1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/MemoryBuiltins.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/IR/Argument.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/CFG.h"
42 #include "llvm/IR/CallSite.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/ConstantRange.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DIBuilder.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/DomTreeUpdater.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <utility>
86 
87 using namespace llvm;
88 using namespace llvm::PatternMatch;
89 
90 #define DEBUG_TYPE "local"
91 
92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
93 
94 //===----------------------------------------------------------------------===//
95 //  Local constant propagation.
96 //
97 
98 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
99 /// constant value, convert it into an unconditional branch to the constant
100 /// destination.  This is a nontrivial operation because the successors of this
101 /// basic block must have their PHI nodes updated.
102 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
103 /// conditions and indirectbr addresses this might make dead if
104 /// DeleteDeadConditions is true.
105 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
106                                   const TargetLibraryInfo *TLI,
107                                   DomTreeUpdater *DTU) {
108   Instruction *T = BB->getTerminator();
109   IRBuilder<> Builder(T);
110 
111   // Branch - See if we are conditional jumping on constant
112   if (auto *BI = dyn_cast<BranchInst>(T)) {
113     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
114     BasicBlock *Dest1 = BI->getSuccessor(0);
115     BasicBlock *Dest2 = BI->getSuccessor(1);
116 
117     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
118       // Are we branching on constant?
119       // YES.  Change to unconditional branch...
120       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
121       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
122 
123       // Let the basic block know that we are letting go of it.  Based on this,
124       // it will adjust it's PHI nodes.
125       OldDest->removePredecessor(BB);
126 
127       // Replace the conditional branch with an unconditional one.
128       Builder.CreateBr(Destination);
129       BI->eraseFromParent();
130       if (DTU)
131         DTU->deleteEdgeRelaxed(BB, OldDest);
132       return true;
133     }
134 
135     if (Dest2 == Dest1) {       // Conditional branch to same location?
136       // This branch matches something like this:
137       //     br bool %cond, label %Dest, label %Dest
138       // and changes it into:  br label %Dest
139 
140       // Let the basic block know that we are letting go of one copy of it.
141       assert(BI->getParent() && "Terminator not inserted in block!");
142       Dest1->removePredecessor(BI->getParent());
143 
144       // Replace the conditional branch with an unconditional one.
145       Builder.CreateBr(Dest1);
146       Value *Cond = BI->getCondition();
147       BI->eraseFromParent();
148       if (DeleteDeadConditions)
149         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
150       return true;
151     }
152     return false;
153   }
154 
155   if (auto *SI = dyn_cast<SwitchInst>(T)) {
156     // If we are switching on a constant, we can convert the switch to an
157     // unconditional branch.
158     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
159     BasicBlock *DefaultDest = SI->getDefaultDest();
160     BasicBlock *TheOnlyDest = DefaultDest;
161 
162     // If the default is unreachable, ignore it when searching for TheOnlyDest.
163     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
164         SI->getNumCases() > 0) {
165       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
166     }
167 
168     // Figure out which case it goes to.
169     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
170       // Found case matching a constant operand?
171       if (i->getCaseValue() == CI) {
172         TheOnlyDest = i->getCaseSuccessor();
173         break;
174       }
175 
176       // Check to see if this branch is going to the same place as the default
177       // dest.  If so, eliminate it as an explicit compare.
178       if (i->getCaseSuccessor() == DefaultDest) {
179         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
180         unsigned NCases = SI->getNumCases();
181         // Fold the case metadata into the default if there will be any branches
182         // left, unless the metadata doesn't match the switch.
183         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
184           // Collect branch weights into a vector.
185           SmallVector<uint32_t, 8> Weights;
186           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
187                ++MD_i) {
188             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
189             Weights.push_back(CI->getValue().getZExtValue());
190           }
191           // Merge weight of this case to the default weight.
192           unsigned idx = i->getCaseIndex();
193           Weights[0] += Weights[idx+1];
194           // Remove weight for this case.
195           std::swap(Weights[idx+1], Weights.back());
196           Weights.pop_back();
197           SI->setMetadata(LLVMContext::MD_prof,
198                           MDBuilder(BB->getContext()).
199                           createBranchWeights(Weights));
200         }
201         // Remove this entry.
202         BasicBlock *ParentBB = SI->getParent();
203         DefaultDest->removePredecessor(ParentBB);
204         i = SI->removeCase(i);
205         e = SI->case_end();
206         if (DTU)
207           DTU->deleteEdgeRelaxed(ParentBB, DefaultDest);
208         continue;
209       }
210 
211       // Otherwise, check to see if the switch only branches to one destination.
212       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
213       // destinations.
214       if (i->getCaseSuccessor() != TheOnlyDest)
215         TheOnlyDest = nullptr;
216 
217       // Increment this iterator as we haven't removed the case.
218       ++i;
219     }
220 
221     if (CI && !TheOnlyDest) {
222       // Branching on a constant, but not any of the cases, go to the default
223       // successor.
224       TheOnlyDest = SI->getDefaultDest();
225     }
226 
227     // If we found a single destination that we can fold the switch into, do so
228     // now.
229     if (TheOnlyDest) {
230       // Insert the new branch.
231       Builder.CreateBr(TheOnlyDest);
232       BasicBlock *BB = SI->getParent();
233       std::vector <DominatorTree::UpdateType> Updates;
234       if (DTU)
235         Updates.reserve(SI->getNumSuccessors() - 1);
236 
237       // Remove entries from PHI nodes which we no longer branch to...
238       for (BasicBlock *Succ : successors(SI)) {
239         // Found case matching a constant operand?
240         if (Succ == TheOnlyDest) {
241           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
242         } else {
243           Succ->removePredecessor(BB);
244           if (DTU)
245             Updates.push_back({DominatorTree::Delete, BB, Succ});
246         }
247       }
248 
249       // Delete the old switch.
250       Value *Cond = SI->getCondition();
251       SI->eraseFromParent();
252       if (DeleteDeadConditions)
253         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
254       if (DTU)
255         DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
256       return true;
257     }
258 
259     if (SI->getNumCases() == 1) {
260       // Otherwise, we can fold this switch into a conditional branch
261       // instruction if it has only one non-default destination.
262       auto FirstCase = *SI->case_begin();
263       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
264           FirstCase.getCaseValue(), "cond");
265 
266       // Insert the new branch.
267       BranchInst *NewBr = Builder.CreateCondBr(Cond,
268                                                FirstCase.getCaseSuccessor(),
269                                                SI->getDefaultDest());
270       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
271       if (MD && MD->getNumOperands() == 3) {
272         ConstantInt *SICase =
273             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
274         ConstantInt *SIDef =
275             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
276         assert(SICase && SIDef);
277         // The TrueWeight should be the weight for the single case of SI.
278         NewBr->setMetadata(LLVMContext::MD_prof,
279                         MDBuilder(BB->getContext()).
280                         createBranchWeights(SICase->getValue().getZExtValue(),
281                                             SIDef->getValue().getZExtValue()));
282       }
283 
284       // Update make.implicit metadata to the newly-created conditional branch.
285       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
286       if (MakeImplicitMD)
287         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
288 
289       // Delete the old switch.
290       SI->eraseFromParent();
291       return true;
292     }
293     return false;
294   }
295 
296   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
297     // indirectbr blockaddress(@F, @BB) -> br label @BB
298     if (auto *BA =
299           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
300       BasicBlock *TheOnlyDest = BA->getBasicBlock();
301       std::vector <DominatorTree::UpdateType> Updates;
302       if (DTU)
303         Updates.reserve(IBI->getNumDestinations() - 1);
304 
305       // Insert the new branch.
306       Builder.CreateBr(TheOnlyDest);
307 
308       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
309         if (IBI->getDestination(i) == TheOnlyDest) {
310           TheOnlyDest = nullptr;
311         } else {
312           BasicBlock *ParentBB = IBI->getParent();
313           BasicBlock *DestBB = IBI->getDestination(i);
314           DestBB->removePredecessor(ParentBB);
315           if (DTU)
316             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
317         }
318       }
319       Value *Address = IBI->getAddress();
320       IBI->eraseFromParent();
321       if (DeleteDeadConditions)
322         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
323 
324       // If we didn't find our destination in the IBI successor list, then we
325       // have undefined behavior.  Replace the unconditional branch with an
326       // 'unreachable' instruction.
327       if (TheOnlyDest) {
328         BB->getTerminator()->eraseFromParent();
329         new UnreachableInst(BB->getContext(), BB);
330       }
331 
332       if (DTU)
333         DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
334       return true;
335     }
336   }
337 
338   return false;
339 }
340 
341 //===----------------------------------------------------------------------===//
342 //  Local dead code elimination.
343 //
344 
345 /// isInstructionTriviallyDead - Return true if the result produced by the
346 /// instruction is not used, and the instruction has no side effects.
347 ///
348 bool llvm::isInstructionTriviallyDead(Instruction *I,
349                                       const TargetLibraryInfo *TLI) {
350   if (!I->use_empty())
351     return false;
352   return wouldInstructionBeTriviallyDead(I, TLI);
353 }
354 
355 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
356                                            const TargetLibraryInfo *TLI) {
357   if (I->isTerminator())
358     return false;
359 
360   // We don't want the landingpad-like instructions removed by anything this
361   // general.
362   if (I->isEHPad())
363     return false;
364 
365   // We don't want debug info removed by anything this general, unless
366   // debug info is empty.
367   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
368     if (DDI->getAddress())
369       return false;
370     return true;
371   }
372   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
373     if (DVI->getValue())
374       return false;
375     return true;
376   }
377   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
378     if (DLI->getLabel())
379       return false;
380     return true;
381   }
382 
383   if (!I->mayHaveSideEffects())
384     return true;
385 
386   // Special case intrinsics that "may have side effects" but can be deleted
387   // when dead.
388   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
389     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
390     if (II->getIntrinsicID() == Intrinsic::stacksave ||
391         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
392       return true;
393 
394     // Lifetime intrinsics are dead when their right-hand is undef.
395     if (II->isLifetimeStartOrEnd())
396       return isa<UndefValue>(II->getArgOperand(1));
397 
398     // Assumptions are dead if their condition is trivially true.  Guards on
399     // true are operationally no-ops.  In the future we can consider more
400     // sophisticated tradeoffs for guards considering potential for check
401     // widening, but for now we keep things simple.
402     if (II->getIntrinsicID() == Intrinsic::assume ||
403         II->getIntrinsicID() == Intrinsic::experimental_guard) {
404       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
405         return !Cond->isZero();
406 
407       return false;
408     }
409   }
410 
411   if (isAllocLikeFn(I, TLI))
412     return true;
413 
414   if (CallInst *CI = isFreeCall(I, TLI))
415     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
416       return C->isNullValue() || isa<UndefValue>(C);
417 
418   if (CallSite CS = CallSite(I))
419     if (isMathLibCallNoop(CS, TLI))
420       return true;
421 
422   return false;
423 }
424 
425 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
426 /// trivially dead instruction, delete it.  If that makes any of its operands
427 /// trivially dead, delete them too, recursively.  Return true if any
428 /// instructions were deleted.
429 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
430     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
431   Instruction *I = dyn_cast<Instruction>(V);
432   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
433     return false;
434 
435   SmallVector<Instruction*, 16> DeadInsts;
436   DeadInsts.push_back(I);
437   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
438 
439   return true;
440 }
441 
442 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
443     SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI,
444     MemorySSAUpdater *MSSAU) {
445   // Process the dead instruction list until empty.
