbg.declare can only describe 1320 // the stack slot (and at a lexical-scope granularity). Later 1321 // passes will attempt to elide the stack slot. 1322 if (AI && !isArray(AI)) { 1323 for (auto &AIUse : AI->uses()) { 1324 User *U = AIUse.getUser(); 1325 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1326 if (AIUse.getOperandNo() == 1) 1327 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1328 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1329 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1330 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1331 // This is a call by-value or some other instruction that 1332 // takes a pointer to the variable. Insert a *value* 1333 // intrinsic that describes the alloca. 1334 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), 1335 DDI->getExpression(), DDI->getDebugLoc(), 1336 CI); 1337 } 1338 } 1339 DDI->eraseFromParent(); 1340 } 1341 } 1342 return true; 1343 } 1344 1345 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1346 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1347 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1348 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1349 if (InsertedPHIs.size() == 0) 1350 return; 1351 1352 // Map existing PHI nodes to their dbg.values. 1353 ValueToValueMapTy DbgValueMap; 1354 for (auto &I : *BB) { 1355 if (auto DbgII = dyn_cast<DbgInfoIntrinsic>(&I)) { 1356 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1357 DbgValueMap.insert({Loc, DbgII}); 1358 } 1359 } 1360 if (DbgValueMap.size() == 0) 1361 return; 1362 1363 // Then iterate through the new PHIs and look to see if they use one of the 1364 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1365 // propagate the info through the new PHI. 1366 LLVMContext &C = BB->getContext(); 1367 for (auto PHI : InsertedPHIs) { 1368 for (auto VI : PHI->operand_values()) { 1369 auto V = DbgValueMap.find(VI); 1370 if (V != DbgValueMap.end()) { 1371 auto *DbgII = cast<DbgInfoIntrinsic>(V->second); 1372 Instruction *NewDbgII = DbgII->clone(); 1373 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1374 NewDbgII->setOperand(0, PhiMAV); 1375 BasicBlock *Parent = PHI->getParent(); 1376 auto InsertionPt = Parent->getFirstInsertionPt(); 1377 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1378 NewDbgII->insertBefore(&*InsertionPt); 1379 } 1380 } 1381 } 1382 } 1383 1384 /// Finds all intrinsics declaring local variables as living in the memory that 1385 /// 'V' points to. This may include a mix of dbg.declare and 1386 /// dbg.addr intrinsics. 1387 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1388 auto *L = LocalAsMetadata::getIfExists(V); 1389 if (!L) 1390 return {}; 1391 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1392 if (!MDV) 1393 return {}; 1394 1395 TinyPtrVector<DbgInfoIntrinsic *> Declares; 1396 for (User *U : MDV->users()) { 1397 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U)) 1398 if (DII->isAddressOfVariable()) 1399 Declares.push_back(DII); 1400 } 1401 1402 return Declares; 1403 } 1404 1405 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1406 if (auto *L = LocalAsMetadata::getIfExists(V)) 1407 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1408 for (User *U : MDV->users()) 1409 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1410 DbgValues.push_back(DVI); 1411 } 1412 1413 void llvm::findDbgUsers(SmallVectorImpl<DbgInfoIntrinsic *> &DbgUsers, 1414 Value *V) { 1415 if (auto *L = LocalAsMetadata::getIfExists(V)) 1416 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1417 for (User *U : MDV->users()) 1418 if (DbgInfoIntrinsic *DII = dyn_cast<DbgInfoIntrinsic>(U)) 1419 DbgUsers.push_back(DII); 1420 } 1421 1422 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1423 Instruction *InsertBefore, DIBuilder &Builder, 1424 bool DerefBefore, int Offset, bool DerefAfter) { 1425 auto DbgAddrs = FindDbgAddrUses(Address); 1426 for (DbgInfoIntrinsic *DII : DbgAddrs) { 1427 DebugLoc Loc = DII->getDebugLoc(); 1428 auto *DIVar = DII->getVariable(); 1429 auto *DIExpr = DII->getExpression(); 1430 assert(DIVar && "Missing variable"); 1431 DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter); 1432 // Insert llvm.dbg.declare immediately after InsertBefore, and remove old 1433 // llvm.dbg.declare. 1434 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1435 if (DII == InsertBefore) 1436 InsertBefore = &*std::next(InsertBefore->getIterator()); 1437 DII->eraseFromParent(); 1438 } 1439 return !DbgAddrs.empty(); 1440 } 1441 1442 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1443 DIBuilder &Builder, bool DerefBefore, 1444 int Offset, bool DerefAfter) { 1445 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1446 DerefBefore, Offset, DerefAfter); 1447 } 1448 1449 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1450 DIBuilder &Builder, int Offset) { 1451 DebugLoc Loc = DVI->getDebugLoc(); 1452 auto *DIVar = DVI->getVariable(); 1453 auto *DIExpr = DVI->getExpression(); 1454 assert(DIVar && "Missing variable"); 1455 1456 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1457 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1458 // it and give up. 1459 if (!DIExpr || DIExpr->getNumElements() < 1 || 1460 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1461 return; 1462 1463 // Insert the offset immediately after the first deref. 