1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/TinyPtrVector.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/IR/Argument.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/CallSite.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/ConstantRange.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DIBuilder.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/DomTreeUpdater.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/ValueMapper.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <climits> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <utility> 86 87 using namespace llvm; 88 using namespace llvm::PatternMatch; 89 90 #define DEBUG_TYPE "local" 91 92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 93 94 //===----------------------------------------------------------------------===// 95 // Local constant propagation. 96 // 97 98 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 99 /// constant value, convert it into an unconditional branch to the constant 100 /// destination. This is a nontrivial operation because the successors of this 101 /// basic block must have their PHI nodes updated. 102 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 103 /// conditions and indirectbr addresses this might make dead if 104 /// DeleteDeadConditions is true. 105 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 106 const TargetLibraryInfo *TLI, 107 DomTreeUpdater *DTU) { 108 Instruction *T = BB->getTerminator(); 109 IRBuilder<> Builder(T); 110 111 // Branch - See if we are conditional jumping on constant 112 if (auto *BI = dyn_cast<BranchInst>(T)) { 113 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 114 BasicBlock *Dest1 = BI->getSuccessor(0); 115 BasicBlock *Dest2 = BI->getSuccessor(1); 116 117 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 118 // Are we branching on constant? 119 // YES. Change to unconditional branch... 120 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 121 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 122 123 // Let the basic block know that we are letting go of it. Based on this, 124 // it will adjust it's PHI nodes. 125 OldDest->removePredecessor(BB); 126 127 // Replace the conditional branch with an unconditional one. 128 Builder.CreateBr(Destination); 129 BI->eraseFromParent(); 130 if (DTU) 131 DTU->deleteEdgeRelaxed(BB, OldDest); 132 return true; 133 } 134 135 if (Dest2 == Dest1) { // Conditional branch to same location? 136 // This branch matches something like this: 137 // br bool %cond, label %Dest, label %Dest 138 // and changes it into: br label %Dest 139 140 // Let the basic block know that we are letting go of one copy of it. 141 assert(BI->getParent() && "Terminator not inserted in block!"); 142 Dest1->removePredecessor(BI->getParent()); 143 144 // Replace the conditional branch with an unconditional one. 145 Builder.CreateBr(Dest1); 146 Value *Cond = BI->getCondition(); 147 BI->eraseFromParent(); 148 if (DeleteDeadConditions) 149 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 150 return true; 151 } 152 return false; 153 } 154 155 if (auto *SI = dyn_cast<SwitchInst>(T)) { 156 // If we are switching on a constant, we can convert the switch to an 157 // unconditional branch. 158 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 159 BasicBlock *DefaultDest = SI->getDefaultDest(); 160 BasicBlock *TheOnlyDest = DefaultDest; 161 162 // If the default is unreachable, ignore it when searching for TheOnlyDest. 163 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 164 SI->getNumCases() > 0) { 165 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 166 } 167 168 // Figure out which case it goes to. 169 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 170 // Found case matching a constant operand? 171 if (i->getCaseValue() == CI) { 172 TheOnlyDest = i->getCaseSuccessor(); 173 break; 174 } 175 176 // Check to see if this branch is going to the same place as the default 177 // dest. If so, eliminate it as an explicit compare. 178 if (i->getCaseSuccessor() == DefaultDest) { 179 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 180 unsigned NCases = SI->getNumCases(); 181 // Fold the case metadata into the default if there will be any branches 182 // left, unless the metadata doesn't match the switch. 183 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 184 // Collect branch weights into a vector. 185 SmallVector<uint32_t, 8> Weights; 186 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 187 ++MD_i) { 188 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 189 Weights.push_back(CI->getValue().getZExtValue()); 190 } 191 // Merge weight of this case to the default weight. 192 unsigned idx = i->getCaseIndex(); 193 Weights[0] += Weights[idx+1]; 194 // Remove weight for this case. 195 std::swap(Weights[idx+1], Weights.back()); 196 Weights.pop_back(); 197 SI->setMetadata(LLVMContext::MD_prof, 198 MDBuilder(BB->getContext()). 199 createBranchWeights(Weights)); 200 } 201 // Remove this entry. 202 BasicBlock *ParentBB = SI->getParent(); 203 DefaultDest->removePredecessor(ParentBB); 204 i = SI->removeCase(i); 205 e = SI->case_end(); 206 if (DTU) 207 DTU->deleteEdgeRelaxed(ParentBB, DefaultDest); 208 continue; 209 } 210 211 // Otherwise, check to see if the switch only branches to one destination. 212 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 213 // destinations. 214 if (i->getCaseSuccessor() != TheOnlyDest) 215 TheOnlyDest = nullptr; 216 217 // Increment this iterator as we haven't removed the case. 218 ++i; 219 } 220 221 if (CI && !TheOnlyDest) { 222 // Branching on a constant, but not any of the cases, go to the default 223 // successor. 224 TheOnlyDest = SI->getDefaultDest(); 225 } 226 227 // If we found a single destination that we can fold the switch into, do so 228 // now. 229 if (TheOnlyDest) { 230 // Insert the new branch. 231 Builder.CreateBr(TheOnlyDest); 232 BasicBlock *BB = SI->getParent(); 233 std::vector <DominatorTree::UpdateType> Updates; 234 if (DTU) 235 Updates.reserve(SI->getNumSuccessors() - 1); 236 237 // Remove entries from PHI nodes which we no longer branch to... 238 for (BasicBlock *Succ : successors(SI)) { 239 // Found case matching a constant operand? 240 if (Succ == TheOnlyDest) { 241 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 242 } else { 243 Succ->removePredecessor(BB); 244 if (DTU) 245 Updates.push_back({DominatorTree::Delete, BB, Succ}); 246 } 247 } 248 249 // Delete the old switch. 250 Value *Cond = SI->getCondition(); 251 SI->eraseFromParent(); 252 if (DeleteDeadConditions) 253 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 254 if (DTU) 255 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 256 return true; 257 } 258 259 if (SI->getNumCases() == 1) { 260 // Otherwise, we can fold this switch into a conditional branch 261 // instruction if it has only one non-default destination. 262 auto FirstCase = *SI->case_begin(); 263 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 264 FirstCase.getCaseValue(), "cond"); 265 266 // Insert the new branch. 267 BranchInst *NewBr = Builder.CreateCondBr(Cond, 268 FirstCase.getCaseSuccessor(), 269 SI->getDefaultDest()); 270 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 271 if (MD && MD->getNumOperands() == 3) { 272 ConstantInt *SICase = 273 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 274 ConstantInt *SIDef = 275 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 276 assert(SICase && SIDef); 277 // The TrueWeight should be the weight for the single case of SI. 278 NewBr->setMetadata(LLVMContext::MD_prof, 279 MDBuilder(BB->getContext()). 280 createBranchWeights(SICase->getValue().getZExtValue(), 281 SIDef->getValue().getZExtValue())); 282 } 283 284 // Update make.implicit metadata to the newly-created conditional branch. 285 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 286 if (MakeImplicitMD) 287 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 288 289 // Delete the old switch. 290 SI->eraseFromParent(); 291 return true; 292 } 293 return false; 294 } 295 296 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 297 // indirectbr blockaddress(@F, @BB) -> br label @BB 298 if (auto *BA = 299 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 300 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 301 std::vector <DominatorTree::UpdateType> Updates; 302 if (DTU) 303 Updates.reserve(IBI->getNumDestinations() - 1); 304 305 // Insert the new branch. 306 Builder.CreateBr(TheOnlyDest); 307 308 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 309 if (IBI->getDestination(i) == TheOnlyDest) { 310 TheOnlyDest = nullptr; 311 } else { 312 BasicBlock *ParentBB = IBI->getParent(); 313 BasicBlock *DestBB = IBI->getDestination(i); 314 DestBB->removePredecessor(ParentBB); 315 if (DTU) 316 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 317 } 318 } 319 Value *Address = IBI->getAddress(); 320 IBI->eraseFromParent(); 321 if (DeleteDeadConditions) 322 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 323 324 // If we didn't find our destination in the IBI successor list, then we 325 // have undefined behavior. Replace the unconditional branch with an 326 // 'unreachable' instruction. 327 if (TheOnlyDest) { 328 BB->getTerminator()->eraseFromParent(); 329 new UnreachableInst(BB->getContext(), BB); 330 } 331 332 if (DTU) 333 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 334 return true; 335 } 336 } 337 338 return false; 339 } 340 341 //===----------------------------------------------------------------------===// 342 // Local dead code elimination. 343 // 344 345 /// isInstructionTriviallyDead - Return true if the result produced by the 346 /// instruction is not used, and the instruction has no side effects. 347 /// 348 bool llvm::isInstructionTriviallyDead(Instruction *I, 349 const TargetLibraryInfo *TLI) { 350 if (!I->use_empty()) 351 return false; 352 return wouldInstructionBeTriviallyDead(I, TLI); 353 } 354 355 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 356 const TargetLibraryInfo *TLI) { 357 if (I->isTerminator()) 358 return false; 359 360 // We don't want the landingpad-like instructions removed by anything this 361 // general. 362 if (I->isEHPad()) 363 return false; 364 365 // We don't want debug info removed by anything this general, unless 366 // debug info is empty. 367 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 368 if (DDI->getAddress()) 369 return false; 370 return true; 371 } 372 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 373 if (DVI->getValue()) 374 return false; 375 return true; 376 } 377 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 378 if (DLI->getLabel()) 379 return false; 380 return true; 381 } 382 383 if (!I->mayHaveSideEffects()) 384 return true; 385 386 // Special case intrinsics that "may have side effects" but can be deleted 387 // when dead. 388 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 389 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 390 if (II->getIntrinsicID() == Intrinsic::stacksave || 391 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 392 return true; 393 394 // Lifetime intrinsics are dead when their right-hand is undef. 395 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 396 II->getIntrinsicID() == Intrinsic::lifetime_end) 397 return isa<UndefValue>(II->getArgOperand(1)); 398 399 // Assumptions are dead if their condition is trivially true. Guards on 400 // true are operationally no-ops. In the future we can consider more 401 // sophisticated tradeoffs for guards considering potential for check 402 // widening, but for now we keep things simple. 403 if (II->getIntrinsicID() == Intrinsic::assume || 404 II->getIntrinsicID() == Intrinsic::experimental_guard) { 405 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 406 return !Cond->isZero(); 407 408 return false; 409 } 410 } 411 412 if (isAllocLikeFn(I, TLI)) 413 return true; 414 415 if (CallInst *CI = isFreeCall(I, TLI)) 416 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 417 return C->isNullValue() || isa<UndefValue>(C); 418 419 if (CallSite CS = CallSite(I)) 420 if (isMathLibCallNoop(CS, TLI)) 421 return true; 422 423 return false; 424 } 425 426 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 427 /// trivially dead instruction, delete it. If that makes any of its operands 428 /// trivially dead, delete them too, recursively. Return true if any 429 /// instructions were deleted. 430 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 431 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) { 432 Instruction *I = dyn_cast<Instruction>(V); 433 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 434 return false; 435 436 SmallVector<Instruction*, 16> DeadInsts; 437 DeadInsts.push_back(I); 438 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 439 440 return true; 441 } 442 443 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 444 SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI, 445 MemorySSAUpdater *MSSAU) { 446 // Process the dead instruction list until empty. 