446   while (!DeadInsts.empty()) {
447     Instruction &I = *DeadInsts.pop_back_val();
448     assert(I.use_empty() && "Instructions with uses are not dead.");
449     assert(isInstructionTriviallyDead(&I, TLI) &&
450            "Live instruction found in dead worklist!");
451 
452     // Don't lose the debug info while deleting the instructions.
453     salvageDebugInfo(I);
454 
455     // Null out all of the instruction's operands to see if any operand becomes
456     // dead as we go.
457     for (Use &OpU : I.operands()) {
458       Value *OpV = OpU.get();
459       OpU.set(nullptr);
460 
461       if (!OpV->use_empty())
462         continue;
463 
464       // If the operand is an instruction that became dead as we nulled out the
465       // operand, and if it is 'trivially' dead, delete it in a future loop
466       // iteration.
467       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
468         if (isInstructionTriviallyDead(OpI, TLI))
469           DeadInsts.push_back(OpI);
470     }
471     if (MSSAU)
472       MSSAU->removeMemoryAccess(&I);
473 
474     I.eraseFromParent();
475   }
476 }
477 
478 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
479   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
480   findDbgUsers(DbgUsers, I);
481   for (auto *DII : DbgUsers) {
482     Value *Undef = UndefValue::get(I->getType());
483     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
484                                             ValueAsMetadata::get(Undef)));
485   }
486   return !DbgUsers.empty();
487 }
488 
489 /// areAllUsesEqual - Check whether the uses of a value are all the same.
490 /// This is similar to Instruction::hasOneUse() except this will also return
491 /// true when there are no uses or multiple uses that all refer to the same
492 /// value.
493 static bool areAllUsesEqual(Instruction *I) {
494   Value::user_iterator UI = I->user_begin();
495   Value::user_iterator UE = I->user_end();
496   if (UI == UE)
497     return true;
498 
499   User *TheUse = *UI;
500   for (++UI; UI != UE; ++UI) {
501     if (*UI != TheUse)
502       return false;
503   }
504   return true;
505 }
506 
507 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
508 /// dead PHI node, due to being a def-use chain of single-use nodes that
509 /// either forms a cycle or is terminated by a trivially dead instruction,
510 /// delete it.  If that makes any of its operands trivially dead, delete them
511 /// too, recursively.  Return true if a change was made.
512 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
513                                         const TargetLibraryInfo *TLI) {
514   SmallPtrSet<Instruction*, 4> Visited;
515   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
516        I = cast<Instruction>(*I->user_begin())) {
517     if (I->use_empty())
518       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
519 
520     // If we find an instruction more than once, we're on a cycle that
521     // won't prove fruitful.
522     if (!Visited.insert(I).second) {
523       // Break the cycle and delete the instruction and its operands.
524       I->replaceAllUsesWith(UndefValue::get(I->getType()));
525       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
526       return true;
527     }
528   }
529   return false;
530 }
531 
532 static bool
533 simplifyAndDCEInstruction(Instruction *I,
534                           SmallSetVector<Instruction *, 16> &WorkList,
535                           const DataLayout &DL,
536                           const TargetLibraryInfo *TLI) {
537   if (isInstructionTriviallyDead(I, TLI)) {
538     salvageDebugInfo(*I);
539 
540     // Null out all of the instruction's operands to see if any operand becomes
541     // dead as we go.
542     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
543       Value *OpV = I->getOperand(i);
544       I->setOperand(i, nullptr);
545 
546       if (!OpV->use_empty() || I == OpV)
547         continue;
548 
549       // If the operand is an instruction that became dead as we nulled out the
550       // operand, and if it is 'trivially' dead, delete it in a future loop
551       // iteration.
552       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
553         if (isInstructionTriviallyDead(OpI, TLI))
554           WorkList.insert(OpI);
555     }
556 
557     I->eraseFromParent();
558 
559     return true;
560   }
561 
562   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
563     // Add the users to the worklist. CAREFUL: an instruction can use itself,
564     // in the case of a phi node.
565     for (User *U : I->users()) {
566       if (U != I) {
567         WorkList.insert(cast<Instruction>(U));
568       }
569     }
570 
571     // Replace the instruction with its simplified value.
572     bool Changed = false;
573     if (!I->use_empty()) {
574       I->replaceAllUsesWith(SimpleV);
575       Changed = true;
576     }
577     if (isInstructionTriviallyDead(I, TLI)) {
578       I->eraseFromParent();
579       Changed = true;
580     }
581     return Changed;
582   }
583   return false;
584 }
585 
586 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
587 /// simplify any instructions in it and recursively delete dead instructions.
588 ///
589 /// This returns true if it changed the code, note that it can delete
590 /// instructions in other blocks as well in this block.
591 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
592                                        const TargetLibraryInfo *TLI) {
593   bool MadeChange = false;
594   const DataLayout &DL = BB->getModule()->getDataLayout();
595 
596 #ifndef NDEBUG
597   // In debug builds, ensure that the terminator of the block is never replaced
598   // or deleted by these simplifications. The idea of simplification is that it
599   // cannot introduce new instructions, and there is no way to replace the
600   // terminator of a block without introducing a new instruction.
601   AssertingVH<Instruction> TerminatorVH(&BB->back());
602 #endif
603 
604   SmallSetVector<Instruction *, 16> WorkList;
605   // Iterate over the original function, only adding insts to the worklist
606   // if they actually need to be revisited. This avoids having to pre-init
607   // the worklist with the entire function's worth of instructions.
608   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
609        BI != E;) {
610     assert(!BI->isTerminator());
611     Instruction *I = &*BI;
612     ++BI;
613 
614     // We're visiting this instruction now, so make sure it's not in the
615     // worklist from an earlier visit.
616     if (!WorkList.count(I))
617       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
618   }
619 
620   while (!WorkList.empty()) {
621     Instruction *I = WorkList.pop_back_val();
622     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
623   }
624   return MadeChange;
625 }
626 
627 //===----------------------------------------------------------------------===//
628 //  Control Flow Graph Restructuring.
629 //
630 
631 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
632 /// method is called when we're about to delete Pred as a predecessor of BB.  If
633 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
634 ///
635 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
636 /// nodes that collapse into identity values.  For example, if we have:
637 ///   x = phi(1, 0, 0, 0)
638 ///   y = and x, z
639 ///
640 /// .. and delete the predecessor corresponding to the '1', this will attempt to
641 /// recursively fold the and to 0.
642 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
643                                         DomTreeUpdater *DTU) {
644   // This only adjusts blocks with PHI nodes.
645   if (!isa<PHINode>(BB->begin()))
646     return;
647 
648   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
649   // them down.  This will leave us with single entry phi nodes and other phis
650   // that can be removed.
651   BB->removePredecessor(Pred, true);
652 
653   WeakTrackingVH PhiIt = &BB->front();
654   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
655     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
656     Value *OldPhiIt = PhiIt;
657 
658     if (!recursivelySimplifyInstruction(PN))
659       continue;
660 
661     // If recursive simplification ended up deleting the next PHI node we would
662     // iterate to, then our iterator is invalid, restart scanning from the top
663     // of the block.
664     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
665   }
666   if (DTU)
667     DTU->deleteEdgeRelaxed(Pred, BB);
668 }
669 
670 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
671 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
672 /// between them, moving the instructions in the predecessor into DestBB and
673 /// deleting the predecessor block.
674 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
675                                        DomTreeUpdater *DTU) {
676 
677   // If BB has single-entry PHI nodes, fold them.
678   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
679     Value *NewVal = PN->getIncomingValue(0);
680     // Replace self referencing PHI with undef, it must be dead.
681     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
682     PN->replaceAllUsesWith(NewVal);
683     PN->eraseFromParent();
684   }
685 
686   BasicBlock *PredBB = DestBB->getSinglePredecessor();
687   assert(PredBB && "Block doesn't have a single predecessor!");
688 
689   bool ReplaceEntryBB = false;
690   if (PredBB == &DestBB->getParent()->getEntryBlock())
691     ReplaceEntryBB = true;
692 
693   // DTU updates: Collect all the edges that enter
694   // PredBB. These dominator edges will be redirected to DestBB.
695   SmallVector<DominatorTree::UpdateType, 32> Updates;
696 
697   if (DTU) {
698     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
699     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
700       Updates.push_back({DominatorTree::Delete, *I, PredBB});
701       // This predecessor of PredBB may already have DestBB as a successor.
702       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
703         Updates.push_back({DominatorTree::Insert, *I, DestBB});
704     }
705   }
706 
707   // Zap anything that took the address of DestBB.  Not doing this will give the
708   // address an invalid value.
709   if (DestBB->hasAddressTaken()) {
710     BlockAddress *BA = BlockAddress::get(DestBB);
711     Constant *Replacement =
712       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
713     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
714                                                      BA->getType()));
715     BA->destroyConstant();
716   }
717 
718   // Anything that branched to PredBB now branches to DestBB.
719   PredBB->replaceAllUsesWith(DestBB);
720 
721   // Splice all the instructions from PredBB to DestBB.
722   PredBB->getTerminator()->eraseFromParent();
723   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
724   new UnreachableInst(PredBB->getContext(), PredBB);
725 
726   // If the PredBB is the entry block of the function, move DestBB up to
727   // become the entry block after we erase PredBB.
728   if (ReplaceEntryBB)
729     DestBB->moveAfter(PredBB);
730 
731   if (DTU) {
732     assert(PredBB->getInstList().size() == 1 &&
733            isa<UnreachableInst>(PredBB->getTerminator()) &&
734            "The successor list of PredBB isn't empty before "
735            "applying corresponding DTU updates.");
736     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
737     DTU->deleteBB(PredBB);
738     // Recalculation of DomTree is needed when updating a forward DomTree and
739     // the Entry BB is replaced.
740     if (ReplaceEntryBB && DTU->hasDomTree()) {
741       // The entry block was removed and there is no external interface for
742       // the dominator tree to be notified of this change. In this corner-case
743       // we recalculate the entire tree.
744       DTU->recalculate(*(DestBB->getParent()));
745     }
746   }
747 
748   else {
749     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
750   }
751 }
752 
753 /// CanMergeValues - Return true if we can choose one of these values to use
754 /// in place of the other. Note that we will always choose the non-undef
755 /// value to keep.
756 static bool CanMergeValues(Value *First, Value *Second) {
757   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
758 }
759 
760 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
761 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
762 ///
763 /// Assumption: Succ is the single successor for BB.
764 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
765   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
766 
767   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
768                     << Succ->getName() << "\n");
769   // Shortcut, if there is only a single predecessor it must be BB and merging
770   // is always safe
771   if (Succ->getSinglePredecessor()) return true;
772 
773   // Make a list of the predecessors of BB
774   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
775 
776   // Look at all the phi nodes in Succ, to see if they present a conflict when
777   // merging these blocks
778   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
779     PHINode *PN = cast<PHINode>(I);
780 
781     // If the incoming value from BB is again a PHINode in
782     // BB which has the same incoming value for *PI as PN does, we can
783     // merge the phi nodes and then the blocks can still be merged
784     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
785     if (BBPN && BBPN->getParent() == BB) {
786       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
787         BasicBlock *IBB = PN->getIncomingBlock(PI);
788         if (BBPreds.count(IBB) &&
789             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
790                             PN->getIncomingValue(PI))) {
791           LLVM_DEBUG(dbgs()
792                      << "Can't fold, phi node " << PN->getName() << " in "
793                      << Succ->getName() << " is conflicting with "
794                      << BBPN->getName() << " with regard to common predecessor "
795                      << IBB->getName() << "\n");
796           return false;
797         }
798       }
799     } else {
800       Value* Val = PN->getIncomingValueForBlock(BB);
801       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
802         // See if the incoming value for the common predecessor is equal to the
803         // one for BB, in which case this phi node will not prevent the merging
804         // of the block.
