1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/AssumeBundleQueries.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/LazyValueInfo.h" 34 #include "llvm/Analysis/MemoryBuiltins.h" 35 #include "llvm/Analysis/MemorySSAUpdater.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/BinaryFormat/Dwarf.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/ConstantRange.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DIBuilder.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GetElementPtrTypeIterator.h" 56 #include "llvm/IR/GlobalObject.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Metadata.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/Support/Casting.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/ErrorHandling.h" 77 #include "llvm/Support/KnownBits.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 80 #include "llvm/Transforms/Utils/ValueMapper.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <climits> 84 #include <cstdint> 85 #include <iterator> 86 #include <map> 87 #include <utility> 88 89 using namespace llvm; 90 using namespace llvm::PatternMatch; 91 92 #define DEBUG_TYPE "local" 93 94 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 95 96 // Max recursion depth for collectBitParts used when detecting bswap and 97 // bitreverse idioms 98 static const unsigned BitPartRecursionMaxDepth = 64; 99 100 //===----------------------------------------------------------------------===// 101 // Local constant propagation. 102 // 103 104 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 105 /// constant value, convert it into an unconditional branch to the constant 106 /// destination. This is a nontrivial operation because the successors of this 107 /// basic block must have their PHI nodes updated. 108 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 109 /// conditions and indirectbr addresses this might make dead if 110 /// DeleteDeadConditions is true. 111 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 112 const TargetLibraryInfo *TLI, 113 DomTreeUpdater *DTU) { 114 Instruction *T = BB->getTerminator(); 115 IRBuilder<> Builder(T); 116 117 // Branch - See if we are conditional jumping on constant 118 if (auto *BI = dyn_cast<BranchInst>(T)) { 119 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 120 BasicBlock *Dest1 = BI->getSuccessor(0); 121 BasicBlock *Dest2 = BI->getSuccessor(1); 122 123 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 124 // Are we branching on constant? 125 // YES. Change to unconditional branch... 126 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 127 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 128 129 // Let the basic block know that we are letting go of it. Based on this, 130 // it will adjust it's PHI nodes. 131 OldDest->removePredecessor(BB); 132 133 // Replace the conditional branch with an unconditional one. 134 Builder.CreateBr(Destination); 135 BI->eraseFromParent(); 136 if (DTU) 137 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}}); 138 return true; 139 } 140 141 if (Dest2 == Dest1) { // Conditional branch to same location? 142 // This branch matches something like this: 143 // br bool %cond, label %Dest, label %Dest 144 // and changes it into: br label %Dest 145 146 // Let the basic block know that we are letting go of one copy of it. 147 assert(BI->getParent() && "Terminator not inserted in block!"); 148 Dest1->removePredecessor(BI->getParent()); 149 150 // Replace the conditional branch with an unconditional one. 151 Builder.CreateBr(Dest1); 152 Value *Cond = BI->getCondition(); 153 BI->eraseFromParent(); 154 if (DeleteDeadConditions) 155 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 156 return true; 157 } 158 return false; 159 } 160 161 if (auto *SI = dyn_cast<SwitchInst>(T)) { 162 // If we are switching on a constant, we can convert the switch to an 163 // unconditional branch. 164 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 165 BasicBlock *DefaultDest = SI->getDefaultDest(); 166 BasicBlock *TheOnlyDest = DefaultDest; 167 168 // If the default is unreachable, ignore it when searching for TheOnlyDest. 169 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 170 SI->getNumCases() > 0) { 171 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 172 } 173 174 // Figure out which case it goes to. 175 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 176 // Found case matching a constant operand? 177 if (i->getCaseValue() == CI) { 178 TheOnlyDest = i->getCaseSuccessor(); 179 break; 180 } 181 182 // Check to see if this branch is going to the same place as the default 183 // dest. If so, eliminate it as an explicit compare. 184 if (i->getCaseSuccessor() == DefaultDest) { 185 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 186 unsigned NCases = SI->getNumCases(); 187 // Fold the case metadata into the default if there will be any branches 188 // left, unless the metadata doesn't match the switch. 189 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 190 // Collect branch weights into a vector. 191 SmallVector<uint32_t, 8> Weights; 192 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 193 ++MD_i) { 194 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 195 Weights.push_back(CI->getValue().getZExtValue()); 196 } 197 // Merge weight of this case to the default weight. 198 unsigned idx = i->getCaseIndex(); 199 Weights[0] += Weights[idx+1]; 200 // Remove weight for this case. 201 std::swap(Weights[idx+1], Weights.back()); 202 Weights.pop_back(); 203 SI->setMetadata(LLVMContext::MD_prof, 204 MDBuilder(BB->getContext()). 205 createBranchWeights(Weights)); 206 } 207 // Remove this entry. 208 BasicBlock *ParentBB = SI->getParent(); 209 DefaultDest->removePredecessor(ParentBB); 210 i = SI->removeCase(i); 211 e = SI->case_end(); 212 if (DTU) 213 DTU->applyUpdatesPermissive( 214 {{DominatorTree::Delete, ParentBB, DefaultDest}}); 215 continue; 216 } 217 218 // Otherwise, check to see if the switch only branches to one destination. 219 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 220 // destinations. 221 if (i->getCaseSuccessor() != TheOnlyDest) 222 TheOnlyDest = nullptr; 223 224 // Increment this iterator as we haven't removed the case. 225 ++i; 226 } 227 228 if (CI && !TheOnlyDest) { 229 // Branching on a constant, but not any of the cases, go to the default 230 // successor. 231 TheOnlyDest = SI->getDefaultDest(); 232 } 233 234 // If we found a single destination that we can fold the switch into, do so 235 // now. 236 if (TheOnlyDest) { 237 // Insert the new branch. 238 Builder.CreateBr(TheOnlyDest); 239 BasicBlock *BB = SI->getParent(); 240 std::vector <DominatorTree::UpdateType> Updates; 241 if (DTU) 242 Updates.reserve(SI->getNumSuccessors() - 1); 243 244 // Remove entries from PHI nodes which we no longer branch to... 245 for (BasicBlock *Succ : successors(SI)) { 246 // Found case matching a constant operand? 247 if (Succ == TheOnlyDest) { 248 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 249 } else { 250 Succ->removePredecessor(BB); 251 if (DTU) 252 Updates.push_back({DominatorTree::Delete, BB, Succ}); 253 } 254 } 255 256 // Delete the old switch. 257 Value *Cond = SI->getCondition(); 258 SI->eraseFromParent(); 259 if (DeleteDeadConditions) 260 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 261 if (DTU) 262 DTU->applyUpdatesPermissive(Updates); 263 return true; 264 } 265 266 if (SI->getNumCases() == 1) { 267 // Otherwise, we can fold this switch into a conditional branch 268 // instruction if it has only one non-default destination. 269 auto FirstCase = *SI->case_begin(); 270 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 271 FirstCase.getCaseValue(), "cond"); 272 273 // Insert the new branch. 274 BranchInst *NewBr = Builder.CreateCondBr(Cond, 275 FirstCase.getCaseSuccessor(), 276 SI->getDefaultDest()); 277 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 278 if (MD && MD->getNumOperands() == 3) { 279 ConstantInt *SICase = 280 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 281 ConstantInt *SIDef = 282 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 283 assert(SICase && SIDef); 284 // The TrueWeight should be the weight for the single case of SI. 285 NewBr->setMetadata(LLVMContext::MD_prof, 286 MDBuilder(BB->getContext()). 287 createBranchWeights(SICase->getValue().getZExtValue(), 288 SIDef->getValue().getZExtValue())); 289 } 290 291 // Update make.implicit metadata to the newly-created conditional branch. 292 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 293 if (MakeImplicitMD) 294 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 295 296 // Delete the old switch. 297 SI->eraseFromParent(); 298 return true; 299 } 300 return false; 301 } 302 303 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 304 // indirectbr blockaddress(@F, @BB) -> br label @BB 305 if (auto *BA = 306 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 307 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 308 std::vector <DominatorTree::UpdateType> Updates; 309 if (DTU) 310 Updates.reserve(IBI->getNumDestinations() - 1); 311 312 // Insert the new branch. 313 Builder.CreateBr(TheOnlyDest); 314 315 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 316 if (IBI->getDestination(i) == TheOnlyDest) { 317 TheOnlyDest = nullptr; 318 } else { 319 BasicBlock *ParentBB = IBI->getParent(); 320 BasicBlock *DestBB = IBI->getDestination(i); 321 DestBB->removePredecessor(ParentBB); 322 if (DTU) 323 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 324 } 325 } 326 Value *Address = IBI->getAddress(); 327 IBI->eraseFromParent(); 328 if (DeleteDeadConditions) 329 // Delete pointer cast instructions. 330 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 331 332 // Also zap the blockaddress constant if there are no users remaining, 333 // otherwise the destination is still marked as having its address taken. 334 if (BA->use_empty()) 335 BA->destroyConstant(); 336 337 // If we didn't find our destination in the IBI successor list, then we 338 // have undefined behavior. Replace the unconditional branch with an 339 // 'unreachable' instruction. 340 if (TheOnlyDest) { 341 BB->getTerminator()->eraseFromParent(); 342 new UnreachableInst(BB->getContext(), BB); 343 } 344 345 if (DTU) 346 DTU->applyUpdatesPermissive(Updates); 347 return true; 348 } 349 } 350 351 return false; 352 } 353 354 //===----------------------------------------------------------------------===// 355 // Local dead code elimination. 356 // 357 358 /// isInstructionTriviallyDead - Return true if the result produced by the 359 /// instruction is not used, and the instruction has no side effects. 360 /// 361 bool llvm::isInstructionTriviallyDead(Instruction *I, 362 const TargetLibraryInfo *TLI) { 363 if (!I->use_empty()) 364 return false; 365 return wouldInstructionBeTriviallyDead(I, TLI); 366 } 367 368 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 369 const TargetLibraryInfo *TLI) { 370 if (I->isTerminator()) 371 return false; 372 373 // We don't want the landingpad-like instructions removed by anything this 374 // general. 375 if (I->isEHPad()) 376 return false; 377 378 // We don't want debug info removed by anything this general, unless 379 // debug info is empty. 380 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 381 if (DDI->getAddress()) 382 return false; 383 return true; 384 } 385 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 386 if (DVI->getValue()) 387 return false; 388 return true; 389 } 390 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 391 if (DLI->getLabel()) 392 return false; 393 return true; 394 } 395 396 if (!I->mayHaveSideEffects()) 397 return true; 398 399 // Special case intrinsics that "may have side effects" but can be deleted 400 // when dead. 401 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 402 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 403 if (II->getIntrinsicID() == Intrinsic::stacksave || 404 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 405 return true; 406 407 // Lifetime intrinsics are dead when their right-hand is undef. 408 if (II->isLifetimeStartOrEnd()) 409 return isa<UndefValue>(II->getArgOperand(1)); 410 411 // Assumptions are dead if their condition is trivially true. Guards on 412 // true are operationally no-ops. In the future we can consider more 413 // sophisticated tradeoffs for guards considering potential for check 414 // widening, but for now we keep things simple. 415 if ((II->getIntrinsicID() == Intrinsic::assume && 416 isAssumeWithEmptyBundle(*II)) || 417 II->getIntrinsicID() == Intrinsic::experimental_guard) { 418 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 419 return !Cond->isZero(); 420 421 return false; 422 } 423 } 424 425 if (isAllocLikeFn(I, TLI)) 426 return true; 427 428 if (CallInst *CI = isFreeCall(I, TLI)) 429 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 430 return C->isNullValue() || isa<UndefValue>(C); 431 432 if (auto *Call = dyn_cast<CallBase>(I)) 433 if (isMathLibCallNoop(Call, TLI)) 434 return true; 435 436 return false; 437 } 438 439 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 440 /// trivially dead instruction, delete it. If that makes any of its operands 441 /// trivially dead, delete them too, recursively. Return true if any 442 /// instructions were deleted. 