447 while (!DeadInsts.empty()) { 448 Instruction &I = *DeadInsts.pop_back_val(); 449 assert(I.use_empty() && "Instructions with uses are not dead."); 450 assert(isInstructionTriviallyDead(&I, TLI) && 451 "Live instruction found in dead worklist!"); 452 453 // Don't lose the debug info while deleting the instructions. 454 salvageDebugInfo(I); 455 456 // Null out all of the instruction's operands to see if any operand becomes 457 // dead as we go. 458 for (Use &OpU : I.operands()) { 459 Value *OpV = OpU.get(); 460 OpU.set(nullptr); 461 462 if (!OpV->use_empty()) 463 continue; 464 465 // If the operand is an instruction that became dead as we nulled out the 466 // operand, and if it is 'trivially' dead, delete it in a future loop 467 // iteration. 468 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 469 if (isInstructionTriviallyDead(OpI, TLI)) 470 DeadInsts.push_back(OpI); 471 } 472 if (MSSAU) 473 MSSAU->removeMemoryAccess(&I); 474 475 I.eraseFromParent(); 476 } 477 } 478 479 /// areAllUsesEqual - Check whether the uses of a value are all the same. 480 /// This is similar to Instruction::hasOneUse() except this will also return 481 /// true when there are no uses or multiple uses that all refer to the same 482 /// value. 483 static bool areAllUsesEqual(Instruction *I) { 484 Value::user_iterator UI = I->user_begin(); 485 Value::user_iterator UE = I->user_end(); 486 if (UI == UE) 487 return true; 488 489 User *TheUse = *UI; 490 for (++UI; UI != UE; ++UI) { 491 if (*UI != TheUse) 492 return false; 493 } 494 return true; 495 } 496 497 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 498 /// dead PHI node, due to being a def-use chain of single-use nodes that 499 /// either forms a cycle or is terminated by a trivially dead instruction, 500 /// delete it. If that makes any of its operands trivially dead, delete them 501 /// too, recursively. Return true if a change was made. 502 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 503 const TargetLibraryInfo *TLI) { 504 SmallPtrSet<Instruction*, 4> Visited; 505 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 506 I = cast<Instruction>(*I->user_begin())) { 507 if (I->use_empty()) 508 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 509 510 // If we find an instruction more than once, we're on a cycle that 511 // won't prove fruitful. 512 if (!Visited.insert(I).second) { 513 // Break the cycle and delete the instruction and its operands. 514 I->replaceAllUsesWith(UndefValue::get(I->getType())); 515 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 516 return true; 517 } 518 } 519 return false; 520 } 521 522 static bool 523 simplifyAndDCEInstruction(Instruction *I, 524 SmallSetVector<Instruction *, 16> &WorkList, 525 const DataLayout &DL, 526 const TargetLibraryInfo *TLI) { 527 if (isInstructionTriviallyDead(I, TLI)) { 528 salvageDebugInfo(*I); 529 530 // Null out all of the instruction's operands to see if any operand becomes 531 // dead as we go. 532 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 533 Value *OpV = I->getOperand(i); 534 I->setOperand(i, nullptr); 535 536 if (!OpV->use_empty() || I == OpV) 537 continue; 538 539 // If the operand is an instruction that became dead as we nulled out the 540 // operand, and if it is 'trivially' dead, delete it in a future loop 541 // iteration. 542 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 543 if (isInstructionTriviallyDead(OpI, TLI)) 544 WorkList.insert(OpI); 545 } 546 547 I->eraseFromParent(); 548 549 return true; 550 } 551 552 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 553 // Add the users to the worklist. CAREFUL: an instruction can use itself, 554 // in the case of a phi node. 555 for (User *U : I->users()) { 556 if (U != I) { 557 WorkList.insert(cast<Instruction>(U)); 558 } 559 } 560 561 // Replace the instruction with its simplified value. 562 bool Changed = false; 563 if (!I->use_empty()) { 564 I->replaceAllUsesWith(SimpleV); 565 Changed = true; 566 } 567 if (isInstructionTriviallyDead(I, TLI)) { 568 I->eraseFromParent(); 569 Changed = true; 570 } 571 return Changed; 572 } 573 return false; 574 } 575 576 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 577 /// simplify any instructions in it and recursively delete dead instructions. 578 /// 579 /// This returns true if it changed the code, note that it can delete 580 /// instructions in other blocks as well in this block. 581 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 582 const TargetLibraryInfo *TLI) { 583 bool MadeChange = false; 584 const DataLayout &DL = BB->getModule()->getDataLayout(); 585 586 #ifndef NDEBUG 587 // In debug builds, ensure that the terminator of the block is never replaced 588 // or deleted by these simplifications. The idea of simplification is that it 589 // cannot introduce new instructions, and there is no way to replace the 590 // terminator of a block without introducing a new instruction. 591 AssertingVH<Instruction> TerminatorVH(&BB->back()); 592 #endif 593 594 SmallSetVector<Instruction *, 16> WorkList; 595 // Iterate over the original function, only adding insts to the worklist 596 // if they actually need to be revisited. This avoids having to pre-init 597 // the worklist with the entire function's worth of instructions. 598 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 599 BI != E;) { 600 assert(!BI->isTerminator()); 601 Instruction *I = &*BI; 602 ++BI; 603 604 // We're visiting this instruction now, so make sure it's not in the 605 // worklist from an earlier visit. 606 if (!WorkList.count(I)) 607 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 608 } 609 610 while (!WorkList.empty()) { 611 Instruction *I = WorkList.pop_back_val(); 612 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 613 } 614 return MadeChange; 615 } 616 617 //===----------------------------------------------------------------------===// 618 // Control Flow Graph Restructuring. 619 // 620 621 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 622 /// method is called when we're about to delete Pred as a predecessor of BB. If 623 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 624 /// 625 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 626 /// nodes that collapse into identity values. For example, if we have: 627 /// x = phi(1, 0, 0, 0) 628 /// y = and x, z 629 /// 630 /// .. and delete the predecessor corresponding to the '1', this will attempt to 631 /// recursively fold the and to 0. 632 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 633 DomTreeUpdater *DTU) { 634 // This only adjusts blocks with PHI nodes. 635 if (!isa<PHINode>(BB->begin())) 636 return; 637 638 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 639 // them down. This will leave us with single entry phi nodes and other phis 640 // that can be removed. 641 BB->removePredecessor(Pred, true); 642 643 WeakTrackingVH PhiIt = &BB->front(); 644 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 645 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 646 Value *OldPhiIt = PhiIt; 647 648 if (!recursivelySimplifyInstruction(PN)) 649 continue; 650 651 // If recursive simplification ended up deleting the next PHI node we would 652 // iterate to, then our iterator is invalid, restart scanning from the top 653 // of the block. 654 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 655 } 656 if (DTU) 657 DTU->deleteEdgeRelaxed(Pred, BB); 658 } 659 660 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 661 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 662 /// between them, moving the instructions in the predecessor into DestBB and 663 /// deleting the predecessor block. 664 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 665 DomTreeUpdater *DTU) { 666 667 // If BB has single-entry PHI nodes, fold them. 668 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 669 Value *NewVal = PN->getIncomingValue(0); 670 // Replace self referencing PHI with undef, it must be dead. 671 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 672 PN->replaceAllUsesWith(NewVal); 673 PN->eraseFromParent(); 674 } 675 676 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 677 assert(PredBB && "Block doesn't have a single predecessor!"); 678 679 bool ReplaceEntryBB = false; 680 if (PredBB == &DestBB->getParent()->getEntryBlock()) 681 ReplaceEntryBB = true; 682 683 // DTU updates: Collect all the edges that enter 684 // PredBB. These dominator edges will be redirected to DestBB. 685 SmallVector<DominatorTree::UpdateType, 32> Updates; 686 687 if (DTU) { 688 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 689 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 690 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 691 // This predecessor of PredBB may already have DestBB as a successor. 692 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 693 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 694 } 695 } 696 697 // Zap anything that took the address of DestBB. Not doing this will give the 698 // address an invalid value. 699 if (DestBB->hasAddressTaken()) { 700 BlockAddress *BA = BlockAddress::get(DestBB); 701 Constant *Replacement = 702 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 703 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 704 BA->getType())); 705 BA->destroyConstant(); 706 } 707 708 // Anything that branched to PredBB now branches to DestBB. 709 PredBB->replaceAllUsesWith(DestBB); 710 711 // Splice all the instructions from PredBB to DestBB. 712 PredBB->getTerminator()->eraseFromParent(); 713 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 714 new UnreachableInst(PredBB->getContext(), PredBB); 715 716 // If the PredBB is the entry block of the function, move DestBB up to 717 // become the entry block after we erase PredBB. 718 if (ReplaceEntryBB) 719 DestBB->moveAfter(PredBB); 720 721 if (DTU) { 722 assert(PredBB->getInstList().size() == 1 && 723 isa<UnreachableInst>(PredBB->getTerminator()) && 724 "The successor list of PredBB isn't empty before " 725 "applying corresponding DTU updates."); 726 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 727 DTU->deleteBB(PredBB); 728 // Recalculation of DomTree is needed when updating a forward DomTree and 729 // the Entry BB is replaced. 730 if (ReplaceEntryBB && DTU->hasDomTree()) { 731 // The entry block was removed and there is no external interface for 732 // the dominator tree to be notified of this change. In this corner-case 733 // we recalculate the entire tree. 734 DTU->recalculate(*(DestBB->getParent())); 735 } 736 } 737 738 else { 739 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 740 } 741 } 742 743 /// CanMergeValues - Return true if we can choose one of these values to use 744 /// in place of the other. Note that we will always choose the non-undef 745 /// value to keep. 746 static bool CanMergeValues(Value *First, Value *Second) { 747 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 748 } 749 750 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 751 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 752 /// 753 /// Assumption: Succ is the single successor for BB. 754 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 755 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 756 757 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 758 << Succ->getName() << "\n"); 759 // Shortcut, if there is only a single predecessor it must be BB and merging 760 // is always safe 761 if (Succ->getSinglePredecessor()) return true; 762 763 // Make a list of the predecessors of BB 764 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 765 766 // Look at all the phi nodes in Succ, to see if they present a conflict when 767 // merging these blocks 768 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 769 PHINode *PN = cast<PHINode>(I); 770 771 // If the incoming value from BB is again a PHINode in 772 // BB which has the same incoming value for *PI as PN does, we can 773 // merge the phi nodes and then the blocks can still be merged 774 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 775 if (BBPN && BBPN->getParent() == BB) { 776 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 777 BasicBlock *IBB = PN->getIncomingBlock(PI); 778 if (BBPreds.count(IBB) && 779 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 780 PN->getIncomingValue(PI))) { 781 LLVM_DEBUG(dbgs() 782 << "Can't fold, phi node " << PN->getName() << " in " 783 << Succ->getName() << " is conflicting with " 784 << BBPN->getName() << " with regard to common predecessor " 785 << IBB->getName() << "\n"); 786 return false; 787 } 788 } 789 } else { 790 Value* Val = PN->getIncomingValueForBlock(BB); 791 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 792 // See if the incoming value for the common predecessor is equal to the 793 // one for BB, in which case this phi node will not prevent the merging 794 // of the block. 