805         BasicBlock *IBB = PN->getIncomingBlock(PI);
806         if (BBPreds.count(IBB) &&
807             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
808           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
809                             << " in " << Succ->getName()
810                             << " is conflicting with regard to common "
811                             << "predecessor " << IBB->getName() << "\n");
812           return false;
813         }
814       }
815     }
816   }
817 
818   return true;
819 }
820 
821 using PredBlockVector = SmallVector<BasicBlock *, 16>;
822 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
823 
824 /// Determines the value to use as the phi node input for a block.
825 ///
826 /// Select between \p OldVal any value that we know flows from \p BB
827 /// to a particular phi on the basis of which one (if either) is not
828 /// undef. Update IncomingValues based on the selected value.
829 ///
830 /// \param OldVal The value we are considering selecting.
831 /// \param BB The block that the value flows in from.
832 /// \param IncomingValues A map from block-to-value for other phi inputs
833 /// that we have examined.
834 ///
835 /// \returns the selected value.
836 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
837                                           IncomingValueMap &IncomingValues) {
838   if (!isa<UndefValue>(OldVal)) {
839     assert((!IncomingValues.count(BB) ||
840             IncomingValues.find(BB)->second == OldVal) &&
841            "Expected OldVal to match incoming value from BB!");
842 
843     IncomingValues.insert(std::make_pair(BB, OldVal));
844     return OldVal;
845   }
846 
847   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
848   if (It != IncomingValues.end()) return It->second;
849 
850   return OldVal;
851 }
852 
853 /// Create a map from block to value for the operands of a
854 /// given phi.
855 ///
856 /// Create a map from block to value for each non-undef value flowing
857 /// into \p PN.
858 ///
859 /// \param PN The phi we are collecting the map for.
860 /// \param IncomingValues [out] The map from block to value for this phi.
861 static void gatherIncomingValuesToPhi(PHINode *PN,
862                                       IncomingValueMap &IncomingValues) {
863   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
864     BasicBlock *BB = PN->getIncomingBlock(i);
865     Value *V = PN->getIncomingValue(i);
866 
867     if (!isa<UndefValue>(V))
868       IncomingValues.insert(std::make_pair(BB, V));
869   }
870 }
871 
872 /// Replace the incoming undef values to a phi with the values
873 /// from a block-to-value map.
874 ///
875 /// \param PN The phi we are replacing the undefs in.
876 /// \param IncomingValues A map from block to value.
877 static void replaceUndefValuesInPhi(PHINode *PN,
878                                     const IncomingValueMap &IncomingValues) {
879   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
880     Value *V = PN->getIncomingValue(i);
881 
882     if (!isa<UndefValue>(V)) continue;
883 
884     BasicBlock *BB = PN->getIncomingBlock(i);
885     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
886     if (It == IncomingValues.end()) continue;
887 
888     PN->setIncomingValue(i, It->second);
889   }
890 }
891 
892 /// Replace a value flowing from a block to a phi with
893 /// potentially multiple instances of that value flowing from the
894 /// block's predecessors to the phi.
895 ///
896 /// \param BB The block with the value flowing into the phi.
897 /// \param BBPreds The predecessors of BB.
898 /// \param PN The phi that we are updating.
899 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
900                                                 const PredBlockVector &BBPreds,
901                                                 PHINode *PN) {
902   Value *OldVal = PN->removeIncomingValue(BB, false);
903   assert(OldVal && "No entry in PHI for Pred BB!");
904 
905   IncomingValueMap IncomingValues;
906 
907   // We are merging two blocks - BB, and the block containing PN - and
908   // as a result we need to redirect edges from the predecessors of BB
909   // to go to the block containing PN, and update PN
910   // accordingly. Since we allow merging blocks in the case where the
911   // predecessor and successor blocks both share some predecessors,
912   // and where some of those common predecessors might have undef
913   // values flowing into PN, we want to rewrite those values to be
914   // consistent with the non-undef values.
915 
916   gatherIncomingValuesToPhi(PN, IncomingValues);
917 
918   // If this incoming value is one of the PHI nodes in BB, the new entries
919   // in the PHI node are the entries from the old PHI.
920   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
921     PHINode *OldValPN = cast<PHINode>(OldVal);
922     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
923       // Note that, since we are merging phi nodes and BB and Succ might
924       // have common predecessors, we could end up with a phi node with
925       // identical incoming branches. This will be cleaned up later (and
926       // will trigger asserts if we try to clean it up now, without also
927       // simplifying the corresponding conditional branch).
928       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
929       Value *PredVal = OldValPN->getIncomingValue(i);
930       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
931                                                     IncomingValues);
932 
933       // And add a new incoming value for this predecessor for the
934       // newly retargeted branch.
935       PN->addIncoming(Selected, PredBB);
936     }
937   } else {
938     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
939       // Update existing incoming values in PN for this
940       // predecessor of BB.
941       BasicBlock *PredBB = BBPreds[i];
942       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
943                                                     IncomingValues);
944 
945       // And add a new incoming value for this predecessor for the
946       // newly retargeted branch.
947       PN->addIncoming(Selected, PredBB);
948     }
949   }
950 
951   replaceUndefValuesInPhi(PN, IncomingValues);
952 }
953 
954 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
955 /// unconditional branch, and contains no instructions other than PHI nodes,
956 /// potential side-effect free intrinsics and the branch.  If possible,
957 /// eliminate BB by rewriting all the predecessors to branch to the successor
958 /// block and return true.  If we can't transform, return false.
959 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
960                                                    DomTreeUpdater *DTU) {
961   assert(BB != &BB->getParent()->getEntryBlock() &&
962          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
963 
964   // We can't eliminate infinite loops.
965   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
966   if (BB == Succ) return false;
967 
968   // Check to see if merging these blocks would cause conflicts for any of the
969   // phi nodes in BB or Succ. If not, we can safely merge.
970   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
971 
972   // Check for cases where Succ has multiple predecessors and a PHI node in BB
973   // has uses which will not disappear when the PHI nodes are merged.  It is
974   // possible to handle such cases, but difficult: it requires checking whether
975   // BB dominates Succ, which is non-trivial to calculate in the case where
976   // Succ has multiple predecessors.  Also, it requires checking whether
977   // constructing the necessary self-referential PHI node doesn't introduce any
978   // conflicts; this isn't too difficult, but the previous code for doing this
979   // was incorrect.
980   //
981   // Note that if this check finds a live use, BB dominates Succ, so BB is
982   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
983   // folding the branch isn't profitable in that case anyway.
984   if (!Succ->getSinglePredecessor()) {
985     BasicBlock::iterator BBI = BB->begin();
986     while (isa<PHINode>(*BBI)) {
987       for (Use &U : BBI->uses()) {
988         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
989           if (PN->getIncomingBlock(U) != BB)
990             return false;
991         } else {
992           return false;
993         }
994       }
995       ++BBI;
996     }
997   }
998 
999   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1000 
1001   SmallVector<DominatorTree::UpdateType, 32> Updates;
1002   if (DTU) {
1003     Updates.push_back({DominatorTree::Delete, BB, Succ});
1004     // All predecessors of BB will be moved to Succ.
1005     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1006       Updates.push_back({DominatorTree::Delete, *I, BB});
1007       // This predecessor of BB may already have Succ as a successor.
1008       if (llvm::find(successors(*I), Succ) == succ_end(*I))
1009         Updates.push_back({DominatorTree::Insert, *I, Succ});
1010     }
1011   }
1012 
1013   if (isa<PHINode>(Succ->begin())) {
1014     // If there is more than one pred of succ, and there are PHI nodes in
1015     // the successor, then we need to add incoming edges for the PHI nodes
1016     //
1017     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1018 
1019     // Loop over all of the PHI nodes in the successor of BB.
1020     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1021       PHINode *PN = cast<PHINode>(I);
1022 
1023       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1024     }
1025   }
1026 
1027   if (Succ->getSinglePredecessor()) {
1028     // BB is the only predecessor of Succ, so Succ will end up with exactly
1029     // the same predecessors BB had.
1030 
1031     // Copy over any phi, debug or lifetime instruction.
1032     BB->getTerminator()->eraseFromParent();
1033     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1034                                BB->getInstList());
1035   } else {
1036     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1037       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1038       assert(PN->use_empty() && "There shouldn't be any uses here!");
1039       PN->eraseFromParent();
1040     }
1041   }
1042 
1043   // If the unconditional branch we replaced contains llvm.loop metadata, we
1044   // add the metadata to the branch instructions in the predecessors.
1045   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1046   Instruction *TI = BB->getTerminator();
1047   if (TI)
1048     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1049       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1050         BasicBlock *Pred = *PI;
1051         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1052       }
1053 
1054   // Everything that jumped to BB now goes to Succ.
1055   BB->replaceAllUsesWith(Succ);
1056   if (!Succ->hasName()) Succ->takeName(BB);
1057 
1058   // Clear the successor list of BB to match updates applying to DTU later.
1059   if (BB->getTerminator())
1060     BB->getInstList().pop_back();
1061   new UnreachableInst(BB->getContext(), BB);
1062   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1063                            "applying corresponding DTU updates.");
1064 
1065   if (DTU) {
1066     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1067     DTU->deleteBB(BB);
1068   } else {
1069     BB->eraseFromParent(); // Delete the old basic block.
1070   }
1071   return true;
1072 }
1073 
1074 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1075 /// nodes in this block. This doesn't try to be clever about PHI nodes
1076 /// which differ only in the order of the incoming values, but instcombine
1077 /// orders them so it usually won't matter.
1078 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1079   // This implementation doesn't currently consider undef operands
1080   // specially. Theoretically, two phis which are identical except for
1081   // one having an undef where the other doesn't could be collapsed.
1082 
1083   struct PHIDenseMapInfo {
1084     static PHINode *getEmptyKey() {
1085       return DenseMapInfo<PHINode *>::getEmptyKey();
1086     }
1087 
1088     static PHINode *getTombstoneKey() {
1089       return DenseMapInfo<PHINode *>::getTombstoneKey();
1090     }
1091 
1092     static unsigned getHashValue(PHINode *PN) {
1093       // Compute a hash value on the operands. Instcombine will likely have
1094       // sorted them, which helps expose duplicates, but we have to check all
1095       // the operands to be safe in case instcombine hasn't run.
1096       return static_cast<unsigned>(hash_combine(
1097           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1098           hash_combine_range(PN->block_begin(), PN->block_end())));
1099     }
1100 
1101     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1102       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1103           RHS == getEmptyKey() || RHS == getTombstoneKey())
1104         return LHS == RHS;
1105       return LHS->isIdenticalTo(RHS);
1106     }
1107   };
1108 
1109   // Set of unique PHINodes.
1110   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1111 
1112   // Examine each PHI.
1113   bool Changed = false;
1114   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1115     auto Inserted = PHISet.insert(PN);
1116     if (!Inserted.second) {
1117       // A duplicate. Replace this PHI with its duplicate.
1118       PN->replaceAllUsesWith(*Inserted.first);
1119       PN->eraseFromParent();
1120       Changed = true;
1121 
1122       // The RAUW can change PHIs that we already visited. Start over from the
1123       // beginning.
