1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/TinyPtrVector.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/IR/Argument.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/CFG.h"
42 #include "llvm/IR/CallSite.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/ConstantRange.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DIBuilder.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/DomTreeUpdater.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <utility>
86 
87 using namespace llvm;
88 using namespace llvm::PatternMatch;
89 
90 #define DEBUG_TYPE "local"
91 
92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
93 
94 //===----------------------------------------------------------------------===//
95 //  Local constant propagation.
96 //
97 
98 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
99 /// constant value, convert it into an unconditional branch to the constant
100 /// destination.  This is a nontrivial operation because the successors of this
101 /// basic block must have their PHI nodes updated.
102 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
103 /// conditions and indirectbr addresses this might make dead if
104 /// DeleteDeadConditions is true.
105 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
106                                   const TargetLibraryInfo *TLI,
107                                   DomTreeUpdater *DTU) {
108   Instruction *T = BB->getTerminator();
109   IRBuilder<> Builder(T);
110 
111   // Branch - See if we are conditional jumping on constant
112   if (auto *BI = dyn_cast<BranchInst>(T)) {
113     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
114     BasicBlock *Dest1 = BI->getSuccessor(0);
115     BasicBlock *Dest2 = BI->getSuccessor(1);
116 
117     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
118       // Are we branching on constant?
119       // YES.  Change to unconditional branch...
120       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
121       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
122 
123       // Let the basic block know that we are letting go of it.  Based on this,
124       // it will adjust it's PHI nodes.
125       OldDest->removePredecessor(BB);
126 
127       // Replace the conditional branch with an unconditional one.
128       Builder.CreateBr(Destination);
129       BI->eraseFromParent();
130       if (DTU)
131         DTU->deleteEdgeRelaxed(BB, OldDest);
132       return true;
133     }
134 
135     if (Dest2 == Dest1) {       // Conditional branch to same location?
136       // This branch matches something like this:
137       //     br bool %cond, label %Dest, label %Dest
138       // and changes it into:  br label %Dest
139 
140       // Let the basic block know that we are letting go of one copy of it.
141       assert(BI->getParent() && "Terminator not inserted in block!");
142       Dest1->removePredecessor(BI->getParent());
143 
144       // Replace the conditional branch with an unconditional one.
145       Builder.CreateBr(Dest1);
146       Value *Cond = BI->getCondition();
147       BI->eraseFromParent();
148       if (DeleteDeadConditions)
149         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
150       return true;
151     }
152     return false;
153   }
154 
155   if (auto *SI = dyn_cast<SwitchInst>(T)) {
156     // If we are switching on a constant, we can convert the switch to an
157     // unconditional branch.
158     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
159     BasicBlock *DefaultDest = SI->getDefaultDest();
160     BasicBlock *TheOnlyDest = DefaultDest;
161 
162     // If the default is unreachable, ignore it when searching for TheOnlyDest.
163     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
164         SI->getNumCases() > 0) {
165       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
166     }
167 
168     // Figure out which case it goes to.
169     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
170       // Found case matching a constant operand?
171       if (i->getCaseValue() == CI) {
172         TheOnlyDest = i->getCaseSuccessor();
173         break;
174       }
175 
176       // Check to see if this branch is going to the same place as the default
177       // dest.  If so, eliminate it as an explicit compare.
178       if (i->getCaseSuccessor() == DefaultDest) {
179         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
180         unsigned NCases = SI->getNumCases();
181         // Fold the case metadata into the default if there will be any branches
182         // left, unless the metadata doesn't match the switch.
183         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
184           // Collect branch weights into a vector.
185           SmallVector<uint32_t, 8> Weights;
186           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
187                ++MD_i) {
188             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
189             Weights.push_back(CI->getValue().getZExtValue());
190           }
191           // Merge weight of this case to the default weight.
192           unsigned idx = i->getCaseIndex();
193           Weights[0] += Weights[idx+1];
194           // Remove weight for this case.
195           std::swap(Weights[idx+1], Weights.back());
196           Weights.pop_back();
197           SI->setMetadata(LLVMContext::MD_prof,
198                           MDBuilder(BB->getContext()).
199                           createBranchWeights(Weights));
200         }
201         // Remove this entry.
202         BasicBlock *ParentBB = SI->getParent();
203         DefaultDest->removePredecessor(ParentBB);
204         i = SI->removeCase(i);
205         e = SI->case_end();
206         if (DTU)
207           DTU->deleteEdgeRelaxed(ParentBB, DefaultDest);
208         continue;
209       }
210 
211       // Otherwise, check to see if the switch only branches to one destination.
212       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
213       // destinations.
214       if (i->getCaseSuccessor() != TheOnlyDest)
215         TheOnlyDest = nullptr;
216 
217       // Increment this iterator as we haven't removed the case.
218       ++i;
219     }
220 
221     if (CI && !TheOnlyDest) {
222       // Branching on a constant, but not any of the cases, go to the default
223       // successor.
224       TheOnlyDest = SI->getDefaultDest();
225     }
226 
227     // If we found a single destination that we can fold the switch into, do so
228     // now.
229     if (TheOnlyDest) {
230       // Insert the new branch.
231       Builder.CreateBr(TheOnlyDest);
232       BasicBlock *BB = SI->getParent();
233       std::vector <DominatorTree::UpdateType> Updates;
234       if (DTU)
235         Updates.reserve(SI->getNumSuccessors() - 1);
236 
237       // Remove entries from PHI nodes which we no longer branch to...
238       for (BasicBlock *Succ : successors(SI)) {
239         // Found case matching a constant operand?
240         if (Succ == TheOnlyDest) {
241           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
242         } else {
243           Succ->removePredecessor(BB);
244           if (DTU)
245             Updates.push_back({DominatorTree::Delete, BB, Succ});
246         }
247       }
248 
249       // Delete the old switch.
250       Value *Cond = SI->getCondition();
251       SI->eraseFromParent();
252       if (DeleteDeadConditions)
253         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
254       if (DTU)
255         DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
256       return true;
257     }
258 
259     if (SI->getNumCases() == 1) {
260       // Otherwise, we can fold this switch into a conditional branch
261       // instruction if it has only one non-default destination.
262       auto FirstCase = *SI->case_begin();
263       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
264           FirstCase.getCaseValue(), "cond");
265 
266       // Insert the new branch.
267       BranchInst *NewBr = Builder.CreateCondBr(Cond,
268                                                FirstCase.getCaseSuccessor(),
269                                                SI->getDefaultDest());
270       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
271       if (MD && MD->getNumOperands() == 3) {
272         ConstantInt *SICase =
273             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
274         ConstantInt *SIDef =
275             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
276         assert(SICase && SIDef);
277         // The TrueWeight should be the weight for the single case of SI.
278         NewBr->setMetadata(LLVMContext::MD_prof,
279                         MDBuilder(BB->getContext()).
280                         createBranchWeights(SICase->getValue().getZExtValue(),
281                                             SIDef->getValue().getZExtValue()));
282       }
283 
284       // Update make.implicit metadata to the newly-created conditional branch.
285       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
286       if (MakeImplicitMD)
287         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
288 
289       // Delete the old switch.
290       SI->eraseFromParent();
291       return true;
292     }
293     return false;
294   }
295 
296   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
297     // indirectbr blockaddress(@F, @BB) -> br label @BB
298     if (auto *BA =
299           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
300       BasicBlock *TheOnlyDest = BA->getBasicBlock();
301       std::vector <DominatorTree::UpdateType> Updates;
302       if (DTU)
303         Updates.reserve(IBI->getNumDestinations() - 1);
304 
305       // Insert the new branch.
306       Builder.CreateBr(TheOnlyDest);
307 
308       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
309         if (IBI->getDestination(i) == TheOnlyDest) {
310           TheOnlyDest = nullptr;
311         } else {
312           BasicBlock *ParentBB = IBI->getParent();
313           BasicBlock *DestBB = IBI->getDestination(i);
314           DestBB->removePredecessor(ParentBB);
315           if (DTU)
316             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
317         }
318       }
319       Value *Address = IBI->getAddress();
320       IBI->eraseFromParent();
321       if (DeleteDeadConditions)
322         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
323 
324       // If we didn't find our destination in the IBI successor list, then we
325       // have undefined behavior.  Replace the unconditional branch with an
326       // 'unreachable' instruction.
327       if (TheOnlyDest) {
328         BB->getTerminator()->eraseFromParent();
329         new UnreachableInst(BB->getContext(), BB);
330       }
331 
332       if (DTU)
333         DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
334       return true;
335     }
336   }
337 
338   return false;
339 }
340 
341 //===----------------------------------------------------------------------===//
342 //  Local dead code elimination.
343 //
344 
345 /// isInstructionTriviallyDead - Return true if the result produced by the
346 /// instruction is not used, and the instruction has no side effects.
347 ///
348 bool llvm::isInstructionTriviallyDead(Instruction *I,
349                                       const TargetLibraryInfo *TLI) {
350   if (!I->use_empty())
351     return false;
352   return wouldInstructionBeTriviallyDead(I, TLI);
353 }
354 
355 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
356                                            const TargetLibraryInfo *TLI) {
357   if (I->isTerminator())
358     return false;
359 
360   // We don't want the landingpad-like instructions removed by anything this
361   // general.
362   if (I->isEHPad())
363     return false;
364 
365   // We don't want debug info removed by anything this general, unless
366   // debug info is empty.
367   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
368     if (DDI->getAddress())
369       return false;
370     return true;
371   }
372   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
373     if (DVI->getValue())
374       return false;
375     return true;
376   }
377   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
378     if (DLI->getLabel())
379       return false;
380     return true;
381   }
382 
383   if (!I->mayHaveSideEffects())
384     return true;
385 
386   // Special case intrinsics that "may have side effects" but can be deleted
387   // when dead.
388   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
389     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
390     if (II->getIntrinsicID() == Intrinsic::stacksave ||
391         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
392       return true;
393 
394     // Lifetime intrinsics are dead when their right-hand is undef.
395     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
396         II->getIntrinsicID() == Intrinsic::lifetime_end)
397       return isa<UndefValue>(II->getArgOperand(1));
398 
399     // Assumptions are dead if their condition is trivially true.  Guards on
400     // true are operationally no-ops.  In the future we can consider more
401     // sophisticated tradeoffs for guards considering potential for check
402     // widening, but for now we keep things simple.
403     if (II->getIntrinsicID() == Intrinsic::assume ||
404         II->getIntrinsicID() == Intrinsic::experimental_guard) {
405       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
406         return !Cond->isZero();
407 
408       return false;
409     }
410   }
411 
412   if (isAllocLikeFn(I, TLI))
413     return true;
414 
415   if (CallInst *CI = isFreeCall(I, TLI))
416     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
417       return C->isNullValue() || isa<UndefValue>(C);
418 
419   if (CallSite CS = CallSite(I))
420     if (isMathLibCallNoop(CS, TLI))
421       return true;
422 
423   return false;
424 }
425 
426 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
427 /// trivially dead instruction, delete it.  If that makes any of its operands
428 /// trivially dead, delete them too, recursively.  Return true if any
429 /// instructions were deleted.
430 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
431     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
432   Instruction *I = dyn_cast<Instruction>(V);
433   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
434     return false;
435 
436   SmallVector<Instruction*, 16> DeadInsts;
437   DeadInsts.push_back(I);
438   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
439 
440   return true;
441 }
442 
443 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
444     SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI,
445     MemorySSAUpdater *MSSAU) {
446   // Process the dead instruction list until empty.