795 BasicBlock *IBB = PN->getIncomingBlock(PI); 796 if (BBPreds.count(IBB) && 797 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 798 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 799 << " in " << Succ->getName() 800 << " is conflicting with regard to common " 801 << "predecessor " << IBB->getName() << "\n"); 802 return false; 803 } 804 } 805 } 806 } 807 808 return true; 809 } 810 811 using PredBlockVector = SmallVector<BasicBlock *, 16>; 812 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 813 814 /// Determines the value to use as the phi node input for a block. 815 /// 816 /// Select between \p OldVal any value that we know flows from \p BB 817 /// to a particular phi on the basis of which one (if either) is not 818 /// undef. Update IncomingValues based on the selected value. 819 /// 820 /// \param OldVal The value we are considering selecting. 821 /// \param BB The block that the value flows in from. 822 /// \param IncomingValues A map from block-to-value for other phi inputs 823 /// that we have examined. 824 /// 825 /// \returns the selected value. 826 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 827 IncomingValueMap &IncomingValues) { 828 if (!isa<UndefValue>(OldVal)) { 829 assert((!IncomingValues.count(BB) || 830 IncomingValues.find(BB)->second == OldVal) && 831 "Expected OldVal to match incoming value from BB!"); 832 833 IncomingValues.insert(std::make_pair(BB, OldVal)); 834 return OldVal; 835 } 836 837 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 838 if (It != IncomingValues.end()) return It->second; 839 840 return OldVal; 841 } 842 843 /// Create a map from block to value for the operands of a 844 /// given phi. 845 /// 846 /// Create a map from block to value for each non-undef value flowing 847 /// into \p PN. 848 /// 849 /// \param PN The phi we are collecting the map for. 850 /// \param IncomingValues [out] The map from block to value for this phi. 851 static void gatherIncomingValuesToPhi(PHINode *PN, 852 IncomingValueMap &IncomingValues) { 853 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 854 BasicBlock *BB = PN->getIncomingBlock(i); 855 Value *V = PN->getIncomingValue(i); 856 857 if (!isa<UndefValue>(V)) 858 IncomingValues.insert(std::make_pair(BB, V)); 859 } 860 } 861 862 /// Replace the incoming undef values to a phi with the values 863 /// from a block-to-value map. 864 /// 865 /// \param PN The phi we are replacing the undefs in. 866 /// \param IncomingValues A map from block to value. 867 static void replaceUndefValuesInPhi(PHINode *PN, 868 const IncomingValueMap &IncomingValues) { 869 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 870 Value *V = PN->getIncomingValue(i); 871 872 if (!isa<UndefValue>(V)) continue; 873 874 BasicBlock *BB = PN->getIncomingBlock(i); 875 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 876 if (It == IncomingValues.end()) continue; 877 878 PN->setIncomingValue(i, It->second); 879 } 880 } 881 882 /// Replace a value flowing from a block to a phi with 883 /// potentially multiple instances of that value flowing from the 884 /// block's predecessors to the phi. 885 /// 886 /// \param BB The block with the value flowing into the phi. 887 /// \param BBPreds The predecessors of BB. 888 /// \param PN The phi that we are updating. 889 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 890 const PredBlockVector &BBPreds, 891 PHINode *PN) { 892 Value *OldVal = PN->removeIncomingValue(BB, false); 893 assert(OldVal && "No entry in PHI for Pred BB!"); 894 895 IncomingValueMap IncomingValues; 896 897 // We are merging two blocks - BB, and the block containing PN - and 898 // as a result we need to redirect edges from the predecessors of BB 899 // to go to the block containing PN, and update PN 900 // accordingly. Since we allow merging blocks in the case where the 901 // predecessor and successor blocks both share some predecessors, 902 // and where some of those common predecessors might have undef 903 // values flowing into PN, we want to rewrite those values to be 904 // consistent with the non-undef values. 905 906 gatherIncomingValuesToPhi(PN, IncomingValues); 907 908 // If this incoming value is one of the PHI nodes in BB, the new entries 909 // in the PHI node are the entries from the old PHI. 910 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 911 PHINode *OldValPN = cast<PHINode>(OldVal); 912 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 913 // Note that, since we are merging phi nodes and BB and Succ might 914 // have common predecessors, we could end up with a phi node with 915 // identical incoming branches. This will be cleaned up later (and 916 // will trigger asserts if we try to clean it up now, without also 917 // simplifying the corresponding conditional branch). 918 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 919 Value *PredVal = OldValPN->getIncomingValue(i); 920 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 921 IncomingValues); 922 923 // And add a new incoming value for this predecessor for the 924 // newly retargeted branch. 925 PN->addIncoming(Selected, PredBB); 926 } 927 } else { 928 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 929 // Update existing incoming values in PN for this 930 // predecessor of BB. 931 BasicBlock *PredBB = BBPreds[i]; 932 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 933 IncomingValues); 934 935 // And add a new incoming value for this predecessor for the 936 // newly retargeted branch. 937 PN->addIncoming(Selected, PredBB); 938 } 939 } 940 941 replaceUndefValuesInPhi(PN, IncomingValues); 942 } 943 944 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 945 /// unconditional branch, and contains no instructions other than PHI nodes, 946 /// potential side-effect free intrinsics and the branch. If possible, 947 /// eliminate BB by rewriting all the predecessors to branch to the successor 948 /// block and return true. If we can't transform, return false. 949 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 950 DomTreeUpdater *DTU) { 951 assert(BB != &BB->getParent()->getEntryBlock() && 952 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 953 954 // We can't eliminate infinite loops. 955 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 956 if (BB == Succ) return false; 957 958 // Check to see if merging these blocks would cause conflicts for any of the 959 // phi nodes in BB or Succ. If not, we can safely merge. 960 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 961 962 // Check for cases where Succ has multiple predecessors and a PHI node in BB 963 // has uses which will not disappear when the PHI nodes are merged. It is 964 // possible to handle such cases, but difficult: it requires checking whether 965 // BB dominates Succ, which is non-trivial to calculate in the case where 966 // Succ has multiple predecessors. Also, it requires checking whether 967 // constructing the necessary self-referential PHI node doesn't introduce any 968 // conflicts; this isn't too difficult, but the previous code for doing this 969 // was incorrect. 970 // 971 // Note that if this check finds a live use, BB dominates Succ, so BB is 972 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 973 // folding the branch isn't profitable in that case anyway. 974 if (!Succ->getSinglePredecessor()) { 975 BasicBlock::iterator BBI = BB->begin(); 976 while (isa<PHINode>(*BBI)) { 977 for (Use &U : BBI->uses()) { 978 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 979 if (PN->getIncomingBlock(U) != BB) 980 return false; 981 } else { 982 return false; 983 } 984 } 985 ++BBI; 986 } 987 } 988 989 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 990 991 SmallVector<DominatorTree::UpdateType, 32> Updates; 992 if (DTU) { 993 Updates.push_back({DominatorTree::Delete, BB, Succ}); 994 // All predecessors of BB will be moved to Succ. 995 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 996 Updates.push_back({DominatorTree::Delete, *I, BB}); 997 // This predecessor of BB may already have Succ as a successor. 998 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 999 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1000 } 1001 } 1002 1003 if (isa<PHINode>(Succ->begin())) { 1004 // If there is more than one pred of succ, and there are PHI nodes in 1005 // the successor, then we need to add incoming edges for the PHI nodes 1006 // 1007 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1008 1009 // Loop over all of the PHI nodes in the successor of BB. 1010 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1011 PHINode *PN = cast<PHINode>(I); 1012 1013 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1014 } 1015 } 1016 1017 if (Succ->getSinglePredecessor()) { 1018 // BB is the only predecessor of Succ, so Succ will end up with exactly 1019 // the same predecessors BB had. 1020 1021 // Copy over any phi, debug or lifetime instruction. 1022 BB->getTerminator()->eraseFromParent(); 1023 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1024 BB->getInstList()); 1025 } else { 1026 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1027 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1028 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1029 PN->eraseFromParent(); 1030 } 1031 } 1032 1033 // If the unconditional branch we replaced contains llvm.loop metadata, we 1034 // add the metadata to the branch instructions in the predecessors. 1035 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1036 Instruction *TI = BB->getTerminator(); 1037 if (TI) 1038 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1039 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1040 BasicBlock *Pred = *PI; 1041 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1042 } 1043 1044 // Everything that jumped to BB now goes to Succ. 1045 BB->replaceAllUsesWith(Succ); 1046 if (!Succ->hasName()) Succ->takeName(BB); 1047 1048 // Clear the successor list of BB to match updates applying to DTU later. 1049 if (BB->getTerminator()) 1050 BB->getInstList().pop_back(); 1051 new UnreachableInst(BB->getContext(), BB); 1052 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1053 "applying corresponding DTU updates."); 1054 1055 if (DTU) { 1056 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 1057 DTU->deleteBB(BB); 1058 } else { 1059 BB->eraseFromParent(); // Delete the old basic block. 1060 } 1061 return true; 1062 } 1063 1064 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 1065 /// nodes in this block. This doesn't try to be clever about PHI nodes 1066 /// which differ only in the order of the incoming values, but instcombine 1067 /// orders them so it usually won't matter. 1068 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1069 // This implementation doesn't currently consider undef operands 1070 // specially. Theoretically, two phis which are identical except for 1071 // one having an undef where the other doesn't could be collapsed. 1072 1073 struct PHIDenseMapInfo { 1074 static PHINode *getEmptyKey() { 1075 return DenseMapInfo<PHINode *>::getEmptyKey(); 1076 } 1077 1078 static PHINode *getTombstoneKey() { 1079 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1080 } 1081 1082 static unsigned getHashValue(PHINode *PN) { 1083 // Compute a hash value on the operands. Instcombine will likely have 1084 // sorted them, which helps expose duplicates, but we have to check all 1085 // the operands to be safe in case instcombine hasn't run. 1086 return static_cast<unsigned>(hash_combine( 1087 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1088 hash_combine_range(PN->block_begin(), PN->block_end()))); 1089 } 1090 1091 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1092 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1093 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1094 return LHS == RHS; 1095 return LHS->isIdenticalTo(RHS); 1096 } 1097 }; 1098 1099 // Set of unique PHINodes. 1100 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1101 1102 // Examine each PHI. 1103 bool Changed = false; 1104 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1105 auto Inserted = PHISet.insert(PN); 1106 if (!Inserted.second) { 1107 // A duplicate. Replace this PHI with its duplicate. 1108 PN->replaceAllUsesWith(*Inserted.first); 1109 PN->eraseFromParent(); 1110 Changed = true; 1111 1112 // The RAUW can change PHIs that we already visited. Start over from the 1113 // beginning. 1114 PHISet.clear(); 1115 I = BB->begin(); 1116 } 1117 } 1118 1119 return Changed; 1120 } 1121 1122 /// enforceKnownAlignment - If the specified pointer points to an object that 1123 /// we control, modify the object's alignment to PrefAlign. This isn't 1124 /// often possible though. If alignment is important, a more reliable approach 1125 /// is to simply align all global variables and allocation instructions to 1126 /// their preferred alignment from the beginning. 