1124       PHISet.clear();
1125       I = BB->begin();
1126     }
1127   }
1128 
1129   return Changed;
1130 }
1131 
1132 /// enforceKnownAlignment - If the specified pointer points to an object that
1133 /// we control, modify the object's alignment to PrefAlign. This isn't
1134 /// often possible though. If alignment is important, a more reliable approach
1135 /// is to simply align all global variables and allocation instructions to
1136 /// their preferred alignment from the beginning.
1137 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1138                                       unsigned PrefAlign,
1139                                       const DataLayout &DL) {
1140   assert(PrefAlign > Align);
1141 
1142   V = V->stripPointerCasts();
1143 
1144   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1145     // TODO: ideally, computeKnownBits ought to have used
1146     // AllocaInst::getAlignment() in its computation already, making
1147     // the below max redundant. But, as it turns out,
1148     // stripPointerCasts recurses through infinite layers of bitcasts,
1149     // while computeKnownBits is not allowed to traverse more than 6
1150     // levels.
1151     Align = std::max(AI->getAlignment(), Align);
1152     if (PrefAlign <= Align)
1153       return Align;
1154 
1155     // If the preferred alignment is greater than the natural stack alignment
1156     // then don't round up. This avoids dynamic stack realignment.
1157     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1158       return Align;
1159     AI->setAlignment(PrefAlign);
1160     return PrefAlign;
1161   }
1162 
1163   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1164     // TODO: as above, this shouldn't be necessary.
1165     Align = std::max(GO->getAlignment(), Align);
1166     if (PrefAlign <= Align)
1167       return Align;
1168 
1169     // If there is a large requested alignment and we can, bump up the alignment
1170     // of the global.  If the memory we set aside for the global may not be the
1171     // memory used by the final program then it is impossible for us to reliably
1172     // enforce the preferred alignment.
1173     if (!GO->canIncreaseAlignment())
1174       return Align;
1175 
1176     GO->setAlignment(PrefAlign);
1177     return PrefAlign;
1178   }
1179 
1180   return Align;
1181 }
1182 
1183 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1184                                           const DataLayout &DL,
1185                                           const Instruction *CxtI,
1186                                           AssumptionCache *AC,
1187                                           const DominatorTree *DT) {
1188   assert(V->getType()->isPointerTy() &&
1189          "getOrEnforceKnownAlignment expects a pointer!");
1190 
1191   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1192   unsigned TrailZ = Known.countMinTrailingZeros();
1193 
1194   // Avoid trouble with ridiculously large TrailZ values, such as
1195   // those computed from a null pointer.
1196   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1197 
1198   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1199 
1200   // LLVM doesn't support alignments larger than this currently.
1201   Align = std::min(Align, +Value::MaximumAlignment);
1202 
1203   if (PrefAlign > Align)
1204     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1205 
1206   // We don't need to make any adjustment.
1207   return Align;
1208 }
1209 
1210 ///===---------------------------------------------------------------------===//
1211 ///  Dbg Intrinsic utilities
1212 ///
1213 
1214 /// See if there is a dbg.value intrinsic for DIVar before I.
1215 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1216                               Instruction *I) {
1217   // Since we can't guarantee that the original dbg.declare instrinsic
1218   // is removed by LowerDbgDeclare(), we need to make sure that we are
1219   // not inserting the same dbg.value intrinsic over and over.
1220   BasicBlock::InstListType::iterator PrevI(I);
1221   if (PrevI != I->getParent()->getInstList().begin()) {
1222     --PrevI;
1223     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1224       if (DVI->getValue() == I->getOperand(0) &&
1225           DVI->getVariable() == DIVar &&
1226           DVI->getExpression() == DIExpr)
1227         return true;
1228   }
1229   return false;
1230 }
1231 
1232 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1233 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1234                              DIExpression *DIExpr,
1235                              PHINode *APN) {
1236   // Since we can't guarantee that the original dbg.declare instrinsic
1237   // is removed by LowerDbgDeclare(), we need to make sure that we are
1238   // not inserting the same dbg.value intrinsic over and over.
1239   SmallVector<DbgValueInst *, 1> DbgValues;
1240   findDbgValues(DbgValues, APN);
1241   for (auto *DVI : DbgValues) {
1242     assert(DVI->getValue() == APN);
1243     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1244       return true;
1245   }
1246   return false;
1247 }
1248 
1249 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1250 /// (or fragment of the variable) described by \p DII.
1251 ///
1252 /// This is primarily intended as a helper for the different
1253 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1254 /// converted describes an alloca'd variable, so we need to use the
1255 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1256 /// identified as covering an n-bit fragment, if the store size of i1 is at
1257 /// least n bits.
1258 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1259   const DataLayout &DL = DII->getModule()->getDataLayout();
1260   uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1261   if (auto FragmentSize = DII->getFragmentSizeInBits())
1262     return ValueSize >= *FragmentSize;
1263   // We can't always calculate the size of the DI variable (e.g. if it is a
1264   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1265   // intead.
1266   if (DII->isAddressOfVariable())
1267     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1268       if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1269         return ValueSize >= *FragmentSize;
1270   // Could not determine size of variable. Conservatively return false.
1271   return false;
1272 }
1273 
1274 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1275 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1276 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1277                                            StoreInst *SI, DIBuilder &Builder) {
1278   assert(DII->isAddressOfVariable());
1279   auto *DIVar = DII->getVariable();
1280   assert(DIVar && "Missing variable");
1281   auto *DIExpr = DII->getExpression();
1282   Value *DV = SI->getOperand(0);
1283 
1284   if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) {
1285     // FIXME: If storing to a part of the variable described by the dbg.declare,
1286     // then we want to insert a dbg.value for the corresponding fragment.
1287     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1288                       << *DII << '\n');
1289     // For now, when there is a store to parts of the variable (but we do not
1290     // know which part) we insert an dbg.value instrinsic to indicate that we
1291     // know nothing about the variable's content.
1292     DV = UndefValue::get(DV->getType());
1293     if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1294       Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1295                                       SI);
1296     return;
1297   }
1298 
1299   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1300     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1301                                     SI);
1302 }
1303 
1304 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1305 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1306 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1307                                            LoadInst *LI, DIBuilder &Builder) {
1308   auto *DIVar = DII->getVariable();
1309   auto *DIExpr = DII->getExpression();
1310   assert(DIVar && "Missing variable");
1311 
1312   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1313     return;
1314 
1315   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1316     // FIXME: If only referring to a part of the variable described by the
1317     // dbg.declare, then we want to insert a dbg.value for the corresponding
1318     // fragment.
1319     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1320                       << *DII << '\n');
1321     return;
1322   }
1323 
1324   // We are now tracking the loaded value instead of the address. In the
1325   // future if multi-location support is added to the IR, it might be
1326   // preferable to keep tracking both the loaded value and the original
1327   // address in case the alloca can not be elided.
1328   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1329       LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1330   DbgValue->insertAfter(LI);
1331 }
1332 
1333 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1334 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1335 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1336                                            PHINode *APN, DIBuilder &Builder) {
1337   auto *DIVar = DII->getVariable();
1338   auto *DIExpr = DII->getExpression();
1339   assert(DIVar && "Missing variable");
1340 
1341   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1342     return;
1343 
1344   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1345     // FIXME: If only referring to a part of the variable described by the
1346     // dbg.declare, then we want to insert a dbg.value for the corresponding
1347     // fragment.
1348     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1349                       << *DII << '\n');
1350     return;
1351   }
1352 
1353   BasicBlock *BB = APN->getParent();
1354   auto InsertionPt = BB->getFirstInsertionPt();
1355 
1356   // The block may be a catchswitch block, which does not have a valid
1357   // insertion point.
1358   // FIXME: Insert dbg.value markers in the successors when appropriate.
1359   if (InsertionPt != BB->end())
1360     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1361                                     &*InsertionPt);
1362 }
1363 
1364 /// Determine whether this alloca is either a VLA or an array.
1365 static bool isArray(AllocaInst *AI) {
1366   return AI->isArrayAllocation() ||
1367     AI->getType()->getElementType()->isArrayTy();
1368 }
1369 
1370 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1371 /// of llvm.dbg.value intrinsics.
1372 bool llvm::LowerDbgDeclare(Function &F) {
1373   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1374   SmallVector<DbgDeclareInst *, 4> Dbgs;
1375   for (auto &FI : F)
1376     for (Instruction &BI : FI)
1377       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1378         Dbgs.push_back(DDI);
1379 
1380   if (Dbgs.empty())
1381     return false;
1382 
1383   for (auto &I : Dbgs) {
1384     DbgDeclareInst *DDI = I;
1385     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1386     // If this is an alloca for a scalar variable, insert a dbg.value
1387     // at each load and store to the alloca and erase the dbg.declare.
1388     // The dbg.values allow tracking a variable even if it is not
1389     // stored on the stack, while the dbg.declare can only describe
1390     // the stack slot (and at a lexical-scope granularity). Later
1391     // passes will attempt to elide the stack slot.
1392     if (!AI || isArray(AI))
1393       continue;
1394 
1395     // A volatile load/store means that the alloca can't be elided anyway.
1396     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1397           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1398             return LI->isVolatile();
1399           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1400             return SI->isVolatile();
1401           return false;
1402         }))
1403       continue;
1404 
1405     for (auto &AIUse : AI->uses()) {
1406       User *U = AIUse.getUser();
1407       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1408         if (AIUse.getOperandNo() == 1)
1409           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1410       } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1411         ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1412       } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1413         // This is a call by-value or some other instruction that takes a
1414         // pointer to the variable. Insert a *value* intrinsic that describes
1415         // the variable by dereferencing the alloca.
1416         auto *DerefExpr =
1417             DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1418         DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1419                                     DDI->getDebugLoc(), CI);
1420       }
1421     }
1422     DDI->eraseFromParent();
1423   }
1424   return true;
1425 }
1426 
1427 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1428 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1429                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1430   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1431   if (InsertedPHIs.size() == 0)
1432     return;
1433 
1434   // Map existing PHI nodes to their dbg.values.
1435   ValueToValueMapTy DbgValueMap;
1436   for (auto &I : *BB) {
1437     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1438       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1439         DbgValueMap.insert({Loc, DbgII});
1440     }
1441   }
1442   if (DbgValueMap.size() == 0)
1443     return;
1444 
1445   // Then iterate through the new PHIs and look to see if they use one of the
1446   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1447   // propagate the info through the new PHI.
1448   LLVMContext &C = BB->getContext();
1449   for (auto PHI : InsertedPHIs) {
1450     BasicBlock *Parent = PHI->getParent();
1451     // Avoid inserting an intrinsic into an EH block.
1452     if (Parent->getFirstNonPHI()->isEHPad())
1453       continue;
1454     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1455     for (auto VI : PHI->operand_values()) {
1456       auto V = DbgValueMap.find(VI);
1457       if (V != DbgValueMap.end()) {
1458         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1459         Instruction *NewDbgII = DbgII->clone();
1460         NewDbgII->setOperand(0, PhiMAV);
1461         auto InsertionPt = Parent->getFirstInsertionPt();
1462         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1463         NewDbgII->insertBefore(&*InsertionPt);
1464       }
1465     }
1466   }
1467 }
1468 
1469 /// Finds all intrinsics declaring local variables as living in the memory that
1470 /// 'V' points to. This may include a mix of dbg.declare and
1471 /// dbg.addr intrinsics.
1472 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1473   // This function is hot. Check whether the value has any metadata to avoid a
1474   // DenseMap lookup.