447   while (!DeadInsts.empty()) {
448     Instruction &I = *DeadInsts.pop_back_val();
449     assert(I.use_empty() && "Instructions with uses are not dead.");
450     assert(isInstructionTriviallyDead(&I, TLI) &&
451            "Live instruction found in dead worklist!");
452 
453     // Don't lose the debug info while deleting the instructions.
454     salvageDebugInfo(I);
455 
456     // Null out all of the instruction's operands to see if any operand becomes
457     // dead as we go.
458     for (Use &OpU : I.operands()) {
459       Value *OpV = OpU.get();
460       OpU.set(nullptr);
461 
462       if (!OpV->use_empty())
463         continue;
464 
465       // If the operand is an instruction that became dead as we nulled out the
466       // operand, and if it is 'trivially' dead, delete it in a future loop
467       // iteration.
468       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
469         if (isInstructionTriviallyDead(OpI, TLI))
470           DeadInsts.push_back(OpI);
471     }
472     if (MSSAU)
473       MSSAU->removeMemoryAccess(&I);
474 
475     I.eraseFromParent();
476   }
477 }
478 
479 /// areAllUsesEqual - Check whether the uses of a value are all the same.
480 /// This is similar to Instruction::hasOneUse() except this will also return
481 /// true when there are no uses or multiple uses that all refer to the same
482 /// value.
483 static bool areAllUsesEqual(Instruction *I) {
484   Value::user_iterator UI = I->user_begin();
485   Value::user_iterator UE = I->user_end();
486   if (UI == UE)
487     return true;
488 
489   User *TheUse = *UI;
490   for (++UI; UI != UE; ++UI) {
491     if (*UI != TheUse)
492       return false;
493   }
494   return true;
495 }
496 
497 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
498 /// dead PHI node, due to being a def-use chain of single-use nodes that
499 /// either forms a cycle or is terminated by a trivially dead instruction,
500 /// delete it.  If that makes any of its operands trivially dead, delete them
501 /// too, recursively.  Return true if a change was made.
502 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
503                                         const TargetLibraryInfo *TLI) {
504   SmallPtrSet<Instruction*, 4> Visited;
505   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
506        I = cast<Instruction>(*I->user_begin())) {
507     if (I->use_empty())
508       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
509 
510     // If we find an instruction more than once, we're on a cycle that
511     // won't prove fruitful.
512     if (!Visited.insert(I).second) {
513       // Break the cycle and delete the instruction and its operands.
514       I->replaceAllUsesWith(UndefValue::get(I->getType()));
515       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
516       return true;
517     }
518   }
519   return false;
520 }
521 
522 static bool
523 simplifyAndDCEInstruction(Instruction *I,
524                           SmallSetVector<Instruction *, 16> &WorkList,
525                           const DataLayout &DL,
526                           const TargetLibraryInfo *TLI) {
527   if (isInstructionTriviallyDead(I, TLI)) {
528     salvageDebugInfo(*I);
529 
530     // Null out all of the instruction's operands to see if any operand becomes
531     // dead as we go.
532     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
533       Value *OpV = I->getOperand(i);
534       I->setOperand(i, nullptr);
535 
536       if (!OpV->use_empty() || I == OpV)
537         continue;
538 
539       // If the operand is an instruction that became dead as we nulled out the
540       // operand, and if it is 'trivially' dead, delete it in a future loop
541       // iteration.
542       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
543         if (isInstructionTriviallyDead(OpI, TLI))
544           WorkList.insert(OpI);
545     }
546 
547     I->eraseFromParent();
548 
549     return true;
550   }
551 
552   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
553     // Add the users to the worklist. CAREFUL: an instruction can use itself,
554     // in the case of a phi node.
555     for (User *U : I->users()) {
556       if (U != I) {
557         WorkList.insert(cast<Instruction>(U));
558       }
559     }
560 
561     // Replace the instruction with its simplified value.
562     bool Changed = false;
563     if (!I->use_empty()) {
564       I->replaceAllUsesWith(SimpleV);
565       Changed = true;
566     }
567     if (isInstructionTriviallyDead(I, TLI)) {
568       I->eraseFromParent();
569       Changed = true;
570     }
571     return Changed;
572   }
573   return false;
574 }
575 
576 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
577 /// simplify any instructions in it and recursively delete dead instructions.
578 ///
579 /// This returns true if it changed the code, note that it can delete
580 /// instructions in other blocks as well in this block.
581 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
582                                        const TargetLibraryInfo *TLI) {
583   bool MadeChange = false;
584   const DataLayout &DL = BB->getModule()->getDataLayout();
585 
586 #ifndef NDEBUG
587   // In debug builds, ensure that the terminator of the block is never replaced
588   // or deleted by these simplifications. The idea of simplification is that it
589   // cannot introduce new instructions, and there is no way to replace the
590   // terminator of a block without introducing a new instruction.
591   AssertingVH<Instruction> TerminatorVH(&BB->back());
592 #endif
593 
594   SmallSetVector<Instruction *, 16> WorkList;
595   // Iterate over the original function, only adding insts to the worklist
596   // if they actually need to be revisited. This avoids having to pre-init
597   // the worklist with the entire function's worth of instructions.
598   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
599        BI != E;) {
600     assert(!BI->isTerminator());
601     Instruction *I = &*BI;
602     ++BI;
603 
604     // We're visiting this instruction now, so make sure it's not in the
605     // worklist from an earlier visit.
606     if (!WorkList.count(I))
607       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
608   }
609 
610   while (!WorkList.empty()) {
611     Instruction *I = WorkList.pop_back_val();
612     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
613   }
614   return MadeChange;
615 }
616 
617 //===----------------------------------------------------------------------===//
618 //  Control Flow Graph Restructuring.
619 //
620 
621 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
622 /// method is called when we're about to delete Pred as a predecessor of BB.  If
623 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
624 ///
625 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
626 /// nodes that collapse into identity values.  For example, if we have:
627 ///   x = phi(1, 0, 0, 0)
628 ///   y = and x, z
629 ///
630 /// .. and delete the predecessor corresponding to the '1', this will attempt to
631 /// recursively fold the and to 0.
632 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
633                                         DomTreeUpdater *DTU) {
634   // This only adjusts blocks with PHI nodes.
635   if (!isa<PHINode>(BB->begin()))
636     return;
637 
638   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
639   // them down.  This will leave us with single entry phi nodes and other phis
640   // that can be removed.
641   BB->removePredecessor(Pred, true);
642 
643   WeakTrackingVH PhiIt = &BB->front();
644   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
645     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
646     Value *OldPhiIt = PhiIt;
647 
648     if (!recursivelySimplifyInstruction(PN))
649       continue;
650 
651     // If recursive simplification ended up deleting the next PHI node we would
652     // iterate to, then our iterator is invalid, restart scanning from the top
653     // of the block.
654     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
655   }
656   if (DTU)
657     DTU->deleteEdgeRelaxed(Pred, BB);
658 }
659 
660 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
661 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
662 /// between them, moving the instructions in the predecessor into DestBB and
663 /// deleting the predecessor block.
664 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
665                                        DomTreeUpdater *DTU) {
666 
667   // If BB has single-entry PHI nodes, fold them.
668   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
669     Value *NewVal = PN->getIncomingValue(0);
670     // Replace self referencing PHI with undef, it must be dead.
671     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
672     PN->replaceAllUsesWith(NewVal);
673     PN->eraseFromParent();
674   }
675 
676   BasicBlock *PredBB = DestBB->getSinglePredecessor();
677   assert(PredBB && "Block doesn't have a single predecessor!");
678 
679   bool ReplaceEntryBB = false;
680   if (PredBB == &DestBB->getParent()->getEntryBlock())
681     ReplaceEntryBB = true;
682 
683   // DTU updates: Collect all the edges that enter
684   // PredBB. These dominator edges will be redirected to DestBB.
685   SmallVector<DominatorTree::UpdateType, 32> Updates;
686 
687   if (DTU) {
688     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
689     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
690       Updates.push_back({DominatorTree::Delete, *I, PredBB});
691       // This predecessor of PredBB may already have DestBB as a successor.
692       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
693         Updates.push_back({DominatorTree::Insert, *I, DestBB});
694     }
695   }
696 
697   // Zap anything that took the address of DestBB.  Not doing this will give the
698   // address an invalid value.
699   if (DestBB->hasAddressTaken()) {
700     BlockAddress *BA = BlockAddress::get(DestBB);
701     Constant *Replacement =
702       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
703     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
704                                                      BA->getType()));
705     BA->destroyConstant();
706   }
707 
708   // Anything that branched to PredBB now branches to DestBB.
709   PredBB->replaceAllUsesWith(DestBB);
710 
711   // Splice all the instructions from PredBB to DestBB.
712   PredBB->getTerminator()->eraseFromParent();
713   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
714   new UnreachableInst(PredBB->getContext(), PredBB);
715 
716   // If the PredBB is the entry block of the function, move DestBB up to
717   // become the entry block after we erase PredBB.
718   if (ReplaceEntryBB)
719     DestBB->moveAfter(PredBB);
720 
721   if (DTU) {
722     assert(PredBB->getInstList().size() == 1 &&
723            isa<UnreachableInst>(PredBB->getTerminator()) &&
724            "The successor list of PredBB isn't empty before "
725            "applying corresponding DTU updates.");
726     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
727     DTU->deleteBB(PredBB);
728     // Recalculation of DomTree is needed when updating a forward DomTree and
729     // the Entry BB is replaced.
730     if (ReplaceEntryBB && DTU->hasDomTree()) {
731       // The entry block was removed and there is no external interface for
732       // the dominator tree to be notified of this change. In this corner-case
733       // we recalculate the entire tree.
734       DTU->recalculate(*(DestBB->getParent()));
735     }
736   }
737 
738   else {
739     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
740   }
741 }
742 
743 /// CanMergeValues - Return true if we can choose one of these values to use
744 /// in place of the other. Note that we will always choose the non-undef
745 /// value to keep.
746 static bool CanMergeValues(Value *First, Value *Second) {
747   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
748 }
749 
750 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
751 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
752 ///
753 /// Assumption: Succ is the single successor for BB.
754 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
755   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
756 
757   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
758                     << Succ->getName() << "\n");
759   // Shortcut, if there is only a single predecessor it must be BB and merging
760   // is always safe
761   if (Succ->getSinglePredecessor()) return true;
762 
763   // Make a list of the predecessors of BB
764   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
765 
766   // Look at all the phi nodes in Succ, to see if they present a conflict when
767   // merging these blocks
768   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
769     PHINode *PN = cast<PHINode>(I);
770 
771     // If the incoming value from BB is again a PHINode in
772     // BB which has the same incoming value for *PI as PN does, we can
773     // merge the phi nodes and then the blocks can still be merged
774     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
775     if (BBPN && BBPN->getParent() == BB) {
776       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
777         BasicBlock *IBB = PN->getIncomingBlock(PI);
778         if (BBPreds.count(IBB) &&
779             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
780                             PN->getIncomingValue(PI))) {
781           LLVM_DEBUG(dbgs()
782                      << "Can't fold, phi node " << PN->getName() << " in "
783                      << Succ->getName() << " is conflicting with "
784                      << BBPN->getName() << " with regard to common predecessor "
785                      << IBB->getName() << "\n");
786           return false;
787         }
788       }
789     } else {
790       Value* Val = PN->getIncomingValueForBlock(BB);
791       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
792         // See if the incoming value for the common predecessor is equal to the
793         // one for BB, in which case this phi node will not prevent the merging
794         // of the block.