1464 // We could just change the offset argument of dbg.value, but it's unsigned... 1465 if (Offset) { 1466 SmallVector<uint64_t, 4> Ops; 1467 Ops.push_back(dwarf::DW_OP_deref); 1468 DIExpression::appendOffset(Ops, Offset); 1469 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1470 DIExpr = Builder.createExpression(Ops); 1471 } 1472 1473 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1474 DVI->eraseFromParent(); 1475 } 1476 1477 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1478 DIBuilder &Builder, int Offset) { 1479 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1480 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1481 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1482 Use &U = *UI++; 1483 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1484 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1485 } 1486 } 1487 1488 void llvm::salvageDebugInfo(Instruction &I) { 1489 SmallVector<DbgInfoIntrinsic *, 1> DbgUsers; 1490 findDbgUsers(DbgUsers, &I); 1491 if (DbgUsers.empty()) 1492 return; 1493 1494 auto &M = *I.getModule(); 1495 1496 auto wrapMD = [&](Value *V) { 1497 return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V)); 1498 }; 1499 1500 auto applyOffset = [&](DbgInfoIntrinsic *DII, uint64_t Offset) { 1501 auto *DIExpr = DII->getExpression(); 1502 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset, 1503 DIExpression::NoDeref, 1504 DIExpression::WithStackValue); 1505 DII->setOperand(0, wrapMD(I.getOperand(0))); 1506 DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1507 DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1508 }; 1509 1510 if (isa<BitCastInst>(&I) || isa<IntToPtrInst>(&I)) { 1511 // Bitcasts are entirely irrelevant for debug info. Rewrite dbg.value, 1512 // dbg.addr, and dbg.declare to use the cast's source. 1513 for (auto *DII : DbgUsers) { 1514 DII->setOperand(0, wrapMD(I.getOperand(0))); 1515 DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1516 } 1517 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1518 unsigned BitWidth = 1519 M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace()); 1520 // Rewrite a constant GEP into a DIExpression. Since we are performing 1521 // arithmetic to compute the variable's *value* in the DIExpression, we 1522 // need to mark the expression with a DW_OP_stack_value. 1523 APInt Offset(BitWidth, 0); 1524 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) 1525 for (auto *DII : DbgUsers) 1526 applyOffset(DII, Offset.getSExtValue()); 1527 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1528 if (BI->getOpcode() == Instruction::Add) 1529 if (auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1))) 1530 if (ConstInt->getBitWidth() <= 64) 1531 for (auto *DII : DbgUsers) 1532 applyOffset(DII, ConstInt->getSExtValue()); 1533 } else if (isa<LoadInst>(&I)) { 1534 MetadataAsValue *AddrMD = wrapMD(I.getOperand(0)); 1535 for (auto *DII : DbgUsers) { 1536 // Rewrite the load into DW_OP_deref. 1537 auto *DIExpr = DII->getExpression(); 1538 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref); 1539 DII->setOperand(0, AddrMD); 1540 DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1541 DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1542 } 1543 } 1544 } 1545 1546 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1547 unsigned NumDeadInst = 0; 1548 // Delete the instructions backwards, as it has a reduced likelihood of 1549 // having to update as many def-use and use-def chains. 1550 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1551 while (EndInst != &BB->front()) { 1552 // Delete the next to last instruction. 1553 Instruction *Inst = &*--EndInst->getIterator(); 1554 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1555 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1556 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1557 EndInst = Inst; 1558 continue; 1559 } 1560 if (!isa<DbgInfoIntrinsic>(Inst)) 1561 ++NumDeadInst; 1562 Inst->eraseFromParent(); 1563 } 1564 return NumDeadInst; 1565 } 1566 1567 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1568 bool PreserveLCSSA, DeferredDominance *DDT) { 1569 BasicBlock *BB = I->getParent(); 1570 std::vector <DominatorTree::UpdateType> Updates; 1571 1572 // Loop over all of the successors, removing BB's entry from any PHI 1573 // nodes. 