1127 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 1128 unsigned PrefAlign, 1129 const DataLayout &DL) { 1130 assert(PrefAlign > Align); 1131 1132 V = V->stripPointerCasts(); 1133 1134 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1135 // TODO: ideally, computeKnownBits ought to have used 1136 // AllocaInst::getAlignment() in its computation already, making 1137 // the below max redundant. But, as it turns out, 1138 // stripPointerCasts recurses through infinite layers of bitcasts, 1139 // while computeKnownBits is not allowed to traverse more than 6 1140 // levels. 1141 Align = std::max(AI->getAlignment(), Align); 1142 if (PrefAlign <= Align) 1143 return Align; 1144 1145 // If the preferred alignment is greater than the natural stack alignment 1146 // then don't round up. This avoids dynamic stack realignment. 1147 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1148 return Align; 1149 AI->setAlignment(PrefAlign); 1150 return PrefAlign; 1151 } 1152 1153 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1154 // TODO: as above, this shouldn't be necessary. 1155 Align = std::max(GO->getAlignment(), Align); 1156 if (PrefAlign <= Align) 1157 return Align; 1158 1159 // If there is a large requested alignment and we can, bump up the alignment 1160 // of the global. If the memory we set aside for the global may not be the 1161 // memory used by the final program then it is impossible for us to reliably 1162 // enforce the preferred alignment. 1163 if (!GO->canIncreaseAlignment()) 1164 return Align; 1165 1166 GO->setAlignment(PrefAlign); 1167 return PrefAlign; 1168 } 1169 1170 return Align; 1171 } 1172 1173 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1174 const DataLayout &DL, 1175 const Instruction *CxtI, 1176 AssumptionCache *AC, 1177 const DominatorTree *DT) { 1178 assert(V->getType()->isPointerTy() && 1179 "getOrEnforceKnownAlignment expects a pointer!"); 1180 1181 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1182 unsigned TrailZ = Known.countMinTrailingZeros(); 1183 1184 // Avoid trouble with ridiculously large TrailZ values, such as 1185 // those computed from a null pointer. 1186 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1187 1188 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1189 1190 // LLVM doesn't support alignments larger than this currently. 1191 Align = std::min(Align, +Value::MaximumAlignment); 1192 1193 if (PrefAlign > Align) 1194 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1195 1196 // We don't need to make any adjustment. 1197 return Align; 1198 } 1199 1200 ///===---------------------------------------------------------------------===// 1201 /// Dbg Intrinsic utilities 1202 /// 1203 1204 /// See if there is a dbg.value intrinsic for DIVar before I. 1205 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1206 Instruction *I) { 1207 // Since we can't guarantee that the original dbg.declare instrinsic 1208 // is removed by LowerDbgDeclare(), we need to make sure that we are 1209 // not inserting the same dbg.value intrinsic over and over. 1210 BasicBlock::InstListType::iterator PrevI(I); 1211 if (PrevI != I->getParent()->getInstList().begin()) { 1212 --PrevI; 1213 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1214 if (DVI->getValue() == I->getOperand(0) && 1215 DVI->getVariable() == DIVar && 1216 DVI->getExpression() == DIExpr) 1217 return true; 1218 } 1219 return false; 1220 } 1221 1222 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1223 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1224 DIExpression *DIExpr, 1225 PHINode *APN) { 1226 // Since we can't guarantee that the original dbg.declare instrinsic 1227 // is removed by LowerDbgDeclare(), we need to make sure that we are 1228 // not inserting the same dbg.value intrinsic over and over. 1229 SmallVector<DbgValueInst *, 1> DbgValues; 1230 findDbgValues(DbgValues, APN); 1231 for (auto *DVI : DbgValues) { 1232 assert(DVI->getValue() == APN); 1233 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1234 return true; 1235 } 1236 return false; 1237 } 1238 1239 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1240 /// (or fragment of the variable) described by \p DII. 1241 /// 1242 /// This is primarily intended as a helper for the different 1243 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1244 /// converted describes an alloca'd variable, so we need to use the 1245 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1246 /// identified as covering an n-bit fragment, if the store size of i1 is at 1247 /// least n bits. 1248 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1249 const DataLayout &DL = DII->getModule()->getDataLayout(); 1250 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1251 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1252 return ValueSize >= *FragmentSize; 1253 // We can't always calculate the size of the DI variable (e.g. if it is a 1254 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1255 // intead. 1256 if (DII->isAddressOfVariable()) 1257 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1258 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1259 return ValueSize >= *FragmentSize; 1260 // Could not determine size of variable. Conservatively return false. 1261 return false; 1262 } 1263 1264 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1265 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1266 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1267 StoreInst *SI, DIBuilder &Builder) { 1268 assert(DII->isAddressOfVariable()); 1269 auto *DIVar = DII->getVariable(); 1270 assert(DIVar && "Missing variable"); 1271 auto *DIExpr = DII->getExpression(); 1272 Value *DV = SI->getOperand(0); 1273 1274 if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) { 1275 // FIXME: If storing to a part of the variable described by the dbg.declare, 1276 // then we want to insert a dbg.value for the corresponding fragment. 1277 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1278 << *DII << '\n'); 1279 // For now, when there is a store to parts of the variable (but we do not 1280 // know which part) we insert an dbg.value instrinsic to indicate that we 1281 // know nothing about the variable's content. 1282 DV = UndefValue::get(DV->getType()); 1283 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1284 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1285 SI); 1286 return; 1287 } 1288 1289 // If an argument is zero extended then use argument directly. The ZExt 1290 // may be zapped by an optimization pass in future. 1291 Argument *ExtendedArg = nullptr; 1292 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1293 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1294 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1295 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1296 if (ExtendedArg) { 1297 // If this DII was already describing only a fragment of a variable, ensure 1298 // that fragment is appropriately narrowed here. 1299 // But if a fragment wasn't used, describe the value as the original 1300 // argument (rather than the zext or sext) so that it remains described even 1301 // if the sext/zext is optimized away. This widens the variable description, 1302 // leaving it up to the consumer to know how the smaller value may be 1303 // represented in a larger register. 1304 if (auto Fragment = DIExpr->getFragmentInfo()) { 1305 unsigned FragmentOffset = Fragment->OffsetInBits; 1306 SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(), 1307 DIExpr->elements_end() - 3); 1308 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1309 Ops.push_back(FragmentOffset); 1310 const DataLayout &DL = DII->getModule()->getDataLayout(); 1311 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1312 DIExpr = Builder.createExpression(Ops); 1313 } 1314 DV = ExtendedArg; 1315 } 1316 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1317 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1318 SI); 1319 } 1320 1321 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1322 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1323 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1324 LoadInst *LI, DIBuilder &Builder) { 1325 auto *DIVar = DII->getVariable(); 1326 auto *DIExpr = DII->getExpression(); 1327 assert(DIVar && "Missing variable"); 1328 1329 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1330 return; 1331 1332 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1333 // FIXME: If only referring to a part of the variable described by the 1334 // dbg.declare, then we want to insert a dbg.value for the corresponding 1335 // fragment. 1336 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1337 << *DII << '\n'); 1338 return; 1339 } 1340 1341 // We are now tracking the loaded value instead of the address. In the 1342 // future if multi-location support is added to the IR, it might be 1343 // preferable to keep tracking both the loaded value and the original 1344 // address in case the alloca can not be elided. 1345 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1346 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); 1347 DbgValue->insertAfter(LI); 1348 } 1349 1350 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1351 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1352 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1353 PHINode *APN, DIBuilder &Builder) { 1354 auto *DIVar = DII->getVariable(); 1355 auto *DIExpr = DII->getExpression(); 1356 assert(DIVar && "Missing variable"); 1357 1358 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1359 return; 1360 1361 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1362 // FIXME: If only referring to a part of the variable described by the 1363 // dbg.declare, then we want to insert a dbg.value for the corresponding 1364 // fragment. 1365 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1366 << *DII << '\n'); 1367 return; 1368 } 1369 1370 BasicBlock *BB = APN->getParent(); 1371 auto InsertionPt = BB->getFirstInsertionPt(); 1372 1373 // The block may be a catchswitch block, which does not have a valid 1374 // insertion point. 1375 // FIXME: Insert dbg.value markers in the successors when appropriate. 1376 if (InsertionPt != BB->end()) 1377 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), 1378 &*InsertionPt); 1379 } 1380 1381 /// Determine whether this alloca is either a VLA or an array. 1382 static bool isArray(AllocaInst *AI) { 1383 return AI->isArrayAllocation() || 1384 AI->getType()->getElementType()->isArrayTy(); 1385 } 1386 1387 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1388 /// of llvm.dbg.value intrinsics. 1389 bool llvm::LowerDbgDeclare(Function &F) { 1390 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1391 SmallVector<DbgDeclareInst *, 4> Dbgs; 1392 for (auto &FI : F) 1393 for (Instruction &BI : FI) 1394 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1395 Dbgs.push_back(DDI); 1396 1397 if (Dbgs.empty()) 1398 return false; 1399 1400 for (auto &I : Dbgs) { 1401 DbgDeclareInst *DDI = I; 1402 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1403 // If this is an alloca for a scalar variable, insert a dbg.value 1404 // at each load and store to the alloca and erase the dbg.declare. 1405 // The dbg.values allow tracking a variable even if it is not 1406 // stored on the stack, while the dbg.declare can only describe 1407 // the stack slot (and at a lexical-scope granularity). Later 1408 // passes will attempt to elide the stack slot. 1409 if (!AI || isArray(AI)) 1410 continue; 1411 1412 // A volatile load/store means that the alloca can't be elided anyway. 1413 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1414 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1415 return LI->isVolatile(); 1416 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1417 return SI->isVolatile(); 1418 return false; 1419 })) 1420 continue; 1421 1422 for (auto &AIUse : AI->uses()) { 1423 User *U = AIUse.getUser(); 1424 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1425 if (AIUse.getOperandNo() == 1) 1426 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1427 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1428 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1429 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1430 // This is a call by-value or some other instruction that takes a 1431 // pointer to the variable. Insert a *value* intrinsic that describes 1432 // the variable by dereferencing the alloca. 1433 auto *DerefExpr = 1434 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1435 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1436 DDI->getDebugLoc(), CI); 1437 } 1438 } 1439 DDI->eraseFromParent(); 1440 } 1441 return true; 1442 } 1443 1444 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1445 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1446 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1447 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1448 if (InsertedPHIs.size() == 0) 1449 return; 1450 1451 // Map existing PHI nodes to their dbg.values. 