1475   if (!V->isUsedByMetadata())
1476     return {};
1477   auto *L = LocalAsMetadata::getIfExists(V);
1478   if (!L)
1479     return {};
1480   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1481   if (!MDV)
1482     return {};
1483 
1484   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1485   for (User *U : MDV->users()) {
1486     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1487       if (DII->isAddressOfVariable())
1488         Declares.push_back(DII);
1489   }
1490 
1491   return Declares;
1492 }
1493 
1494 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1495   // This function is hot. Check whether the value has any metadata to avoid a
1496   // DenseMap lookup.
1497   if (!V->isUsedByMetadata())
1498     return;
1499   if (auto *L = LocalAsMetadata::getIfExists(V))
1500     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1501       for (User *U : MDV->users())
1502         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1503           DbgValues.push_back(DVI);
1504 }
1505 
1506 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1507                         Value *V) {
1508   // This function is hot. Check whether the value has any metadata to avoid a
1509   // DenseMap lookup.
1510   if (!V->isUsedByMetadata())
1511     return;
1512   if (auto *L = LocalAsMetadata::getIfExists(V))
1513     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1514       for (User *U : MDV->users())
1515         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1516           DbgUsers.push_back(DII);
1517 }
1518 
1519 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1520                              Instruction *InsertBefore, DIBuilder &Builder,
1521                              bool DerefBefore, int Offset, bool DerefAfter) {
1522   auto DbgAddrs = FindDbgAddrUses(Address);
1523   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1524     DebugLoc Loc = DII->getDebugLoc();
1525     auto *DIVar = DII->getVariable();
1526     auto *DIExpr = DII->getExpression();
1527     assert(DIVar && "Missing variable");
1528     DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1529     // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1530     // llvm.dbg.declare.
1531     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1532     if (DII == InsertBefore)
1533       InsertBefore = InsertBefore->getNextNode();
1534     DII->eraseFromParent();
1535   }
1536   return !DbgAddrs.empty();
1537 }
1538 
1539 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1540                                       DIBuilder &Builder, bool DerefBefore,
1541                                       int Offset, bool DerefAfter) {
1542   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1543                            DerefBefore, Offset, DerefAfter);
1544 }
1545 
1546 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1547                                         DIBuilder &Builder, int Offset) {
1548   DebugLoc Loc = DVI->getDebugLoc();
1549   auto *DIVar = DVI->getVariable();
1550   auto *DIExpr = DVI->getExpression();
1551   assert(DIVar && "Missing variable");
1552 
1553   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1554   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1555   // it and give up.
1556   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1557       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1558     return;
1559 
1560   // Insert the offset immediately after the first deref.
1561   // We could just change the offset argument of dbg.value, but it's unsigned...
1562   if (Offset) {
1563     SmallVector<uint64_t, 4> Ops;
1564     Ops.push_back(dwarf::DW_OP_deref);
1565     DIExpression::appendOffset(Ops, Offset);
1566     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1567     DIExpr = Builder.createExpression(Ops);
1568   }
1569 
1570   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1571   DVI->eraseFromParent();
1572 }
1573 
1574 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1575                                     DIBuilder &Builder, int Offset) {
1576   if (auto *L = LocalAsMetadata::getIfExists(AI))
1577     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1578       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1579         Use &U = *UI++;
1580         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1581           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1582       }
1583 }
1584 
1585 /// Wrap \p V in a ValueAsMetadata instance.
1586 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1587   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1588 }
1589 
1590 bool llvm::salvageDebugInfo(Instruction &I) {
1591   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1592   findDbgUsers(DbgUsers, &I);
1593   if (DbgUsers.empty())
1594     return false;
1595 
1596   auto &M = *I.getModule();
1597   auto &DL = M.getDataLayout();
1598   auto &Ctx = I.getContext();
1599   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1600 
1601   auto doSalvage = [&](DbgVariableIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) {
1602     auto *DIExpr = DII->getExpression();
1603     if (!Ops.empty()) {
1604       // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1605       // are implicitly pointing out the value as a DWARF memory location
1606       // description.
1607       bool WithStackValue = isa<DbgValueInst>(DII);
1608       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1609     }
1610     DII->setOperand(0, wrapMD(I.getOperand(0)));
1611     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1612     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1613   };
1614 
1615   auto applyOffset = [&](DbgVariableIntrinsic *DII, uint64_t Offset) {
1616     SmallVector<uint64_t, 8> Ops;
1617     DIExpression::appendOffset(Ops, Offset);
1618     doSalvage(DII, Ops);
1619   };
1620 
1621   auto applyOps = [&](DbgVariableIntrinsic *DII,
1622                       std::initializer_list<uint64_t> Opcodes) {
1623     SmallVector<uint64_t, 8> Ops(Opcodes);
1624     doSalvage(DII, Ops);
1625   };
1626 
1627   if (auto *CI = dyn_cast<CastInst>(&I)) {
1628     if (!CI->isNoopCast(DL))
1629       return false;
1630 
1631     // No-op casts are irrelevant for debug info.
1632     MetadataAsValue *CastSrc = wrapMD(I.getOperand(0));
1633     for (auto *DII : DbgUsers) {
1634       DII->setOperand(0, CastSrc);
1635       LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1636     }
1637     return true;
1638   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1639     unsigned BitWidth =
1640         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1641     // Rewrite a constant GEP into a DIExpression.  Since we are performing
1642     // arithmetic to compute the variable's *value* in the DIExpression, we
1643     // need to mark the expression with a DW_OP_stack_value.
1644     APInt Offset(BitWidth, 0);
1645     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset))
1646       for (auto *DII : DbgUsers)
1647         applyOffset(DII, Offset.getSExtValue());
1648     return true;
1649   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1650     // Rewrite binary operations with constant integer operands.
1651     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1652     if (!ConstInt || ConstInt->getBitWidth() > 64)
1653       return false;
1654 
1655     uint64_t Val = ConstInt->getSExtValue();
1656     for (auto *DII : DbgUsers) {
1657       switch (BI->getOpcode()) {
1658       case Instruction::Add:
1659         applyOffset(DII, Val);
1660         break;
1661       case Instruction::Sub:
1662         applyOffset(DII, -int64_t(Val));
1663         break;
1664       case Instruction::Mul:
1665         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1666         break;
1667       case Instruction::SDiv:
1668         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1669         break;
1670       case Instruction::SRem:
1671         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1672         break;
1673       case Instruction::Or:
1674         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1675         break;
1676       case Instruction::And:
1677         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1678         break;
1679       case Instruction::Xor:
1680         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1681         break;
1682       case Instruction::Shl:
1683         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1684         break;
1685       case Instruction::LShr:
1686         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1687         break;
1688       case Instruction::AShr:
1689         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1690         break;
1691       default:
1692         // TODO: Salvage constants from each kind of binop we know about.
1693         return false;
1694       }
1695     }
1696     return true;
1697   } else if (isa<LoadInst>(&I)) {
1698     MetadataAsValue *AddrMD = wrapMD(I.getOperand(0));
1699     for (auto *DII : DbgUsers) {
1700       // Rewrite the load into DW_OP_deref.
1701       auto *DIExpr = DII->getExpression();
1702       DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
1703       DII->setOperand(0, AddrMD);
1704       DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1705       LLVM_DEBUG(dbgs() << "SALVAGE:  " << *DII << '\n');
1706     }
1707     return true;
1708   }
1709   return false;
1710 }
1711 
1712 /// A replacement for a dbg.value expression.
1713 using DbgValReplacement = Optional<DIExpression *>;
1714 
1715 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1716 /// possibly moving/deleting users to prevent use-before-def. Returns true if
1717 /// changes are made.
1718 static bool rewriteDebugUsers(
1719     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1720     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1721   // Find debug users of From.
1722   SmallVector<DbgVariableIntrinsic *, 1> Users;
1723   findDbgUsers(Users, &From);
1724   if (Users.empty())
1725     return false;
1726 
1727   // Prevent use-before-def of To.
1728   bool Changed = false;
1729   SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage;
1730   if (isa<Instruction>(&To)) {
1731     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1732 
1733     for (auto *DII : Users) {
1734       // It's common to see a debug user between From and DomPoint. Move it
1735       // after DomPoint to preserve the variable update without any reordering.
1736       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1737         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1738         DII->moveAfter(&DomPoint);
1739         Changed = true;
1740 
1741       // Users which otherwise aren't dominated by the replacement value must
1742       // be salvaged or deleted.
1743       } else if (!DT.dominates(&DomPoint, DII)) {
1744         DeleteOrSalvage.insert(DII);
1745       }
1746     }
1747   }
1748 
1749   // Update debug users without use-before-def risk.
1750   for (auto *DII : Users) {
1751     if (DeleteOrSalvage.count(DII))
1752       continue;
1753 
1754     LLVMContext &Ctx = DII->getContext();
1755     DbgValReplacement DVR = RewriteExpr(*DII);
1756     if (!DVR)
1757       continue;
1758 
1759     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1760     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1761     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1762     Changed = true;
1763   }
1764 
1765   if (!DeleteOrSalvage.empty()) {
1766     // Try to salvage the remaining debug users.
1767     Changed |= salvageDebugInfo(From);
1768 
1769     // Delete the debug users which weren't salvaged.
1770     for (auto *DII : DeleteOrSalvage) {
1771       if (DII->getVariableLocation() == &From) {
1772         LLVM_DEBUG(dbgs() << "Erased UseBeforeDef:  " << *DII << '\n');
1773         DII->eraseFromParent();
1774         Changed = true;
1775       }
1776     }
1777   }
1778 
1779   return Changed;
1780 }
1781 
1782 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1783 /// losslessly preserve the bits and semantics of the value. This predicate is
1784 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1785 ///
1786 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1787 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1788 /// and also does not allow lossless pointer <-> integer conversions.
1789 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1790                                          Type *ToTy) {
1791   // Trivially compatible types.
1792   if (FromTy == ToTy)
1793     return true;
1794 
1795   // Handle compatible pointer <-> integer conversions.
1796   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1797     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1798     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1799                               !DL.isNonIntegralPointerType(ToTy);
1800     return SameSize && LosslessConversion;
1801   }
1802 
1803   // TODO: This is not exhaustive.
1804   return false;
1805 }
1806 
1807 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1808                                  Instruction &DomPoint, DominatorTree &DT) {
1809   // Exit early if From has no debug users.
1810   if (!From.isUsedByMetadata())
1811     return false;
1812 
1813   assert(&From != &To && "Can't replace something with itself");
1814 
1815   Type *FromTy = From.getType();
1816   Type *ToTy = To.getType();
1817 
1818   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1819     return DII.getExpression();
1820   };
1821 
1822   // Handle no-op conversions.
1823   Module &M = *From.getModule();
1824   const DataLayout &DL = M.getDataLayout();
1825   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1826     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1827 
1828   // Handle integer-to-integer widening and narrowing.
1829   // FIXME: Use DW_OP_convert when it's available everywhere.
1830   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1831     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1832     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1833     assert(FromBits != ToBits && "Unexpected no-op conversion");
1834 
1835     // When the width of the result grows, assume that a debugger will only
1836     // access the low `FromBits` bits when inspecting the source variable.
1837     if (FromBits < ToBits)
1838       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1839 
1840     // The width of the result has shrunk. Use sign/zero extension to describe
1841     // the source variable's high bits.
1842     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1843       DILocalVariable *Var = DII.getVariable();
1844 
1845       // Without knowing signedness, sign/zero extension isn't possible.
1846       auto Signedness = Var->getSignedness();
1847       if (!Signedness)
1848         return None;
1849 
1850       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1851 
1852       if (!Signed) {
1853         // In the unsigned case, assume that a debugger will initialize the
1854         // high bits to 0 and do a no-op conversion.