1574 if (DDT) 1575 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1576 for (BasicBlock *Successor : successors(BB)) { 1577 Successor->removePredecessor(BB, PreserveLCSSA); 1578 if (DDT) 1579 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1580 } 1581 // Insert a call to llvm.trap right before this. This turns the undefined 1582 // behavior into a hard fail instead of falling through into random code. 1583 if (UseLLVMTrap) { 1584 Function *TrapFn = 1585 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1586 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1587 CallTrap->setDebugLoc(I->getDebugLoc()); 1588 } 1589 new UnreachableInst(I->getContext(), I); 1590 1591 // All instructions after this are dead. 1592 unsigned NumInstrsRemoved = 0; 1593 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1594 while (BBI != BBE) { 1595 if (!BBI->use_empty()) 1596 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1597 BB->getInstList().erase(BBI++); 1598 ++NumInstrsRemoved; 1599 } 1600 if (DDT) 1601 DDT->applyUpdates(Updates); 1602 return NumInstrsRemoved; 1603 } 1604 1605 /// changeToCall - Convert the specified invoke into a normal call. 1606 static void changeToCall(InvokeInst *II, DeferredDominance *DDT = nullptr) { 1607 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1608 SmallVector<OperandBundleDef, 1> OpBundles; 1609 II->getOperandBundlesAsDefs(OpBundles); 1610 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1611 "", II); 1612 NewCall->takeName(II); 1613 NewCall->setCallingConv(II->getCallingConv()); 1614 NewCall->setAttributes(II->getAttributes()); 1615 NewCall->setDebugLoc(II->getDebugLoc()); 1616 II->replaceAllUsesWith(NewCall); 1617 1618 // Follow the call by a branch to the normal destination. 1619 BasicBlock *NormalDestBB = II->getNormalDest(); 1620 BranchInst::Create(NormalDestBB, II); 1621 1622 // Update PHI nodes in the unwind destination 1623 BasicBlock *BB = II->getParent(); 1624 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1625 UnwindDestBB->removePredecessor(BB); 1626 II->eraseFromParent(); 1627 if (DDT) 1628 DDT->deleteEdge(BB, UnwindDestBB); 1629 } 1630 1631 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1632 BasicBlock *UnwindEdge) { 1633 BasicBlock *BB = CI->getParent(); 1634 1635 // Convert this function call into an invoke instruction. First, split the 1636 // basic block. 1637 BasicBlock *Split = 1638 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1639 1640 // Delete the unconditional branch inserted by splitBasicBlock 1641 BB->getInstList().pop_back(); 1642 1643 // Create the new invoke instruction. 1644 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1645 SmallVector<OperandBundleDef, 1> OpBundles; 1646 1647 CI->getOperandBundlesAsDefs(OpBundles); 1648 1649 // Note: we're round tripping operand bundles through memory here, and that 1650 // can potentially be avoided with a cleverer API design that we do not have 1651 // as of this time. 1652 1653 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1654 InvokeArgs, OpBundles, CI->getName(), BB); 1655 II->setDebugLoc(CI->getDebugLoc()); 1656 II->setCallingConv(CI->getCallingConv()); 1657 II->setAttributes(CI->getAttributes()); 1658 1659 // Make sure that anything using the call now uses the invoke! This also 1660 // updates the CallGraph if present, because it uses a WeakTrackingVH. 1661 CI->replaceAllUsesWith(II); 1662 1663 // Delete the original call 1664 Split->getInstList().pop_front(); 1665 return Split; 1666 } 1667 1668 static bool markAliveBlocks(Function &F, 1669 SmallPtrSetImpl<BasicBlock*> &Reachable, 1670 DeferredDominance *DDT = nullptr) { 1671 SmallVector<BasicBlock*, 128> Worklist; 1672 BasicBlock *BB = &F.front(); 1673 Worklist.push_back(BB); 1674 Reachable.insert(BB); 1675 bool Changed = false; 1676 do { 1677 BB = Worklist.pop_back_val(); 1678 1679 // Do a quick scan of the basic block, turning any obviously unreachable 1680 // instructions into LLVM unreachable insts. The instruction combining pass 1681 // canonicalizes unreachable insts into stores to null or undef. 1682 for (Instruction &I : *BB) { 1683 // Assumptions that are known to be false are equivalent to unreachable. 1684 // Also, if the condition is undefined, then we make the choice most 1685 // beneficial to the optimizer, and choose that to also be unreachable. 1686 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1687 if (II->getIntrinsicID() == Intrinsic::assume) { 1688 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 1689 // Don't insert a call to llvm.trap right before the unreachable. 1690 changeToUnreachable(II, false, false, DDT); 1691 Changed = true; 1692 break; 1693 } 1694 } 1695 1696 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1697 // A call to the guard intrinsic bails out of the current compilation 1698 // unit if the predicate passed to it is false. If the predicate is a 1699 // constant false, then we know the guard will bail out of the current 1700 // compile unconditionally, so all code following it is dead. 1701 // 1702 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1703 // guards to treat `undef` as `false` since a guard on `undef` can 1704 // still be useful for widening. 