795         BasicBlock *IBB = PN->getIncomingBlock(PI);
796         if (BBPreds.count(IBB) &&
797             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
798           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
799                             << " in " << Succ->getName()
800                             << " is conflicting with regard to common "
801                             << "predecessor " << IBB->getName() << "\n");
802           return false;
803         }
804       }
805     }
806   }
807 
808   return true;
809 }
810 
811 using PredBlockVector = SmallVector<BasicBlock *, 16>;
812 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
813 
814 /// Determines the value to use as the phi node input for a block.
815 ///
816 /// Select between \p OldVal any value that we know flows from \p BB
817 /// to a particular phi on the basis of which one (if either) is not
818 /// undef. Update IncomingValues based on the selected value.
819 ///
820 /// \param OldVal The value we are considering selecting.
821 /// \param BB The block that the value flows in from.
822 /// \param IncomingValues A map from block-to-value for other phi inputs
823 /// that we have examined.
824 ///
825 /// \returns the selected value.
826 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
827                                           IncomingValueMap &IncomingValues) {
828   if (!isa<UndefValue>(OldVal)) {
829     assert((!IncomingValues.count(BB) ||
830             IncomingValues.find(BB)->second == OldVal) &&
831            "Expected OldVal to match incoming value from BB!");
832 
833     IncomingValues.insert(std::make_pair(BB, OldVal));
834     return OldVal;
835   }
836 
837   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
838   if (It != IncomingValues.end()) return It->second;
839 
840   return OldVal;
841 }
842 
843 /// Create a map from block to value for the operands of a
844 /// given phi.
845 ///
846 /// Create a map from block to value for each non-undef value flowing
847 /// into \p PN.
848 ///
849 /// \param PN The phi we are collecting the map for.
850 /// \param IncomingValues [out] The map from block to value for this phi.
851 static void gatherIncomingValuesToPhi(PHINode *PN,
852                                       IncomingValueMap &IncomingValues) {
853   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
854     BasicBlock *BB = PN->getIncomingBlock(i);
855     Value *V = PN->getIncomingValue(i);
856 
857     if (!isa<UndefValue>(V))
858       IncomingValues.insert(std::make_pair(BB, V));
859   }
860 }
861 
862 /// Replace the incoming undef values to a phi with the values
863 /// from a block-to-value map.
864 ///
865 /// \param PN The phi we are replacing the undefs in.
866 /// \param IncomingValues A map from block to value.
867 static void replaceUndefValuesInPhi(PHINode *PN,
868                                     const IncomingValueMap &IncomingValues) {
869   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
870     Value *V = PN->getIncomingValue(i);
871 
872     if (!isa<UndefValue>(V)) continue;
873 
874     BasicBlock *BB = PN->getIncomingBlock(i);
875     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
876     if (It == IncomingValues.end()) continue;
877 
878     PN->setIncomingValue(i, It->second);
879   }
880 }
881 
882 /// Replace a value flowing from a block to a phi with
883 /// potentially multiple instances of that value flowing from the
884 /// block's predecessors to the phi.
885 ///
886 /// \param BB The block with the value flowing into the phi.
887 /// \param BBPreds The predecessors of BB.
888 /// \param PN The phi that we are updating.
889 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
890                                                 const PredBlockVector &BBPreds,
891                                                 PHINode *PN) {
892   Value *OldVal = PN->removeIncomingValue(BB, false);
893   assert(OldVal && "No entry in PHI for Pred BB!");
894 
895   IncomingValueMap IncomingValues;
896 
897   // We are merging two blocks - BB, and the block containing PN - and
898   // as a result we need to redirect edges from the predecessors of BB
899   // to go to the block containing PN, and update PN
900   // accordingly. Since we allow merging blocks in the case where the
901   // predecessor and successor blocks both share some predecessors,
902   // and where some of those common predecessors might have undef
903   // values flowing into PN, we want to rewrite those values to be
904   // consistent with the non-undef values.
905 
906   gatherIncomingValuesToPhi(PN, IncomingValues);
907 
908   // If this incoming value is one of the PHI nodes in BB, the new entries
909   // in the PHI node are the entries from the old PHI.
910   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
911     PHINode *OldValPN = cast<PHINode>(OldVal);
912     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
913       // Note that, since we are merging phi nodes and BB and Succ might
914       // have common predecessors, we could end up with a phi node with
915       // identical incoming branches. This will be cleaned up later (and
916       // will trigger asserts if we try to clean it up now, without also
917       // simplifying the corresponding conditional branch).
918       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
919       Value *PredVal = OldValPN->getIncomingValue(i);
920       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
921                                                     IncomingValues);
922 
923       // And add a new incoming value for this predecessor for the
924       // newly retargeted branch.
925       PN->addIncoming(Selected, PredBB);
926     }
927   } else {
928     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
929       // Update existing incoming values in PN for this
930       // predecessor of BB.
931       BasicBlock *PredBB = BBPreds[i];
932       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
933                                                     IncomingValues);
934 
935       // And add a new incoming value for this predecessor for the
936       // newly retargeted branch.
937       PN->addIncoming(Selected, PredBB);
938     }
939   }
940 
941   replaceUndefValuesInPhi(PN, IncomingValues);
942 }
943 
944 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
945 /// unconditional branch, and contains no instructions other than PHI nodes,
946 /// potential side-effect free intrinsics and the branch.  If possible,
947 /// eliminate BB by rewriting all the predecessors to branch to the successor
948 /// block and return true.  If we can't transform, return false.
949 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
950                                                    DomTreeUpdater *DTU) {
951   assert(BB != &BB->getParent()->getEntryBlock() &&
952          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
953 
954   // We can't eliminate infinite loops.
955   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
956   if (BB == Succ) return false;
957 
958   // Check to see if merging these blocks would cause conflicts for any of the
959   // phi nodes in BB or Succ. If not, we can safely merge.
960   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
961 
962   // Check for cases where Succ has multiple predecessors and a PHI node in BB
963   // has uses which will not disappear when the PHI nodes are merged.  It is
964   // possible to handle such cases, but difficult: it requires checking whether
965   // BB dominates Succ, which is non-trivial to calculate in the case where
966   // Succ has multiple predecessors.  Also, it requires checking whether
967   // constructing the necessary self-referential PHI node doesn't introduce any
968   // conflicts; this isn't too difficult, but the previous code for doing this
969   // was incorrect.
970   //
971   // Note that if this check finds a live use, BB dominates Succ, so BB is
972   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
973   // folding the branch isn't profitable in that case anyway.
974   if (!Succ->getSinglePredecessor()) {
975     BasicBlock::iterator BBI = BB->begin();
976     while (isa<PHINode>(*BBI)) {
977       for (Use &U : BBI->uses()) {
978         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
979           if (PN->getIncomingBlock(U) != BB)
980             return false;
981         } else {
982           return false;
983         }
984       }
985       ++BBI;
986     }
987   }
988 
989   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
990 
991   SmallVector<DominatorTree::UpdateType, 32> Updates;
992   if (DTU) {
993     Updates.push_back({DominatorTree::Delete, BB, Succ});
994     // All predecessors of BB will be moved to Succ.
995     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
996       Updates.push_back({DominatorTree::Delete, *I, BB});
997       // This predecessor of BB may already have Succ as a successor.
998       if (llvm::find(successors(*I), Succ) == succ_end(*I))
999         Updates.push_back({DominatorTree::Insert, *I, Succ});
1000     }
1001   }
1002 
1003   if (isa<PHINode>(Succ->begin())) {
1004     // If there is more than one pred of succ, and there are PHI nodes in
1005     // the successor, then we need to add incoming edges for the PHI nodes
1006     //
1007     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1008 
1009     // Loop over all of the PHI nodes in the successor of BB.
1010     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1011       PHINode *PN = cast<PHINode>(I);
1012 
1013       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1014     }
1015   }
1016 
1017   if (Succ->getSinglePredecessor()) {
1018     // BB is the only predecessor of Succ, so Succ will end up with exactly
1019     // the same predecessors BB had.
1020 
1021     // Copy over any phi, debug or lifetime instruction.
1022     BB->getTerminator()->eraseFromParent();
1023     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1024                                BB->getInstList());
1025   } else {
1026     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1027       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1028       assert(PN->use_empty() && "There shouldn't be any uses here!");
1029       PN->eraseFromParent();
1030     }
1031   }
1032 
1033   // If the unconditional branch we replaced contains llvm.loop metadata, we
1034   // add the metadata to the branch instructions in the predecessors.
1035   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1036   Instruction *TI = BB->getTerminator();
1037   if (TI)
1038     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1039       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1040         BasicBlock *Pred = *PI;
1041         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1042       }
1043 
1044   // Everything that jumped to BB now goes to Succ.
1045   BB->replaceAllUsesWith(Succ);
1046   if (!Succ->hasName()) Succ->takeName(BB);
1047 
1048   // Clear the successor list of BB to match updates applying to DTU later.
1049   if (BB->getTerminator())
1050     BB->getInstList().pop_back();
1051   new UnreachableInst(BB->getContext(), BB);
1052   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1053                            "applying corresponding DTU updates.");
1054 
1055   if (DTU) {
1056     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1057     DTU->deleteBB(BB);
1058   } else {
1059     BB->eraseFromParent(); // Delete the old basic block.
1060   }
1061   return true;
1062 }
1063 
1064 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1065 /// nodes in this block. This doesn't try to be clever about PHI nodes
1066 /// which differ only in the order of the incoming values, but instcombine
1067 /// orders them so it usually won't matter.
1068 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1069   // This implementation doesn't currently consider undef operands
1070   // specially. Theoretically, two phis which are identical except for
1071   // one having an undef where the other doesn't could be collapsed.
1072 
1073   struct PHIDenseMapInfo {
1074     static PHINode *getEmptyKey() {
1075       return DenseMapInfo<PHINode *>::getEmptyKey();
1076     }
1077 
1078     static PHINode *getTombstoneKey() {
1079       return DenseMapInfo<PHINode *>::getTombstoneKey();
1080     }
1081 
1082     static unsigned getHashValue(PHINode *PN) {
1083       // Compute a hash value on the operands. Instcombine will likely have
1084       // sorted them, which helps expose duplicates, but we have to check all
1085       // the operands to be safe in case instcombine hasn't run.
1086       return static_cast<unsigned>(hash_combine(
1087           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1088           hash_combine_range(PN->block_begin(), PN->block_end())));
1089     }
1090 
1091     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1092       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1093           RHS == getEmptyKey() || RHS == getTombstoneKey())
1094         return LHS == RHS;
1095       return LHS->isIdenticalTo(RHS);
1096     }
1097   };
1098 
1099   // Set of unique PHINodes.
1100   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1101 
1102   // Examine each PHI.
1103   bool Changed = false;
1104   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1105     auto Inserted = PHISet.insert(PN);
1106     if (!Inserted.second) {
1107       // A duplicate. Replace this PHI with its duplicate.
1108       PN->replaceAllUsesWith(*Inserted.first);
1109       PN->eraseFromParent();
1110       Changed = true;
1111 
1112       // The RAUW can change PHIs that we already visited. Start over from the
1113       // beginning.
1114       PHISet.clear();
1115       I = BB->begin();
1116     }
1117   }
1118 
1119   return Changed;
1120 }
1121 
1122 /// enforceKnownAlignment - If the specified pointer points to an object that
1123 /// we control, modify the object's alignment to PrefAlign. This isn't
1124 /// often possible though. If alignment is important, a more reliable approach
1125 /// is to simply align all global variables and allocation instructions to
1126 /// their preferred alignment from the beginning.