1855         return Identity(DII);
1856       } else {
1857         // In the signed case, the high bits are given by sign extension, i.e:
1858         //   (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1)
1859         // Calculate the high bits and OR them together with the low bits.
1860         SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu,
1861                                       (ToBits - 1), dwarf::DW_OP_shr,
1862                                       dwarf::DW_OP_lit0, dwarf::DW_OP_not,
1863                                       dwarf::DW_OP_mul, dwarf::DW_OP_or});
1864         return DIExpression::appendToStack(DII.getExpression(), Ops);
1865       }
1866     };
1867     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1868   }
1869 
1870   // TODO: Floating-point conversions, vectors.
1871   return false;
1872 }
1873 
1874 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1875   unsigned NumDeadInst = 0;
1876   // Delete the instructions backwards, as it has a reduced likelihood of
1877   // having to update as many def-use and use-def chains.
1878   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1879   while (EndInst != &BB->front()) {
1880     // Delete the next to last instruction.
1881     Instruction *Inst = &*--EndInst->getIterator();
1882     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1883       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1884     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1885       EndInst = Inst;
1886       continue;
1887     }
1888     if (!isa<DbgInfoIntrinsic>(Inst))
1889       ++NumDeadInst;
1890     Inst->eraseFromParent();
1891   }
1892   return NumDeadInst;
1893 }
1894 
1895 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1896                                    bool PreserveLCSSA, DomTreeUpdater *DTU) {
1897   BasicBlock *BB = I->getParent();
1898   std::vector <DominatorTree::UpdateType> Updates;
1899 
1900   // Loop over all of the successors, removing BB's entry from any PHI
1901   // nodes.
1902   if (DTU)
1903     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1904   for (BasicBlock *Successor : successors(BB)) {
1905     Successor->removePredecessor(BB, PreserveLCSSA);
1906     if (DTU)
1907       Updates.push_back({DominatorTree::Delete, BB, Successor});
1908   }
1909   // Insert a call to llvm.trap right before this.  This turns the undefined
1910   // behavior into a hard fail instead of falling through into random code.
1911   if (UseLLVMTrap) {
1912     Function *TrapFn =
1913       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1914     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1915     CallTrap->setDebugLoc(I->getDebugLoc());
1916   }
1917   auto *UI = new UnreachableInst(I->getContext(), I);
1918   UI->setDebugLoc(I->getDebugLoc());
1919 
1920   // All instructions after this are dead.
1921   unsigned NumInstrsRemoved = 0;
1922   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1923   while (BBI != BBE) {
1924     if (!BBI->use_empty())
1925       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1926     BB->getInstList().erase(BBI++);
1927     ++NumInstrsRemoved;
1928   }
1929   if (DTU)
1930     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1931   return NumInstrsRemoved;
1932 }
1933 
1934 /// changeToCall - Convert the specified invoke into a normal call.
1935 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) {
1936   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1937   SmallVector<OperandBundleDef, 1> OpBundles;
1938   II->getOperandBundlesAsDefs(OpBundles);
1939   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1940                                        "", II);
1941   NewCall->takeName(II);
1942   NewCall->setCallingConv(II->getCallingConv());
1943   NewCall->setAttributes(II->getAttributes());
1944   NewCall->setDebugLoc(II->getDebugLoc());
1945   NewCall->copyMetadata(*II);
1946   II->replaceAllUsesWith(NewCall);
1947 
1948   // Follow the call by a branch to the normal destination.
1949   BasicBlock *NormalDestBB = II->getNormalDest();
1950   BranchInst::Create(NormalDestBB, II);
1951 
1952   // Update PHI nodes in the unwind destination
1953   BasicBlock *BB = II->getParent();
1954   BasicBlock *UnwindDestBB = II->getUnwindDest();
1955   UnwindDestBB->removePredecessor(BB);
1956   II->eraseFromParent();
1957   if (DTU)
1958     DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
1959 }
1960 
1961 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1962                                                    BasicBlock *UnwindEdge) {
1963   BasicBlock *BB = CI->getParent();
1964 
1965   // Convert this function call into an invoke instruction.  First, split the
1966   // basic block.
1967   BasicBlock *Split =
1968       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1969 
1970   // Delete the unconditional branch inserted by splitBasicBlock
1971   BB->getInstList().pop_back();
1972 
1973   // Create the new invoke instruction.
1974   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1975   SmallVector<OperandBundleDef, 1> OpBundles;
1976 
1977   CI->getOperandBundlesAsDefs(OpBundles);
1978 
1979   // Note: we're round tripping operand bundles through memory here, and that
1980   // can potentially be avoided with a cleverer API design that we do not have
1981   // as of this time.
1982 
1983   InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
1984                                       InvokeArgs, OpBundles, CI->getName(), BB);
1985   II->setDebugLoc(CI->getDebugLoc());
1986   II->setCallingConv(CI->getCallingConv());
1987   II->setAttributes(CI->getAttributes());
1988 
1989   // Make sure that anything using the call now uses the invoke!  This also
1990   // updates the CallGraph if present, because it uses a WeakTrackingVH.
1991   CI->replaceAllUsesWith(II);
1992 
1993   // Delete the original call
1994   Split->getInstList().pop_front();
1995   return Split;
1996 }
1997 
1998 static bool markAliveBlocks(Function &F,
1999                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2000                             DomTreeUpdater *DTU = nullptr) {
2001   SmallVector<BasicBlock*, 128> Worklist;
2002   BasicBlock *BB = &F.front();
2003   Worklist.push_back(BB);
2004   Reachable.insert(BB);
2005   bool Changed = false;
2006   do {
2007     BB = Worklist.pop_back_val();
2008 
2009     // Do a quick scan of the basic block, turning any obviously unreachable
2010     // instructions into LLVM unreachable insts.  The instruction combining pass
2011     // canonicalizes unreachable insts into stores to null or undef.
2012     for (Instruction &I : *BB) {
2013       if (auto *CI = dyn_cast<CallInst>(&I)) {
2014         Value *Callee = CI->getCalledValue();
2015         // Handle intrinsic calls.
2016         if (Function *F = dyn_cast<Function>(Callee)) {
2017           auto IntrinsicID = F->getIntrinsicID();
2018           // Assumptions that are known to be false are equivalent to
2019           // unreachable. Also, if the condition is undefined, then we make the
2020           // choice most beneficial to the optimizer, and choose that to also be
2021           // unreachable.
2022           if (IntrinsicID == Intrinsic::assume) {
2023             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2024               // Don't insert a call to llvm.trap right before the unreachable.
2025               changeToUnreachable(CI, false, false, DTU);
2026               Changed = true;
2027               break;
2028             }
2029           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2030             // A call to the guard intrinsic bails out of the current
2031             // compilation unit if the predicate passed to it is false. If the
2032             // predicate is a constant false, then we know the guard will bail
2033             // out of the current compile unconditionally, so all code following
2034             // it is dead.
2035             //
2036             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2037             // guards to treat `undef` as `false` since a guard on `undef` can
2038             // still be useful for widening.
2039             if (match(CI->getArgOperand(0), m_Zero()))
2040               if (!isa<UnreachableInst>(CI->getNextNode())) {
2041                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2042                                     false, DTU);
2043                 Changed = true;
2044                 break;
2045               }
2046           }
2047         } else if ((isa<ConstantPointerNull>(Callee) &&
2048                     !NullPointerIsDefined(CI->getFunction())) ||
2049                    isa<UndefValue>(Callee)) {
2050           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2051           Changed = true;
2052           break;
2053         }
2054         if (CI->doesNotReturn()) {
2055           // If we found a call to a no-return function, insert an unreachable
2056           // instruction after it.  Make sure there isn't *already* one there
2057           // though.
2058           if (!isa<UnreachableInst>(CI->getNextNode())) {
2059             // Don't insert a call to llvm.trap right before the unreachable.
2060             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2061             Changed = true;
2062           }
2063           break;
2064         }
2065       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2066         // Store to undef and store to null are undefined and used to signal
2067         // that they should be changed to unreachable by passes that can't
2068         // modify the CFG.
2069 
2070         // Don't touch volatile stores.
2071         if (SI->isVolatile()) continue;
2072 
2073         Value *Ptr = SI->getOperand(1);
2074 
2075         if (isa<UndefValue>(Ptr) ||
2076             (isa<ConstantPointerNull>(Ptr) &&
2077              !NullPointerIsDefined(SI->getFunction(),
2078                                    SI->getPointerAddressSpace()))) {
2079           changeToUnreachable(SI, true, false, DTU);
2080           Changed = true;
2081           break;
2082         }
2083       }
2084     }
2085 
2086     Instruction *Terminator = BB->getTerminator();
2087     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2088       // Turn invokes that call 'nounwind' functions into ordinary calls.
2089       Value *Callee = II->getCalledValue();
2090       if ((isa<ConstantPointerNull>(Callee) &&
2091            !NullPointerIsDefined(BB->getParent())) ||
2092           isa<UndefValue>(Callee)) {
2093         changeToUnreachable(II, true, false, DTU);
2094         Changed = true;
2095       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2096         if (II->use_empty() && II->onlyReadsMemory()) {
2097           // jump to the normal destination branch.
2098           BasicBlock *NormalDestBB = II->getNormalDest();
2099           BasicBlock *UnwindDestBB = II->getUnwindDest();
2100           BranchInst::Create(NormalDestBB, II);
2101           UnwindDestBB->removePredecessor(II->getParent());
2102           II->eraseFromParent();
2103           if (DTU)
2104             DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
2105         } else
2106           changeToCall(II, DTU);
2107         Changed = true;
2108       }
2109     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2110       // Remove catchpads which cannot be reached.
2111       struct CatchPadDenseMapInfo {
2112         static CatchPadInst *getEmptyKey() {
2113           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2114         }
2115 
2116         static CatchPadInst *getTombstoneKey() {
2117           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2118         }
2119 
2120         static unsigned getHashValue(CatchPadInst *CatchPad) {
2121           return static_cast<unsigned>(hash_combine_range(
2122               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2123         }
2124 
2125         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2126           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2127               RHS == getEmptyKey() || RHS == getTombstoneKey())
2128             return LHS == RHS;
2129           return LHS->isIdenticalTo(RHS);
2130         }
2131       };
2132 
2133       // Set of unique CatchPads.
2134       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2135                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2136           HandlerSet;
2137       detail::DenseSetEmpty Empty;
2138       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2139                                              E = CatchSwitch->handler_end();
2140            I != E; ++I) {
2141         BasicBlock *HandlerBB = *I;
2142         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2143         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2144           CatchSwitch->removeHandler(I);
2145           --I;
2146           --E;
2147           Changed = true;
2148         }
2149       }
2150     }
2151 
2152     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2153     for (BasicBlock *Successor : successors(BB))
2154       if (Reachable.insert(Successor).second)
2155         Worklist.push_back(Successor);
2156   } while (!Worklist.empty());
2157   return Changed;
2158 }
2159 
2160 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2161   Instruction *TI = BB->getTerminator();
2162 
2163   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2164     changeToCall(II, DTU);
2165     return;
2166   }
2167 
2168   Instruction *NewTI;
2169   BasicBlock *UnwindDest;
2170 
2171   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2172     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2173     UnwindDest = CRI->getUnwindDest();
2174   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2175     auto *NewCatchSwitch = CatchSwitchInst::Create(
2176         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2177         CatchSwitch->getName(), CatchSwitch);
2178     for (BasicBlock *PadBB : CatchSwitch->handlers())
2179       NewCatchSwitch->addHandler(PadBB);
2180 
2181     NewTI = NewCatchSwitch;
2182     UnwindDest = CatchSwitch->getUnwindDest();
2183   } else {
2184     llvm_unreachable("Could not find unwind successor");
2185   }
2186 
2187   NewTI->takeName(TI);
2188   NewTI->setDebugLoc(TI->getDebugLoc());
2189   UnwindDest->removePredecessor(BB);
2190   TI->replaceAllUsesWith(NewTI);
2191   TI->eraseFromParent();
2192   if (DTU)
2193     DTU->deleteEdgeRelaxed(BB, UnwindDest);
2194 }
2195 
2196 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2197 /// if they are in a dead cycle.  Return true if a change was made, false
2198 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
2199 /// after modifying the CFG.