1705 if (match(II->getArgOperand(0), m_Zero())) 1706 if (!isa<UnreachableInst>(II->getNextNode())) { 1707 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/false, 1708 false, DDT); 1709 Changed = true; 1710 break; 1711 } 1712 } 1713 } 1714 1715 if (auto *CI = dyn_cast<CallInst>(&I)) { 1716 Value *Callee = CI->getCalledValue(); 1717 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1718 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DDT); 1719 Changed = true; 1720 break; 1721 } 1722 if (CI->doesNotReturn()) { 1723 // If we found a call to a no-return function, insert an unreachable 1724 // instruction after it. Make sure there isn't *already* one there 1725 // though. 1726 if (!isa<UnreachableInst>(CI->getNextNode())) { 1727 // Don't insert a call to llvm.trap right before the unreachable. 1728 changeToUnreachable(CI->getNextNode(), false, false, DDT); 1729 Changed = true; 1730 } 1731 break; 1732 } 1733 } 1734 1735 // Store to undef and store to null are undefined and used to signal that 1736 // they should be changed to unreachable by passes that can't modify the 1737 // CFG. 1738 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1739 // Don't touch volatile stores. 1740 if (SI->isVolatile()) continue; 1741 1742 Value *Ptr = SI->getOperand(1); 1743 1744 if (isa<UndefValue>(Ptr) || 1745 (isa<ConstantPointerNull>(Ptr) && 1746 SI->getPointerAddressSpace() == 0)) { 1747 changeToUnreachable(SI, true, false, DDT); 1748 Changed = true; 1749 break; 1750 } 1751 } 1752 } 1753 1754 TerminatorInst *Terminator = BB->getTerminator(); 1755 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1756 // Turn invokes that call 'nounwind' functions into ordinary calls. 1757 Value *Callee = II->getCalledValue(); 1758 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1759 changeToUnreachable(II, true, false, DDT); 1760 Changed = true; 1761 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1762 if (II->use_empty() && II->onlyReadsMemory()) { 1763 // jump to the normal destination branch. 1764 BasicBlock *NormalDestBB = II->getNormalDest(); 1765 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1766 BranchInst::Create(NormalDestBB, II); 1767 UnwindDestBB->removePredecessor(II->getParent()); 1768 II->eraseFromParent(); 1769 if (DDT) 1770 DDT->deleteEdge(BB, UnwindDestBB); 1771 } else 1772 changeToCall(II, DDT); 1773 Changed = true; 1774 } 1775 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1776 // Remove catchpads which cannot be reached. 1777 struct CatchPadDenseMapInfo { 1778 static CatchPadInst *getEmptyKey() { 1779 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1780 } 1781 1782 static CatchPadInst *getTombstoneKey() { 1783 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1784 } 1785 1786 static unsigned getHashValue(CatchPadInst *CatchPad) { 1787 return static_cast<unsigned>(hash_combine_range( 1788 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1789 } 1790 1791 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1792 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1793 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1794 return LHS == RHS; 1795 return LHS->isIdenticalTo(RHS); 1796 } 1797 }; 1798 1799 // Set of unique CatchPads. 1800 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1801 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1802 HandlerSet; 1803 detail::DenseSetEmpty Empty; 1804 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1805 E = CatchSwitch->handler_end(); 1806 I != E; ++I) { 1807 BasicBlock *HandlerBB = *I; 1808 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1809 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1810 CatchSwitch->removeHandler(I); 1811 --I; 1812 --E; 1813 Changed = true; 1814 } 1815 } 1816 } 1817 1818 Changed |= ConstantFoldTerminator(BB, true, nullptr, DDT); 1819 for (BasicBlock *Successor : successors(BB)) 1820 if (Reachable.insert(Successor).second) 1821 Worklist.push_back(Successor); 1822 } while (!Worklist.empty()); 1823 return Changed; 1824 } 1825 1826 void llvm::removeUnwindEdge(BasicBlock *BB, DeferredDominance *DDT) { 1827 TerminatorInst *TI = BB->getTerminator(); 1828 1829 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1830 changeToCall(II, DDT); 1831 return; 1832 } 1833 1834 TerminatorInst *NewTI; 1835 BasicBlock *UnwindDest; 1836 1837 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1838 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1839 UnwindDest = CRI->getUnwindDest(); 1840 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1841 auto *NewCatchSwitch = CatchSwitchInst::Create( 1842 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1843 CatchSwitch->getName(), CatchSwitch); 1844 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1845 NewCatchSwitch->addHandler(PadBB); 1846 1847 NewTI = NewCatchSwitch; 1848 UnwindDest = CatchSwitch->getUnwindDest(); 1849 } else { 1850 llvm_unreachable("Could not find unwind successor"); 1851 } 1852 1853 NewTI->takeName(TI); 1854 NewTI->setDebugLoc(TI->getDebugLoc()); 1855 UnwindDest->removePredecessor(BB); 1856 TI->replaceAllUsesWith(NewTI); 1857 TI->eraseFromParent(); 1858 if (DDT) 1859 