443 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 444 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) { 445 Instruction *I = dyn_cast<Instruction>(V); 446 if (!I || !isInstructionTriviallyDead(I, TLI)) 447 return false; 448 449 SmallVector<WeakTrackingVH, 16> DeadInsts; 450 DeadInsts.push_back(I); 451 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 452 453 return true; 454 } 455 456 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 457 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 458 MemorySSAUpdater *MSSAU) { 459 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 460 for (; S != E; ++S) { 461 auto *I = cast<Instruction>(DeadInsts[S]); 462 if (!isInstructionTriviallyDead(I)) { 463 DeadInsts[S] = nullptr; 464 ++Alive; 465 } 466 } 467 if (Alive == E) 468 return false; 469 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 470 return true; 471 } 472 473 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 474 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 475 MemorySSAUpdater *MSSAU) { 476 // Process the dead instruction list until empty. 477 while (!DeadInsts.empty()) { 478 Value *V = DeadInsts.pop_back_val(); 479 Instruction *I = cast_or_null<Instruction>(V); 480 if (!I) 481 continue; 482 assert(isInstructionTriviallyDead(I, TLI) && 483 "Live instruction found in dead worklist!"); 484 assert(I->use_empty() && "Instructions with uses are not dead."); 485 486 // Don't lose the debug info while deleting the instructions. 487 salvageDebugInfo(*I); 488 489 // Null out all of the instruction's operands to see if any operand becomes 490 // dead as we go. 491 for (Use &OpU : I->operands()) { 492 Value *OpV = OpU.get(); 493 OpU.set(nullptr); 494 495 if (!OpV->use_empty()) 496 continue; 497 498 // If the operand is an instruction that became dead as we nulled out the 499 // operand, and if it is 'trivially' dead, delete it in a future loop 500 // iteration. 501 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 502 if (isInstructionTriviallyDead(OpI, TLI)) 503 DeadInsts.push_back(OpI); 504 } 505 if (MSSAU) 506 MSSAU->removeMemoryAccess(I); 507 508 I->eraseFromParent(); 509 } 510 } 511 512 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 513 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 514 findDbgUsers(DbgUsers, I); 515 for (auto *DII : DbgUsers) { 516 Value *Undef = UndefValue::get(I->getType()); 517 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 518 ValueAsMetadata::get(Undef))); 519 } 520 return !DbgUsers.empty(); 521 } 522 523 /// areAllUsesEqual - Check whether the uses of a value are all the same. 524 /// This is similar to Instruction::hasOneUse() except this will also return 525 /// true when there are no uses or multiple uses that all refer to the same 526 /// value. 527 static bool areAllUsesEqual(Instruction *I) { 528 Value::user_iterator UI = I->user_begin(); 529 Value::user_iterator UE = I->user_end(); 530 if (UI == UE) 531 return true; 532 533 User *TheUse = *UI; 534 for (++UI; UI != UE; ++UI) { 535 if (*UI != TheUse) 536 return false; 537 } 538 return true; 539 } 540 541 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 542 /// dead PHI node, due to being a def-use chain of single-use nodes that 543 /// either forms a cycle or is terminated by a trivially dead instruction, 544 /// delete it. If that makes any of its operands trivially dead, delete them 545 /// too, recursively. Return true if a change was made. 546 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 547 const TargetLibraryInfo *TLI, 548 llvm::MemorySSAUpdater *MSSAU) { 549 SmallPtrSet<Instruction*, 4> Visited; 550 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 551 I = cast<Instruction>(*I->user_begin())) { 552 if (I->use_empty()) 553 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 554 555 // If we find an instruction more than once, we're on a cycle that 556 // won't prove fruitful. 557 if (!Visited.insert(I).second) { 558 // Break the cycle and delete the instruction and its operands. 559 I->replaceAllUsesWith(UndefValue::get(I->getType())); 560 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 561 return true; 562 } 563 } 564 return false; 565 } 566 567 static bool 568 simplifyAndDCEInstruction(Instruction *I, 569 SmallSetVector<Instruction *, 16> &WorkList, 570 const DataLayout &DL, 571 const TargetLibraryInfo *TLI) { 572 if (isInstructionTriviallyDead(I, TLI)) { 573 salvageDebugInfo(*I); 574 575 // Null out all of the instruction's operands to see if any operand becomes 576 // dead as we go. 577 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 578 Value *OpV = I->getOperand(i); 579 I->setOperand(i, nullptr); 580 581 if (!OpV->use_empty() || I == OpV) 582 continue; 583 584 // If the operand is an instruction that became dead as we nulled out the 585 // operand, and if it is 'trivially' dead, delete it in a future loop 586 // iteration. 587 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 588 if (isInstructionTriviallyDead(OpI, TLI)) 589 WorkList.insert(OpI); 590 } 591 592 I->eraseFromParent(); 593 594 return true; 595 } 596 597 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 598 // Add the users to the worklist. CAREFUL: an instruction can use itself, 599 // in the case of a phi node. 600 for (User *U : I->users()) { 601 if (U != I) { 602 WorkList.insert(cast<Instruction>(U)); 603 } 604 } 605 606 // Replace the instruction with its simplified value. 607 bool Changed = false; 608 if (!I->use_empty()) { 609 I->replaceAllUsesWith(SimpleV); 610 Changed = true; 611 } 612 if (isInstructionTriviallyDead(I, TLI)) { 613 I->eraseFromParent(); 614 Changed = true; 615 } 616 return Changed; 617 } 618 return false; 619 } 620 621 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 622 /// simplify any instructions in it and recursively delete dead instructions. 623 /// 624 /// This returns true if it changed the code, note that it can delete 625 /// instructions in other blocks as well in this block. 626 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 627 const TargetLibraryInfo *TLI) { 628 bool MadeChange = false; 629 const DataLayout &DL = BB->getModule()->getDataLayout(); 630 631 #ifndef NDEBUG 632 // In debug builds, ensure that the terminator of the block is never replaced 633 // or deleted by these simplifications. The idea of simplification is that it 634 // cannot introduce new instructions, and there is no way to replace the 635 // terminator of a block without introducing a new instruction. 636 AssertingVH<Instruction> TerminatorVH(&BB->back()); 637 #endif 638 639 SmallSetVector<Instruction *, 16> WorkList; 640 // Iterate over the original function, only adding insts to the worklist 641 // if they actually need to be revisited. This avoids having to pre-init 642 // the worklist with the entire function's worth of instructions. 643 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 644 BI != E;) { 645 assert(!BI->isTerminator()); 646 Instruction *I = &*BI; 647 ++BI; 648 649 // We're visiting this instruction now, so make sure it's not in the 650 // worklist from an earlier visit. 651 if (!WorkList.count(I)) 652 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 653 } 654 655 while (!WorkList.empty()) { 656 Instruction *I = WorkList.pop_back_val(); 657 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 658 } 659 return MadeChange; 660 } 661 662 //===----------------------------------------------------------------------===// 663 // Control Flow Graph Restructuring. 664 // 665 666 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 667 DomTreeUpdater *DTU) { 668 // This only adjusts blocks with PHI nodes. 669 if (!isa<PHINode>(BB->begin())) 670 return; 671 672 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 673 // them down. This will leave us with single entry phi nodes and other phis 674 // that can be removed. 675 BB->removePredecessor(Pred, true); 676 677 WeakTrackingVH PhiIt = &BB->front(); 678 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 679 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 680 Value *OldPhiIt = PhiIt; 681 682 if (!recursivelySimplifyInstruction(PN)) 683 continue; 684 685 // If recursive simplification ended up deleting the next PHI node we would 686 // iterate to, then our iterator is invalid, restart scanning from the top 687 // of the block. 688 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 689 } 690 if (DTU) 691 DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}}); 692 } 693 694 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 695 DomTreeUpdater *DTU) { 696 697 // If BB has single-entry PHI nodes, fold them. 698 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 699 Value *NewVal = PN->getIncomingValue(0); 700 // Replace self referencing PHI with undef, it must be dead. 701 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 702 PN->replaceAllUsesWith(NewVal); 703 PN->eraseFromParent(); 704 } 705 706 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 707 assert(PredBB && "Block doesn't have a single predecessor!"); 708 709 bool ReplaceEntryBB = false; 710 if (PredBB == &DestBB->getParent()->getEntryBlock()) 711 ReplaceEntryBB = true; 712 713 // DTU updates: Collect all the edges that enter 714 // PredBB. These dominator edges will be redirected to DestBB. 715 SmallVector<DominatorTree::UpdateType, 32> Updates; 716 717 if (DTU) { 718 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 719 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 720 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 721 // This predecessor of PredBB may already have DestBB as a successor. 722 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 723 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 724 } 725 } 726 727 // Zap anything that took the address of DestBB. Not doing this will give the 728 // address an invalid value. 729 if (DestBB->hasAddressTaken()) { 730 BlockAddress *BA = BlockAddress::get(DestBB); 731 Constant *Replacement = 732 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 733 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 734 BA->getType())); 735 BA->destroyConstant(); 736 } 737 738 // Anything that branched to PredBB now branches to DestBB. 739 PredBB->replaceAllUsesWith(DestBB); 740 741 // Splice all the instructions from PredBB to DestBB. 742 PredBB->getTerminator()->eraseFromParent(); 743 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 744 new UnreachableInst(PredBB->getContext(), PredBB); 745 746 // If the PredBB is the entry block of the function, move DestBB up to 747 // become the entry block after we erase PredBB. 748 if (ReplaceEntryBB) 749 DestBB->moveAfter(PredBB); 750 751 if (DTU) { 752 assert(PredBB->getInstList().size() == 1 && 753 isa<UnreachableInst>(PredBB->getTerminator()) && 754 "The successor list of PredBB isn't empty before " 755 "applying corresponding DTU updates."); 756 DTU->applyUpdatesPermissive(Updates); 757 DTU->deleteBB(PredBB); 758 // Recalculation of DomTree is needed when updating a forward DomTree and 759 // the Entry BB is replaced. 760 if (ReplaceEntryBB && DTU->hasDomTree()) { 761 // The entry block was removed and there is no external interface for 762 // the dominator tree to be notified of this change. In this corner-case 763 // we recalculate the entire tree. 764 DTU->recalculate(*(DestBB->getParent())); 765 } 766 } 767 768 else { 769 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 770 } 771 } 772 773 /// Return true if we can choose one of these values to use in place of the 774 /// other. Note that we will always choose the non-undef value to keep. 775 static bool CanMergeValues(Value *First, Value *Second) { 776 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 777 } 778 779 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 780 /// branch to Succ, into Succ. 781 /// 782 /// Assumption: Succ is the single successor for BB. 783 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 784 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 785 786 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 787 << Succ->getName() << "\n"); 788 // Shortcut, if there is only a single predecessor it must be BB and merging 789 // is always safe 790 if (Succ->getSinglePredecessor()) return true; 791 792 // Make a list of the predecessors of BB 793 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 794 795 // Look at all the phi nodes in Succ, to see if they present a conflict when 796 // merging these blocks 797 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 798 PHINode *PN = cast<PHINode>(I); 799 800 // If the incoming value from BB is again a PHINode in 801 // BB which has the same incoming value for *PI as PN does, we can 802 // merge the phi nodes and then the blocks can still be merged 803 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 804 if (BBPN && BBPN->getParent() == BB) { 805 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 806 BasicBlock *IBB = PN->getIncomingBlock(PI); 807 if (BBPreds.count(IBB) && 808 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 809 PN->getIncomingValue(PI))) { 810 LLVM_DEBUG(dbgs() 811 << "Can't fold, phi node " << PN->getName() << " in " 812 << Succ->getName() << " is conflicting with " 813 << BBPN->getName() << " with regard to common predecessor " 814 << IBB->getName() << "\n"); 815 return false; 816 } 817 } 818 } else { 819 Value* Val = PN->getIncomingValueForBlock(BB); 820 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 821 // See if the incoming value for the common predecessor is equal to the 822 // one for BB, in which case this phi node will not prevent the merging 823 // of the block. 824 BasicBlock *IBB = PN->getIncomingBlock(PI); 825 if (BBPreds.count(IBB) && 826 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 827 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 828 << " in " << Succ->getName() 829 << " is conflicting with regard to common " 830 << "predecessor " << IBB->getName() << "\n"); 831 return false; 832 } 833 } 834 } 835 } 836 837 return true; 838 } 839 840 using PredBlockVector = SmallVector<BasicBlock *, 16>; 841 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 842 843 /// Determines the value to use as the phi node input for a block. 