1127 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1128                                       unsigned PrefAlign,
1129                                       const DataLayout &DL) {
1130   assert(PrefAlign > Align);
1131 
1132   V = V->stripPointerCasts();
1133 
1134   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1135     // TODO: ideally, computeKnownBits ought to have used
1136     // AllocaInst::getAlignment() in its computation already, making
1137     // the below max redundant. But, as it turns out,
1138     // stripPointerCasts recurses through infinite layers of bitcasts,
1139     // while computeKnownBits is not allowed to traverse more than 6
1140     // levels.
1141     Align = std::max(AI->getAlignment(), Align);
1142     if (PrefAlign <= Align)
1143       return Align;
1144 
1145     // If the preferred alignment is greater than the natural stack alignment
1146     // then don't round up. This avoids dynamic stack realignment.
1147     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1148       return Align;
1149     AI->setAlignment(PrefAlign);
1150     return PrefAlign;
1151   }
1152 
1153   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1154     // TODO: as above, this shouldn't be necessary.
1155     Align = std::max(GO->getAlignment(), Align);
1156     if (PrefAlign <= Align)
1157       return Align;
1158 
1159     // If there is a large requested alignment and we can, bump up the alignment
1160     // of the global.  If the memory we set aside for the global may not be the
1161     // memory used by the final program then it is impossible for us to reliably
1162     // enforce the preferred alignment.
1163     if (!GO->canIncreaseAlignment())
1164       return Align;
1165 
1166     GO->setAlignment(PrefAlign);
1167     return PrefAlign;
1168   }
1169 
1170   return Align;
1171 }
1172 
1173 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1174                                           const DataLayout &DL,
1175                                           const Instruction *CxtI,
1176                                           AssumptionCache *AC,
1177                                           const DominatorTree *DT) {
1178   assert(V->getType()->isPointerTy() &&
1179          "getOrEnforceKnownAlignment expects a pointer!");
1180 
1181   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1182   unsigned TrailZ = Known.countMinTrailingZeros();
1183 
1184   // Avoid trouble with ridiculously large TrailZ values, such as
1185   // those computed from a null pointer.
1186   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1187 
1188   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1189 
1190   // LLVM doesn't support alignments larger than this currently.
1191   Align = std::min(Align, +Value::MaximumAlignment);
1192 
1193   if (PrefAlign > Align)
1194     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1195 
1196   // We don't need to make any adjustment.
1197   return Align;
1198 }
1199 
1200 ///===---------------------------------------------------------------------===//
1201 ///  Dbg Intrinsic utilities
1202 ///
1203 
1204 /// See if there is a dbg.value intrinsic for DIVar before I.
1205 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1206                               Instruction *I) {
1207   // Since we can't guarantee that the original dbg.declare instrinsic
1208   // is removed by LowerDbgDeclare(), we need to make sure that we are
1209   // not inserting the same dbg.value intrinsic over and over.
1210   BasicBlock::InstListType::iterator PrevI(I);
1211   if (PrevI != I->getParent()->getInstList().begin()) {
1212     --PrevI;
1213     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1214       if (DVI->getValue() == I->getOperand(0) &&
1215           DVI->getVariable() == DIVar &&
1216           DVI->getExpression() == DIExpr)
1217         return true;
1218   }
1219   return false;
1220 }
1221 
1222 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1223 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1224                              DIExpression *DIExpr,
1225                              PHINode *APN) {
1226   // Since we can't guarantee that the original dbg.declare instrinsic
1227   // is removed by LowerDbgDeclare(), we need to make sure that we are
1228   // not inserting the same dbg.value intrinsic over and over.
1229   SmallVector<DbgValueInst *, 1> DbgValues;
1230   findDbgValues(DbgValues, APN);
1231   for (auto *DVI : DbgValues) {
1232     assert(DVI->getValue() == APN);
1233     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1234       return true;
1235   }
1236   return false;
1237 }
1238 
1239 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1240 /// (or fragment of the variable) described by \p DII.
1241 ///
1242 /// This is primarily intended as a helper for the different
1243 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1244 /// converted describes an alloca'd variable, so we need to use the
1245 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1246 /// identified as covering an n-bit fragment, if the store size of i1 is at
1247 /// least n bits.
1248 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1249   const DataLayout &DL = DII->getModule()->getDataLayout();
1250   uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1251   if (auto FragmentSize = DII->getFragmentSizeInBits())
1252     return ValueSize >= *FragmentSize;
1253   // We can't always calculate the size of the DI variable (e.g. if it is a
1254   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1255   // intead.
1256   if (DII->isAddressOfVariable())
1257     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1258       if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1259         return ValueSize >= *FragmentSize;
1260   // Could not determine size of variable. Conservatively return false.
1261   return false;
1262 }
1263 
1264 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1265 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1266 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1267                                            StoreInst *SI, DIBuilder &Builder) {
1268   assert(DII->isAddressOfVariable());
1269   auto *DIVar = DII->getVariable();
1270   assert(DIVar && "Missing variable");
1271   auto *DIExpr = DII->getExpression();
1272   Value *DV = SI->getOperand(0);
1273 
1274   if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) {
1275     // FIXME: If storing to a part of the variable described by the dbg.declare,
1276     // then we want to insert a dbg.value for the corresponding fragment.
1277     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1278                       << *DII << '\n');
1279     // For now, when there is a store to parts of the variable (but we do not
1280     // know which part) we insert an dbg.value instrinsic to indicate that we
1281     // know nothing about the variable's content.
1282     DV = UndefValue::get(DV->getType());
1283     if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1284       Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1285                                       SI);
1286     return;
1287   }
1288 
1289   // If an argument is zero extended then use argument directly. The ZExt
1290   // may be zapped by an optimization pass in future.
1291   Argument *ExtendedArg = nullptr;
1292   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1293     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1294   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1295     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1296   if (ExtendedArg) {
1297     // If this DII was already describing only a fragment of a variable, ensure
1298     // that fragment is appropriately narrowed here.
1299     // But if a fragment wasn't used, describe the value as the original
1300     // argument (rather than the zext or sext) so that it remains described even
1301     // if the sext/zext is optimized away. This widens the variable description,
1302     // leaving it up to the consumer to know how the smaller value may be
1303     // represented in a larger register.
1304     if (auto Fragment = DIExpr->getFragmentInfo()) {
1305       unsigned FragmentOffset = Fragment->OffsetInBits;
1306       SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(),
1307                                    DIExpr->elements_end() - 3);
1308       Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1309       Ops.push_back(FragmentOffset);
1310       const DataLayout &DL = DII->getModule()->getDataLayout();
1311       Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
1312       DIExpr = Builder.createExpression(Ops);
1313     }
1314     DV = ExtendedArg;
1315   }
1316   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1317     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1318                                     SI);
1319 }
1320 
1321 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1322 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1323 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1324                                            LoadInst *LI, DIBuilder &Builder) {
1325   auto *DIVar = DII->getVariable();
1326   auto *DIExpr = DII->getExpression();
1327   assert(DIVar && "Missing variable");
1328 
1329   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1330     return;
1331 
1332   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1333     // FIXME: If only referring to a part of the variable described by the
1334     // dbg.declare, then we want to insert a dbg.value for the corresponding
1335     // fragment.
1336     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1337                       << *DII << '\n');
1338     return;
1339   }
1340 
1341   // We are now tracking the loaded value instead of the address. In the
1342   // future if multi-location support is added to the IR, it might be
1343   // preferable to keep tracking both the loaded value and the original
1344   // address in case the alloca can not be elided.
1345   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1346       LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1347   DbgValue->insertAfter(LI);
1348 }
1349 
1350 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1351 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1352 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1353                                            PHINode *APN, DIBuilder &Builder) {
1354   auto *DIVar = DII->getVariable();
1355   auto *DIExpr = DII->getExpression();
1356   assert(DIVar && "Missing variable");
1357 
1358   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1359     return;
1360 
1361   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1362     // FIXME: If only referring to a part of the variable described by the
1363     // dbg.declare, then we want to insert a dbg.value for the corresponding
1364     // fragment.
1365     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1366                       << *DII << '\n');
1367     return;
1368   }
1369 
1370   BasicBlock *BB = APN->getParent();
1371   auto InsertionPt = BB->getFirstInsertionPt();
1372 
1373   // The block may be a catchswitch block, which does not have a valid
1374   // insertion point.
1375   // FIXME: Insert dbg.value markers in the successors when appropriate.
1376   if (InsertionPt != BB->end())
1377     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1378                                     &*InsertionPt);
1379 }
1380 
1381 /// Determine whether this alloca is either a VLA or an array.
1382 static bool isArray(AllocaInst *AI) {
1383   return AI->isArrayAllocation() ||
1384     AI->getType()->getElementType()->isArrayTy();
1385 }
1386 
1387 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1388 /// of llvm.dbg.value intrinsics.
1389 bool llvm::LowerDbgDeclare(Function &F) {
1390   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1391   SmallVector<DbgDeclareInst *, 4> Dbgs;
1392   for (auto &FI : F)
1393     for (Instruction &BI : FI)
1394       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1395         Dbgs.push_back(DDI);
1396 
1397   if (Dbgs.empty())
1398     return false;
1399 
1400   for (auto &I : Dbgs) {
1401     DbgDeclareInst *DDI = I;
1402     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1403     // If this is an alloca for a scalar variable, insert a dbg.value
1404     // at each load and store to the alloca and erase the dbg.declare.
1405     // The dbg.values allow tracking a variable even if it is not
1406     // stored on the stack, while the dbg.declare can only describe
1407     // the stack slot (and at a lexical-scope granularity). Later
1408     // passes will attempt to elide the stack slot.
1409     if (!AI || isArray(AI))
1410       continue;
1411 
1412     // A volatile load/store means that the alloca can't be elided anyway.
1413     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1414           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1415             return LI->isVolatile();
1416           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1417             return SI->isVolatile();
1418           return false;
1419         }))
1420       continue;
1421 
1422     for (auto &AIUse : AI->uses()) {
1423       User *U = AIUse.getUser();
1424       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1425         if (AIUse.getOperandNo() == 1)
1426           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1427       } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1428         ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1429       } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1430         // This is a call by-value or some other instruction that takes a
1431         // pointer to the variable. Insert a *value* intrinsic that describes
1432         // the variable by dereferencing the alloca.
1433         auto *DerefExpr =
1434             DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1435         DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1436                                     DDI->getDebugLoc(), CI);
1437       }
1438     }
1439     DDI->eraseFromParent();
1440   }
1441   return true;
1442 }
1443 
1444 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1445 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1446                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1447   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1448   if (InsertedPHIs.size() == 0)
1449     return;
1450 
1451   // Map existing PHI nodes to their dbg.values.
1452   ValueToValueMapTy DbgValueMap;
1453   for (auto &I : *BB) {
1454     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1455       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1456         DbgValueMap.insert({Loc, DbgII});
1457     }
1458   }
1459   if (DbgValueMap.size() == 0)
1460     return;
1461 
1462   // Then iterate through the new PHIs and look to see if they use one of the
1463   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1464   // propagate the info through the new PHI.
1465   LLVMContext &C = BB->getContext();
1466   for (auto PHI : InsertedPHIs) {
1467     BasicBlock *Parent = PHI->getParent();
1468     // Avoid inserting an intrinsic into an EH block.
1469     if (Parent->getFirstNonPHI()->isEHPad())
1470       continue;
1471     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1472     for (auto VI : PHI->operand_values()) {
1473       auto V = DbgValueMap.find(VI);
1474       if (V != DbgValueMap.end()) {
1475         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1476         Instruction *NewDbgII = DbgII->clone();
1477         NewDbgII->setOperand(0, PhiMAV);
1478         auto InsertionPt = Parent->getFirstInsertionPt();
1479         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1480         NewDbgII->insertBefore(&*InsertionPt);
1481       }
1482     }
1483   }
1484 }
1485 
1486 /// Finds all intrinsics declaring local variables as living in the memory that
1487 /// 'V' points to. This may include a mix of dbg.declare and
1488 /// dbg.addr intrinsics.