1452 ValueToValueMapTy DbgValueMap; 1453 for (auto &I : *BB) { 1454 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1455 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1456 DbgValueMap.insert({Loc, DbgII}); 1457 } 1458 } 1459 if (DbgValueMap.size() == 0) 1460 return; 1461 1462 // Then iterate through the new PHIs and look to see if they use one of the 1463 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1464 // propagate the info through the new PHI. 1465 LLVMContext &C = BB->getContext(); 1466 for (auto PHI : InsertedPHIs) { 1467 BasicBlock *Parent = PHI->getParent(); 1468 // Avoid inserting an intrinsic into an EH block. 1469 if (Parent->getFirstNonPHI()->isEHPad()) 1470 continue; 1471 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1472 for (auto VI : PHI->operand_values()) { 1473 auto V = DbgValueMap.find(VI); 1474 if (V != DbgValueMap.end()) { 1475 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1476 Instruction *NewDbgII = DbgII->clone(); 1477 NewDbgII->setOperand(0, PhiMAV); 1478 auto InsertionPt = Parent->getFirstInsertionPt(); 1479 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1480 NewDbgII->insertBefore(&*InsertionPt); 1481 } 1482 } 1483 } 1484 } 1485 1486 /// Finds all intrinsics declaring local variables as living in the memory that 1487 /// 'V' points to. This may include a mix of dbg.declare and 1488 /// dbg.addr intrinsics. 1489 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1490 // This function is hot. Check whether the value has any metadata to avoid a 1491 // DenseMap lookup. 1492 if (!V->isUsedByMetadata()) 1493 return {}; 1494 auto *L = LocalAsMetadata::getIfExists(V); 1495 if (!L) 1496 return {}; 1497 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1498 if (!MDV) 1499 return {}; 1500 1501 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1502 for (User *U : MDV->users()) { 1503 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1504 if (DII->isAddressOfVariable()) 1505 Declares.push_back(DII); 1506 } 1507 1508 return Declares; 1509 } 1510 1511 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1512 // This function is hot. Check whether the value has any metadata to avoid a 1513 // DenseMap lookup. 1514 if (!V->isUsedByMetadata()) 1515 return; 1516 if (auto *L = LocalAsMetadata::getIfExists(V)) 1517 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1518 for (User *U : MDV->users()) 1519 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1520 DbgValues.push_back(DVI); 1521 } 1522 1523 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1524 Value *V) { 1525 // This function is hot. Check whether the value has any metadata to avoid a 1526 // DenseMap lookup. 1527 if (!V->isUsedByMetadata()) 1528 return; 1529 if (auto *L = LocalAsMetadata::getIfExists(V)) 1530 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1531 for (User *U : MDV->users()) 1532 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1533 DbgUsers.push_back(DII); 1534 } 1535 1536 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1537 Instruction *InsertBefore, DIBuilder &Builder, 1538 bool DerefBefore, int Offset, bool DerefAfter) { 1539 auto DbgAddrs = FindDbgAddrUses(Address); 1540 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1541 DebugLoc Loc = DII->getDebugLoc(); 1542 auto *DIVar = DII->getVariable(); 1543 auto *DIExpr = DII->getExpression(); 1544 assert(DIVar && "Missing variable"); 1545 DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter); 1546 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old 1547 // llvm.dbg.declare. 1548 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1549 if (DII == InsertBefore) 1550 InsertBefore = InsertBefore->getNextNode(); 1551 DII->eraseFromParent(); 1552 } 1553 return !DbgAddrs.empty(); 1554 } 1555 1556 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1557 DIBuilder &Builder, bool DerefBefore, 1558 int Offset, bool DerefAfter) { 1559 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1560 DerefBefore, Offset, DerefAfter); 1561 } 1562 1563 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1564 DIBuilder &Builder, int Offset) { 1565 DebugLoc Loc = DVI->getDebugLoc(); 1566 auto *DIVar = DVI->getVariable(); 1567 auto *DIExpr = DVI->getExpression(); 1568 assert(DIVar && "Missing variable"); 1569 1570 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1571 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1572 // it and give up. 1573 if (!DIExpr || DIExpr->getNumElements() < 1 || 1574 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1575 return; 1576 1577 // Insert the offset immediately after the first deref. 1578 // We could just change the offset argument of dbg.value, but it's unsigned... 1579 if (Offset) { 1580 SmallVector<uint64_t, 4> Ops; 1581 Ops.push_back(dwarf::DW_OP_deref); 1582 DIExpression::appendOffset(Ops, Offset); 1583 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1584 DIExpr = Builder.createExpression(Ops); 1585 } 1586 1587 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1588 DVI->eraseFromParent(); 1589 } 1590 1591 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1592 DIBuilder &Builder, int Offset) { 1593 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1594 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1595 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1596 Use &U = *UI++; 1597 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1598 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1599 } 1600 } 1601 1602 /// Wrap \p V in a ValueAsMetadata instance. 1603 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1604 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1605 } 1606 1607 bool llvm::salvageDebugInfo(Instruction &I) { 1608 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1609 findDbgUsers(DbgUsers, &I); 1610 if (DbgUsers.empty()) 1611 return false; 1612 1613 auto &M = *I.getModule(); 1614 auto &DL = M.getDataLayout(); 1615 auto &Ctx = I.getContext(); 1616 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1617 1618 auto doSalvage = [&](DbgVariableIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) { 1619 auto *DIExpr = DII->getExpression(); 1620 if (!Ops.empty()) { 1621 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1622 // are implicitly pointing out the value as a DWARF memory location 1623 // description. 1624 bool WithStackValue = isa<DbgValueInst>(DII); 1625 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1626 } 1627 DII->setOperand(0, wrapMD(I.getOperand(0))); 1628 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1629 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1630 }; 1631 1632 auto applyOffset = [&](DbgVariableIntrinsic *DII, uint64_t Offset) { 1633 SmallVector<uint64_t, 8> Ops; 1634 DIExpression::appendOffset(Ops, Offset); 1635 doSalvage(DII, Ops); 1636 }; 1637 1638 auto applyOps = [&](DbgVariableIntrinsic *DII, 1639 std::initializer_list<uint64_t> Opcodes) { 1640 SmallVector<uint64_t, 8> Ops(Opcodes); 1641 doSalvage(DII, Ops); 1642 }; 1643 1644 if (auto *CI = dyn_cast<CastInst>(&I)) { 1645 if (!CI->isNoopCast(DL)) 1646 return false; 1647 1648 // No-op casts are irrelevant for debug info. 1649 MetadataAsValue *CastSrc = wrapMD(I.getOperand(0)); 1650 for (auto *DII : DbgUsers) { 1651 DII->setOperand(0, CastSrc); 1652 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1653 } 1654 return true; 1655 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1656 unsigned BitWidth = 1657 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1658 // Rewrite a constant GEP into a DIExpression. Since we are performing 1659 // arithmetic to compute the variable's *value* in the DIExpression, we 1660 // need to mark the expression with a DW_OP_stack_value. 1661 APInt Offset(BitWidth, 0); 1662 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) 1663 for (auto *DII : DbgUsers) 1664 applyOffset(DII, Offset.getSExtValue()); 1665 return true; 1666 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1667 // Rewrite binary operations with constant integer operands. 1668 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1669 if (!ConstInt || ConstInt->getBitWidth() > 64) 1670 return false; 1671 1672 uint64_t Val = ConstInt->getSExtValue(); 1673 for (auto *DII : DbgUsers) { 1674 switch (BI->getOpcode()) { 1675 case Instruction::Add: 1676 applyOffset(DII, Val); 1677 break; 1678 case Instruction::Sub: 1679 applyOffset(DII, -int64_t(Val)); 1680 break; 1681 case Instruction::Mul: 1682 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1683 break; 1684 case Instruction::SDiv: 1685 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1686 break; 1687 case Instruction::SRem: 1688 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1689 break; 1690 case Instruction::Or: 1691 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1692 break; 1693 case Instruction::And: 1694 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1695 break; 1696 case Instruction::Xor: 1697 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1698 break; 1699 case Instruction::Shl: 1700 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1701 break; 1702 case Instruction::LShr: 1703 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1704 break; 1705 case Instruction::AShr: 1706 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1707 break; 1708 default: 1709 // TODO: Salvage constants from each kind of binop we know about. 1710 return false; 1711 } 1712 } 1713 return true; 1714 } else if (isa<LoadInst>(&I)) { 1715 MetadataAsValue *AddrMD = wrapMD(I.getOperand(0)); 1716 for (auto *DII : DbgUsers) { 1717 // Rewrite the load into DW_OP_deref. 1718 auto *DIExpr = DII->getExpression(); 1719 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref); 1720 DII->setOperand(0, AddrMD); 1721 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1722 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1723 } 1724 return true; 1725 } 1726 return false; 1727 } 1728 1729 /// A replacement for a dbg.value expression. 1730 using DbgValReplacement = Optional<DIExpression *>; 1731 1732 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1733 /// possibly moving/deleting users to prevent use-before-def. Returns true if 1734 /// changes are made. 1735 static bool rewriteDebugUsers( 1736 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1737 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1738 // Find debug users of From. 1739 SmallVector<DbgVariableIntrinsic *, 1> Users; 1740 findDbgUsers(Users, &From); 1741 if (Users.empty()) 1742 return false; 1743 1744 // Prevent use-before-def of To. 1745 bool Changed = false; 1746 SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage; 1747 if (isa<Instruction>(&To)) { 1748 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1749 1750 for (auto *DII : Users) { 1751 // It's common to see a debug user between From and DomPoint. Move it 1752 // after DomPoint to preserve the variable update without any reordering. 1753 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1754 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1755 DII->moveAfter(&DomPoint); 1756 Changed = true; 1757 1758 // Users which otherwise aren't dominated by the replacement value must 1759 // be salvaged or deleted. 1760 } else if (!DT.dominates(&DomPoint, DII)) { 1761 DeleteOrSalvage.insert(DII); 1762 } 1763 } 1764 } 1765 1766 // Update debug users without use-before-def risk. 1767 for (auto *DII : Users) { 1768 if (DeleteOrSalvage.count(DII)) 1769 continue; 1770 1771 LLVMContext &Ctx = DII->getContext(); 1772 DbgValReplacement DVR = RewriteExpr(*DII); 1773 if (!DVR) 1774 continue; 1775 1776 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1777 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1778 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1779 Changed = true; 1780 } 1781 1782 if (!DeleteOrSalvage.empty()) { 1783 // Try to salvage the remaining debug users. 1784 Changed |= salvageDebugInfo(From); 1785 1786 // Delete the debug users which weren't salvaged. 1787 for (auto *DII : DeleteOrSalvage) { 1788 if (DII->getVariableLocation() == &From) { 1789 LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII << '\n'); 1790 DII->eraseFromParent(); 1791 Changed = true; 1792 } 1793 } 1794 } 1795 1796 return Changed; 1797 } 1798 1799 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1800 /// losslessly preserve the bits and semantics of the value. This predicate is 1801 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1802 /// 1803 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1804 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1805 /// and also does not allow lossless pointer <-> integer conversions. 1806 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1807 Type *ToTy) { 1808 // Trivially compatible types. 1809 if (FromTy == ToTy) 1810 return true; 1811 1812 // Handle compatible pointer <-> integer conversions. 