844 /// 845 /// Select between \p OldVal any value that we know flows from \p BB 846 /// to a particular phi on the basis of which one (if either) is not 847 /// undef. Update IncomingValues based on the selected value. 848 /// 849 /// \param OldVal The value we are considering selecting. 850 /// \param BB The block that the value flows in from. 851 /// \param IncomingValues A map from block-to-value for other phi inputs 852 /// that we have examined. 853 /// 854 /// \returns the selected value. 855 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 856 IncomingValueMap &IncomingValues) { 857 if (!isa<UndefValue>(OldVal)) { 858 assert((!IncomingValues.count(BB) || 859 IncomingValues.find(BB)->second == OldVal) && 860 "Expected OldVal to match incoming value from BB!"); 861 862 IncomingValues.insert(std::make_pair(BB, OldVal)); 863 return OldVal; 864 } 865 866 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 867 if (It != IncomingValues.end()) return It->second; 868 869 return OldVal; 870 } 871 872 /// Create a map from block to value for the operands of a 873 /// given phi. 874 /// 875 /// Create a map from block to value for each non-undef value flowing 876 /// into \p PN. 877 /// 878 /// \param PN The phi we are collecting the map for. 879 /// \param IncomingValues [out] The map from block to value for this phi. 880 static void gatherIncomingValuesToPhi(PHINode *PN, 881 IncomingValueMap &IncomingValues) { 882 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 883 BasicBlock *BB = PN->getIncomingBlock(i); 884 Value *V = PN->getIncomingValue(i); 885 886 if (!isa<UndefValue>(V)) 887 IncomingValues.insert(std::make_pair(BB, V)); 888 } 889 } 890 891 /// Replace the incoming undef values to a phi with the values 892 /// from a block-to-value map. 893 /// 894 /// \param PN The phi we are replacing the undefs in. 895 /// \param IncomingValues A map from block to value. 896 static void replaceUndefValuesInPhi(PHINode *PN, 897 const IncomingValueMap &IncomingValues) { 898 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 899 Value *V = PN->getIncomingValue(i); 900 901 if (!isa<UndefValue>(V)) continue; 902 903 BasicBlock *BB = PN->getIncomingBlock(i); 904 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 905 if (It == IncomingValues.end()) continue; 906 907 PN->setIncomingValue(i, It->second); 908 } 909 } 910 911 /// Replace a value flowing from a block to a phi with 912 /// potentially multiple instances of that value flowing from the 913 /// block's predecessors to the phi. 914 /// 915 /// \param BB The block with the value flowing into the phi. 916 /// \param BBPreds The predecessors of BB. 917 /// \param PN The phi that we are updating. 918 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 919 const PredBlockVector &BBPreds, 920 PHINode *PN) { 921 Value *OldVal = PN->removeIncomingValue(BB, false); 922 assert(OldVal && "No entry in PHI for Pred BB!"); 923 924 IncomingValueMap IncomingValues; 925 926 // We are merging two blocks - BB, and the block containing PN - and 927 // as a result we need to redirect edges from the predecessors of BB 928 // to go to the block containing PN, and update PN 929 // accordingly. Since we allow merging blocks in the case where the 930 // predecessor and successor blocks both share some predecessors, 931 // and where some of those common predecessors might have undef 932 // values flowing into PN, we want to rewrite those values to be 933 // consistent with the non-undef values. 934 935 gatherIncomingValuesToPhi(PN, IncomingValues); 936 937 // If this incoming value is one of the PHI nodes in BB, the new entries 938 // in the PHI node are the entries from the old PHI. 939 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 940 PHINode *OldValPN = cast<PHINode>(OldVal); 941 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 942 // Note that, since we are merging phi nodes and BB and Succ might 943 // have common predecessors, we could end up with a phi node with 944 // identical incoming branches. This will be cleaned up later (and 945 // will trigger asserts if we try to clean it up now, without also 946 // simplifying the corresponding conditional branch). 947 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 948 Value *PredVal = OldValPN->getIncomingValue(i); 949 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 950 IncomingValues); 951 952 // And add a new incoming value for this predecessor for the 953 // newly retargeted branch. 954 PN->addIncoming(Selected, PredBB); 955 } 956 } else { 957 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 958 // Update existing incoming values in PN for this 959 // predecessor of BB. 960 BasicBlock *PredBB = BBPreds[i]; 961 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 962 IncomingValues); 963 964 // And add a new incoming value for this predecessor for the 965 // newly retargeted branch. 966 PN->addIncoming(Selected, PredBB); 967 } 968 } 969 970 replaceUndefValuesInPhi(PN, IncomingValues); 971 } 972 973 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 974 DomTreeUpdater *DTU) { 975 assert(BB != &BB->getParent()->getEntryBlock() && 976 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 977 978 // We can't eliminate infinite loops. 979 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 980 if (BB == Succ) return false; 981 982 // Check to see if merging these blocks would cause conflicts for any of the 983 // phi nodes in BB or Succ. If not, we can safely merge. 984 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 985 986 // Check for cases where Succ has multiple predecessors and a PHI node in BB 987 // has uses which will not disappear when the PHI nodes are merged. It is 988 // possible to handle such cases, but difficult: it requires checking whether 989 // BB dominates Succ, which is non-trivial to calculate in the case where 990 // Succ has multiple predecessors. Also, it requires checking whether 991 // constructing the necessary self-referential PHI node doesn't introduce any 992 // conflicts; this isn't too difficult, but the previous code for doing this 993 // was incorrect. 994 // 995 // Note that if this check finds a live use, BB dominates Succ, so BB is 996 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 997 // folding the branch isn't profitable in that case anyway. 998 if (!Succ->getSinglePredecessor()) { 999 BasicBlock::iterator BBI = BB->begin(); 1000 while (isa<PHINode>(*BBI)) { 1001 for (Use &U : BBI->uses()) { 1002 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1003 if (PN->getIncomingBlock(U) != BB) 1004 return false; 1005 } else { 1006 return false; 1007 } 1008 } 1009 ++BBI; 1010 } 1011 } 1012 1013 // We cannot fold the block if it's a branch to an already present callbr 1014 // successor because that creates duplicate successors. 1015 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1016 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 1017 if (Succ == CBI->getDefaultDest()) 1018 return false; 1019 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1020 if (Succ == CBI->getIndirectDest(i)) 1021 return false; 1022 } 1023 } 1024 1025 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1026 1027 SmallVector<DominatorTree::UpdateType, 32> Updates; 1028 if (DTU) { 1029 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1030 // All predecessors of BB will be moved to Succ. 1031 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1032 Updates.push_back({DominatorTree::Delete, *I, BB}); 1033 // This predecessor of BB may already have Succ as a successor. 1034 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 1035 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1036 } 1037 } 1038 1039 if (isa<PHINode>(Succ->begin())) { 1040 // If there is more than one pred of succ, and there are PHI nodes in 1041 // the successor, then we need to add incoming edges for the PHI nodes 1042 // 1043 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1044 1045 // Loop over all of the PHI nodes in the successor of BB. 1046 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1047 PHINode *PN = cast<PHINode>(I); 1048 1049 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1050 } 1051 } 1052 1053 if (Succ->getSinglePredecessor()) { 1054 // BB is the only predecessor of Succ, so Succ will end up with exactly 1055 // the same predecessors BB had. 1056 1057 // Copy over any phi, debug or lifetime instruction. 1058 BB->getTerminator()->eraseFromParent(); 1059 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1060 BB->getInstList()); 1061 } else { 1062 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1063 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1064 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1065 PN->eraseFromParent(); 1066 } 1067 } 1068 1069 // If the unconditional branch we replaced contains llvm.loop metadata, we 1070 // add the metadata to the branch instructions in the predecessors. 1071 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1072 Instruction *TI = BB->getTerminator(); 1073 if (TI) 1074 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1075 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1076 BasicBlock *Pred = *PI; 1077 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1078 } 1079 1080 // Everything that jumped to BB now goes to Succ. 1081 BB->replaceAllUsesWith(Succ); 1082 if (!Succ->hasName()) Succ->takeName(BB); 1083 1084 // Clear the successor list of BB to match updates applying to DTU later. 1085 if (BB->getTerminator()) 1086 BB->getInstList().pop_back(); 1087 new UnreachableInst(BB->getContext(), BB); 1088 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1089 "applying corresponding DTU updates."); 1090 1091 if (DTU) { 1092 DTU->applyUpdatesPermissive(Updates); 1093 DTU->deleteBB(BB); 1094 } else { 1095 BB->eraseFromParent(); // Delete the old basic block. 1096 } 1097 return true; 1098 } 1099 1100 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1101 // This implementation doesn't currently consider undef operands 1102 // specially. Theoretically, two phis which are identical except for 1103 // one having an undef where the other doesn't could be collapsed. 1104 1105 struct PHIDenseMapInfo { 1106 static PHINode *getEmptyKey() { 1107 return DenseMapInfo<PHINode *>::getEmptyKey(); 1108 } 1109 1110 static PHINode *getTombstoneKey() { 1111 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1112 } 1113 1114 static unsigned getHashValue(PHINode *PN) { 1115 // Compute a hash value on the operands. Instcombine will likely have 1116 // sorted them, which helps expose duplicates, but we have to check all 1117 // the operands to be safe in case instcombine hasn't run. 1118 return static_cast<unsigned>(hash_combine( 1119 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1120 hash_combine_range(PN->block_begin(), PN->block_end()))); 1121 } 1122 1123 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1124 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1125 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1126 return LHS == RHS; 1127 return LHS->isIdenticalTo(RHS); 1128 } 1129 }; 1130 1131 // Set of unique PHINodes. 1132 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1133 1134 // Examine each PHI. 1135 bool Changed = false; 1136 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1137 auto Inserted = PHISet.insert(PN); 1138 if (!Inserted.second) { 1139 // A duplicate. Replace this PHI with its duplicate. 1140 PN->replaceAllUsesWith(*Inserted.first); 1141 PN->eraseFromParent(); 1142 Changed = true; 1143 1144 // The RAUW can change PHIs that we already visited. Start over from the 1145 // beginning. 1146 PHISet.clear(); 1147 I = BB->begin(); 1148 } 1149 } 1150 1151 return Changed; 1152 } 1153 1154 /// enforceKnownAlignment - If the specified pointer points to an object that 1155 /// we control, modify the object's alignment to PrefAlign. This isn't 1156 /// often possible though. If alignment is important, a more reliable approach 1157 /// is to simply align all global variables and allocation instructions to 1158 /// their preferred alignment from the beginning. 1159 static unsigned enforceKnownAlignment(Value *V, unsigned Alignment, 1160 unsigned PrefAlign, 1161 const DataLayout &DL) { 1162 assert(PrefAlign > Alignment); 1163 1164 V = V->stripPointerCasts(); 1165 1166 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1167 // TODO: ideally, computeKnownBits ought to have used 1168 // AllocaInst::getAlignment() in its computation already, making 1169 // the below max redundant. But, as it turns out, 1170 // stripPointerCasts recurses through infinite layers of bitcasts, 1171 // while computeKnownBits is not allowed to traverse more than 6 1172 // levels. 1173 Alignment = std::max(AI->getAlignment(), Alignment); 1174 if (PrefAlign <= Alignment) 1175 return Alignment; 1176 1177 // If the preferred alignment is greater than the natural stack alignment 1178 // then don't round up. This avoids dynamic stack realignment. 1179 if (DL.exceedsNaturalStackAlignment(Align(PrefAlign))) 1180 return Alignment; 1181 AI->setAlignment(Align(PrefAlign)); 1182 return PrefAlign; 1183 } 1184 1185 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1186 // TODO: as above, this shouldn't be necessary. 1187 Alignment = std::max(GO->getAlignment(), Alignment); 1188 if (PrefAlign <= Alignment) 1189 return Alignment; 1190 1191 // If there is a large requested alignment and we can, bump up the alignment 1192 // of the global. If the memory we set aside for the global may not be the 1193 // memory used by the final program then it is impossible for us to reliably 1194 // enforce the preferred alignment. 