1489 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1490   // This function is hot. Check whether the value has any metadata to avoid a
1491   // DenseMap lookup.
1492   if (!V->isUsedByMetadata())
1493     return {};
1494   auto *L = LocalAsMetadata::getIfExists(V);
1495   if (!L)
1496     return {};
1497   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1498   if (!MDV)
1499     return {};
1500 
1501   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1502   for (User *U : MDV->users()) {
1503     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1504       if (DII->isAddressOfVariable())
1505         Declares.push_back(DII);
1506   }
1507 
1508   return Declares;
1509 }
1510 
1511 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1512   // This function is hot. Check whether the value has any metadata to avoid a
1513   // DenseMap lookup.
1514   if (!V->isUsedByMetadata())
1515     return;
1516   if (auto *L = LocalAsMetadata::getIfExists(V))
1517     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1518       for (User *U : MDV->users())
1519         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1520           DbgValues.push_back(DVI);
1521 }
1522 
1523 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1524                         Value *V) {
1525   // This function is hot. Check whether the value has any metadata to avoid a
1526   // DenseMap lookup.
1527   if (!V->isUsedByMetadata())
1528     return;
1529   if (auto *L = LocalAsMetadata::getIfExists(V))
1530     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1531       for (User *U : MDV->users())
1532         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1533           DbgUsers.push_back(DII);
1534 }
1535 
1536 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1537                              Instruction *InsertBefore, DIBuilder &Builder,
1538                              bool DerefBefore, int Offset, bool DerefAfter) {
1539   auto DbgAddrs = FindDbgAddrUses(Address);
1540   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1541     DebugLoc Loc = DII->getDebugLoc();
1542     auto *DIVar = DII->getVariable();
1543     auto *DIExpr = DII->getExpression();
1544     assert(DIVar && "Missing variable");
1545     DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1546     // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1547     // llvm.dbg.declare.
1548     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1549     if (DII == InsertBefore)
1550       InsertBefore = InsertBefore->getNextNode();
1551     DII->eraseFromParent();
1552   }
1553   return !DbgAddrs.empty();
1554 }
1555 
1556 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1557                                       DIBuilder &Builder, bool DerefBefore,
1558                                       int Offset, bool DerefAfter) {
1559   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1560                            DerefBefore, Offset, DerefAfter);
1561 }
1562 
1563 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1564                                         DIBuilder &Builder, int Offset) {
1565   DebugLoc Loc = DVI->getDebugLoc();
1566   auto *DIVar = DVI->getVariable();
1567   auto *DIExpr = DVI->getExpression();
1568   assert(DIVar && "Missing variable");
1569 
1570   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1571   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1572   // it and give up.
1573   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1574       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1575     return;
1576 
1577   // Insert the offset immediately after the first deref.
1578   // We could just change the offset argument of dbg.value, but it's unsigned...
1579   if (Offset) {
1580     SmallVector<uint64_t, 4> Ops;
1581     Ops.push_back(dwarf::DW_OP_deref);
1582     DIExpression::appendOffset(Ops, Offset);
1583     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1584     DIExpr = Builder.createExpression(Ops);
1585   }
1586 
1587   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1588   DVI->eraseFromParent();
1589 }
1590 
1591 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1592                                     DIBuilder &Builder, int Offset) {
1593   if (auto *L = LocalAsMetadata::getIfExists(AI))
1594     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1595       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1596         Use &U = *UI++;
1597         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1598           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1599       }
1600 }
1601 
1602 /// Wrap \p V in a ValueAsMetadata instance.
1603 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1604   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1605 }
1606 
1607 bool llvm::salvageDebugInfo(Instruction &I) {
1608   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1609   findDbgUsers(DbgUsers, &I);
1610   if (DbgUsers.empty())
1611     return false;
1612 
1613   auto &M = *I.getModule();
1614   auto &DL = M.getDataLayout();
1615   auto &Ctx = I.getContext();
1616   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1617 
1618   auto doSalvage = [&](DbgVariableIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) {
1619     auto *DIExpr = DII->getExpression();
1620     if (!Ops.empty()) {
1621       // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1622       // are implicitly pointing out the value as a DWARF memory location
1623       // description.
1624       bool WithStackValue = isa<DbgValueInst>(DII);
1625       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1626     }
1627     DII->setOperand(0, wrapMD(I.getOperand(0)));
1628     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1629     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1630   };
1631 
1632   auto applyOffset = [&](DbgVariableIntrinsic *DII, uint64_t Offset) {
1633     SmallVector<uint64_t, 8> Ops;
1634     DIExpression::appendOffset(Ops, Offset);
1635     doSalvage(DII, Ops);
1636   };
1637 
1638   auto applyOps = [&](DbgVariableIntrinsic *DII,
1639                       std::initializer_list<uint64_t> Opcodes) {
1640     SmallVector<uint64_t, 8> Ops(Opcodes);
1641     doSalvage(DII, Ops);
1642   };
1643 
1644   if (auto *CI = dyn_cast<CastInst>(&I)) {
1645     if (!CI->isNoopCast(DL))
1646       return false;
1647 
1648     // No-op casts are irrelevant for debug info.
1649     MetadataAsValue *CastSrc = wrapMD(I.getOperand(0));
1650     for (auto *DII : DbgUsers) {
1651       DII->setOperand(0, CastSrc);
1652       LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1653     }
1654     return true;
1655   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1656     unsigned BitWidth =
1657         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1658     // Rewrite a constant GEP into a DIExpression.  Since we are performing
1659     // arithmetic to compute the variable's *value* in the DIExpression, we
1660     // need to mark the expression with a DW_OP_stack_value.
1661     APInt Offset(BitWidth, 0);
1662     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset))
1663       for (auto *DII : DbgUsers)
1664         applyOffset(DII, Offset.getSExtValue());
1665     return true;
1666   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1667     // Rewrite binary operations with constant integer operands.
1668     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1669     if (!ConstInt || ConstInt->getBitWidth() > 64)
1670       return false;
1671 
1672     uint64_t Val = ConstInt->getSExtValue();
1673     for (auto *DII : DbgUsers) {
1674       switch (BI->getOpcode()) {
1675       case Instruction::Add:
1676         applyOffset(DII, Val);
1677         break;
1678       case Instruction::Sub:
1679         applyOffset(DII, -int64_t(Val));
1680         break;
1681       case Instruction::Mul:
1682         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1683         break;
1684       case Instruction::SDiv:
1685         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1686         break;
1687       case Instruction::SRem:
1688         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1689         break;
1690       case Instruction::Or:
1691         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1692         break;
1693       case Instruction::And:
1694         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1695         break;
1696       case Instruction::Xor:
1697         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1698         break;
1699       case Instruction::Shl:
1700         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1701         break;
1702       case Instruction::LShr:
1703         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1704         break;
1705       case Instruction::AShr:
1706         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1707         break;
1708       default:
1709         // TODO: Salvage constants from each kind of binop we know about.
1710         return false;
1711       }
1712     }
1713     return true;
1714   } else if (isa<LoadInst>(&I)) {
1715     MetadataAsValue *AddrMD = wrapMD(I.getOperand(0));
1716     for (auto *DII : DbgUsers) {
1717       // Rewrite the load into DW_OP_deref.
1718       auto *DIExpr = DII->getExpression();
1719       DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
1720       DII->setOperand(0, AddrMD);
1721       DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1722       LLVM_DEBUG(dbgs() << "SALVAGE:  " << *DII << '\n');
1723     }
1724     return true;
1725   }
1726   return false;
1727 }
1728 
1729 /// A replacement for a dbg.value expression.
1730 using DbgValReplacement = Optional<DIExpression *>;
1731 
1732 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1733 /// possibly moving/deleting users to prevent use-before-def. Returns true if
1734 /// changes are made.
1735 static bool rewriteDebugUsers(
1736     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1737     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1738   // Find debug users of From.
1739   SmallVector<DbgVariableIntrinsic *, 1> Users;
1740   findDbgUsers(Users, &From);
1741   if (Users.empty())
1742     return false;
1743 
1744   // Prevent use-before-def of To.
1745   bool Changed = false;
1746   SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage;
1747   if (isa<Instruction>(&To)) {
1748     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1749 
1750     for (auto *DII : Users) {
1751       // It's common to see a debug user between From and DomPoint. Move it
1752       // after DomPoint to preserve the variable update without any reordering.
1753       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1754         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1755         DII->moveAfter(&DomPoint);
1756         Changed = true;
1757 
1758       // Users which otherwise aren't dominated by the replacement value must
1759       // be salvaged or deleted.
1760       } else if (!DT.dominates(&DomPoint, DII)) {
1761         DeleteOrSalvage.insert(DII);
1762       }
1763     }
1764   }
1765 
1766   // Update debug users without use-before-def risk.
1767   for (auto *DII : Users) {
1768     if (DeleteOrSalvage.count(DII))
1769       continue;
1770 
1771     LLVMContext &Ctx = DII->getContext();
1772     DbgValReplacement DVR = RewriteExpr(*DII);
1773     if (!DVR)
1774       continue;
1775 
1776     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1777     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1778     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1779     Changed = true;
1780   }
1781 
1782   if (!DeleteOrSalvage.empty()) {
1783     // Try to salvage the remaining debug users.
1784     Changed |= salvageDebugInfo(From);
1785 
1786     // Delete the debug users which weren't salvaged.
1787     for (auto *DII : DeleteOrSalvage) {
1788       if (DII->getVariableLocation() == &From) {
1789         LLVM_DEBUG(dbgs() << "Erased UseBeforeDef:  " << *DII << '\n');
1790         DII->eraseFromParent();
1791         Changed = true;
1792       }
1793     }
1794   }
1795 
1796   return Changed;
1797 }
1798 
1799 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1800 /// losslessly preserve the bits and semantics of the value. This predicate is
1801 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1802 ///
1803 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1804 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1805 /// and also does not allow lossless pointer <-> integer conversions.
1806 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1807                                          Type *ToTy) {
1808   // Trivially compatible types.
1809   if (FromTy == ToTy)
1810     return true;
1811 
1812   // Handle compatible pointer <-> integer conversions.
1813   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1814     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1815     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1816                               !DL.isNonIntegralPointerType(ToTy);
1817     return SameSize && LosslessConversion;
1818   }
1819 
1820   // TODO: This is not exhaustive.
1821   return false;
1822 }
1823 
1824 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1825                                  Instruction &DomPoint, DominatorTree &DT) {
1826   // Exit early if From has no debug users.
1827   if (!From.isUsedByMetadata())
1828     return false;
1829 
1830   assert(&From != &To && "Can't replace something with itself");
1831 
1832   Type *FromTy = From.getType();
1833   Type *ToTy = To.getType();
1834 
1835   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1836     return DII.getExpression();
1837   };
1838 
1839   // Handle no-op conversions.
1840   Module &M = *From.getModule();
1841   const DataLayout &DL = M.getDataLayout();
1842   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1843     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1844 
1845   // Handle integer-to-integer widening and narrowing.
1846   // FIXME: Use DW_OP_convert when it's available everywhere.
1847   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1848     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1849     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1850     assert(FromBits != ToBits && "Unexpected no-op conversion");
1851 
1852     // When the width of the result grows, assume that a debugger will only
1853     // access the low `FromBits` bits when inspecting the source variable.