2200 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
2201                                    DomTreeUpdater *DTU,
2202                                    MemorySSAUpdater *MSSAU) {
2203   SmallPtrSet<BasicBlock*, 16> Reachable;
2204   bool Changed = markAliveBlocks(F, Reachable, DTU);
2205 
2206   // If there are unreachable blocks in the CFG...
2207   if (Reachable.size() == F.size())
2208     return Changed;
2209 
2210   assert(Reachable.size() < F.size());
2211   NumRemoved += F.size()-Reachable.size();
2212 
2213   SmallPtrSet<BasicBlock *, 16> DeadBlockSet;
2214   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
2215     auto *BB = &*I;
2216     if (Reachable.count(BB))
2217       continue;
2218     DeadBlockSet.insert(BB);
2219   }
2220 
2221   if (MSSAU)
2222     MSSAU->removeBlocks(DeadBlockSet);
2223 
2224   // Loop over all of the basic blocks that are not reachable, dropping all of
2225   // their internal references. Update DTU and LVI if available.
2226   std::vector<DominatorTree::UpdateType> Updates;
2227   for (auto *BB : DeadBlockSet) {
2228     for (BasicBlock *Successor : successors(BB)) {
2229       if (!DeadBlockSet.count(Successor))
2230         Successor->removePredecessor(BB);
2231       if (DTU)
2232         Updates.push_back({DominatorTree::Delete, BB, Successor});
2233     }
2234     if (LVI)
2235       LVI->eraseBlock(BB);
2236     BB->dropAllReferences();
2237   }
2238   for (Function::iterator I = ++F.begin(); I != F.end();) {
2239     auto *BB = &*I;
2240     if (Reachable.count(BB)) {
2241       ++I;
2242       continue;
2243     }
2244     if (DTU) {
2245       // Remove the terminator of BB to clear the successor list of BB.
2246       if (BB->getTerminator())
2247         BB->getInstList().pop_back();
2248       new UnreachableInst(BB->getContext(), BB);
2249       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2250                                "applying corresponding DTU updates.");
2251       ++I;
2252     } else {
2253       I = F.getBasicBlockList().erase(I);
2254     }
2255   }
2256 
2257   if (DTU) {
2258     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
2259     bool Deleted = false;
2260     for (auto *BB : DeadBlockSet) {
2261       if (DTU->isBBPendingDeletion(BB))
2262         --NumRemoved;
2263       else
2264         Deleted = true;
2265       DTU->deleteBB(BB);
2266     }
2267     if (!Deleted)
2268       return false;
2269   }
2270   return true;
2271 }
2272 
2273 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2274                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2275   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2276   K->dropUnknownNonDebugMetadata(KnownIDs);
2277   K->getAllMetadataOtherThanDebugLoc(Metadata);
2278   for (const auto &MD : Metadata) {
2279     unsigned Kind = MD.first;
2280     MDNode *JMD = J->getMetadata(Kind);
2281     MDNode *KMD = MD.second;
2282 
2283     switch (Kind) {
2284       default:
2285         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2286         break;
2287       case LLVMContext::MD_dbg:
2288         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2289       case LLVMContext::MD_tbaa:
2290         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2291         break;
2292       case LLVMContext::MD_alias_scope:
2293         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2294         break;
2295       case LLVMContext::MD_noalias:
2296       case LLVMContext::MD_mem_parallel_loop_access:
2297         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2298         break;
2299       case LLVMContext::MD_access_group:
2300         K->setMetadata(LLVMContext::MD_access_group,
2301                        intersectAccessGroups(K, J));
2302         break;
2303       case LLVMContext::MD_range:
2304 
2305         // If K does move, use most generic range. Otherwise keep the range of
2306         // K.
2307         if (DoesKMove)
2308           // FIXME: If K does move, we should drop the range info and nonnull.
2309           //        Currently this function is used with DoesKMove in passes
2310           //        doing hoisting/sinking and the current behavior of using the
2311           //        most generic range is correct in those cases.
2312           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2313         break;
2314       case LLVMContext::MD_fpmath:
2315         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2316         break;
2317       case LLVMContext::MD_invariant_load:
2318         // Only set the !invariant.load if it is present in both instructions.
2319         K->setMetadata(Kind, JMD);
2320         break;
2321       case LLVMContext::MD_nonnull:
2322         // If K does move, keep nonull if it is present in both instructions.
2323         if (DoesKMove)
2324           K->setMetadata(Kind, JMD);
2325         break;
2326       case LLVMContext::MD_invariant_group:
2327         // Preserve !invariant.group in K.
2328         break;
2329       case LLVMContext::MD_align:
2330         K->setMetadata(Kind,
2331           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2332         break;
2333       case LLVMContext::MD_dereferenceable:
2334       case LLVMContext::MD_dereferenceable_or_null:
2335         K->setMetadata(Kind,
2336           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2337         break;
2338     }
2339   }
2340   // Set !invariant.group from J if J has it. If both instructions have it
2341   // then we will just pick it from J - even when they are different.
2342   // Also make sure that K is load or store - f.e. combining bitcast with load
2343   // could produce bitcast with invariant.group metadata, which is invalid.
2344   // FIXME: we should try to preserve both invariant.group md if they are
2345   // different, but right now instruction can only have one invariant.group.
2346   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2347     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2348       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2349 }
2350 
2351 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2352                                  bool KDominatesJ) {
2353   unsigned KnownIDs[] = {
2354       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2355       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2356       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2357       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2358       LLVMContext::MD_dereferenceable,
2359       LLVMContext::MD_dereferenceable_or_null,
2360       LLVMContext::MD_access_group};
2361   combineMetadata(K, J, KnownIDs, KDominatesJ);
2362 }
2363 
2364 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2365   auto *ReplInst = dyn_cast<Instruction>(Repl);
2366   if (!ReplInst)
2367     return;
2368 
2369   // Patch the replacement so that it is not more restrictive than the value
2370   // being replaced.
2371   // Note that if 'I' is a load being replaced by some operation,
2372   // for example, by an arithmetic operation, then andIRFlags()
2373   // would just erase all math flags from the original arithmetic
2374   // operation, which is clearly not wanted and not needed.
2375   if (!isa<LoadInst>(I))
2376     ReplInst->andIRFlags(I);
2377 
2378   // FIXME: If both the original and replacement value are part of the
2379   // same control-flow region (meaning that the execution of one
2380   // guarantees the execution of the other), then we can combine the
2381   // noalias scopes here and do better than the general conservative
2382   // answer used in combineMetadata().
2383 
2384   // In general, GVN unifies expressions over different control-flow
2385   // regions, and so we need a conservative combination of the noalias
2386   // scopes.
2387   static const unsigned KnownIDs[] = {
2388       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2389       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2390       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2391       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2392       LLVMContext::MD_access_group};
2393   combineMetadata(ReplInst, I, KnownIDs, false);
2394 }
2395 
2396 template <typename RootType, typename DominatesFn>
2397 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2398                                          const RootType &Root,
2399                                          const DominatesFn &Dominates) {
2400   assert(From->getType() == To->getType());
2401 
2402   unsigned Count = 0;
2403   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2404        UI != UE;) {
2405     Use &U = *UI++;
2406     if (!Dominates(Root, U))
2407       continue;
2408     U.set(To);
2409     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2410                       << "' as " << *To << " in " << *U << "\n");
2411     ++Count;
2412   }
2413   return Count;
2414 }
2415 
2416 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2417    assert(From->getType() == To->getType());
2418    auto *BB = From->getParent();
2419    unsigned Count = 0;
2420 
2421   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2422        UI != UE;) {
2423     Use &U = *UI++;
2424     auto *I = cast<Instruction>(U.getUser());
2425     if (I->getParent() == BB)
2426       continue;
2427     U.set(To);
2428     ++Count;
2429   }
2430   return Count;
2431 }
2432 
2433 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2434                                         DominatorTree &DT,
2435                                         const BasicBlockEdge &Root) {
2436   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2437     return DT.dominates(Root, U);
2438   };
2439   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2440 }
2441 
2442 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2443                                         DominatorTree &DT,
2444                                         const BasicBlock *BB) {
2445   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2446     auto *I = cast<Instruction>(U.getUser())->getParent();
2447     return DT.properlyDominates(BB, I);
2448   };
2449   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2450 }
2451 
2452 bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
2453                                const TargetLibraryInfo &TLI) {
2454   // Check if the function is specifically marked as a gc leaf function.
2455   if (CS.hasFnAttr("gc-leaf-function"))
2456     return true;
2457   if (const Function *F = CS.getCalledFunction()) {
2458     if (F->hasFnAttribute("gc-leaf-function"))
2459       return true;
2460 
2461     if (auto IID = F->getIntrinsicID())
2462       // Most LLVM intrinsics do not take safepoints.
2463       return IID != Intrinsic::experimental_gc_statepoint &&
2464              IID != Intrinsic::experimental_deoptimize;
2465   }
2466 
2467   // Lib calls can be materialized by some passes, and won't be
2468   // marked as 'gc-leaf-function.' All available Libcalls are
2469   // GC-leaf.
2470   LibFunc LF;
2471   if (TLI.getLibFunc(CS, LF)) {
2472     return TLI.has(LF);
2473   }
2474 
2475   return false;
2476 }
2477 
2478 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2479                                LoadInst &NewLI) {
2480   auto *NewTy = NewLI.getType();
2481 
2482   // This only directly applies if the new type is also a pointer.
2483   if (NewTy->isPointerTy()) {
2484     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2485     return;
2486   }
2487 
2488   // The only other translation we can do is to integral loads with !range
2489   // metadata.
2490   if (!NewTy->isIntegerTy())
2491     return;
2492 
2493   MDBuilder MDB(NewLI.getContext());
2494   const Value *Ptr = OldLI.getPointerOperand();
2495   auto *ITy = cast<IntegerType>(NewTy);
2496   auto *NullInt = ConstantExpr::getPtrToInt(
2497       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2498   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2499   NewLI.setMetadata(LLVMContext::MD_range,
2500                     MDB.createRange(NonNullInt, NullInt));
2501 }
2502 
2503 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2504                              MDNode *N, LoadInst &NewLI) {
2505   auto *NewTy = NewLI.getType();
2506 
2507   // Give up unless it is converted to a pointer where there is a single very
2508   // valuable mapping we can do reliably.
2509   // FIXME: It would be nice to propagate this in more ways, but the type
2510   // conversions make it hard.
2511   if (!NewTy->isPointerTy())
2512     return;
2513 
2514   unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2515   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2516     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2517     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2518   }
2519 }
2520 
2521 void llvm::dropDebugUsers(Instruction &I) {
2522   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2523   findDbgUsers(DbgUsers, &I);
2524   for (auto *DII : DbgUsers)
2525     DII->eraseFromParent();
2526 }
2527 
2528 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2529                                     BasicBlock *BB) {
2530   // Since we are moving the instructions out of its basic block, we do not
2531   // retain their original debug locations (DILocations) and debug intrinsic
2532   // instructions (dbg.values).