1195 if (!GO->canIncreaseAlignment()) 1196 return Alignment; 1197 1198 GO->setAlignment(Align(PrefAlign)); 1199 return PrefAlign; 1200 } 1201 1202 return Alignment; 1203 } 1204 1205 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1206 const DataLayout &DL, 1207 const Instruction *CxtI, 1208 AssumptionCache *AC, 1209 const DominatorTree *DT) { 1210 assert(V->getType()->isPointerTy() && 1211 "getOrEnforceKnownAlignment expects a pointer!"); 1212 1213 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1214 unsigned TrailZ = Known.countMinTrailingZeros(); 1215 1216 // Avoid trouble with ridiculously large TrailZ values, such as 1217 // those computed from a null pointer. 1218 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1219 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1220 1221 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1222 1223 if (PrefAlign > Align) 1224 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1225 1226 // We don't need to make any adjustment. 1227 return Align; 1228 } 1229 1230 ///===---------------------------------------------------------------------===// 1231 /// Dbg Intrinsic utilities 1232 /// 1233 1234 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1235 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1236 DIExpression *DIExpr, 1237 PHINode *APN) { 1238 // Since we can't guarantee that the original dbg.declare instrinsic 1239 // is removed by LowerDbgDeclare(), we need to make sure that we are 1240 // not inserting the same dbg.value intrinsic over and over. 1241 SmallVector<DbgValueInst *, 1> DbgValues; 1242 findDbgValues(DbgValues, APN); 1243 for (auto *DVI : DbgValues) { 1244 assert(DVI->getValue() == APN); 1245 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1246 return true; 1247 } 1248 return false; 1249 } 1250 1251 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1252 /// (or fragment of the variable) described by \p DII. 1253 /// 1254 /// This is primarily intended as a helper for the different 1255 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1256 /// converted describes an alloca'd variable, so we need to use the 1257 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1258 /// identified as covering an n-bit fragment, if the store size of i1 is at 1259 /// least n bits. 1260 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1261 const DataLayout &DL = DII->getModule()->getDataLayout(); 1262 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1263 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1264 return ValueSize >= *FragmentSize; 1265 // We can't always calculate the size of the DI variable (e.g. if it is a 1266 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1267 // intead. 1268 if (DII->isAddressOfVariable()) 1269 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1270 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1271 return ValueSize >= *FragmentSize; 1272 // Could not determine size of variable. Conservatively return false. 1273 return false; 1274 } 1275 1276 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1277 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1278 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1279 /// case this DebugLoc leaks into any adjacent instructions. 1280 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1281 // Original dbg.declare must have a location. 1282 DebugLoc DeclareLoc = DII->getDebugLoc(); 1283 MDNode *Scope = DeclareLoc.getScope(); 1284 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1285 // Produce an unknown location with the correct scope / inlinedAt fields. 1286 return DebugLoc::get(0, 0, Scope, InlinedAt); 1287 } 1288 1289 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1290 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1291 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1292 StoreInst *SI, DIBuilder &Builder) { 1293 assert(DII->isAddressOfVariable()); 1294 auto *DIVar = DII->getVariable(); 1295 assert(DIVar && "Missing variable"); 1296 auto *DIExpr = DII->getExpression(); 1297 Value *DV = SI->getValueOperand(); 1298 1299 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1300 1301 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1302 // FIXME: If storing to a part of the variable described by the dbg.declare, 1303 // then we want to insert a dbg.value for the corresponding fragment. 1304 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1305 << *DII << '\n'); 1306 // For now, when there is a store to parts of the variable (but we do not 1307 // know which part) we insert an dbg.value instrinsic to indicate that we 1308 // know nothing about the variable's content. 1309 DV = UndefValue::get(DV->getType()); 1310 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1311 return; 1312 } 1313 1314 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1315 } 1316 1317 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1318 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1319 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1320 LoadInst *LI, DIBuilder &Builder) { 1321 auto *DIVar = DII->getVariable(); 1322 auto *DIExpr = DII->getExpression(); 1323 assert(DIVar && "Missing variable"); 1324 1325 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1326 // FIXME: If only referring to a part of the variable described by the 1327 // dbg.declare, then we want to insert a dbg.value for the corresponding 1328 // fragment. 1329 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1330 << *DII << '\n'); 1331 return; 1332 } 1333 1334 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1335 1336 // We are now tracking the loaded value instead of the address. In the 1337 // future if multi-location support is added to the IR, it might be 1338 // preferable to keep tracking both the loaded value and the original 1339 // address in case the alloca can not be elided. 1340 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1341 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1342 DbgValue->insertAfter(LI); 1343 } 1344 1345 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1346 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1347 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1348 PHINode *APN, DIBuilder &Builder) { 1349 auto *DIVar = DII->getVariable(); 1350 auto *DIExpr = DII->getExpression(); 1351 assert(DIVar && "Missing variable"); 1352 1353 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1354 return; 1355 1356 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1357 // FIXME: If only referring to a part of the variable described by the 1358 // dbg.declare, then we want to insert a dbg.value for the corresponding 1359 // fragment. 1360 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1361 << *DII << '\n'); 1362 return; 1363 } 1364 1365 BasicBlock *BB = APN->getParent(); 1366 auto InsertionPt = BB->getFirstInsertionPt(); 1367 1368 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1369 1370 // The block may be a catchswitch block, which does not have a valid 1371 // insertion point. 1372 // FIXME: Insert dbg.value markers in the successors when appropriate. 1373 if (InsertionPt != BB->end()) 1374 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1375 } 1376 1377 /// Determine whether this alloca is either a VLA or an array. 1378 static bool isArray(AllocaInst *AI) { 1379 return AI->isArrayAllocation() || 1380 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1381 } 1382 1383 /// Determine whether this alloca is a structure. 1384 static bool isStructure(AllocaInst *AI) { 1385 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1386 } 1387 1388 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1389 /// of llvm.dbg.value intrinsics. 1390 bool llvm::LowerDbgDeclare(Function &F) { 1391 bool Changed = false; 1392 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1393 SmallVector<DbgDeclareInst *, 4> Dbgs; 1394 for (auto &FI : F) 1395 for (Instruction &BI : FI) 1396 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1397 Dbgs.push_back(DDI); 1398 1399 if (Dbgs.empty()) 1400 return Changed; 1401 1402 for (auto &I : Dbgs) { 1403 DbgDeclareInst *DDI = I; 1404 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1405 // If this is an alloca for a scalar variable, insert a dbg.value 1406 // at each load and store to the alloca and erase the dbg.declare. 1407 // The dbg.values allow tracking a variable even if it is not 1408 // stored on the stack, while the dbg.declare can only describe 1409 // the stack slot (and at a lexical-scope granularity). Later 1410 // passes will attempt to elide the stack slot. 1411 if (!AI || isArray(AI) || isStructure(AI)) 1412 continue; 1413 1414 // A volatile load/store means that the alloca can't be elided anyway. 1415 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1416 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1417 return LI->isVolatile(); 1418 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1419 return SI->isVolatile(); 1420 return false; 1421 })) 1422 continue; 1423 1424 SmallVector<const Value *, 8> WorkList; 1425 WorkList.push_back(AI); 1426 while (!WorkList.empty()) { 1427 const Value *V = WorkList.pop_back_val(); 1428 for (auto &AIUse : V->uses()) { 1429 User *U = AIUse.getUser(); 1430 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1431 if (AIUse.getOperandNo() == 1) 1432 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1433 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1434 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1435 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1436 // This is a call by-value or some other instruction that takes a 1437 // pointer to the variable. Insert a *value* intrinsic that describes 1438 // the variable by dereferencing the alloca. 1439 if (!CI->isLifetimeStartOrEnd()) { 1440 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1441 auto *DerefExpr = 1442 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1443 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1444 NewLoc, CI); 1445 } 1446 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1447 if (BI->getType()->isPointerTy()) 1448 WorkList.push_back(BI); 1449 } 1450 } 1451 } 1452 DDI->eraseFromParent(); 1453 Changed = true; 1454 } 1455 1456 if (Changed) 1457 for (BasicBlock &BB : F) 1458 RemoveRedundantDbgInstrs(&BB); 1459 1460 return Changed; 1461 } 1462 1463 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1464 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1465 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1466 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1467 if (InsertedPHIs.size() == 0) 1468 return; 1469 1470 // Map existing PHI nodes to their dbg.values. 1471 ValueToValueMapTy DbgValueMap; 1472 for (auto &I : *BB) { 1473 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1474 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1475 DbgValueMap.insert({Loc, DbgII}); 1476 } 1477 } 1478 if (DbgValueMap.size() == 0) 1479 return; 1480 1481 // Then iterate through the new PHIs and look to see if they use one of the 1482 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1483 // propagate the info through the new PHI. 1484 LLVMContext &C = BB->getContext(); 1485 for (auto PHI : InsertedPHIs) { 1486 BasicBlock *Parent = PHI->getParent(); 1487 // Avoid inserting an intrinsic into an EH block. 1488 if (Parent->getFirstNonPHI()->isEHPad()) 1489 continue; 1490 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1491 for (auto VI : PHI->operand_values()) { 1492 auto V = DbgValueMap.find(VI); 1493 if (V != DbgValueMap.end()) { 1494 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1495 Instruction *NewDbgII = DbgII->clone(); 1496 NewDbgII->setOperand(0, PhiMAV); 1497 auto InsertionPt = Parent->getFirstInsertionPt(); 1498 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1499 NewDbgII->insertBefore(&*InsertionPt); 1500 } 1501 } 1502 } 1503 } 1504 1505 /// Finds all intrinsics declaring local variables as living in the memory that 1506 /// 'V' points to. This may include a mix of dbg.declare and 1507 /// dbg.addr intrinsics. 1508 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1509 // This function is hot. Check whether the value has any metadata to avoid a 1510 // DenseMap lookup. 1511 if (!V->isUsedByMetadata()) 1512 return {}; 1513 auto *L = LocalAsMetadata::getIfExists(V); 1514 if (!L) 1515 return {}; 1516 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1517 if (!MDV) 1518 return {}; 1519 1520 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1521 for (User *U : MDV->users()) { 1522 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1523 if (DII->isAddressOfVariable()) 1524 Declares.push_back(DII); 1525 } 1526 1527 return Declares; 1528 } 1529 1530 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) { 1531 TinyPtrVector<DbgDeclareInst *> DDIs; 1532 for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V)) 1533 if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI)) 1534 DDIs.push_back(DDI); 1535 return DDIs; 1536 } 1537 1538 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1539 // This function is hot. Check whether the value has any metadata to avoid a 1540 // DenseMap lookup. 1541 if (!V->isUsedByMetadata()) 1542 return; 1543 if (auto *L = LocalAsMetadata::getIfExists(V)) 1544 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1545 for (User *U : MDV->users()) 1546 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1547 DbgValues.push_back(DVI); 1548 } 1549 1550 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1551 Value *V) { 1552 // This function is hot. Check whether the value has any metadata to avoid a 1553 // DenseMap lookup. 