1854     if (FromBits < ToBits)
1855       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1856 
1857     // The width of the result has shrunk. Use sign/zero extension to describe
1858     // the source variable's high bits.
1859     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1860       DILocalVariable *Var = DII.getVariable();
1861 
1862       // Without knowing signedness, sign/zero extension isn't possible.
1863       auto Signedness = Var->getSignedness();
1864       if (!Signedness)
1865         return None;
1866 
1867       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1868 
1869       if (!Signed) {
1870         // In the unsigned case, assume that a debugger will initialize the
1871         // high bits to 0 and do a no-op conversion.
1872         return Identity(DII);
1873       } else {
1874         // In the signed case, the high bits are given by sign extension, i.e:
1875         //   (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1)
1876         // Calculate the high bits and OR them together with the low bits.
1877         SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu,
1878                                       (ToBits - 1), dwarf::DW_OP_shr,
1879                                       dwarf::DW_OP_lit0, dwarf::DW_OP_not,
1880                                       dwarf::DW_OP_mul, dwarf::DW_OP_or});
1881         return DIExpression::appendToStack(DII.getExpression(), Ops);
1882       }
1883     };
1884     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1885   }
1886 
1887   // TODO: Floating-point conversions, vectors.
1888   return false;
1889 }
1890 
1891 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1892   unsigned NumDeadInst = 0;
1893   // Delete the instructions backwards, as it has a reduced likelihood of
1894   // having to update as many def-use and use-def chains.
1895   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1896   while (EndInst != &BB->front()) {
1897     // Delete the next to last instruction.
1898     Instruction *Inst = &*--EndInst->getIterator();
1899     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1900       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1901     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1902       EndInst = Inst;
1903       continue;
1904     }
1905     if (!isa<DbgInfoIntrinsic>(Inst))
1906       ++NumDeadInst;
1907     Inst->eraseFromParent();
1908   }
1909   return NumDeadInst;
1910 }
1911 
1912 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1913                                    bool PreserveLCSSA, DomTreeUpdater *DTU) {
1914   BasicBlock *BB = I->getParent();
1915   std::vector <DominatorTree::UpdateType> Updates;
1916 
1917   // Loop over all of the successors, removing BB's entry from any PHI
1918   // nodes.
1919   if (DTU)
1920     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1921   for (BasicBlock *Successor : successors(BB)) {
1922     Successor->removePredecessor(BB, PreserveLCSSA);
1923     if (DTU)
1924       Updates.push_back({DominatorTree::Delete, BB, Successor});
1925   }
1926   // Insert a call to llvm.trap right before this.  This turns the undefined
1927   // behavior into a hard fail instead of falling through into random code.
1928   if (UseLLVMTrap) {
1929     Function *TrapFn =
1930       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1931     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1932     CallTrap->setDebugLoc(I->getDebugLoc());
1933   }
1934   auto *UI = new UnreachableInst(I->getContext(), I);
1935   UI->setDebugLoc(I->getDebugLoc());
1936 
1937   // All instructions after this are dead.
1938   unsigned NumInstrsRemoved = 0;
1939   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1940   while (BBI != BBE) {
1941     if (!BBI->use_empty())
1942       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1943     BB->getInstList().erase(BBI++);
1944     ++NumInstrsRemoved;
1945   }
1946   if (DTU)
1947     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1948   return NumInstrsRemoved;
1949 }
1950 
1951 /// changeToCall - Convert the specified invoke into a normal call.
1952 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) {
1953   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1954   SmallVector<OperandBundleDef, 1> OpBundles;
1955   II->getOperandBundlesAsDefs(OpBundles);
1956   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1957                                        "", II);
1958   NewCall->takeName(II);
1959   NewCall->setCallingConv(II->getCallingConv());
1960   NewCall->setAttributes(II->getAttributes());
1961   NewCall->setDebugLoc(II->getDebugLoc());
1962   II->replaceAllUsesWith(NewCall);
1963 
1964   // Follow the call by a branch to the normal destination.
1965   BasicBlock *NormalDestBB = II->getNormalDest();
1966   BranchInst::Create(NormalDestBB, II);
1967 
1968   // Update PHI nodes in the unwind destination
1969   BasicBlock *BB = II->getParent();
1970   BasicBlock *UnwindDestBB = II->getUnwindDest();
1971   UnwindDestBB->removePredecessor(BB);
1972   II->eraseFromParent();
1973   if (DTU)
1974     DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
1975 }
1976 
1977 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1978                                                    BasicBlock *UnwindEdge) {
1979   BasicBlock *BB = CI->getParent();
1980 
1981   // Convert this function call into an invoke instruction.  First, split the
1982   // basic block.
1983   BasicBlock *Split =
1984       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1985 
1986   // Delete the unconditional branch inserted by splitBasicBlock
1987   BB->getInstList().pop_back();
1988 
1989   // Create the new invoke instruction.
1990   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1991   SmallVector<OperandBundleDef, 1> OpBundles;
1992 
1993   CI->getOperandBundlesAsDefs(OpBundles);
1994 
1995   // Note: we're round tripping operand bundles through memory here, and that
1996   // can potentially be avoided with a cleverer API design that we do not have
1997   // as of this time.
1998 
1999   InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
2000                                       InvokeArgs, OpBundles, CI->getName(), BB);
2001   II->setDebugLoc(CI->getDebugLoc());
2002   II->setCallingConv(CI->getCallingConv());
2003   II->setAttributes(CI->getAttributes());
2004 
2005   // Make sure that anything using the call now uses the invoke!  This also
2006   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2007   CI->replaceAllUsesWith(II);
2008 
2009   // Delete the original call
2010   Split->getInstList().pop_front();
2011   return Split;
2012 }
2013 
2014 static bool markAliveBlocks(Function &F,
2015                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2016                             DomTreeUpdater *DTU = nullptr) {
2017   SmallVector<BasicBlock*, 128> Worklist;
2018   BasicBlock *BB = &F.front();
2019   Worklist.push_back(BB);
2020   Reachable.insert(BB);
2021   bool Changed = false;
2022   do {
2023     BB = Worklist.pop_back_val();
2024 
2025     // Do a quick scan of the basic block, turning any obviously unreachable
2026     // instructions into LLVM unreachable insts.  The instruction combining pass
2027     // canonicalizes unreachable insts into stores to null or undef.
2028     for (Instruction &I : *BB) {
2029       if (auto *CI = dyn_cast<CallInst>(&I)) {
2030         Value *Callee = CI->getCalledValue();
2031         // Handle intrinsic calls.
2032         if (Function *F = dyn_cast<Function>(Callee)) {
2033           auto IntrinsicID = F->getIntrinsicID();
2034           // Assumptions that are known to be false are equivalent to
2035           // unreachable. Also, if the condition is undefined, then we make the
2036           // choice most beneficial to the optimizer, and choose that to also be
2037           // unreachable.
2038           if (IntrinsicID == Intrinsic::assume) {
2039             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2040               // Don't insert a call to llvm.trap right before the unreachable.
2041               changeToUnreachable(CI, false, false, DTU);
2042               Changed = true;
2043               break;
2044             }
2045           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2046             // A call to the guard intrinsic bails out of the current
2047             // compilation unit if the predicate passed to it is false. If the
2048             // predicate is a constant false, then we know the guard will bail
2049             // out of the current compile unconditionally, so all code following
2050             // it is dead.
2051             //
2052             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2053             // guards to treat `undef` as `false` since a guard on `undef` can
2054             // still be useful for widening.
2055             if (match(CI->getArgOperand(0), m_Zero()))
2056               if (!isa<UnreachableInst>(CI->getNextNode())) {
2057                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2058                                     false, DTU);
2059                 Changed = true;
2060                 break;
2061               }
2062           }
2063         } else if ((isa<ConstantPointerNull>(Callee) &&
2064                     !NullPointerIsDefined(CI->getFunction())) ||
2065                    isa<UndefValue>(Callee)) {
2066           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2067           Changed = true;
2068           break;
2069         }
2070         if (CI->doesNotReturn()) {
2071           // If we found a call to a no-return function, insert an unreachable
2072           // instruction after it.  Make sure there isn't *already* one there
2073           // though.
2074           if (!isa<UnreachableInst>(CI->getNextNode())) {
2075             // Don't insert a call to llvm.trap right before the unreachable.
2076             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2077             Changed = true;
2078           }
2079           break;
2080         }
2081       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2082         // Store to undef and store to null are undefined and used to signal
2083         // that they should be changed to unreachable by passes that can't
2084         // modify the CFG.
2085 
2086         // Don't touch volatile stores.
2087         if (SI->isVolatile()) continue;
2088 
2089         Value *Ptr = SI->getOperand(1);
2090 
2091         if (isa<UndefValue>(Ptr) ||
2092             (isa<ConstantPointerNull>(Ptr) &&
2093              !NullPointerIsDefined(SI->getFunction(),
2094                                    SI->getPointerAddressSpace()))) {
2095           changeToUnreachable(SI, true, false, DTU);
2096           Changed = true;
2097           break;
2098         }
2099       }
2100     }
2101 
2102     Instruction *Terminator = BB->getTerminator();
2103     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2104       // Turn invokes that call 'nounwind' functions into ordinary calls.
2105       Value *Callee = II->getCalledValue();
2106       if ((isa<ConstantPointerNull>(Callee) &&
2107            !NullPointerIsDefined(BB->getParent())) ||
2108           isa<UndefValue>(Callee)) {
2109         changeToUnreachable(II, true, false, DTU);
2110         Changed = true;
2111       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2112         if (II->use_empty() && II->onlyReadsMemory()) {
2113           // jump to the normal destination branch.
2114           BasicBlock *NormalDestBB = II->getNormalDest();
2115           BasicBlock *UnwindDestBB = II->getUnwindDest();
2116           BranchInst::Create(NormalDestBB, II);
2117           UnwindDestBB->removePredecessor(II->getParent());
2118           II->eraseFromParent();
2119           if (DTU)
2120             DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
2121         } else
2122           changeToCall(II, DTU);
2123         Changed = true;
2124       }
2125     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2126       // Remove catchpads which cannot be reached.
2127       struct CatchPadDenseMapInfo {
2128         static CatchPadInst *getEmptyKey() {
2129           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2130         }
2131 
2132         static CatchPadInst *getTombstoneKey() {
2133           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2134         }
2135 
2136         static unsigned getHashValue(CatchPadInst *CatchPad) {
2137           return static_cast<unsigned>(hash_combine_range(
2138               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2139         }
2140 
2141         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2142           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2143               RHS == getEmptyKey() || RHS == getTombstoneKey())
2144             return LHS == RHS;
2145           return LHS->isIdenticalTo(RHS);
2146         }
2147       };
2148 
2149       // Set of unique CatchPads.