DDT->deleteEdge(BB, UnwindDest); 1860 } 1861 1862 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 1863 /// if they are in a dead cycle. Return true if a change was made, false 1864 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 1865 /// after modifying the CFG. 1866 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI, 1867 DeferredDominance *DDT) { 1868 SmallPtrSet<BasicBlock*, 16> Reachable; 1869 bool Changed = markAliveBlocks(F, Reachable, DDT); 1870 1871 // If there are unreachable blocks in the CFG... 1872 if (Reachable.size() == F.size()) 1873 return Changed; 1874 1875 assert(Reachable.size() < F.size()); 1876 NumRemoved += F.size()-Reachable.size(); 1877 1878 // Loop over all of the basic blocks that are not reachable, dropping all of 1879 // their internal references. Update DDT and LVI if available. 1880 std::vector <DominatorTree::UpdateType> Updates; 1881 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) { 1882 auto *BB = &*I; 1883 if (Reachable.count(BB)) 1884 continue; 1885 for (BasicBlock *Successor : successors(BB)) { 1886 if (Reachable.count(Successor)) 1887 Successor->removePredecessor(BB); 1888 if (DDT) 1889 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1890 } 1891 if (LVI) 1892 LVI->eraseBlock(BB); 1893 BB->dropAllReferences(); 1894 } 1895 1896 for (Function::iterator I = ++F.begin(); I != F.end();) { 1897 auto *BB = &*I; 1898 if (Reachable.count(BB)) { 1899 ++I; 1900 continue; 1901 } 1902 if (DDT) { 1903 DDT->deleteBB(BB); // deferred deletion of BB. 1904 ++I; 1905 } else { 1906 I = F.getBasicBlockList().erase(I); 1907 } 1908 } 1909 1910 if (DDT) 1911 DDT->applyUpdates(Updates); 1912 return true; 1913 } 1914 1915 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1916 ArrayRef<unsigned> KnownIDs) { 1917 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1918 K->dropUnknownNonDebugMetadata(KnownIDs); 1919 K->getAllMetadataOtherThanDebugLoc(Metadata); 1920 for (const auto &MD : Metadata) { 1921 unsigned Kind = MD.first; 1922 MDNode *JMD = J->getMetadata(Kind); 1923 MDNode *KMD = MD.second; 1924 1925 switch (Kind) { 1926 default: 1927 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1928 break; 1929 case LLVMContext::MD_dbg: 1930 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1931 case LLVMContext::MD_tbaa: 1932 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1933 break; 1934 case LLVMContext::MD_alias_scope: 1935 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1936 break; 1937 case LLVMContext::MD_noalias: 1938 case LLVMContext::MD_mem_parallel_loop_access: 1939 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1940 break; 1941 case LLVMContext::MD_range: 1942 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1943 break; 1944 case LLVMContext::MD_fpmath: 1945 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1946 break; 1947 case LLVMContext::MD_invariant_load: 1948 // Only set the !invariant.load if it is present in both instructions. 1949 K->setMetadata(Kind, JMD); 1950 break; 1951 case LLVMContext::MD_nonnull: 1952 // Only set the !nonnull if it is present in both instructions. 1953 K->setMetadata(Kind, JMD); 1954 break; 1955 case LLVMContext::MD_invariant_group: 1956 // Preserve !invariant.group in K. 1957 break; 1958 case LLVMContext::MD_align: 1959 K->setMetadata(Kind, 1960 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1961 break; 1962 case LLVMContext::MD_dereferenceable: 1963 case LLVMContext::MD_dereferenceable_or_null: 1964 K->setMetadata(Kind, 1965 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1966 break; 1967 } 1968 } 1969 // Set !invariant.group from J if J has it. If both instructions have it 1970 // then we will just pick it from J - even when they are different. 1971 // Also make sure that K is load or store - f.e. combining bitcast with load 1972 // could produce bitcast with invariant.group metadata, which is invalid. 1973 // FIXME: we should try to preserve both invariant.group md if they are 1974 // different, but right now instruction can only have one invariant.group. 1975 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1976 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1977 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1978 } 1979 1980 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 1981 unsigned KnownIDs[] = { 1982 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1983 LLVMContext::MD_noalias, LLVMContext::MD_range, 1984 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 1985 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 1986 LLVMContext::MD_dereferenceable, 1987 LLVMContext::MD_dereferenceable_or_null}; 1988 combineMetadata(K, J, KnownIDs); 1989 } 1990 1991 template <typename RootType, typename DominatesFn> 1992 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 1993 const RootType &Root, 1994 const DominatesFn &Dominates) { 1995 assert(From->getType() == To->getType()); 1996 1997 unsigned Count = 0; 1998 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1999 UI != UE;) { 2000 Use &U = *UI++; 2001 if (!Dominates(Root, U)) 2002 continue; 2003 U.set(To); 2004 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 2005 << *To << " in " << *U << "\n"); 2006 ++Count; 2007 } 2008 return Count; 2009 } 2010 2011 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2012 assert(From->getType() == To->getType()); 2013 auto *BB = From->getParent(); 2014 unsigned Count = 0; 2015 2016 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2017 UI != UE;) { 2018 Use &U = *UI++; 2019 auto *I = cast<Instruction>(U.getUser()); 2020 if (I->getParent() == BB) 2021 continue; 2022 U.set(To); 2023 ++Count; 2024 } 2025 return Count; 2026 } 2027 2028 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2029 DominatorTree &DT, 2030 const BasicBlockEdge &Root) { 2031 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2032 return DT.dominates(Root, U); 2033 }; 2034 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2035 } 2036 2037 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2038 DominatorTree &DT, 2039 const BasicBlock *BB) { 2040 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2041 auto *I = cast<Instruction>(U.getUser())->getParent(); 2042 return DT.properlyDominates(BB, I); 2043 }; 2044 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2045 } 2046 2047 bool llvm::callsGCLeafFunction(ImmutableCallSite CS, 2048 const TargetLibraryInfo &TLI) { 2049 // Check if the function is specifically marked as a gc leaf function. 2050 if (CS.hasFnAttr("gc-leaf-function")) 2051 return true; 2052 if (const Function *F = CS.getCalledFunction()) { 2053 if (F->hasFnAttribute("gc-leaf-function")) 2054 return true; 2055 2056 if (auto IID = F->getIntrinsicID()) 2057 // Most LLVM intrinsics do not take safepoints. 2058 return IID != Intrinsic::experimental_gc_statepoint && 2059 IID != Intrinsic::experimental_deoptimize; 2060 } 2061 2062 // Lib calls can be materialized by some passes, and won't be 2063 // marked as 'gc-leaf-function.' All available Libcalls are 2064 // GC-leaf. 2065 LibFunc LF; 2066 if (TLI.getLibFunc(CS, LF)) { 2067 return TLI.has(LF); 2068 } 2069 2070 return false; 2071 } 2072 2073 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2074 LoadInst &NewLI) { 2075 auto *NewTy = NewLI.getType(); 2076 2077 // This only directly applies if the new type is also a pointer. 2078 if (NewTy->isPointerTy()) { 2079 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2080 return; 2081 } 2082 2083 // The only other translation we can do is to integral loads with !range 2084 // metadata. 2085 if (!NewTy->isIntegerTy()) 2086 return; 2087 2088 MDBuilder MDB(NewLI.getContext()); 2089 const Value *Ptr = OldLI.getPointerOperand(); 2090 auto *ITy = cast<IntegerType>(NewTy); 2091 auto *NullInt = ConstantExpr::getPtrToInt( 2092 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2093 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2094 NewLI.setMetadata(LLVMContext::MD_range, 2095 MDB.createRange(NonNullInt, NullInt)); 2096 } 2097 2098 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2099 MDNode *N, LoadInst &NewLI) { 2100 auto *NewTy = NewLI.getType(); 2101 2102 // Give up unless it is converted to a pointer where there is a single very 2103 // valuable mapping we can do reliably. 2104 // FIXME: It would be nice to propagate this in more ways, but the type 2105 // conversions make it hard. 2106 if (!NewTy->isPointerTy()) 2107 return; 2108 2109 unsigned BitWidth = DL.getTypeSizeInBits(NewTy); 2110 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2111 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2112 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2113 } 2114 } 2115 2116 namespace { 2117 2118 /// A potential constituent of a bitreverse or bswap expression. See 2119 /// collectBitParts for a fuller explanation. 2120 struct BitPart { 2121 BitPart(Value *P, unsigned BW) : Provider(P) { 2122 Provenance.resize(BW); 2123 } 2124 2125 /// The Value that this is a bitreverse/bswap of. 2126 Value *Provider; 2127 2128 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2129 /// in Provider becomes bit B in the result of this expression. 2130 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2131 2132 enum { Unset = -1 }; 2133 }; 2134 2135 } // end anonymous namespace 2136 2137 /// Analyze the specified subexpression and see if it is capable of providing 2138 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2139 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2140 /// the output of the expression came from a corresponding bit in some other 2141 /// value. This function is recursive, and the end result is a mapping of 2142 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2143 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2144 /// 2145 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2146 /// that the expression deposits the low byte of %X into the high byte of the 2147 /// result and that all other bits are zero. This expression is accepted and a 2148 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2149 /// [0-7]. 