1554 if (!V->isUsedByMetadata()) 1555 return; 1556 if (auto *L = LocalAsMetadata::getIfExists(V)) 1557 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1558 for (User *U : MDV->users()) 1559 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1560 DbgUsers.push_back(DII); 1561 } 1562 1563 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1564 DIBuilder &Builder, uint8_t DIExprFlags, 1565 int Offset) { 1566 auto DbgAddrs = FindDbgAddrUses(Address); 1567 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1568 DebugLoc Loc = DII->getDebugLoc(); 1569 auto *DIVar = DII->getVariable(); 1570 auto *DIExpr = DII->getExpression(); 1571 assert(DIVar && "Missing variable"); 1572 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1573 // Insert llvm.dbg.declare immediately before DII, and remove old 1574 // llvm.dbg.declare. 1575 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1576 DII->eraseFromParent(); 1577 } 1578 return !DbgAddrs.empty(); 1579 } 1580 1581 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1582 DIBuilder &Builder, int Offset) { 1583 DebugLoc Loc = DVI->getDebugLoc(); 1584 auto *DIVar = DVI->getVariable(); 1585 auto *DIExpr = DVI->getExpression(); 1586 assert(DIVar && "Missing variable"); 1587 1588 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1589 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1590 // it and give up. 1591 if (!DIExpr || DIExpr->getNumElements() < 1 || 1592 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1593 return; 1594 1595 // Insert the offset before the first deref. 1596 // We could just change the offset argument of dbg.value, but it's unsigned... 1597 if (Offset) 1598 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1599 1600 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1601 DVI->eraseFromParent(); 1602 } 1603 1604 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1605 DIBuilder &Builder, int Offset) { 1606 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1607 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1608 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1609 Use &U = *UI++; 1610 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1611 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1612 } 1613 } 1614 1615 /// Wrap \p V in a ValueAsMetadata instance. 1616 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1617 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1618 } 1619 1620 bool llvm::salvageDebugInfo(Instruction &I) { 1621 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1622 findDbgUsers(DbgUsers, &I); 1623 if (DbgUsers.empty()) 1624 return false; 1625 1626 return salvageDebugInfoForDbgValues(I, DbgUsers); 1627 } 1628 1629 void llvm::salvageDebugInfoOrMarkUndef(Instruction &I) { 1630 if (!salvageDebugInfo(I)) 1631 replaceDbgUsesWithUndef(&I); 1632 } 1633 1634 bool llvm::salvageDebugInfoForDbgValues( 1635 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1636 auto &Ctx = I.getContext(); 1637 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1638 1639 for (auto *DII : DbgUsers) { 1640 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1641 // are implicitly pointing out the value as a DWARF memory location 1642 // description. 1643 bool StackValue = isa<DbgValueInst>(DII); 1644 1645 DIExpression *DIExpr = 1646 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1647 1648 // salvageDebugInfoImpl should fail on examining the first element of 1649 // DbgUsers, or none of them. 1650 if (!DIExpr) 1651 return false; 1652 1653 DII->setOperand(0, wrapMD(I.getOperand(0))); 1654 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1655 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1656 } 1657 1658 return true; 1659 } 1660 1661 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1662 DIExpression *SrcDIExpr, 1663 bool WithStackValue) { 1664 auto &M = *I.getModule(); 1665 auto &DL = M.getDataLayout(); 1666 1667 // Apply a vector of opcodes to the source DIExpression. 1668 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1669 DIExpression *DIExpr = SrcDIExpr; 1670 if (!Ops.empty()) { 1671 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1672 } 1673 return DIExpr; 1674 }; 1675 1676 // Apply the given offset to the source DIExpression. 1677 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1678 SmallVector<uint64_t, 8> Ops; 1679 DIExpression::appendOffset(Ops, Offset); 1680 return doSalvage(Ops); 1681 }; 1682 1683 // initializer-list helper for applying operators to the source DIExpression. 1684 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1685 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1686 return doSalvage(Ops); 1687 }; 1688 1689 if (auto *CI = dyn_cast<CastInst>(&I)) { 1690 // No-op casts and zexts are irrelevant for debug info. 1691 if (CI->isNoopCast(DL) || isa<ZExtInst>(&I)) 1692 return SrcDIExpr; 1693 1694 Type *Type = CI->getType(); 1695 // Casts other than Trunc or SExt to scalar types cannot be salvaged. 1696 if (Type->isVectorTy() || (!isa<TruncInst>(&I) && !isa<SExtInst>(&I))) 1697 return nullptr; 1698 1699 Value *FromValue = CI->getOperand(0); 1700 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1701 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1702 1703 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1704 isa<SExtInst>(&I))); 1705 } 1706 1707 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1708 unsigned BitWidth = 1709 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1710 // Rewrite a constant GEP into a DIExpression. 1711 APInt Offset(BitWidth, 0); 1712 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1713 return applyOffset(Offset.getSExtValue()); 1714 } else { 1715 return nullptr; 1716 } 1717 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1718 // Rewrite binary operations with constant integer operands. 1719 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1720 if (!ConstInt || ConstInt->getBitWidth() > 64) 1721 return nullptr; 1722 1723 uint64_t Val = ConstInt->getSExtValue(); 1724 switch (BI->getOpcode()) { 1725 case Instruction::Add: 1726 return applyOffset(Val); 1727 case Instruction::Sub: 1728 return applyOffset(-int64_t(Val)); 1729 case Instruction::Mul: 1730 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1731 case Instruction::SDiv: 1732 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1733 case Instruction::SRem: 1734 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1735 case Instruction::Or: 1736 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1737 case Instruction::And: 1738 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1739 case Instruction::Xor: 1740 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1741 case Instruction::Shl: 1742 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1743 case Instruction::LShr: 1744 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1745 case Instruction::AShr: 1746 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1747 default: 1748 // TODO: Salvage constants from each kind of binop we know about. 1749 return nullptr; 1750 } 1751 // *Not* to do: we should not attempt to salvage load instructions, 1752 // because the validity and lifetime of a dbg.value containing 1753 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1754 } 1755 return nullptr; 1756 } 1757 1758 /// A replacement for a dbg.value expression. 1759 using DbgValReplacement = Optional<DIExpression *>; 1760 1761 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1762 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1763 /// changes are made. 1764 static bool rewriteDebugUsers( 1765 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1766 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1767 // Find debug users of From. 1768 SmallVector<DbgVariableIntrinsic *, 1> Users; 1769 findDbgUsers(Users, &From); 1770 if (Users.empty()) 1771 return false; 1772 1773 // Prevent use-before-def of To. 1774 bool Changed = false; 1775 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1776 if (isa<Instruction>(&To)) { 1777 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1778 1779 for (auto *DII : Users) { 1780 // It's common to see a debug user between From and DomPoint. Move it 1781 // after DomPoint to preserve the variable update without any reordering. 1782 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1783 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1784 DII->moveAfter(&DomPoint); 1785 Changed = true; 1786 1787 // Users which otherwise aren't dominated by the replacement value must 1788 // be salvaged or deleted. 1789 } else if (!DT.dominates(&DomPoint, DII)) { 1790 UndefOrSalvage.insert(DII); 1791 } 1792 } 1793 } 1794 1795 // Update debug users without use-before-def risk. 1796 for (auto *DII : Users) { 1797 if (UndefOrSalvage.count(DII)) 1798 continue; 1799 1800 LLVMContext &Ctx = DII->getContext(); 1801 DbgValReplacement DVR = RewriteExpr(*DII); 1802 if (!DVR) 1803 continue; 1804 1805 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1806 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1807 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1808 Changed = true; 1809 } 1810 1811 if (!UndefOrSalvage.empty()) { 1812 // Try to salvage the remaining debug users. 1813 salvageDebugInfoOrMarkUndef(From); 1814 Changed = true; 1815 } 1816 1817 return Changed; 1818 } 1819 1820 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1821 /// losslessly preserve the bits and semantics of the value. This predicate is 1822 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1823 /// 1824 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1825 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1826 /// and also does not allow lossless pointer <-> integer conversions. 1827 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1828 Type *ToTy) { 1829 // Trivially compatible types. 1830 if (FromTy == ToTy) 1831 return true; 1832 1833 // Handle compatible pointer <-> integer conversions. 1834 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1835 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1836 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1837 !DL.isNonIntegralPointerType(ToTy); 1838 return SameSize && LosslessConversion; 1839 } 1840 1841 // TODO: This is not exhaustive. 1842 return false; 1843 } 1844 1845 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1846 Instruction &DomPoint, DominatorTree &DT) { 1847 // Exit early if From has no debug users. 1848 if (!From.isUsedByMetadata()) 1849 return false; 1850 1851 assert(&From != &To && "Can't replace something with itself"); 1852 1853 Type *FromTy = From.getType(); 1854 Type *ToTy = To.getType(); 1855 1856 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1857 return DII.getExpression(); 1858 }; 1859 1860 // Handle no-op conversions. 1861 Module &M = *From.getModule(); 1862 const DataLayout &DL = M.getDataLayout(); 1863 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1864 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1865 1866 // Handle integer-to-integer widening and narrowing. 1867 // FIXME: Use DW_OP_convert when it's available everywhere. 1868 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1869 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1870 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1871 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1872 1873 // When the width of the result grows, assume that a debugger will only 1874 // access the low `FromBits` bits when inspecting the source variable. 1875 if (FromBits < ToBits) 1876 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1877 1878 // The width of the result has shrunk. Use sign/zero extension to describe 1879 // the source variable's high bits. 1880 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1881 DILocalVariable *Var = DII.getVariable(); 1882 1883 // Without knowing signedness, sign/zero extension isn't possible. 1884 auto Signedness = Var->getSignedness(); 1885 if (!Signedness) 1886 return None; 1887 1888 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1889 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 1890 Signed); 1891 }; 1892 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1893 } 1894 1895 // TODO: Floating-point conversions, vectors. 1896 return false; 1897 } 1898 1899 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1900 unsigned NumDeadInst = 0; 1901 // Delete the instructions backwards, as it has a reduced likelihood of 1902 // having to update as many def-use and use-def chains. 1903 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1904 while (EndInst != &BB->front()) { 1905 // Delete the next to last instruction. 1906 Instruction *Inst = &*--EndInst->getIterator(); 1907 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1908 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1909 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1910 EndInst = Inst; 1911 continue; 1912 } 1913 if (!isa<DbgInfoIntrinsic>(Inst)) 1914 ++NumDeadInst; 1915 Inst->eraseFromParent(); 1916 } 1917 return NumDeadInst; 1918 } 1919 1920 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1921 bool PreserveLCSSA, DomTreeUpdater *DTU, 1922 MemorySSAUpdater *MSSAU) { 1923 BasicBlock *BB = I->getParent(); 1924 std::vector <DominatorTree::UpdateType> Updates; 1925 1926 if (MSSAU) 1927 MSSAU->changeToUnreachable(I); 1928 1929 // Loop over all of the successors, removing BB's entry from any PHI 1930 // nodes. 