1813 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1814 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1815 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1816 !DL.isNonIntegralPointerType(ToTy); 1817 return SameSize && LosslessConversion; 1818 } 1819 1820 // TODO: This is not exhaustive. 1821 return false; 1822 } 1823 1824 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1825 Instruction &DomPoint, DominatorTree &DT) { 1826 // Exit early if From has no debug users. 1827 if (!From.isUsedByMetadata()) 1828 return false; 1829 1830 assert(&From != &To && "Can't replace something with itself"); 1831 1832 Type *FromTy = From.getType(); 1833 Type *ToTy = To.getType(); 1834 1835 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1836 return DII.getExpression(); 1837 }; 1838 1839 // Handle no-op conversions. 1840 Module &M = *From.getModule(); 1841 const DataLayout &DL = M.getDataLayout(); 1842 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1843 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1844 1845 // Handle integer-to-integer widening and narrowing. 1846 // FIXME: Use DW_OP_convert when it's available everywhere. 1847 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1848 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1849 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1850 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1851 1852 // When the width of the result grows, assume that a debugger will only 1853 // access the low `FromBits` bits when inspecting the source variable. 1854 if (FromBits < ToBits) 1855 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1856 1857 // The width of the result has shrunk. Use sign/zero extension to describe 1858 // the source variable's high bits. 1859 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1860 DILocalVariable *Var = DII.getVariable(); 1861 1862 // Without knowing signedness, sign/zero extension isn't possible. 1863 auto Signedness = Var->getSignedness(); 1864 if (!Signedness) 1865 return None; 1866 1867 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1868 1869 if (!Signed) { 1870 // In the unsigned case, assume that a debugger will initialize the 1871 // high bits to 0 and do a no-op conversion. 1872 return Identity(DII); 1873 } else { 1874 // In the signed case, the high bits are given by sign extension, i.e: 1875 // (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1) 1876 // Calculate the high bits and OR them together with the low bits. 1877 SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu, 1878 (ToBits - 1), dwarf::DW_OP_shr, 1879 dwarf::DW_OP_lit0, dwarf::DW_OP_not, 1880 dwarf::DW_OP_mul, dwarf::DW_OP_or}); 1881 return DIExpression::appendToStack(DII.getExpression(), Ops); 1882 } 1883 }; 1884 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1885 } 1886 1887 // TODO: Floating-point conversions, vectors. 1888 return false; 1889 } 1890 1891 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1892 unsigned NumDeadInst = 0; 1893 // Delete the instructions backwards, as it has a reduced likelihood of 1894 // having to update as many def-use and use-def chains. 1895 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1896 while (EndInst != &BB->front()) { 1897 // Delete the next to last instruction. 1898 Instruction *Inst = &*--EndInst->getIterator(); 1899 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1900 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1901 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1902 EndInst = Inst; 1903 continue; 1904 } 1905 if (!isa<DbgInfoIntrinsic>(Inst)) 1906 ++NumDeadInst; 1907 Inst->eraseFromParent(); 1908 } 1909 return NumDeadInst; 1910 } 1911 1912 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1913 bool PreserveLCSSA, DomTreeUpdater *DTU) { 1914 BasicBlock *BB = I->getParent(); 1915 std::vector <DominatorTree::UpdateType> Updates; 1916 1917 // Loop over all of the successors, removing BB's entry from any PHI 1918 // nodes. 1919 if (DTU) 1920 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1921 for (BasicBlock *Successor : successors(BB)) { 1922 Successor->removePredecessor(BB, PreserveLCSSA); 1923 if (DTU) 1924 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1925 } 1926 // Insert a call to llvm.trap right before this. This turns the undefined 1927 // behavior into a hard fail instead of falling through into random code. 1928 if (UseLLVMTrap) { 1929 Function *TrapFn = 1930 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1931 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1932 CallTrap->setDebugLoc(I->getDebugLoc()); 1933 } 1934 auto *UI = new UnreachableInst(I->getContext(), I); 1935 UI->setDebugLoc(I->getDebugLoc()); 1936 1937 // All instructions after this are dead. 1938 unsigned NumInstrsRemoved = 0; 1939 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1940 while (BBI != BBE) { 1941 if (!BBI->use_empty()) 1942 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1943 BB->getInstList().erase(BBI++); 1944 ++NumInstrsRemoved; 1945 } 1946 if (DTU) 1947 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 1948 return NumInstrsRemoved; 1949 } 1950 1951 /// changeToCall - Convert the specified invoke into a normal call. 1952 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) { 1953 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1954 SmallVector<OperandBundleDef, 1> OpBundles; 1955 II->getOperandBundlesAsDefs(OpBundles); 1956 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1957 "", II); 1958 NewCall->takeName(II); 1959 NewCall->setCallingConv(II->getCallingConv()); 1960 NewCall->setAttributes(II->getAttributes()); 1961 NewCall->setDebugLoc(II->getDebugLoc()); 1962 II->replaceAllUsesWith(NewCall); 1963 1964 // Follow the call by a branch to the normal destination. 1965 BasicBlock *NormalDestBB = II->getNormalDest(); 1966 BranchInst::Create(NormalDestBB, II); 1967 1968 // Update PHI nodes in the unwind destination 1969 BasicBlock *BB = II->getParent(); 1970 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1971 UnwindDestBB->removePredecessor(BB); 1972 II->eraseFromParent(); 1973 if (DTU) 1974 DTU->deleteEdgeRelaxed(BB, UnwindDestBB); 1975 } 1976 1977 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1978 BasicBlock *UnwindEdge) { 1979 BasicBlock *BB = CI->getParent(); 1980 1981 // Convert this function call into an invoke instruction. First, split the 1982 // basic block. 1983 BasicBlock *Split = 1984 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1985 1986 // Delete the unconditional branch inserted by splitBasicBlock 1987 BB->getInstList().pop_back(); 1988 1989 // Create the new invoke instruction. 1990 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1991 SmallVector<OperandBundleDef, 1> OpBundles; 1992 1993 CI->getOperandBundlesAsDefs(OpBundles); 1994 1995 // Note: we're round tripping operand bundles through memory here, and that 1996 // can potentially be avoided with a cleverer API design that we do not have 1997 // as of this time. 1998 1999 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 2000 InvokeArgs, OpBundles, CI->getName(), BB); 2001 II->setDebugLoc(CI->getDebugLoc()); 2002 II->setCallingConv(CI->getCallingConv()); 2003 II->setAttributes(CI->getAttributes()); 2004 2005 // Make sure that anything using the call now uses the invoke! This also 2006 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2007 CI->replaceAllUsesWith(II); 2008 2009 // Delete the original call 2010 Split->getInstList().pop_front(); 2011 return Split; 2012 } 2013 2014 static bool markAliveBlocks(Function &F, 2015 SmallPtrSetImpl<BasicBlock *> &Reachable, 2016 DomTreeUpdater *DTU = nullptr) { 2017 SmallVector<BasicBlock*, 128> Worklist; 2018 BasicBlock *BB = &F.front(); 2019 Worklist.push_back(BB); 2020 Reachable.insert(BB); 2021 bool Changed = false; 2022 do { 2023 BB = Worklist.pop_back_val(); 2024 2025 // Do a quick scan of the basic block, turning any obviously unreachable 2026 // instructions into LLVM unreachable insts. The instruction combining pass 2027 // canonicalizes unreachable insts into stores to null or undef. 2028 for (Instruction &I : *BB) { 2029 if (auto *CI = dyn_cast<CallInst>(&I)) { 2030 Value *Callee = CI->getCalledValue(); 2031 // Handle intrinsic calls. 2032 if (Function *F = dyn_cast<Function>(Callee)) { 2033 auto IntrinsicID = F->getIntrinsicID(); 2034 // Assumptions that are known to be false are equivalent to 2035 // unreachable. Also, if the condition is undefined, then we make the 2036 // choice most beneficial to the optimizer, and choose that to also be 2037 // unreachable. 2038 if (IntrinsicID == Intrinsic::assume) { 2039 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2040 // Don't insert a call to llvm.trap right before the unreachable. 2041 changeToUnreachable(CI, false, false, DTU); 2042 Changed = true; 2043 break; 2044 } 2045 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2046 // A call to the guard intrinsic bails out of the current 2047 // compilation unit if the predicate passed to it is false. If the 2048 // predicate is a constant false, then we know the guard will bail 2049 // out of the current compile unconditionally, so all code following 2050 // it is dead. 2051 // 2052 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2053 // guards to treat `undef` as `false` since a guard on `undef` can 2054 // still be useful for widening. 2055 if (match(CI->getArgOperand(0), m_Zero())) 2056 if (!isa<UnreachableInst>(CI->getNextNode())) { 2057 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2058 false, DTU); 2059 Changed = true; 2060 break; 2061 } 2062 } 2063 } else if ((isa<ConstantPointerNull>(Callee) && 2064 !NullPointerIsDefined(CI->getFunction())) || 2065 isa<UndefValue>(Callee)) { 2066 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2067 Changed = true; 2068 break; 2069 } 2070 if (CI->doesNotReturn()) { 2071 // If we found a call to a no-return function, insert an unreachable 2072 // instruction after it. Make sure there isn't *already* one there 2073 // though. 2074 if (!isa<UnreachableInst>(CI->getNextNode())) { 2075 // Don't insert a call to llvm.trap right before the unreachable. 2076 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2077 Changed = true; 2078 } 2079 break; 2080 } 2081 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2082 // Store to undef and store to null are undefined and used to signal 2083 // that they should be changed to unreachable by passes that can't 2084 // modify the CFG. 2085 2086 // Don't touch volatile stores. 2087 if (SI->isVolatile()) continue; 2088 2089 Value *Ptr = SI->getOperand(1); 2090 2091 if (isa<UndefValue>(Ptr) || 2092 (isa<ConstantPointerNull>(Ptr) && 2093 !NullPointerIsDefined(SI->getFunction(), 2094 SI->getPointerAddressSpace()))) { 2095 changeToUnreachable(SI, true, false, DTU); 2096 Changed = true; 2097 break; 2098 } 2099 } 2100 } 2101 2102 Instruction *Terminator = BB->getTerminator(); 2103 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2104 // Turn invokes that call 'nounwind' functions into ordinary calls. 2105 Value *Callee = II->getCalledValue(); 2106 if ((isa<ConstantPointerNull>(Callee) && 2107 !NullPointerIsDefined(BB->getParent())) || 2108 isa<UndefValue>(Callee)) { 2109 changeToUnreachable(II, true, false, DTU); 2110 Changed = true; 2111 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2112 if (II->use_empty() && II->onlyReadsMemory()) { 2113 // jump to the normal destination branch. 2114 BasicBlock *NormalDestBB = II->getNormalDest(); 2115 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2116 BranchInst::Create(NormalDestBB, II); 2117 UnwindDestBB->removePredecessor(II->getParent()); 2118 II->eraseFromParent(); 2119 if (DTU) 2120 DTU->deleteEdgeRelaxed(BB, UnwindDestBB); 2121 } else 2122 changeToCall(II, DTU); 2123 Changed = true; 2124 } 2125 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2126 // Remove catchpads which cannot be reached. 2127 struct CatchPadDenseMapInfo { 2128 static CatchPadInst *getEmptyKey() { 2129 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2130 } 2131 2132 static CatchPadInst *getTombstoneKey() { 2133 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2134 } 2135 2136 static unsigned getHashValue(CatchPadInst *CatchPad) { 2137 return static_cast<unsigned>(hash_combine_range( 2138 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2139 } 2140 2141 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2142 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2143 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2144 return LHS == RHS; 2145 return LHS->isIdenticalTo(RHS); 2146 } 2147 }; 2148 2149 // Set of unique CatchPads. 