2150 /// 2151 /// To avoid revisiting values, the BitPart results are memoized into the 2152 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2153 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2154 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2155 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2156 /// type instead to provide the same functionality. 2157 /// 2158 /// Because we pass around references into \c BPS, we must use a container that 2159 /// does not invalidate internal references (std::map instead of DenseMap). 2160 static const Optional<BitPart> & 2161 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2162 std::map<Value *, Optional<BitPart>> &BPS) { 2163 auto I = BPS.find(V); 2164 if (I != BPS.end()) 2165 return I->second; 2166 2167 auto &Result = BPS[V] = None; 2168 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2169 2170 if (Instruction *I = dyn_cast<Instruction>(V)) { 2171 // If this is an or instruction, it may be an inner node of the bswap. 2172 if (I->getOpcode() == Instruction::Or) { 2173 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2174 MatchBitReversals, BPS); 2175 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2176 MatchBitReversals, BPS); 2177 if (!A || !B) 2178 return Result; 2179 2180 // Try and merge the two together. 2181 if (!A->Provider || A->Provider != B->Provider) 2182 return Result; 2183 2184 Result = BitPart(A->Provider, BitWidth); 2185 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2186 if (A->Provenance[i] != BitPart::Unset && 2187 B->Provenance[i] != BitPart::Unset && 2188 A->Provenance[i] != B->Provenance[i]) 2189 return Result = None; 2190 2191 if (A->Provenance[i] == BitPart::Unset) 2192 Result->Provenance[i] = B->Provenance[i]; 2193 else 2194 Result->Provenance[i] = A->Provenance[i]; 2195 } 2196 2197 return Result; 2198 } 2199 2200 // If this is a logical shift by a constant, recurse then shift the result. 2201 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2202 unsigned BitShift = 2203 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2204 // Ensure the shift amount is defined. 2205 if (BitShift > BitWidth) 2206 return Result; 2207 2208 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2209 MatchBitReversals, BPS); 2210 if (!Res) 2211 return Result; 2212 Result = Res; 2213 2214 // Perform the "shift" on BitProvenance. 2215 auto &P = Result->Provenance; 2216 if (I->getOpcode() == Instruction::Shl) { 2217 P.erase(std::prev(P.end(), BitShift), P.end()); 2218 P.insert(P.begin(), BitShift, BitPart::Unset); 2219 } else { 2220 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2221 P.insert(P.end(), BitShift, BitPart::Unset); 2222 } 2223 2224 return Result; 2225 } 2226 2227 // If this is a logical 'and' with a mask that clears bits, recurse then 2228 // unset the appropriate bits. 2229 if (I->getOpcode() == Instruction::And && 2230 isa<ConstantInt>(I->getOperand(1))) { 2231 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2232 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2233 2234 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2235 // early exit. 2236 unsigned NumMaskedBits = AndMask.countPopulation(); 2237 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2238 return Result; 2239 2240 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2241 MatchBitReversals, BPS); 2242 if (!Res) 2243 return Result; 2244 Result = Res; 2245 2246 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2247 // If the AndMask is zero for this bit, clear the bit. 2248 if ((AndMask & Bit) == 0) 2249 Result->Provenance[i] = BitPart::Unset; 2250 return Result; 2251 } 2252 2253 // If this is a zext instruction zero extend the result. 2254 if (I->getOpcode() == Instruction::ZExt) { 2255 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2256 MatchBitReversals, BPS); 2257 if (!Res) 2258 return Result; 2259 2260 Result = BitPart(Res->Provider, BitWidth); 2261 auto NarrowBitWidth = 2262 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2263 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2264 Result->Provenance[i] = Res->Provenance[i]; 2265 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2266 Result->Provenance[i] = BitPart::Unset; 2267 return Result; 2268 } 2269 } 2270 2271 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2272 // the input value to the bswap/bitreverse. 2273 Result = BitPart(V, BitWidth); 2274 for (unsigned i = 0; i < BitWidth; ++i) 2275 Result->Provenance[i] = i; 2276 return Result; 2277 } 2278 2279 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2280 unsigned BitWidth) { 2281 if (From % 8 != To % 8) 2282 return false; 2283 // Convert from bit indices to byte indices and check for a byte reversal. 