1931 if (DTU) 1932 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1933 for (BasicBlock *Successor : successors(BB)) { 1934 Successor->removePredecessor(BB, PreserveLCSSA); 1935 if (DTU) 1936 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1937 } 1938 // Insert a call to llvm.trap right before this. This turns the undefined 1939 // behavior into a hard fail instead of falling through into random code. 1940 if (UseLLVMTrap) { 1941 Function *TrapFn = 1942 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1943 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1944 CallTrap->setDebugLoc(I->getDebugLoc()); 1945 } 1946 auto *UI = new UnreachableInst(I->getContext(), I); 1947 UI->setDebugLoc(I->getDebugLoc()); 1948 1949 // All instructions after this are dead. 1950 unsigned NumInstrsRemoved = 0; 1951 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1952 while (BBI != BBE) { 1953 if (!BBI->use_empty()) 1954 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1955 BB->getInstList().erase(BBI++); 1956 ++NumInstrsRemoved; 1957 } 1958 if (DTU) 1959 DTU->applyUpdatesPermissive(Updates); 1960 return NumInstrsRemoved; 1961 } 1962 1963 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 1964 SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end()); 1965 SmallVector<OperandBundleDef, 1> OpBundles; 1966 II->getOperandBundlesAsDefs(OpBundles); 1967 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 1968 II->getCalledValue(), Args, OpBundles); 1969 NewCall->setCallingConv(II->getCallingConv()); 1970 NewCall->setAttributes(II->getAttributes()); 1971 NewCall->setDebugLoc(II->getDebugLoc()); 1972 NewCall->copyMetadata(*II); 1973 return NewCall; 1974 } 1975 1976 /// changeToCall - Convert the specified invoke into a normal call. 1977 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 1978 CallInst *NewCall = createCallMatchingInvoke(II); 1979 NewCall->takeName(II); 1980 NewCall->insertBefore(II); 1981 II->replaceAllUsesWith(NewCall); 1982 1983 // Follow the call by a branch to the normal destination. 1984 BasicBlock *NormalDestBB = II->getNormalDest(); 1985 BranchInst::Create(NormalDestBB, II); 1986 1987 // Update PHI nodes in the unwind destination 1988 BasicBlock *BB = II->getParent(); 1989 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1990 UnwindDestBB->removePredecessor(BB); 1991 II->eraseFromParent(); 1992 if (DTU) 1993 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}}); 1994 } 1995 1996 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1997 BasicBlock *UnwindEdge) { 1998 BasicBlock *BB = CI->getParent(); 1999 2000 // Convert this function call into an invoke instruction. First, split the 2001 // basic block. 2002 BasicBlock *Split = 2003 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 2004 2005 // Delete the unconditional branch inserted by splitBasicBlock 2006 BB->getInstList().pop_back(); 2007 2008 // Create the new invoke instruction. 2009 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 2010 SmallVector<OperandBundleDef, 1> OpBundles; 2011 2012 CI->getOperandBundlesAsDefs(OpBundles); 2013 2014 // Note: we're round tripping operand bundles through memory here, and that 2015 // can potentially be avoided with a cleverer API design that we do not have 2016 // as of this time. 2017 2018 InvokeInst *II = 2019 InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split, 2020 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2021 II->setDebugLoc(CI->getDebugLoc()); 2022 II->setCallingConv(CI->getCallingConv()); 2023 II->setAttributes(CI->getAttributes()); 2024 2025 // Make sure that anything using the call now uses the invoke! This also 2026 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2027 CI->replaceAllUsesWith(II); 2028 2029 // Delete the original call 2030 Split->getInstList().pop_front(); 2031 return Split; 2032 } 2033 2034 static bool markAliveBlocks(Function &F, 2035 SmallPtrSetImpl<BasicBlock *> &Reachable, 2036 DomTreeUpdater *DTU = nullptr) { 2037 SmallVector<BasicBlock*, 128> Worklist; 2038 BasicBlock *BB = &F.front(); 2039 Worklist.push_back(BB); 2040 Reachable.insert(BB); 2041 bool Changed = false; 2042 do { 2043 BB = Worklist.pop_back_val(); 2044 2045 // Do a quick scan of the basic block, turning any obviously unreachable 2046 // instructions into LLVM unreachable insts. The instruction combining pass 2047 // canonicalizes unreachable insts into stores to null or undef. 2048 for (Instruction &I : *BB) { 2049 if (auto *CI = dyn_cast<CallInst>(&I)) { 2050 Value *Callee = CI->getCalledValue(); 2051 // Handle intrinsic calls. 2052 if (Function *F = dyn_cast<Function>(Callee)) { 2053 auto IntrinsicID = F->getIntrinsicID(); 2054 // Assumptions that are known to be false are equivalent to 2055 // unreachable. Also, if the condition is undefined, then we make the 2056 // choice most beneficial to the optimizer, and choose that to also be 2057 // unreachable. 2058 if (IntrinsicID == Intrinsic::assume) { 2059 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2060 // Don't insert a call to llvm.trap right before the unreachable. 2061 changeToUnreachable(CI, false, false, DTU); 2062 Changed = true; 2063 break; 2064 } 2065 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2066 // A call to the guard intrinsic bails out of the current 2067 // compilation unit if the predicate passed to it is false. If the 2068 // predicate is a constant false, then we know the guard will bail 2069 // out of the current compile unconditionally, so all code following 2070 // it is dead. 2071 // 2072 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2073 // guards to treat `undef` as `false` since a guard on `undef` can 2074 // still be useful for widening. 2075 if (match(CI->getArgOperand(0), m_Zero())) 2076 if (!isa<UnreachableInst>(CI->getNextNode())) { 2077 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2078 false, DTU); 2079 Changed = true; 2080 break; 2081 } 2082 } 2083 } else if ((isa<ConstantPointerNull>(Callee) && 2084 !NullPointerIsDefined(CI->getFunction())) || 2085 isa<UndefValue>(Callee)) { 2086 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2087 Changed = true; 2088 break; 2089 } 2090 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2091 // If we found a call to a no-return function, insert an unreachable 2092 // instruction after it. Make sure there isn't *already* one there 2093 // though. 2094 if (!isa<UnreachableInst>(CI->getNextNode())) { 2095 // Don't insert a call to llvm.trap right before the unreachable. 2096 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2097 Changed = true; 2098 } 2099 break; 2100 } 2101 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2102 // Store to undef and store to null are undefined and used to signal 2103 // that they should be changed to unreachable by passes that can't 2104 // modify the CFG. 2105 2106 // Don't touch volatile stores. 2107 if (SI->isVolatile()) continue; 2108 2109 Value *Ptr = SI->getOperand(1); 2110 2111 if (isa<UndefValue>(Ptr) || 2112 (isa<ConstantPointerNull>(Ptr) && 2113 !NullPointerIsDefined(SI->getFunction(), 2114 SI->getPointerAddressSpace()))) { 2115 changeToUnreachable(SI, true, false, DTU); 2116 Changed = true; 2117 break; 2118 } 2119 } 2120 } 2121 2122 Instruction *Terminator = BB->getTerminator(); 2123 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2124 // Turn invokes that call 'nounwind' functions into ordinary calls. 2125 Value *Callee = II->getCalledValue(); 2126 if ((isa<ConstantPointerNull>(Callee) && 2127 !NullPointerIsDefined(BB->getParent())) || 2128 isa<UndefValue>(Callee)) { 2129 changeToUnreachable(II, true, false, DTU); 2130 Changed = true; 2131 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2132 if (II->use_empty() && II->onlyReadsMemory()) { 2133 // jump to the normal destination branch. 2134 BasicBlock *NormalDestBB = II->getNormalDest(); 2135 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2136 BranchInst::Create(NormalDestBB, II); 2137 UnwindDestBB->removePredecessor(II->getParent()); 2138 II->eraseFromParent(); 2139 if (DTU) 2140 DTU->applyUpdatesPermissive( 2141 {{DominatorTree::Delete, BB, UnwindDestBB}}); 2142 } else 2143 changeToCall(II, DTU); 2144 Changed = true; 2145 } 2146 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2147 // Remove catchpads which cannot be reached. 2148 struct CatchPadDenseMapInfo { 2149 static CatchPadInst *getEmptyKey() { 2150 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2151 } 2152 2153 static CatchPadInst *getTombstoneKey() { 2154 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2155 } 2156 2157 static unsigned getHashValue(CatchPadInst *CatchPad) { 2158 return static_cast<unsigned>(hash_combine_range( 2159 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2160 } 2161 2162 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2163 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2164 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2165 return LHS == RHS; 2166 return LHS->isIdenticalTo(RHS); 2167 } 2168 }; 2169 2170 // Set of unique CatchPads. 2171 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2172 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2173 HandlerSet; 2174 detail::DenseSetEmpty Empty; 2175 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2176 E = CatchSwitch->handler_end(); 2177 I != E; ++I) { 2178 BasicBlock *HandlerBB = *I; 2179 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2180 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2181 CatchSwitch->removeHandler(I); 2182 --I; 2183 --E; 2184 Changed = true; 2185 } 2186 } 2187 } 2188 2189 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2190 for (BasicBlock *Successor : successors(BB)) 2191 if (Reachable.insert(Successor).second) 2192 Worklist.push_back(Successor); 2193 } while (!Worklist.empty()); 2194 return Changed; 2195 } 2196 2197 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2198 Instruction *TI = BB->getTerminator(); 2199 2200 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2201 changeToCall(II, DTU); 2202 return; 2203 } 2204 2205 Instruction *NewTI; 2206 BasicBlock *UnwindDest; 2207 2208 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2209 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2210 UnwindDest = CRI->getUnwindDest(); 2211 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2212 auto *NewCatchSwitch = CatchSwitchInst::Create( 2213 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2214 CatchSwitch->getName(), CatchSwitch); 2215 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2216 NewCatchSwitch->addHandler(PadBB); 2217 2218 NewTI = NewCatchSwitch; 2219 UnwindDest = CatchSwitch->getUnwindDest(); 2220 } else { 2221 llvm_unreachable("Could not find unwind successor"); 2222 } 2223 2224 NewTI->takeName(TI); 2225 NewTI->setDebugLoc(TI->getDebugLoc()); 2226 UnwindDest->removePredecessor(BB); 2227 TI->replaceAllUsesWith(NewTI); 2228 TI->eraseFromParent(); 2229 if (DTU) 2230 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}}); 2231 } 2232 2233 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2234 /// if they are in a dead cycle. Return true if a change was made, false 2235 /// otherwise. 2236 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2237 MemorySSAUpdater *MSSAU) { 2238 SmallPtrSet<BasicBlock *, 16> Reachable; 2239 bool Changed = markAliveBlocks(F, Reachable, DTU); 2240 2241 // If there are unreachable blocks in the CFG... 2242 if (Reachable.size() == F.size()) 2243 return Changed; 2244 2245 assert(Reachable.size() < F.size()); 2246 NumRemoved += F.size() - Reachable.size(); 2247 2248 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 2249 for (BasicBlock &BB : F) { 2250 // Skip reachable basic blocks 2251 if (Reachable.find(&BB) != Reachable.end()) 2252 continue; 2253 DeadBlockSet.insert(&BB); 2254 } 2255 2256 if (MSSAU) 2257 MSSAU->removeBlocks(DeadBlockSet); 2258 2259 // Loop over all of the basic blocks that are not reachable, dropping all of 2260 // their internal references. Update DTU if available. 2261 std::vector<DominatorTree::UpdateType> Updates; 2262 for (auto *BB : DeadBlockSet) { 2263 for (BasicBlock *Successor : successors(BB)) { 2264 if (!DeadBlockSet.count(Successor)) 2265 Successor->removePredecessor(BB); 2266 if (DTU) 2267 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2268 } 2269 BB->dropAllReferences(); 2270 if (DTU) { 2271 Instruction *TI = BB->getTerminator(); 2272 assert(TI && "Basic block should have a terminator"); 2273 // Terminators like invoke can have users. We have to replace their users, 2274 // before removing them. 2275 if (!TI->use_empty()) 2276 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2277 TI->eraseFromParent(); 2278 new UnreachableInst(BB->getContext(), BB); 2279 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2280 "applying corresponding DTU updates."); 2281 } 2282 } 2283 2284 if (DTU) { 2285 DTU->applyUpdatesPermissive(Updates); 2286 bool Deleted = false; 2287 for (auto *BB : DeadBlockSet) { 2288 if (DTU->isBBPendingDeletion(BB)) 2289 --NumRemoved; 2290 else 2291 Deleted = true; 2292 DTU->deleteBB(BB); 2293 } 2294 if (!Deleted) 2295 return false; 2296 } else { 2297 for (auto *BB : DeadBlockSet) 2298 BB->eraseFromParent(); 2299 } 2300 2301 return true; 2302 } 2303 2304 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2305 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2306 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2307 K->dropUnknownNonDebugMetadata(KnownIDs); 2308 K->getAllMetadataOtherThanDebugLoc(Metadata); 2309 for (const auto &MD : Metadata) { 2310 unsigned Kind = MD.first; 2311 MDNode *JMD = J->getMetadata(Kind); 2312 MDNode *KMD = MD.second; 2313 2314 switch (Kind) { 2315 default: 2316 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2317 break; 2318 case LLVMContext::MD_dbg: 2319 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2320 case LLVMContext::MD_tbaa: 2321 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2322 break; 2323 case LLVMContext::MD_alias_scope: 2324 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2325 break; 2326 case LLVMContext::MD_noalias: 2327 case LLVMContext::MD_mem_parallel_loop_access: 2328 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2329 break; 2330 case LLVMContext::MD_access_group: 2331 K->setMetadata(LLVMContext::MD_access_group, 2332 intersectAccessGroups(K, J)); 2333 break; 2334 case LLVMContext::MD_range: 2335 2336 // If K does move, use most generic range. Otherwise keep the range of 2337 // K. 2338 if (DoesKMove) 2339 // FIXME: If K does move, we should drop the range info and nonnull. 