2150 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2151 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2152 HandlerSet; 2153 detail::DenseSetEmpty Empty; 2154 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2155 E = CatchSwitch->handler_end(); 2156 I != E; ++I) { 2157 BasicBlock *HandlerBB = *I; 2158 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2159 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2160 CatchSwitch->removeHandler(I); 2161 --I; 2162 --E; 2163 Changed = true; 2164 } 2165 } 2166 } 2167 2168 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2169 for (BasicBlock *Successor : successors(BB)) 2170 if (Reachable.insert(Successor).second) 2171 Worklist.push_back(Successor); 2172 } while (!Worklist.empty()); 2173 return Changed; 2174 } 2175 2176 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2177 Instruction *TI = BB->getTerminator(); 2178 2179 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2180 changeToCall(II, DTU); 2181 return; 2182 } 2183 2184 Instruction *NewTI; 2185 BasicBlock *UnwindDest; 2186 2187 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2188 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2189 UnwindDest = CRI->getUnwindDest(); 2190 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2191 auto *NewCatchSwitch = CatchSwitchInst::Create( 2192 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2193 CatchSwitch->getName(), CatchSwitch); 2194 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2195 NewCatchSwitch->addHandler(PadBB); 2196 2197 NewTI = NewCatchSwitch; 2198 UnwindDest = CatchSwitch->getUnwindDest(); 2199 } else { 2200 llvm_unreachable("Could not find unwind successor"); 2201 } 2202 2203 NewTI->takeName(TI); 2204 NewTI->setDebugLoc(TI->getDebugLoc()); 2205 UnwindDest->removePredecessor(BB); 2206 TI->replaceAllUsesWith(NewTI); 2207 TI->eraseFromParent(); 2208 if (DTU) 2209 DTU->deleteEdgeRelaxed(BB, UnwindDest); 2210 } 2211 2212 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2213 /// if they are in a dead cycle. Return true if a change was made, false 2214 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 2215 /// after modifying the CFG. 2216 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI, 2217 DomTreeUpdater *DTU, 2218 MemorySSAUpdater *MSSAU) { 2219 SmallPtrSet<BasicBlock*, 16> Reachable; 2220 bool Changed = markAliveBlocks(F, Reachable, DTU); 2221 2222 // If there are unreachable blocks in the CFG... 2223 if (Reachable.size() == F.size()) 2224 return Changed; 2225 2226 assert(Reachable.size() < F.size()); 2227 NumRemoved += F.size()-Reachable.size(); 2228 2229 SmallPtrSet<BasicBlock *, 16> DeadBlockSet; 2230 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) { 2231 auto *BB = &*I; 2232 if (Reachable.count(BB)) 2233 continue; 2234 DeadBlockSet.insert(BB); 2235 } 2236 2237 if (MSSAU) 2238 MSSAU->removeBlocks(DeadBlockSet); 2239 2240 // Loop over all of the basic blocks that are not reachable, dropping all of 2241 // their internal references. Update DTU and LVI if available. 2242 std::vector<DominatorTree::UpdateType> Updates; 2243 for (auto *BB : DeadBlockSet) { 2244 for (BasicBlock *Successor : successors(BB)) { 2245 if (!DeadBlockSet.count(Successor)) 2246 Successor->removePredecessor(BB); 2247 if (DTU) 2248 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2249 } 2250 if (LVI) 2251 LVI->eraseBlock(BB); 2252 BB->dropAllReferences(); 2253 } 2254 for (Function::iterator I = ++F.begin(); I != F.end();) { 2255 auto *BB = &*I; 2256 if (Reachable.count(BB)) { 2257 ++I; 2258 continue; 2259 } 2260 if (DTU) { 2261 // Remove the terminator of BB to clear the successor list of BB. 2262 if (BB->getTerminator()) 2263 BB->getInstList().pop_back(); 2264 new UnreachableInst(BB->getContext(), BB); 2265 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2266 "applying corresponding DTU updates."); 2267 ++I; 2268 } else { 2269 I = F.getBasicBlockList().erase(I); 2270 } 2271 } 2272 2273 if (DTU) { 2274 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 2275 bool Deleted = false; 2276 for (auto *BB : DeadBlockSet) { 2277 if (DTU->isBBPendingDeletion(BB)) 2278 --NumRemoved; 2279 else 2280 Deleted = true; 2281 DTU->deleteBB(BB); 2282 } 2283 if (!Deleted) 2284 return false; 2285 } 2286 return true; 2287 } 2288 2289 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2290 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2291 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2292 K->dropUnknownNonDebugMetadata(KnownIDs); 2293 K->getAllMetadataOtherThanDebugLoc(Metadata); 2294 for (const auto &MD : Metadata) { 2295 unsigned Kind = MD.first; 2296 MDNode *JMD = J->getMetadata(Kind); 2297 MDNode *KMD = MD.second; 2298 2299 switch (Kind) { 2300 default: 2301 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2302 break; 2303 case LLVMContext::MD_dbg: 2304 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2305 case LLVMContext::MD_tbaa: 2306 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2307 break; 2308 case LLVMContext::MD_alias_scope: 2309 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2310 break; 2311 case LLVMContext::MD_noalias: 2312 case LLVMContext::MD_mem_parallel_loop_access: 2313 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2314 break; 2315 case LLVMContext::MD_range: 2316 2317 // If K does move, use most generic range. Otherwise keep the range of 2318 // K. 2319 if (DoesKMove) 2320 // FIXME: If K does move, we should drop the range info and nonnull. 2321 // Currently this function is used with DoesKMove in passes 2322 // doing hoisting/sinking and the current behavior of using the 2323 // most generic range is correct in those cases. 2324 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2325 break; 2326 case LLVMContext::MD_fpmath: 2327 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2328 break; 2329 case LLVMContext::MD_invariant_load: 2330 // Only set the !invariant.load if it is present in both instructions. 2331 K->setMetadata(Kind, JMD); 2332 break; 2333 case LLVMContext::MD_nonnull: 2334 // If K does move, keep nonull if it is present in both instructions. 2335 if (DoesKMove) 2336 K->setMetadata(Kind, JMD); 2337 break; 2338 case LLVMContext::MD_invariant_group: 2339 // Preserve !invariant.group in K. 2340 break; 2341 case LLVMContext::MD_align: 2342 K->setMetadata(Kind, 2343 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2344 break; 2345 case LLVMContext::MD_dereferenceable: 2346 case LLVMContext::MD_dereferenceable_or_null: 2347 K->setMetadata(Kind, 2348 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2349 break; 2350 } 2351 } 2352 // Set !invariant.group from J if J has it. If both instructions have it 2353 // then we will just pick it from J - even when they are different. 2354 // Also make sure that K is load or store - f.e. combining bitcast with load 2355 // could produce bitcast with invariant.group metadata, which is invalid. 2356 // FIXME: we should try to preserve both invariant.group md if they are 2357 // different, but right now instruction can only have one invariant.group. 2358 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2359 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2360 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2361 } 2362 2363 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2364 bool KDominatesJ) { 2365 unsigned KnownIDs[] = { 2366 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2367 LLVMContext::MD_noalias, LLVMContext::MD_range, 2368 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2369 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2370 LLVMContext::MD_dereferenceable, 2371 LLVMContext::MD_dereferenceable_or_null}; 2372 combineMetadata(K, J, KnownIDs, KDominatesJ); 2373 } 2374 2375 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2376 auto *ReplInst = dyn_cast<Instruction>(Repl); 2377 if (!ReplInst) 2378 return; 2379 2380 // Patch the replacement so that it is not more restrictive than the value 2381 // being replaced. 2382 // Note that if 'I' is a load being replaced by some operation, 2383 // for example, by an arithmetic operation, then andIRFlags() 2384 // would just erase all math flags from the original arithmetic 2385 // operation, which is clearly not wanted and not needed. 2386 if (!isa<LoadInst>(I)) 2387 ReplInst->andIRFlags(I); 2388 2389 // FIXME: If both the original and replacement value are part of the 2390 // same control-flow region (meaning that the execution of one 2391 // guarantees the execution of the other), then we can combine the 2392 // noalias scopes here and do better than the general conservative 2393 // answer used in combineMetadata(). 2394 2395 // In general, GVN unifies expressions over different control-flow 2396 // regions, and so we need a conservative combination of the noalias 2397 // scopes. 2398 static const unsigned KnownIDs[] = { 2399 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2400 LLVMContext::MD_noalias, LLVMContext::MD_range, 2401 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2402 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull}; 2403 combineMetadata(ReplInst, I, KnownIDs, false); 2404 } 2405 2406 template <typename RootType, typename DominatesFn> 2407 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2408 const RootType &Root, 2409 const DominatesFn &Dominates) { 2410 assert(From->getType() == To->getType()); 2411 2412 unsigned Count = 0; 2413 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2414 UI != UE;) { 2415 Use &U = *UI++; 2416 if (!Dominates(Root, U)) 2417 continue; 2418 U.set(To); 2419 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2420 << "' as " << *To << " in " << *U << "\n"); 2421 ++Count; 2422 } 2423 return Count; 2424 } 2425 2426 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2427 assert(From->getType() == To->getType()); 2428 auto *BB = From->getParent(); 2429 unsigned Count = 0; 2430 2431 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2432 UI != UE;) { 2433 Use &U = *UI++; 2434 auto *I = cast<Instruction>(U.getUser()); 2435 if (I->getParent() == BB) 2436 continue; 2437 U.set(To); 2438 ++Count; 2439 } 2440 return Count; 2441 } 2442 2443 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2444 DominatorTree &DT, 2445 const BasicBlockEdge &Root) { 2446 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2447 return DT.dominates(Root, U); 2448 }; 2449 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2450 } 2451 2452 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2453 DominatorTree &DT, 2454 const BasicBlock *BB) { 2455 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2456 auto *I = cast<Instruction>(U.getUser())->getParent(); 2457 return DT.properlyDominates(BB, I); 2458 }; 2459 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2460 } 2461 2462 bool llvm::callsGCLeafFunction(ImmutableCallSite CS, 2463 const TargetLibraryInfo &TLI) { 2464 // Check if the function is specifically marked as a gc leaf function. 2465 if (CS.hasFnAttr("gc-leaf-function")) 2466 return true; 2467 if (const Function *F = CS.getCalledFunction()) { 2468 if (F->hasFnAttribute("gc-leaf-function")) 2469 return true; 2470 2471 if (auto IID = F->getIntrinsicID()) 2472 // Most LLVM intrinsics do not take safepoints. 2473 return IID != Intrinsic::experimental_gc_statepoint && 2474 IID != Intrinsic::experimental_deoptimize; 2475 } 2476 2477 // Lib calls can be materialized by some passes, and won't be 2478 // marked as 'gc-leaf-function.' All available Libcalls are 2479 // GC-leaf. 2480 LibFunc LF; 2481 if (TLI.getLibFunc(CS, LF)) { 2482 return TLI.has(LF); 2483 } 2484 2485 return false; 2486 } 2487 2488 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2489 LoadInst &NewLI) { 2490 auto *NewTy = NewLI.getType(); 2491 2492 // This only directly applies if the new type is also a pointer. 2493 if (NewTy->isPointerTy()) { 2494 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2495 return; 2496 } 2497 2498 // The only other translation we can do is to integral loads with !range 2499 // metadata. 2500 if (!NewTy->isIntegerTy()) 2501 return; 2502 2503 MDBuilder MDB(NewLI.getContext()); 2504 const Value *Ptr = OldLI.getPointerOperand(); 2505 auto *ITy = cast<IntegerType>(NewTy); 2506 auto *NullInt = ConstantExpr::getPtrToInt( 2507 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2508 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2509 NewLI.setMetadata(LLVMContext::MD_range, 2510 MDB.createRange(NonNullInt, NullInt)); 2511 } 2512 2513 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2514 MDNode *N, LoadInst &NewLI) { 2515 auto *NewTy = NewLI.getType(); 2516 2517 // Give up unless it is converted to a pointer where there is a single very 2518 // valuable mapping we can do reliably. 2519 // FIXME: It would be nice to propagate this in more ways, but the type 2520 // conversions make it hard. 2521 if (!NewTy->isPointerTy()) 2522 return; 2523 2524 unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy); 2525 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2526 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2527 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2528 } 2529 } 2530 2531 void llvm::dropDebugUsers(Instruction &I) { 2532 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2533 findDbgUsers(DbgUsers, &I); 2534 for (auto *DII : DbgUsers) 2535 DII->eraseFromParent(); 2536 } 2537 2538 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2539 BasicBlock *BB) { 2540 // Since we are moving the instructions out of its basic block, we do not 2541 // retain their original debug locations (DILocations) and debug intrinsic 2542 // instructions (dbg.values). 