2150       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2151                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2152           HandlerSet;
2153       detail::DenseSetEmpty Empty;
2154       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2155                                              E = CatchSwitch->handler_end();
2156            I != E; ++I) {
2157         BasicBlock *HandlerBB = *I;
2158         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2159         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2160           CatchSwitch->removeHandler(I);
2161           --I;
2162           --E;
2163           Changed = true;
2164         }
2165       }
2166     }
2167 
2168     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2169     for (BasicBlock *Successor : successors(BB))
2170       if (Reachable.insert(Successor).second)
2171         Worklist.push_back(Successor);
2172   } while (!Worklist.empty());
2173   return Changed;
2174 }
2175 
2176 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2177   Instruction *TI = BB->getTerminator();
2178 
2179   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2180     changeToCall(II, DTU);
2181     return;
2182   }
2183 
2184   Instruction *NewTI;
2185   BasicBlock *UnwindDest;
2186 
2187   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2188     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2189     UnwindDest = CRI->getUnwindDest();
2190   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2191     auto *NewCatchSwitch = CatchSwitchInst::Create(
2192         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2193         CatchSwitch->getName(), CatchSwitch);
2194     for (BasicBlock *PadBB : CatchSwitch->handlers())
2195       NewCatchSwitch->addHandler(PadBB);
2196 
2197     NewTI = NewCatchSwitch;
2198     UnwindDest = CatchSwitch->getUnwindDest();
2199   } else {
2200     llvm_unreachable("Could not find unwind successor");
2201   }
2202 
2203   NewTI->takeName(TI);
2204   NewTI->setDebugLoc(TI->getDebugLoc());
2205   UnwindDest->removePredecessor(BB);
2206   TI->replaceAllUsesWith(NewTI);
2207   TI->eraseFromParent();
2208   if (DTU)
2209     DTU->deleteEdgeRelaxed(BB, UnwindDest);
2210 }
2211 
2212 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2213 /// if they are in a dead cycle.  Return true if a change was made, false
2214 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
2215 /// after modifying the CFG.
2216 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
2217                                    DomTreeUpdater *DTU,
2218                                    MemorySSAUpdater *MSSAU) {
2219   SmallPtrSet<BasicBlock*, 16> Reachable;
2220   bool Changed = markAliveBlocks(F, Reachable, DTU);
2221 
2222   // If there are unreachable blocks in the CFG...
2223   if (Reachable.size() == F.size())
2224     return Changed;
2225 
2226   assert(Reachable.size() < F.size());
2227   NumRemoved += F.size()-Reachable.size();
2228 
2229   SmallPtrSet<BasicBlock *, 16> DeadBlockSet;
2230   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
2231     auto *BB = &*I;
2232     if (Reachable.count(BB))
2233       continue;
2234     DeadBlockSet.insert(BB);
2235   }
2236 
2237   if (MSSAU)
2238     MSSAU->removeBlocks(DeadBlockSet);
2239 
2240   // Loop over all of the basic blocks that are not reachable, dropping all of
2241   // their internal references. Update DTU and LVI if available.
2242   std::vector<DominatorTree::UpdateType> Updates;
2243   for (auto *BB : DeadBlockSet) {
2244     for (BasicBlock *Successor : successors(BB)) {
2245       if (!DeadBlockSet.count(Successor))
2246         Successor->removePredecessor(BB);
2247       if (DTU)
2248         Updates.push_back({DominatorTree::Delete, BB, Successor});
2249     }
2250     if (LVI)
2251       LVI->eraseBlock(BB);
2252     BB->dropAllReferences();
2253   }
2254   for (Function::iterator I = ++F.begin(); I != F.end();) {
2255     auto *BB = &*I;
2256     if (Reachable.count(BB)) {
2257       ++I;
2258       continue;
2259     }
2260     if (DTU) {
2261       // Remove the terminator of BB to clear the successor list of BB.
2262       if (BB->getTerminator())
2263         BB->getInstList().pop_back();
2264       new UnreachableInst(BB->getContext(), BB);
2265       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2266                                "applying corresponding DTU updates.");
2267       ++I;
2268     } else {
2269       I = F.getBasicBlockList().erase(I);
2270     }
2271   }
2272 
2273   if (DTU) {
2274     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
2275     bool Deleted = false;
2276     for (auto *BB : DeadBlockSet) {
2277       if (DTU->isBBPendingDeletion(BB))
2278         --NumRemoved;
2279       else
2280         Deleted = true;
2281       DTU->deleteBB(BB);
2282     }
2283     if (!Deleted)
2284       return false;
2285   }
2286   return true;
2287 }
2288 
2289 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2290                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2291   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2292   K->dropUnknownNonDebugMetadata(KnownIDs);
2293   K->getAllMetadataOtherThanDebugLoc(Metadata);
2294   for (const auto &MD : Metadata) {
2295     unsigned Kind = MD.first;
2296     MDNode *JMD = J->getMetadata(Kind);
2297     MDNode *KMD = MD.second;
2298 
2299     switch (Kind) {
2300       default:
2301         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2302         break;
2303       case LLVMContext::MD_dbg:
2304         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2305       case LLVMContext::MD_tbaa:
2306         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2307         break;
2308       case LLVMContext::MD_alias_scope:
2309         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2310         break;
2311       case LLVMContext::MD_noalias:
2312       case LLVMContext::MD_mem_parallel_loop_access:
2313         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2314         break;
2315       case LLVMContext::MD_range:
2316 
2317         // If K does move, use most generic range. Otherwise keep the range of
2318         // K.
2319         if (DoesKMove)
2320           // FIXME: If K does move, we should drop the range info and nonnull.
2321           //        Currently this function is used with DoesKMove in passes
2322           //        doing hoisting/sinking and the current behavior of using the
2323           //        most generic range is correct in those cases.
2324           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2325         break;
2326       case LLVMContext::MD_fpmath:
2327         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2328         break;
2329       case LLVMContext::MD_invariant_load:
2330         // Only set the !invariant.load if it is present in both instructions.
2331         K->setMetadata(Kind, JMD);
2332         break;
2333       case LLVMContext::MD_nonnull:
2334         // If K does move, keep nonull if it is present in both instructions.
2335         if (DoesKMove)
2336           K->setMetadata(Kind, JMD);
2337         break;
2338       case LLVMContext::MD_invariant_group:
2339         // Preserve !invariant.group in K.
2340         break;
2341       case LLVMContext::MD_align:
2342         K->setMetadata(Kind,
2343           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2344         break;
2345       case LLVMContext::MD_dereferenceable:
2346       case LLVMContext::MD_dereferenceable_or_null:
2347         K->setMetadata(Kind,
2348           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2349         break;
2350     }
2351   }
2352   // Set !invariant.group from J if J has it. If both instructions have it
2353   // then we will just pick it from J - even when they are different.
2354   // Also make sure that K is load or store - f.e. combining bitcast with load
2355   // could produce bitcast with invariant.group metadata, which is invalid.
2356   // FIXME: we should try to preserve both invariant.group md if they are
2357   // different, but right now instruction can only have one invariant.group.
2358   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2359     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2360       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2361 }
2362 
2363 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2364                                  bool KDominatesJ) {
2365   unsigned KnownIDs[] = {
2366       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2367       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2368       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2369       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2370       LLVMContext::MD_dereferenceable,
2371       LLVMContext::MD_dereferenceable_or_null};
2372   combineMetadata(K, J, KnownIDs, KDominatesJ);
2373 }
2374 
2375 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2376   auto *ReplInst = dyn_cast<Instruction>(Repl);
2377   if (!ReplInst)
2378     return;
2379 
2380   // Patch the replacement so that it is not more restrictive than the value
2381   // being replaced.
2382   // Note that if 'I' is a load being replaced by some operation,
2383   // for example, by an arithmetic operation, then andIRFlags()
2384   // would just erase all math flags from the original arithmetic
2385   // operation, which is clearly not wanted and not needed.
2386   if (!isa<LoadInst>(I))
2387     ReplInst->andIRFlags(I);
2388 
2389   // FIXME: If both the original and replacement value are part of the
2390   // same control-flow region (meaning that the execution of one
2391   // guarantees the execution of the other), then we can combine the
2392   // noalias scopes here and do better than the general conservative
2393   // answer used in combineMetadata().
2394 
2395   // In general, GVN unifies expressions over different control-flow
2396   // regions, and so we need a conservative combination of the noalias
2397   // scopes.
2398   static const unsigned KnownIDs[] = {
2399       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2400       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2401       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2402       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull};
2403   combineMetadata(ReplInst, I, KnownIDs, false);
2404 }
2405 
2406 template <typename RootType, typename DominatesFn>
2407 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2408                                          const RootType &Root,
2409                                          const DominatesFn &Dominates) {
2410   assert(From->getType() == To->getType());
2411 
2412   unsigned Count = 0;
2413   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2414        UI != UE;) {
2415     Use &U = *UI++;
2416     if (!Dominates(Root, U))
2417       continue;
2418     U.set(To);
2419     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2420                       << "' as " << *To << " in " << *U << "\n");
2421     ++Count;
2422   }
2423   return Count;
2424 }
2425 
2426 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2427    assert(From->getType() == To->getType());
2428    auto *BB = From->getParent();
2429    unsigned Count = 0;
2430 
2431   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2432        UI != UE;) {
2433     Use &U = *UI++;
2434     auto *I = cast<Instruction>(U.getUser());
2435     if (I->getParent() == BB)
2436       continue;
2437     U.set(To);
2438     ++Count;
2439   }
2440   return Count;
2441 }
2442 
2443 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2444                                         DominatorTree &DT,
2445                                         const BasicBlockEdge &Root) {
2446   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2447     return DT.dominates(Root, U);
2448   };
2449   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2450 }
2451 
2452 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2453                                         DominatorTree &DT,
2454                                         const BasicBlock *BB) {
2455   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2456     auto *I = cast<Instruction>(U.getUser())->getParent();
2457     return DT.properlyDominates(BB, I);
2458   };
2459   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2460 }
2461 
2462 bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
2463                                const TargetLibraryInfo &TLI) {
2464   // Check if the function is specifically marked as a gc leaf function.
2465   if (CS.hasFnAttr("gc-leaf-function"))
2466     return true;
2467   if (const Function *F = CS.getCalledFunction()) {
2468     if (F->hasFnAttribute("gc-leaf-function"))
2469       return true;
2470 
2471     if (auto IID = F->getIntrinsicID())
2472       // Most LLVM intrinsics do not take safepoints.
2473       return IID != Intrinsic::experimental_gc_statepoint &&
2474              IID != Intrinsic::experimental_deoptimize;
2475   }
2476 
2477   // Lib calls can be materialized by some passes, and won't be
2478   // marked as 'gc-leaf-function.' All available Libcalls are
2479   // GC-leaf.
2480   LibFunc LF;
2481   if (TLI.getLibFunc(CS, LF)) {
2482     return TLI.has(LF);
2483   }
2484 
2485   return false;
2486 }
2487 
2488 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2489                                LoadInst &NewLI) {
2490   auto *NewTy = NewLI.getType();
2491 
2492   // This only directly applies if the new type is also a pointer.
2493   if (NewTy->isPointerTy()) {
2494     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2495     return;
2496   }
2497 
2498   // The only other translation we can do is to integral loads with !range
2499   // metadata.
2500   if (!NewTy->isIntegerTy())
2501     return;
2502 
2503   MDBuilder MDB(NewLI.getContext());
2504   const Value *Ptr = OldLI.getPointerOperand();
2505   auto *ITy = cast<IntegerType>(NewTy);
2506   auto *NullInt = ConstantExpr::getPtrToInt(
2507       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2508   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2509   NewLI.setMetadata(LLVMContext::MD_range,
2510                     MDB.createRange(NonNullInt, NullInt));
2511 }
2512 
2513 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2514                              MDNode *N, LoadInst &NewLI) {
2515   auto *NewTy = NewLI.getType();
2516 
2517   // Give up unless it is converted to a pointer where there is a single very
2518   // valuable mapping we can do reliably.
2519   // FIXME: It would be nice to propagate this in more ways, but the type
2520   // conversions make it hard.
2521   if (!NewTy->isPointerTy())
2522     return;
2523 
2524   unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2525   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2526     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2527     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2528   }
2529 }
2530 
2531 void llvm::dropDebugUsers(Instruction &I) {
2532   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2533   findDbgUsers(DbgUsers, &I);
2534   for (auto *DII : DbgUsers)
2535     DII->eraseFromParent();
2536 }
2537 
2538 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2539                                     BasicBlock *BB) {
2540   // Since we are moving the instructions out of its basic block, we do not
2541   // retain their original debug locations (DILocations) and debug intrinsic
2542   // instructions (dbg.values).