2340 // Currently this function is used with DoesKMove in passes 2341 // doing hoisting/sinking and the current behavior of using the 2342 // most generic range is correct in those cases. 2343 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2344 break; 2345 case LLVMContext::MD_fpmath: 2346 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2347 break; 2348 case LLVMContext::MD_invariant_load: 2349 // Only set the !invariant.load if it is present in both instructions. 2350 K->setMetadata(Kind, JMD); 2351 break; 2352 case LLVMContext::MD_nonnull: 2353 // If K does move, keep nonull if it is present in both instructions. 2354 if (DoesKMove) 2355 K->setMetadata(Kind, JMD); 2356 break; 2357 case LLVMContext::MD_invariant_group: 2358 // Preserve !invariant.group in K. 2359 break; 2360 case LLVMContext::MD_align: 2361 K->setMetadata(Kind, 2362 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2363 break; 2364 case LLVMContext::MD_dereferenceable: 2365 case LLVMContext::MD_dereferenceable_or_null: 2366 K->setMetadata(Kind, 2367 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2368 break; 2369 case LLVMContext::MD_preserve_access_index: 2370 // Preserve !preserve.access.index in K. 2371 break; 2372 } 2373 } 2374 // Set !invariant.group from J if J has it. If both instructions have it 2375 // then we will just pick it from J - even when they are different. 2376 // Also make sure that K is load or store - f.e. combining bitcast with load 2377 // could produce bitcast with invariant.group metadata, which is invalid. 2378 // FIXME: we should try to preserve both invariant.group md if they are 2379 // different, but right now instruction can only have one invariant.group. 2380 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2381 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2382 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2383 } 2384 2385 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2386 bool KDominatesJ) { 2387 unsigned KnownIDs[] = { 2388 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2389 LLVMContext::MD_noalias, LLVMContext::MD_range, 2390 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2391 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2392 LLVMContext::MD_dereferenceable, 2393 LLVMContext::MD_dereferenceable_or_null, 2394 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2395 combineMetadata(K, J, KnownIDs, KDominatesJ); 2396 } 2397 2398 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2399 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2400 Source.getAllMetadata(MD); 2401 MDBuilder MDB(Dest.getContext()); 2402 Type *NewType = Dest.getType(); 2403 const DataLayout &DL = Source.getModule()->getDataLayout(); 2404 for (const auto &MDPair : MD) { 2405 unsigned ID = MDPair.first; 2406 MDNode *N = MDPair.second; 2407 // Note, essentially every kind of metadata should be preserved here! This 2408 // routine is supposed to clone a load instruction changing *only its type*. 2409 // The only metadata it makes sense to drop is metadata which is invalidated 2410 // when the pointer type changes. This should essentially never be the case 2411 // in LLVM, but we explicitly switch over only known metadata to be 2412 // conservatively correct. If you are adding metadata to LLVM which pertains 2413 // to loads, you almost certainly want to add it here. 2414 switch (ID) { 2415 case LLVMContext::MD_dbg: 2416 case LLVMContext::MD_tbaa: 2417 case LLVMContext::MD_prof: 2418 case LLVMContext::MD_fpmath: 2419 case LLVMContext::MD_tbaa_struct: 2420 case LLVMContext::MD_invariant_load: 2421 case LLVMContext::MD_alias_scope: 2422 case LLVMContext::MD_noalias: 2423 case LLVMContext::MD_nontemporal: 2424 case LLVMContext::MD_mem_parallel_loop_access: 2425 case LLVMContext::MD_access_group: 2426 // All of these directly apply. 2427 Dest.setMetadata(ID, N); 2428 break; 2429 2430 case LLVMContext::MD_nonnull: 2431 copyNonnullMetadata(Source, N, Dest); 2432 break; 2433 2434 case LLVMContext::MD_align: 2435 case LLVMContext::MD_dereferenceable: 2436 case LLVMContext::MD_dereferenceable_or_null: 2437 // These only directly apply if the new type is also a pointer. 2438 if (NewType->isPointerTy()) 2439 Dest.setMetadata(ID, N); 2440 break; 2441 2442 case LLVMContext::MD_range: 2443 copyRangeMetadata(DL, Source, N, Dest); 2444 break; 2445 } 2446 } 2447 } 2448 2449 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2450 auto *ReplInst = dyn_cast<Instruction>(Repl); 2451 if (!ReplInst) 2452 return; 2453 2454 // Patch the replacement so that it is not more restrictive than the value 2455 // being replaced. 2456 // Note that if 'I' is a load being replaced by some operation, 2457 // for example, by an arithmetic operation, then andIRFlags() 2458 // would just erase all math flags from the original arithmetic 2459 // operation, which is clearly not wanted and not needed. 2460 if (!isa<LoadInst>(I)) 2461 ReplInst->andIRFlags(I); 2462 2463 // FIXME: If both the original and replacement value are part of the 2464 // same control-flow region (meaning that the execution of one 2465 // guarantees the execution of the other), then we can combine the 2466 // noalias scopes here and do better than the general conservative 2467 // answer used in combineMetadata(). 2468 2469 // In general, GVN unifies expressions over different control-flow 2470 // regions, and so we need a conservative combination of the noalias 2471 // scopes. 2472 static const unsigned KnownIDs[] = { 2473 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2474 LLVMContext::MD_noalias, LLVMContext::MD_range, 2475 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2476 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2477 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2478 combineMetadata(ReplInst, I, KnownIDs, false); 2479 } 2480 2481 template <typename RootType, typename DominatesFn> 2482 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2483 const RootType &Root, 2484 const DominatesFn &Dominates) { 2485 assert(From->getType() == To->getType()); 2486 2487 unsigned Count = 0; 2488 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2489 UI != UE;) { 2490 Use &U = *UI++; 2491 if (!Dominates(Root, U)) 2492 continue; 2493 U.set(To); 2494 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2495 << "' as " << *To << " in " << *U << "\n"); 2496 ++Count; 2497 } 2498 return Count; 2499 } 2500 2501 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2502 assert(From->getType() == To->getType()); 2503 auto *BB = From->getParent(); 2504 unsigned Count = 0; 2505 2506 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2507 UI != UE;) { 2508 Use &U = *UI++; 2509 auto *I = cast<Instruction>(U.getUser()); 2510 if (I->getParent() == BB) 2511 continue; 2512 U.set(To); 2513 ++Count; 2514 } 2515 return Count; 2516 } 2517 2518 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2519 DominatorTree &DT, 2520 const BasicBlockEdge &Root) { 2521 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2522 return DT.dominates(Root, U); 2523 }; 2524 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2525 } 2526 2527 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2528 DominatorTree &DT, 2529 const BasicBlock *BB) { 2530 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2531 auto *I = cast<Instruction>(U.getUser())->getParent(); 2532 return DT.properlyDominates(BB, I); 2533 }; 2534 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2535 } 2536 2537 bool llvm::callsGCLeafFunction(const CallBase *Call, 2538 const TargetLibraryInfo &TLI) { 2539 // Check if the function is specifically marked as a gc leaf function. 2540 if (Call->hasFnAttr("gc-leaf-function")) 2541 return true; 2542 if (const Function *F = Call->getCalledFunction()) { 2543 if (F->hasFnAttribute("gc-leaf-function")) 2544 return true; 2545 2546 if (auto IID = F->getIntrinsicID()) 2547 // Most LLVM intrinsics do not take safepoints. 2548 return IID != Intrinsic::experimental_gc_statepoint && 2549 IID != Intrinsic::experimental_deoptimize; 2550 } 2551 2552 // Lib calls can be materialized by some passes, and won't be 2553 // marked as 'gc-leaf-function.' All available Libcalls are 2554 // GC-leaf. 2555 LibFunc LF; 2556 if (TLI.getLibFunc(*Call, LF)) { 2557 return TLI.has(LF); 2558 } 2559 2560 return false; 2561 } 2562 2563 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2564 LoadInst &NewLI) { 2565 auto *NewTy = NewLI.getType(); 2566 2567 // This only directly applies if the new type is also a pointer. 2568 if (NewTy->isPointerTy()) { 2569 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2570 return; 2571 } 2572 2573 // The only other translation we can do is to integral loads with !range 2574 // metadata. 2575 if (!NewTy->isIntegerTy()) 2576 return; 2577 2578 MDBuilder MDB(NewLI.getContext()); 2579 const Value *Ptr = OldLI.getPointerOperand(); 2580 auto *ITy = cast<IntegerType>(NewTy); 2581 auto *NullInt = ConstantExpr::getPtrToInt( 2582 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2583 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2584 NewLI.setMetadata(LLVMContext::MD_range, 2585 MDB.createRange(NonNullInt, NullInt)); 2586 } 2587 2588 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2589 MDNode *N, LoadInst &NewLI) { 2590 auto *NewTy = NewLI.getType(); 2591 2592 // Give up unless it is converted to a pointer where there is a single very 2593 // valuable mapping we can do reliably. 2594 // FIXME: It would be nice to propagate this in more ways, but the type 2595 // conversions make it hard. 2596 if (!NewTy->isPointerTy()) 2597 return; 2598 2599 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2600 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2601 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2602 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2603 } 2604 } 2605 2606 void llvm::dropDebugUsers(Instruction &I) { 2607 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2608 findDbgUsers(DbgUsers, &I); 2609 for (auto *DII : DbgUsers) 2610 DII->eraseFromParent(); 2611 } 2612 2613 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2614 BasicBlock *BB) { 2615 // Since we are moving the instructions out of its basic block, we do not 2616 // retain their original debug locations (DILocations) and debug intrinsic 2617 // instructions. 2618 // 2619 // Doing so would degrade the debugging experience and adversely affect the 2620 // accuracy of profiling information. 2621 // 2622 // Currently, when hoisting the instructions, we take the following actions: 2623 // - Remove their debug intrinsic instructions. 2624 // - Set their debug locations to the values from the insertion point. 2625 // 2626 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2627 // need to be deleted, is because there will not be any instructions with a 2628 // DILocation in either branch left after performing the transformation. We 2629 // can only insert a dbg.value after the two branches are joined again. 2630 // 2631 // See PR38762, PR39243 for more details. 2632 // 2633 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2634 // encode predicated DIExpressions that yield different results on different 2635 // code paths. 2636 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2637 Instruction *I = &*II; 2638 I->dropUnknownNonDebugMetadata(); 2639 if (I->isUsedByMetadata()) 2640 dropDebugUsers(*I); 2641 if (isa<DbgInfoIntrinsic>(I)) { 2642 // Remove DbgInfo Intrinsics. 2643 II = I->eraseFromParent(); 2644 continue; 2645 } 2646 I->setDebugLoc(InsertPt->getDebugLoc()); 2647 ++II; 2648 } 2649 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2650 BB->begin(), 2651 BB->getTerminator()->getIterator()); 2652 } 2653 2654 namespace { 2655 2656 /// A potential constituent of a bitreverse or bswap expression. See 2657 /// collectBitParts for a fuller explanation. 2658 struct BitPart { 2659 BitPart(Value *P, unsigned BW) : Provider(P) { 2660 Provenance.resize(BW); 2661 } 2662 2663 /// The Value that this is a bitreverse/bswap of. 2664 Value *Provider; 2665 2666 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2667 /// in Provider becomes bit B in the result of this expression. 2668 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2669 2670 enum { Unset = -1 }; 2671 }; 2672 2673 } // end anonymous namespace 2674 2675 /// Analyze the specified subexpression and see if it is capable of providing 2676 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2677 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2678 /// the output of the expression came from a corresponding bit in some other 2679 /// value. This function is recursive, and the end result is a mapping of 2680 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2681 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2682 /// 2683 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2684 /// that the expression deposits the low byte of %X into the high byte of the 2685 /// result and that all other bits are zero. This expression is accepted and a 2686 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2687 /// [0-7]. 