2284 From >>= 3; 2285 To >>= 3; 2286 BitWidth >>= 3; 2287 return From == BitWidth - To - 1; 2288 } 2289 2290 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2291 unsigned BitWidth) { 2292 return From == BitWidth - To - 1; 2293 } 2294 2295 bool llvm::recognizeBSwapOrBitReverseIdiom( 2296 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2297 SmallVectorImpl<Instruction *> &InsertedInsts) { 2298 if (Operator::getOpcode(I) != Instruction::Or) 2299 return false; 2300 if (!MatchBSwaps && !MatchBitReversals) 2301 return false; 2302 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2303 if (!ITy || ITy->getBitWidth() > 128) 2304 return false; // Can't do vectors or integers > 128 bits. 2305 unsigned BW = ITy->getBitWidth(); 2306 2307 unsigned DemandedBW = BW; 2308 IntegerType *DemandedTy = ITy; 2309 if (I->hasOneUse()) { 2310 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2311 DemandedTy = cast<IntegerType>(Trunc->getType()); 2312 DemandedBW = DemandedTy->getBitWidth(); 2313 } 2314 } 2315 2316 // Try to find all the pieces corresponding to the bswap. 2317 std::map<Value *, Optional<BitPart>> BPS; 2318 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2319 if (!Res) 2320 return false; 2321 auto &BitProvenance = Res->Provenance; 2322 2323 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2324 // only byteswap values with an even number of bytes. 2325 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2326 for (unsigned i = 0; i < DemandedBW; ++i) { 2327 OKForBSwap &= 2328 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2329 OKForBitReverse &= 2330 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2331 } 2332 2333 Intrinsic::ID Intrin; 2334 if (OKForBSwap && MatchBSwaps) 2335 Intrin = Intrinsic::bswap; 2336 else if (OKForBitReverse && MatchBitReversals) 2337 Intrin = Intrinsic::bitreverse; 2338 else 2339 return false; 2340 2341 if (ITy != DemandedTy) { 2342 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2343 Value *Provider = Res->Provider; 2344 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2345 // We may need to truncate the provider. 2346 if (DemandedTy != ProviderTy) { 2347 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2348 "trunc", I); 2349 InsertedInsts.push_back(Trunc); 2350 Provider = Trunc; 2351 } 2352 auto *CI = CallInst::Create(F, Provider, "rev", I); 2353 InsertedInsts.push_back(CI); 2354 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2355 InsertedInsts.push_back(ExtInst); 2356 return true; 2357 } 2358 2359 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2360 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2361 return true; 2362 } 2363 2364 // CodeGen has special handling for some string functions that may replace 2365 // them with target-specific intrinsics. Since that'd skip our interceptors 2366 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2367 // we mark affected calls as NoBuiltin, which will disable optimization 2368 // in CodeGen. 2369 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2370 CallInst *CI, const TargetLibraryInfo *TLI) { 2371 Function *F = CI->getCalledFunction(); 2372 LibFunc Func; 2373 if (F && !F->hasLocalLinkage() && F->hasName() && 2374 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2375 !F->doesNotAccessMemory()) 2376 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2377 } 2378 2379 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2380 // We can't have a PHI with a metadata type. 2381 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2382 return false; 2383 2384 // Early exit. 2385 if (!isa<Constant>(I->getOperand(OpIdx))) 2386 return true; 2387 2388 switch (I->getOpcode()) { 2389 default: 2390 return true; 2391 case Instruction::Call: 2392 case Instruction::Invoke: 2393 // Can't handle inline asm. Skip it. 2394 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2395 return false; 2396 // Many arithmetic intrinsics have no issue taking a 2397 // variable, however it's hard to distingish these from 2398 // specials such as @llvm.frameaddress that require a constant. 2399 if (isa<IntrinsicInst>(I)) 2400 return false; 2401 2402 // Constant bundle operands may need to retain their constant-ness for 2403 // correctness. 2404 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2405 return false; 2406 return true; 2407 case Instruction::ShuffleVector: 2408 // Shufflevector masks are constant. 2409 return OpIdx != 2; 2410 case Instruction::Switch: 2411 case Instruction::ExtractValue: 2412 // All operands apart from the first are constant. 2413 return OpIdx == 0; 2414 case Instruction::InsertValue: 2415 // All operands apart from the first and the second are constant. 2416 return OpIdx < 2; 2417 case Instruction::Alloca: 2418 // Static allocas (constant size in the entry block) are handled by 2419 // prologue/epilogue insertion so they're free anyway. We definitely don't 2420 // want to make them non-constant. 2421 return !dyn_cast<AllocaInst>(I)->isStaticAlloca(); 2422 case Instruction::GetElementPtr: 2423 if (OpIdx == 0) 2424 return true; 2425 gep_type_iterator It = gep_type_begin(I); 2426 for (auto E = std::next(It, OpIdx); It != E; ++It) 2427 if (It.isStruct()) 2428 return false; 2429 return true; 2430 } 2431 } 2432