2543   //
2544   // Doing so would degrade the debugging experience and adversely affect the
2545   // accuracy of profiling information.
2546   //
2547   // Currently, when hoisting the instructions, we take the following actions:
2548   // - Remove their dbg.values.
2549   // - Set their debug locations to the values from the insertion point.
2550   //
2551   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2552   // need to be deleted, is because there will not be any instructions with a
2553   // DILocation in either branch left after performing the transformation. We
2554   // can only insert a dbg.value after the two branches are joined again.
2555   //
2556   // See PR38762, PR39243 for more details.
2557   //
2558   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2559   // encode predicated DIExpressions that yield different results on different
2560   // code paths.
2561   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2562     Instruction *I = &*II;
2563     I->dropUnknownNonDebugMetadata();
2564     if (I->isUsedByMetadata())
2565       dropDebugUsers(*I);
2566     if (isa<DbgVariableIntrinsic>(I)) {
2567       // Remove DbgInfo Intrinsics.
2568       II = I->eraseFromParent();
2569       continue;
2570     }
2571     I->setDebugLoc(InsertPt->getDebugLoc());
2572     ++II;
2573   }
2574   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2575                                  BB->begin(),
2576                                  BB->getTerminator()->getIterator());
2577 }
2578 
2579 namespace {
2580 
2581 /// A potential constituent of a bitreverse or bswap expression. See
2582 /// collectBitParts for a fuller explanation.
2583 struct BitPart {
2584   BitPart(Value *P, unsigned BW) : Provider(P) {
2585     Provenance.resize(BW);
2586   }
2587 
2588   /// The Value that this is a bitreverse/bswap of.
2589   Value *Provider;
2590 
2591   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2592   /// in Provider becomes bit B in the result of this expression.
2593   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2594 
2595   enum { Unset = -1 };
2596 };
2597 
2598 } // end anonymous namespace
2599 
2600 /// Analyze the specified subexpression and see if it is capable of providing
2601 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2602 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2603 /// the output of the expression came from a corresponding bit in some other
2604 /// value. This function is recursive, and the end result is a mapping of
2605 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2606 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2607 ///
2608 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2609 /// that the expression deposits the low byte of %X into the high byte of the
2610 /// result and that all other bits are zero. This expression is accepted and a
2611 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2612 /// [0-7].
2613 ///
2614 /// To avoid revisiting values, the BitPart results are memoized into the
2615 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2616 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2617 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2618 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2619 /// type instead to provide the same functionality.
2620 ///
2621 /// Because we pass around references into \c BPS, we must use a container that
2622 /// does not invalidate internal references (std::map instead of DenseMap).
2623 static const Optional<BitPart> &
2624 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2625                 std::map<Value *, Optional<BitPart>> &BPS) {
2626   auto I = BPS.find(V);
2627   if (I != BPS.end())
2628     return I->second;
2629 
2630   auto &Result = BPS[V] = None;
2631   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2632 
2633   if (Instruction *I = dyn_cast<Instruction>(V)) {
2634     // If this is an or instruction, it may be an inner node of the bswap.
2635     if (I->getOpcode() == Instruction::Or) {
2636       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2637                                 MatchBitReversals, BPS);
2638       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2639                                 MatchBitReversals, BPS);
2640       if (!A || !B)
2641         return Result;
2642 
2643       // Try and merge the two together.
2644       if (!A->Provider || A->Provider != B->Provider)
2645         return Result;
2646 
2647       Result = BitPart(A->Provider, BitWidth);
2648       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2649         if (A->Provenance[i] != BitPart::Unset &&
2650             B->Provenance[i] != BitPart::Unset &&
2651             A->Provenance[i] != B->Provenance[i])
2652           return Result = None;
2653 
2654         if (A->Provenance[i] == BitPart::Unset)
2655           Result->Provenance[i] = B->Provenance[i];
2656         else
2657           Result->Provenance[i] = A->Provenance[i];
2658       }
2659 
2660       return Result;
2661     }
2662 
2663     // If this is a logical shift by a constant, recurse then shift the result.
2664     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2665       unsigned BitShift =
2666           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2667       // Ensure the shift amount is defined.
2668       if (BitShift > BitWidth)
2669         return Result;
2670 
2671       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2672                                   MatchBitReversals, BPS);
2673       if (!Res)
2674         return Result;
2675       Result = Res;
2676 
2677       // Perform the "shift" on BitProvenance.
2678       auto &P = Result->Provenance;
2679       if (I->getOpcode() == Instruction::Shl) {
2680         P.erase(std::prev(P.end(), BitShift), P.end());
2681         P.insert(P.begin(), BitShift, BitPart::Unset);
2682       } else {
2683         P.erase(P.begin(), std::next(P.begin(), BitShift));
2684         P.insert(P.end(), BitShift, BitPart::Unset);
2685       }
2686 
2687       return Result;
2688     }
2689 
2690     // If this is a logical 'and' with a mask that clears bits, recurse then
2691     // unset the appropriate bits.
2692     if (I->getOpcode() == Instruction::And &&
2693         isa<ConstantInt>(I->getOperand(1))) {
2694       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2695       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2696 
2697       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2698       // early exit.
2699       unsigned NumMaskedBits = AndMask.countPopulation();
2700       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2701         return Result;
2702 
2703       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2704                                   MatchBitReversals, BPS);
2705       if (!Res)
2706         return Result;
2707       Result = Res;
2708 
2709       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2710         // If the AndMask is zero for this bit, clear the bit.
2711         if ((AndMask & Bit) == 0)
2712           Result->Provenance[i] = BitPart::Unset;
2713       return Result;
2714     }
2715 
2716     // If this is a zext instruction zero extend the result.
2717     if (I->getOpcode() == Instruction::ZExt) {
2718       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2719                                   MatchBitReversals, BPS);
2720       if (!Res)
2721         return Result;
2722 
2723       Result = BitPart(Res->Provider, BitWidth);
2724       auto NarrowBitWidth =
2725           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2726       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2727         Result->Provenance[i] = Res->Provenance[i];
2728       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2729         Result->Provenance[i] = BitPart::Unset;
2730       return Result;
2731     }
2732   }
2733 
2734   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2735   // the input value to the bswap/bitreverse.
2736   Result = BitPart(V, BitWidth);
2737   for (unsigned i = 0; i < BitWidth; ++i)
2738     Result->Provenance[i] = i;
2739   return Result;
2740 }
2741 
2742 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2743                                           unsigned BitWidth) {
2744   if (From % 8 != To % 8)
2745     return false;
2746   // Convert from bit indices to byte indices and check for a byte reversal.
2747   From >>= 3;
2748   To >>= 3;
2749   BitWidth >>= 3;
2750   return From == BitWidth - To - 1;
2751 }
2752 
2753 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2754                                                unsigned BitWidth) {
2755   return From == BitWidth - To - 1;
2756 }
2757 
2758 bool llvm::recognizeBSwapOrBitReverseIdiom(
2759     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2760     SmallVectorImpl<Instruction *> &InsertedInsts) {
2761   if (Operator::getOpcode(I) != Instruction::Or)
2762     return false;
2763   if (!MatchBSwaps && !MatchBitReversals)
2764     return false;
2765   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2766   if (!ITy || ITy->getBitWidth() > 128)
2767     return false;   // Can't do vectors or integers > 128 bits.
2768   unsigned BW = ITy->getBitWidth();
2769 
2770   unsigned DemandedBW = BW;
2771   IntegerType *DemandedTy = ITy;
2772   if (I->hasOneUse()) {
2773     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2774       DemandedTy = cast<IntegerType>(Trunc->getType());
2775       DemandedBW = DemandedTy->getBitWidth();
2776     }
2777   }
2778 
2779   // Try to find all the pieces corresponding to the bswap.
2780   std::map<Value *, Optional<BitPart>> BPS;
2781   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2782   if (!Res)
2783     return false;
2784   auto &BitProvenance = Res->Provenance;
2785 
2786   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2787   // only byteswap values with an even number of bytes.
2788   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2789   for (unsigned i = 0; i < DemandedBW; ++i) {
2790     OKForBSwap &=
2791         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2792     OKForBitReverse &=
2793         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2794   }
2795 
2796   Intrinsic::ID Intrin;
2797   if (OKForBSwap && MatchBSwaps)
2798     Intrin = Intrinsic::bswap;
2799   else if (OKForBitReverse && MatchBitReversals)
2800     Intrin = Intrinsic::bitreverse;
2801   else
2802     return false;
2803 
2804   if (ITy != DemandedTy) {
2805     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2806     Value *Provider = Res->Provider;
2807     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2808     // We may need to truncate the provider.
2809     if (DemandedTy != ProviderTy) {
2810       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2811                                      "trunc", I);
2812       InsertedInsts.push_back(Trunc);
2813       Provider = Trunc;
2814     }
2815     auto *CI = CallInst::Create(F, Provider, "rev", I);
2816     InsertedInsts.push_back(CI);
2817     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2818     InsertedInsts.push_back(ExtInst);
2819     return true;
2820   }
2821 
2822   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2823   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2824   return true;
2825 }
2826 
2827 // CodeGen has special handling for some string functions that may replace
2828 // them with target-specific intrinsics.  Since that'd skip our interceptors
2829 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2830 // we mark affected calls as NoBuiltin, which will disable optimization
2831 // in CodeGen.
2832 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2833     CallInst *CI, const TargetLibraryInfo *TLI) {
2834   Function *F = CI->getCalledFunction();
2835   LibFunc Func;
2836   if (F && !F->hasLocalLinkage() && F->hasName() &&
2837       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2838       !F->doesNotAccessMemory())
2839     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2840 }
2841 
2842 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2843   // We can't have a PHI with a metadata type.
2844   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2845     return false;
2846 
2847   // Early exit.
2848   if (!isa<Constant>(I->getOperand(OpIdx)))
2849     return true;
2850 
2851   switch (I->getOpcode()) {
2852   default:
2853     return true;
2854   case Instruction::Call:
2855   case Instruction::Invoke:
2856     // Can't handle inline asm. Skip it.
2857     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2858       return false;
2859     // Many arithmetic intrinsics have no issue taking a
2860     // variable, however it's hard to distingish these from
2861     // specials such as @llvm.frameaddress that require a constant.
2862     if (isa<IntrinsicInst>(I))
2863       return false;
2864 
2865     // Constant bundle operands may need to retain their constant-ness for
2866     // correctness.
2867     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2868       return false;
2869     return true;
2870   case Instruction::ShuffleVector:
2871     // Shufflevector masks are constant.
2872     return OpIdx != 2;
2873   case Instruction::Switch:
2874   case Instruction::ExtractValue:
2875     // All operands apart from the first are constant.
2876     return OpIdx == 0;
2877   case Instruction::InsertValue:
2878     // All operands apart from the first and the second are constant.
2879     return OpIdx < 2;
2880   case Instruction::Alloca:
2881     // Static allocas (constant size in the entry block) are handled by
2882     // prologue/epilogue insertion so they're free anyway. We definitely don't
2883     // want to make them non-constant.
2884     return !cast<AllocaInst>(I)->isStaticAlloca();
2885   case Instruction::GetElementPtr:
2886     if (OpIdx == 0)
2887       return true;
2888     gep_type_iterator It = gep_type_begin(I);
2889     for (auto E = std::next(It, OpIdx); It != E; ++It)
2890       if (It.isStruct())
2891         return false;
2892     return true;
2893   }
2894 }
2895