2543 // 2544 // Doing so would degrade the debugging experience and adversely affect the 2545 // accuracy of profiling information. 2546 // 2547 // Currently, when hoisting the instructions, we take the following actions: 2548 // - Remove their dbg.values. 2549 // - Set their debug locations to the values from the insertion point. 2550 // 2551 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2552 // need to be deleted, is because there will not be any instructions with a 2553 // DILocation in either branch left after performing the transformation. We 2554 // can only insert a dbg.value after the two branches are joined again. 2555 // 2556 // See PR38762, PR39243 for more details. 2557 // 2558 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2559 // encode predicated DIExpressions that yield different results on different 2560 // code paths. 2561 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2562 Instruction *I = &*II; 2563 I->dropUnknownNonDebugMetadata(); 2564 if (I->isUsedByMetadata()) 2565 dropDebugUsers(*I); 2566 if (isa<DbgVariableIntrinsic>(I)) { 2567 // Remove DbgInfo Intrinsics. 2568 II = I->eraseFromParent(); 2569 continue; 2570 } 2571 I->setDebugLoc(InsertPt->getDebugLoc()); 2572 ++II; 2573 } 2574 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2575 BB->begin(), 2576 BB->getTerminator()->getIterator()); 2577 } 2578 2579 namespace { 2580 2581 /// A potential constituent of a bitreverse or bswap expression. See 2582 /// collectBitParts for a fuller explanation. 2583 struct BitPart { 2584 BitPart(Value *P, unsigned BW) : Provider(P) { 2585 Provenance.resize(BW); 2586 } 2587 2588 /// The Value that this is a bitreverse/bswap of. 2589 Value *Provider; 2590 2591 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2592 /// in Provider becomes bit B in the result of this expression. 2593 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2594 2595 enum { Unset = -1 }; 2596 }; 2597 2598 } // end anonymous namespace 2599 2600 /// Analyze the specified subexpression and see if it is capable of providing 2601 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2602 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2603 /// the output of the expression came from a corresponding bit in some other 2604 /// value. This function is recursive, and the end result is a mapping of 2605 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2606 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2607 /// 2608 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2609 /// that the expression deposits the low byte of %X into the high byte of the 2610 /// result and that all other bits are zero. This expression is accepted and a 2611 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2612 /// [0-7]. 2613 /// 2614 /// To avoid revisiting values, the BitPart results are memoized into the 2615 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2616 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2617 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2618 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2619 /// type instead to provide the same functionality. 2620 /// 2621 /// Because we pass around references into \c BPS, we must use a container that 2622 /// does not invalidate internal references (std::map instead of DenseMap). 2623 static const Optional<BitPart> & 2624 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2625 std::map<Value *, Optional<BitPart>> &BPS) { 2626 auto I = BPS.find(V); 2627 if (I != BPS.end()) 2628 return I->second; 2629 2630 auto &Result = BPS[V] = None; 2631 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2632 2633 if (Instruction *I = dyn_cast<Instruction>(V)) { 2634 // If this is an or instruction, it may be an inner node of the bswap. 2635 if (I->getOpcode() == Instruction::Or) { 2636 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2637 MatchBitReversals, BPS); 2638 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2639 MatchBitReversals, BPS); 2640 if (!A || !B) 2641 return Result; 2642 2643 // Try and merge the two together. 2644 if (!A->Provider || A->Provider != B->Provider) 2645 return Result; 2646 2647 Result = BitPart(A->Provider, BitWidth); 2648 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2649 if (A->Provenance[i] != BitPart::Unset && 2650 B->Provenance[i] != BitPart::Unset && 2651 A->Provenance[i] != B->Provenance[i]) 2652 return Result = None; 2653 2654 if (A->Provenance[i] == BitPart::Unset) 2655 Result->Provenance[i] = B->Provenance[i]; 2656 else 2657 Result->Provenance[i] = A->Provenance[i]; 2658 } 2659 2660 return Result; 2661 } 2662 2663 // If this is a logical shift by a constant, recurse then shift the result. 2664 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2665 unsigned BitShift = 2666 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2667 // Ensure the shift amount is defined. 2668 if (BitShift > BitWidth) 2669 return Result; 2670 2671 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2672 MatchBitReversals, BPS); 2673 if (!Res) 2674 return Result; 2675 Result = Res; 2676 2677 // Perform the "shift" on BitProvenance. 2678 auto &P = Result->Provenance; 2679 if (I->getOpcode() == Instruction::Shl) { 2680 P.erase(std::prev(P.end(), BitShift), P.end()); 2681 P.insert(P.begin(), BitShift, BitPart::Unset); 2682 } else { 2683 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2684 P.insert(P.end(), BitShift, BitPart::Unset); 2685 } 2686 2687 return Result; 2688 } 2689 2690 // If this is a logical 'and' with a mask that clears bits, recurse then 2691 // unset the appropriate bits. 2692 if (I->getOpcode() == Instruction::And && 2693 isa<ConstantInt>(I->getOperand(1))) { 2694 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2695 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2696 2697 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2698 // early exit. 2699 unsigned NumMaskedBits = AndMask.countPopulation(); 2700 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2701 return Result; 2702 2703 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2704 MatchBitReversals, BPS); 2705 if (!Res) 2706 return Result; 2707 Result = Res; 2708 2709 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2710 // If the AndMask is zero for this bit, clear the bit. 2711 if ((AndMask & Bit) == 0) 2712 Result->Provenance[i] = BitPart::Unset; 2713 return Result; 2714 } 2715 2716 // If this is a zext instruction zero extend the result. 2717 if (I->getOpcode() == Instruction::ZExt) { 2718 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2719 MatchBitReversals, BPS); 2720 if (!Res) 2721 return Result; 2722 2723 Result = BitPart(Res->Provider, BitWidth); 2724 auto NarrowBitWidth = 2725 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2726 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2727 Result->Provenance[i] = Res->Provenance[i]; 2728 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2729 Result->Provenance[i] = BitPart::Unset; 2730 return Result; 2731 } 2732 } 2733 2734 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2735 // the input value to the bswap/bitreverse. 2736 Result = BitPart(V, BitWidth); 2737 for (unsigned i = 0; i < BitWidth; ++i) 2738 Result->Provenance[i] = i; 2739 return Result; 2740 } 2741 2742 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2743 unsigned BitWidth) { 2744 if (From % 8 != To % 8) 2745 return false; 2746 // Convert from bit indices to byte indices and check for a byte reversal. 2747 From >>= 3; 2748 To >>= 3; 2749 BitWidth >>= 3; 2750 return From == BitWidth - To - 1; 2751 } 2752 2753 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2754 unsigned BitWidth) { 2755 return From == BitWidth - To - 1; 2756 } 2757 2758 bool llvm::recognizeBSwapOrBitReverseIdiom( 2759 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2760 SmallVectorImpl<Instruction *> &InsertedInsts) { 2761 if (Operator::getOpcode(I) != Instruction::Or) 2762 return false; 2763 if (!MatchBSwaps && !MatchBitReversals) 2764 return false; 2765 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2766 if (!ITy || ITy->getBitWidth() > 128) 2767 return false; // Can't do vectors or integers > 128 bits. 2768 unsigned BW = ITy->getBitWidth(); 2769 2770 unsigned DemandedBW = BW; 2771 IntegerType *DemandedTy = ITy; 2772 if (I->hasOneUse()) { 2773 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2774 DemandedTy = cast<IntegerType>(Trunc->getType()); 2775 DemandedBW = DemandedTy->getBitWidth(); 2776 } 2777 } 2778 2779 // Try to find all the pieces corresponding to the bswap. 2780 std::map<Value *, Optional<BitPart>> BPS; 2781 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2782 if (!Res) 2783 return false; 2784 auto &BitProvenance = Res->Provenance; 2785 2786 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2787 // only byteswap values with an even number of bytes. 2788 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2789 for (unsigned i = 0; i < DemandedBW; ++i) { 2790 OKForBSwap &= 2791 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2792 OKForBitReverse &= 2793 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2794 } 2795 2796 Intrinsic::ID Intrin; 2797 if (OKForBSwap && MatchBSwaps) 2798 Intrin = Intrinsic::bswap; 2799 else if (OKForBitReverse && MatchBitReversals) 2800 Intrin = Intrinsic::bitreverse; 2801 else 2802 return false; 2803 2804 if (ITy != DemandedTy) { 2805 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2806 Value *Provider = Res->Provider; 2807 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2808 // We may need to truncate the provider. 2809 if (DemandedTy != ProviderTy) { 2810 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2811 "trunc", I); 2812 InsertedInsts.push_back(Trunc); 2813 Provider = Trunc; 2814 } 2815 auto *CI = CallInst::Create(F, Provider, "rev", I); 2816 InsertedInsts.push_back(CI); 2817 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2818 InsertedInsts.push_back(ExtInst); 2819 return true; 2820 } 2821 2822 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2823 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2824 return true; 2825 } 2826 2827 // CodeGen has special handling for some string functions that may replace 2828 // them with target-specific intrinsics. Since that'd skip our interceptors 2829 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2830 // we mark affected calls as NoBuiltin, which will disable optimization 2831 // in CodeGen. 2832 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2833 CallInst *CI, const TargetLibraryInfo *TLI) { 2834 Function *F = CI->getCalledFunction(); 2835 LibFunc Func; 2836 if (F && !F->hasLocalLinkage() && F->hasName() && 2837 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2838 !F->doesNotAccessMemory()) 2839 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2840 } 2841 2842 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2843 // We can't have a PHI with a metadata type. 2844 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2845 return false; 2846 2847 // Early exit. 2848 if (!isa<Constant>(I->getOperand(OpIdx))) 2849 return true; 2850 2851 switch (I->getOpcode()) { 2852 default: 2853 return true; 2854 case Instruction::Call: 2855 case Instruction::Invoke: 2856 // Can't handle inline asm. Skip it. 2857 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2858 return false; 2859 // Many arithmetic intrinsics have no issue taking a 2860 // variable, however it's hard to distingish these from 2861 // specials such as @llvm.frameaddress that require a constant. 2862 if (isa<IntrinsicInst>(I)) 2863 return false; 2864 2865 // Constant bundle operands may need to retain their constant-ness for 2866 // correctness. 2867 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2868 return false; 2869 return true; 2870 case Instruction::ShuffleVector: 2871 // Shufflevector masks are constant. 2872 return OpIdx != 2; 2873 case Instruction::Switch: 2874 case Instruction::ExtractValue: 2875 // All operands apart from the first are constant. 2876 return OpIdx == 0; 2877 case Instruction::InsertValue: 2878 // All operands apart from the first and the second are constant. 2879 return OpIdx < 2; 2880 case Instruction::Alloca: 2881 // Static allocas (constant size in the entry block) are handled by 2882 // prologue/epilogue insertion so they're free anyway. We definitely don't 2883 // want to make them non-constant. 2884 return !cast<AllocaInst>(I)->isStaticAlloca(); 2885 case Instruction::GetElementPtr: 2886 if (OpIdx == 0) 2887 return true; 2888 gep_type_iterator It = gep_type_begin(I); 2889 for (auto E = std::next(It, OpIdx); It != E; ++It) 2890 if (It.isStruct()) 2891 return false; 2892 return true; 2893 } 2894 } 2895