2533   //
2534   // Doing so would degrade the debugging experience and adversely affect the
2535   // accuracy of profiling information.
2536   //
2537   // Currently, when hoisting the instructions, we take the following actions:
2538   // - Remove their dbg.values.
2539   // - Set their debug locations to the values from the insertion point.
2540   //
2541   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2542   // need to be deleted, is because there will not be any instructions with a
2543   // DILocation in either branch left after performing the transformation. We
2544   // can only insert a dbg.value after the two branches are joined again.
2545   //
2546   // See PR38762, PR39243 for more details.
2547   //
2548   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2549   // encode predicated DIExpressions that yield different results on different
2550   // code paths.
2551   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2552     Instruction *I = &*II;
2553     I->dropUnknownNonDebugMetadata();
2554     if (I->isUsedByMetadata())
2555       dropDebugUsers(*I);
2556     if (isa<DbgVariableIntrinsic>(I)) {
2557       // Remove DbgInfo Intrinsics.
2558       II = I->eraseFromParent();
2559       continue;
2560     }
2561     I->setDebugLoc(InsertPt->getDebugLoc());
2562     ++II;
2563   }
2564   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2565                                  BB->begin(),
2566                                  BB->getTerminator()->getIterator());
2567 }
2568 
2569 namespace {
2570 
2571 /// A potential constituent of a bitreverse or bswap expression. See
2572 /// collectBitParts for a fuller explanation.
2573 struct BitPart {
2574   BitPart(Value *P, unsigned BW) : Provider(P) {
2575     Provenance.resize(BW);
2576   }
2577 
2578   /// The Value that this is a bitreverse/bswap of.
2579   Value *Provider;
2580 
2581   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2582   /// in Provider becomes bit B in the result of this expression.
2583   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2584 
2585   enum { Unset = -1 };
2586 };
2587 
2588 } // end anonymous namespace
2589 
2590 /// Analyze the specified subexpression and see if it is capable of providing
2591 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2592 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2593 /// the output of the expression came from a corresponding bit in some other
2594 /// value. This function is recursive, and the end result is a mapping of
2595 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2596 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2597 ///
2598 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2599 /// that the expression deposits the low byte of %X into the high byte of the
2600 /// result and that all other bits are zero. This expression is accepted and a
2601 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2602 /// [0-7].
2603 ///
2604 /// To avoid revisiting values, the BitPart results are memoized into the
2605 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2606 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2607 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2608 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2609 /// type instead to provide the same functionality.
2610 ///
2611 /// Because we pass around references into \c BPS, we must use a container that
2612 /// does not invalidate internal references (std::map instead of DenseMap).
2613 static const Optional<BitPart> &
2614 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2615                 std::map<Value *, Optional<BitPart>> &BPS) {
2616   auto I = BPS.find(V);
2617   if (I != BPS.end())
2618     return I->second;
2619 
2620   auto &Result = BPS[V] = None;
2621   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2622 
2623   if (Instruction *I = dyn_cast<Instruction>(V)) {
2624     // If this is an or instruction, it may be an inner node of the bswap.
2625     if (I->getOpcode() == Instruction::Or) {
2626       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2627                                 MatchBitReversals, BPS);
2628       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2629                                 MatchBitReversals, BPS);
2630       if (!A || !B)
2631         return Result;
2632 
2633       // Try and merge the two together.
2634       if (!A->Provider || A->Provider != B->Provider)
2635         return Result;
2636 
2637       Result = BitPart(A->Provider, BitWidth);
2638       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2639         if (A->Provenance[i] != BitPart::Unset &&
2640             B->Provenance[i] != BitPart::Unset &&
2641             A->Provenance[i] != B->Provenance[i])
2642           return Result = None;
2643 
2644         if (A->Provenance[i] == BitPart::Unset)
2645           Result->Provenance[i] = B->Provenance[i];
2646         else
2647           Result->Provenance[i] = A->Provenance[i];
2648       }
2649 
2650       return Result;
2651     }
2652 
2653     // If this is a logical shift by a constant, recurse then shift the result.
2654     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2655       unsigned BitShift =
2656           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2657       // Ensure the shift amount is defined.
2658       if (BitShift > BitWidth)
2659         return Result;
2660 
2661       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2662                                   MatchBitReversals, BPS);
2663       if (!Res)
2664         return Result;
2665       Result = Res;
2666 
2667       // Perform the "shift" on BitProvenance.
2668       auto &P = Result->Provenance;
2669       if (I->getOpcode() == Instruction::Shl) {
2670         P.erase(std::prev(P.end(), BitShift), P.end());
2671         P.insert(P.begin(), BitShift, BitPart::Unset);
2672       } else {
2673         P.erase(P.begin(), std::next(P.begin(), BitShift));
2674         P.insert(P.end(), BitShift, BitPart::Unset);
2675       }
2676 
2677       return Result;
2678     }
2679 
2680     // If this is a logical 'and' with a mask that clears bits, recurse then
2681     // unset the appropriate bits.
2682     if (I->getOpcode() == Instruction::And &&
2683         isa<ConstantInt>(I->getOperand(1))) {
2684       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2685       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2686 
2687       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2688       // early exit.
2689       unsigned NumMaskedBits = AndMask.countPopulation();
2690       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2691         return Result;
2692 
2693       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2694                                   MatchBitReversals, BPS);
2695       if (!Res)
2696         return Result;
2697       Result = Res;
2698 
2699       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2700         // If the AndMask is zero for this bit, clear the bit.
2701         if ((AndMask & Bit) == 0)
2702           Result->Provenance[i] = BitPart::Unset;
2703       return Result;
2704     }
2705 
2706     // If this is a zext instruction zero extend the result.
2707     if (I->getOpcode() == Instruction::ZExt) {
2708       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2709                                   MatchBitReversals, BPS);
2710       if (!Res)
2711         return Result;
2712 
2713       Result = BitPart(Res->Provider, BitWidth);
2714       auto NarrowBitWidth =
2715           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2716       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2717         Result->Provenance[i] = Res->Provenance[i];
2718       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2719         Result->Provenance[i] = BitPart::Unset;
2720       return Result;
2721     }
2722   }
2723 
2724   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2725   // the input value to the bswap/bitreverse.
2726   Result = BitPart(V, BitWidth);
2727   for (unsigned i = 0; i < BitWidth; ++i)
2728     Result->Provenance[i] = i;
2729   return Result;
2730 }
2731 
2732 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2733                                           unsigned BitWidth) {
2734   if (From % 8 != To % 8)
2735     return false;
2736   // Convert from bit indices to byte indices and check for a byte reversal.
2737   From >>= 3;
2738   To >>= 3;
2739   BitWidth >>= 3;
2740   return From == BitWidth - To - 1;
2741 }
2742 
2743 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2744                                                unsigned BitWidth) {
2745   return From == BitWidth - To - 1;
2746 }
2747 
2748 bool llvm::recognizeBSwapOrBitReverseIdiom(
2749     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2750     SmallVectorImpl<Instruction *> &InsertedInsts) {
2751   if (Operator::getOpcode(I) != Instruction::Or)
2752     return false;
2753   if (!MatchBSwaps && !MatchBitReversals)
2754     return false;
2755   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2756   if (!ITy || ITy->getBitWidth() > 128)
2757     return false;   // Can't do vectors or integers > 128 bits.
2758   unsigned BW = ITy->getBitWidth();
2759 
2760   unsigned DemandedBW = BW;
2761   IntegerType *DemandedTy = ITy;
2762   if (I->hasOneUse()) {
2763     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2764       DemandedTy = cast<IntegerType>(Trunc->getType());
2765       DemandedBW = DemandedTy->getBitWidth();
2766     }
2767   }
2768 
2769   // Try to find all the pieces corresponding to the bswap.
2770   std::map<Value *, Optional<BitPart>> BPS;
2771   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2772   if (!Res)
2773     return false;
2774   auto &BitProvenance = Res->Provenance;
2775 
2776   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2777   // only byteswap values with an even number of bytes.
2778   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2779   for (unsigned i = 0; i < DemandedBW; ++i) {
2780     OKForBSwap &=
2781         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2782     OKForBitReverse &=
2783         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2784   }
2785 
2786   Intrinsic::ID Intrin;
2787   if (OKForBSwap && MatchBSwaps)
2788     Intrin = Intrinsic::bswap;
2789   else if (OKForBitReverse && MatchBitReversals)
2790     Intrin = Intrinsic::bitreverse;
2791   else
2792     return false;
2793 
2794   if (ITy != DemandedTy) {
2795     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2796     Value *Provider = Res->Provider;
2797     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2798     // We may need to truncate the provider.
2799     if (DemandedTy != ProviderTy) {
2800       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2801                                      "trunc", I);
2802       InsertedInsts.push_back(Trunc);
2803       Provider = Trunc;
2804     }
2805     auto *CI = CallInst::Create(F, Provider, "rev", I);
2806     InsertedInsts.push_back(CI);
2807     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2808     InsertedInsts.push_back(ExtInst);
2809     return true;
2810   }
2811 
2812   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2813   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2814   return true;
2815 }
2816 
2817 // CodeGen has special handling for some string functions that may replace
2818 // them with target-specific intrinsics.  Since that'd skip our interceptors
2819 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2820 // we mark affected calls as NoBuiltin, which will disable optimization
2821 // in CodeGen.
2822 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2823     CallInst *CI, const TargetLibraryInfo *TLI) {
2824   Function *F = CI->getCalledFunction();
2825   LibFunc Func;
2826   if (F && !F->hasLocalLinkage() && F->hasName() &&
2827       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2828       !F->doesNotAccessMemory())
2829     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2830 }
2831 
2832 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2833   // We can't have a PHI with a metadata type.
2834   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2835     return false;
2836 
2837   // Early exit.
2838   if (!isa<Constant>(I->getOperand(OpIdx)))
2839     return true;
2840 
2841   switch (I->getOpcode()) {
2842   default:
2843     return true;
2844   case Instruction::Call:
2845   case Instruction::Invoke:
2846     // Can't handle inline asm. Skip it.
2847     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2848       return false;
2849     // Many arithmetic intrinsics have no issue taking a
2850     // variable, however it's hard to distingish these from
2851     // specials such as @llvm.frameaddress that require a constant.
2852     if (isa<IntrinsicInst>(I))
2853       return false;
2854 
2855     // Constant bundle operands may need to retain their constant-ness for
2856     // correctness.
2857     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2858       return false;
2859     return true;
2860   case Instruction::ShuffleVector:
2861     // Shufflevector masks are constant.
2862     return OpIdx != 2;
2863   case Instruction::Switch:
2864   case Instruction::ExtractValue:
2865     // All operands apart from the first are constant.
2866     return OpIdx == 0;
2867   case Instruction::InsertValue:
2868     // All operands apart from the first and the second are constant.
2869     return OpIdx < 2;
2870   case Instruction::Alloca:
2871     // Static allocas (constant size in the entry block) are handled by
2872     // prologue/epilogue insertion so they're free anyway. We definitely don't
2873     // want to make them non-constant.
2874     return !cast<AllocaInst>(I)->isStaticAlloca();
2875   case Instruction::GetElementPtr:
2876     if (OpIdx == 0)
2877       return true;
2878     gep_type_iterator It = gep_type_begin(I);
2879     for (auto E = std::next(It, OpIdx); It != E; ++It)
2880       if (It.isStruct())
2881         return false;
2882     return true;
2883   }
2884 }
2885