2688 /// 2689 /// To avoid revisiting values, the BitPart results are memoized into the 2690 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2691 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2692 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2693 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2694 /// type instead to provide the same functionality. 2695 /// 2696 /// Because we pass around references into \c BPS, we must use a container that 2697 /// does not invalidate internal references (std::map instead of DenseMap). 2698 static const Optional<BitPart> & 2699 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2700 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2701 auto I = BPS.find(V); 2702 if (I != BPS.end()) 2703 return I->second; 2704 2705 auto &Result = BPS[V] = None; 2706 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2707 2708 // Prevent stack overflow by limiting the recursion depth 2709 if (Depth == BitPartRecursionMaxDepth) { 2710 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2711 return Result; 2712 } 2713 2714 if (Instruction *I = dyn_cast<Instruction>(V)) { 2715 // If this is an or instruction, it may be an inner node of the bswap. 2716 if (I->getOpcode() == Instruction::Or) { 2717 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2718 MatchBitReversals, BPS, Depth + 1); 2719 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2720 MatchBitReversals, BPS, Depth + 1); 2721 if (!A || !B) 2722 return Result; 2723 2724 // Try and merge the two together. 2725 if (!A->Provider || A->Provider != B->Provider) 2726 return Result; 2727 2728 Result = BitPart(A->Provider, BitWidth); 2729 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2730 if (A->Provenance[i] != BitPart::Unset && 2731 B->Provenance[i] != BitPart::Unset && 2732 A->Provenance[i] != B->Provenance[i]) 2733 return Result = None; 2734 2735 if (A->Provenance[i] == BitPart::Unset) 2736 Result->Provenance[i] = B->Provenance[i]; 2737 else 2738 Result->Provenance[i] = A->Provenance[i]; 2739 } 2740 2741 return Result; 2742 } 2743 2744 // If this is a logical shift by a constant, recurse then shift the result. 2745 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2746 unsigned BitShift = 2747 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2748 // Ensure the shift amount is defined. 2749 if (BitShift > BitWidth) 2750 return Result; 2751 2752 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2753 MatchBitReversals, BPS, Depth + 1); 2754 if (!Res) 2755 return Result; 2756 Result = Res; 2757 2758 // Perform the "shift" on BitProvenance. 2759 auto &P = Result->Provenance; 2760 if (I->getOpcode() == Instruction::Shl) { 2761 P.erase(std::prev(P.end(), BitShift), P.end()); 2762 P.insert(P.begin(), BitShift, BitPart::Unset); 2763 } else { 2764 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2765 P.insert(P.end(), BitShift, BitPart::Unset); 2766 } 2767 2768 return Result; 2769 } 2770 2771 // If this is a logical 'and' with a mask that clears bits, recurse then 2772 // unset the appropriate bits. 2773 if (I->getOpcode() == Instruction::And && 2774 isa<ConstantInt>(I->getOperand(1))) { 2775 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2776 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2777 2778 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2779 // early exit. 2780 unsigned NumMaskedBits = AndMask.countPopulation(); 2781 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2782 return Result; 2783 2784 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2785 MatchBitReversals, BPS, Depth + 1); 2786 if (!Res) 2787 return Result; 2788 Result = Res; 2789 2790 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2791 // If the AndMask is zero for this bit, clear the bit. 2792 if ((AndMask & Bit) == 0) 2793 Result->Provenance[i] = BitPart::Unset; 2794 return Result; 2795 } 2796 2797 // If this is a zext instruction zero extend the result. 2798 if (I->getOpcode() == Instruction::ZExt) { 2799 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2800 MatchBitReversals, BPS, Depth + 1); 2801 if (!Res) 2802 return Result; 2803 2804 Result = BitPart(Res->Provider, BitWidth); 2805 auto NarrowBitWidth = 2806 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2807 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2808 Result->Provenance[i] = Res->Provenance[i]; 2809 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2810 Result->Provenance[i] = BitPart::Unset; 2811 return Result; 2812 } 2813 } 2814 2815 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2816 // the input value to the bswap/bitreverse. 2817 Result = BitPart(V, BitWidth); 2818 for (unsigned i = 0; i < BitWidth; ++i) 2819 Result->Provenance[i] = i; 2820 return Result; 2821 } 2822 2823 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2824 unsigned BitWidth) { 2825 if (From % 8 != To % 8) 2826 return false; 2827 // Convert from bit indices to byte indices and check for a byte reversal. 2828 From >>= 3; 2829 To >>= 3; 2830 BitWidth >>= 3; 2831 return From == BitWidth - To - 1; 2832 } 2833 2834 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2835 unsigned BitWidth) { 2836 return From == BitWidth - To - 1; 2837 } 2838 2839 bool llvm::recognizeBSwapOrBitReverseIdiom( 2840 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2841 SmallVectorImpl<Instruction *> &InsertedInsts) { 2842 if (Operator::getOpcode(I) != Instruction::Or) 2843 return false; 2844 if (!MatchBSwaps && !MatchBitReversals) 2845 return false; 2846 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2847 if (!ITy || ITy->getBitWidth() > 128) 2848 return false; // Can't do vectors or integers > 128 bits. 2849 unsigned BW = ITy->getBitWidth(); 2850 2851 unsigned DemandedBW = BW; 2852 IntegerType *DemandedTy = ITy; 2853 if (I->hasOneUse()) { 2854 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2855 DemandedTy = cast<IntegerType>(Trunc->getType()); 2856 DemandedBW = DemandedTy->getBitWidth(); 2857 } 2858 } 2859 2860 // Try to find all the pieces corresponding to the bswap. 2861 std::map<Value *, Optional<BitPart>> BPS; 2862 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 2863 if (!Res) 2864 return false; 2865 auto &BitProvenance = Res->Provenance; 2866 2867 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2868 // only byteswap values with an even number of bytes. 2869 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2870 for (unsigned i = 0; i < DemandedBW; ++i) { 2871 OKForBSwap &= 2872 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2873 OKForBitReverse &= 2874 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2875 } 2876 2877 Intrinsic::ID Intrin; 2878 if (OKForBSwap && MatchBSwaps) 2879 Intrin = Intrinsic::bswap; 2880 else if (OKForBitReverse && MatchBitReversals) 2881 Intrin = Intrinsic::bitreverse; 2882 else 2883 return false; 2884 2885 if (ITy != DemandedTy) { 2886 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2887 Value *Provider = Res->Provider; 2888 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2889 // We may need to truncate the provider. 2890 if (DemandedTy != ProviderTy) { 2891 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2892 "trunc", I); 2893 InsertedInsts.push_back(Trunc); 2894 Provider = Trunc; 2895 } 2896 auto *CI = CallInst::Create(F, Provider, "rev", I); 2897 InsertedInsts.push_back(CI); 2898 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2899 InsertedInsts.push_back(ExtInst); 2900 return true; 2901 } 2902 2903 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2904 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2905 return true; 2906 } 2907 2908 // CodeGen has special handling for some string functions that may replace 2909 // them with target-specific intrinsics. Since that'd skip our interceptors 2910 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2911 // we mark affected calls as NoBuiltin, which will disable optimization 2912 // in CodeGen. 2913 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2914 CallInst *CI, const TargetLibraryInfo *TLI) { 2915 Function *F = CI->getCalledFunction(); 2916 LibFunc Func; 2917 if (F && !F->hasLocalLinkage() && F->hasName() && 2918 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2919 !F->doesNotAccessMemory()) 2920 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2921 } 2922 2923 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2924 // We can't have a PHI with a metadata type. 2925 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2926 return false; 2927 2928 // Early exit. 2929 if (!isa<Constant>(I->getOperand(OpIdx))) 2930 return true; 2931 2932 switch (I->getOpcode()) { 2933 default: 2934 return true; 2935 case Instruction::Call: 2936 case Instruction::Invoke: { 2937 ImmutableCallSite CS(I); 2938 2939 // Can't handle inline asm. Skip it. 2940 if (CS.isInlineAsm()) 2941 return false; 2942 2943 // Constant bundle operands may need to retain their constant-ness for 2944 // correctness. 2945 if (CS.isBundleOperand(OpIdx)) 2946 return false; 2947 2948 if (OpIdx < CS.getNumArgOperands()) { 2949 // Some variadic intrinsics require constants in the variadic arguments, 2950 // which currently aren't markable as immarg. 2951 if (CS.isIntrinsic() && OpIdx >= CS.getFunctionType()->getNumParams()) { 2952 // This is known to be OK for stackmap. 2953 return CS.getIntrinsicID() == Intrinsic::experimental_stackmap; 2954 } 2955 2956 // gcroot is a special case, since it requires a constant argument which 2957 // isn't also required to be a simple ConstantInt. 2958 if (CS.getIntrinsicID() == Intrinsic::gcroot) 2959 return false; 2960 2961 // Some intrinsic operands are required to be immediates. 2962 return !CS.paramHasAttr(OpIdx, Attribute::ImmArg); 2963 } 2964 2965 // It is never allowed to replace the call argument to an intrinsic, but it 2966 // may be possible for a call. 2967 return !CS.isIntrinsic(); 2968 } 2969 case Instruction::ShuffleVector: 2970 // Shufflevector masks are constant. 2971 return OpIdx != 2; 2972 case Instruction::Switch: 2973 case Instruction::ExtractValue: 2974 // All operands apart from the first are constant. 2975 return OpIdx == 0; 2976 case Instruction::InsertValue: 2977 // All operands apart from the first and the second are constant. 2978 return OpIdx < 2; 2979 case Instruction::Alloca: 2980 // Static allocas (constant size in the entry block) are handled by 2981 // prologue/epilogue insertion so they're free anyway. We definitely don't 2982 // want to make them non-constant. 2983 return !cast<AllocaInst>(I)->isStaticAlloca(); 2984 case Instruction::GetElementPtr: 2985 if (OpIdx == 0) 2986 return true; 2987 gep_type_iterator It = gep_type_begin(I); 2988 for (auto E = std::next(It, OpIdx); It != E; ++It) 2989 if (It.isStruct()) 2990 return false; 2991 return true; 2992 } 2993 } 2994 2995 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 2996 AllocaInst *llvm::findAllocaForValue(Value *V, 2997 AllocaForValueMapTy &AllocaForValue) { 2998 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2999 return AI; 3000 // See if we've already calculated (or started to calculate) alloca for a 3001 // given value. 3002 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 3003 if (I != AllocaForValue.end()) 3004 return I->second; 3005 // Store 0 while we're calculating alloca for value V to avoid 3006 // infinite recursion if the value references itself. 3007 AllocaForValue[V] = nullptr; 3008 AllocaInst *Res = nullptr; 3009 if (CastInst *CI = dyn_cast<CastInst>(V)) 3010 Res = findAllocaForValue(CI->getOperand(0), AllocaForValue); 3011 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 3012 for (Value *IncValue : PN->incoming_values()) { 3013 // Allow self-referencing phi-nodes. 3014 if (IncValue == PN) 3015 continue; 3016 AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue); 3017 // AI for incoming values should exist and should all be equal. 3018 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 3019 return nullptr; 3020 Res = IncValueAI; 3021 } 3022 } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) { 3023 Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue); 3024 } else { 3025 LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: " 3026 << *V << "\n"); 3027 } 3028 if (Res) 3029 AllocaForValue[V] = Res; 3030 return Res; 3031 } 3032 3033 Value *llvm::invertCondition(Value *Condition) { 3034 // First: Check if it's a constant 3035 if (Constant *C = dyn_cast<Constant>(Condition)) 3036 return ConstantExpr::getNot(C); 3037 3038 // Second: If the condition is already inverted, return the original value 3039 Value *NotCondition; 3040 if (match(Condition, m_Not(m_Value(NotCondition)))) 3041 return NotCondition; 3042 3043 if (Instruction *Inst = dyn_cast<Instruction>(Condition)) { 3044 // Third: Check all the users for an invert 3045 BasicBlock *Parent = Inst->getParent(); 3046 for (User *U : Condition->users()) 3047 if (Instruction *I = dyn_cast<Instruction>(U)) 3048 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3049 return I; 3050 3051 // Last option: Create a new instruction 3052 auto Inverted = BinaryOperator::CreateNot(Inst, ""); 3053 if (isa<PHINode>(Inst)) { 3054 // FIXME: This fails if the inversion is to be used in a 3055 // subsequent PHINode in the same basic block. 3056 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3057 } else { 3058 Inverted->insertAfter(Inst); 3059 } 3060 return Inverted; 3061 } 3062 3063 if (Argument *Arg = dyn_cast<Argument>(Condition)) { 3064 BasicBlock &EntryBlock = Arg->getParent()->getEntryBlock(); 3065 return BinaryOperator::CreateNot(Condition, Arg->getName() + ".inv", 3066 &*EntryBlock.getFirstInsertionPt()); 3067 } 3068 3069 llvm_unreachable("Unhandled condition to invert"); 3070 } 3071