1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <utility>
86 
87 using namespace llvm;
88 using namespace llvm::PatternMatch;
89 
90 #define DEBUG_TYPE "local"
91 
92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
93 
94 //===----------------------------------------------------------------------===//
95 //  Local constant propagation.
96 //
97 
98 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
99 /// constant value, convert it into an unconditional branch to the constant
100 /// destination.  This is a nontrivial operation because the successors of this
101 /// basic block must have their PHI nodes updated.
102 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
103 /// conditions and indirectbr addresses this might make dead if
104 /// DeleteDeadConditions is true.
105 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
106                                   const TargetLibraryInfo *TLI,
107                                   DomTreeUpdater *DTU) {
108   Instruction *T = BB->getTerminator();
109   IRBuilder<> Builder(T);
110 
111   // Branch - See if we are conditional jumping on constant
112   if (auto *BI = dyn_cast<BranchInst>(T)) {
113     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
114     BasicBlock *Dest1 = BI->getSuccessor(0);
115     BasicBlock *Dest2 = BI->getSuccessor(1);
116 
117     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
118       // Are we branching on constant?
119       // YES.  Change to unconditional branch...
120       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
121       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
122 
123       // Let the basic block know that we are letting go of it.  Based on this,
124       // it will adjust it's PHI nodes.
125       OldDest->removePredecessor(BB);
126 
127       // Replace the conditional branch with an unconditional one.
128       Builder.CreateBr(Destination);
129       BI->eraseFromParent();
130       if (DTU)
131         DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}});
132       return true;
133     }
134 
135     if (Dest2 == Dest1) {       // Conditional branch to same location?
136       // This branch matches something like this:
137       //     br bool %cond, label %Dest, label %Dest
138       // and changes it into:  br label %Dest
139 
140       // Let the basic block know that we are letting go of one copy of it.
141       assert(BI->getParent() && "Terminator not inserted in block!");
142       Dest1->removePredecessor(BI->getParent());
143 
144       // Replace the conditional branch with an unconditional one.
145       Builder.CreateBr(Dest1);
146       Value *Cond = BI->getCondition();
147       BI->eraseFromParent();
148       if (DeleteDeadConditions)
149         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
150       return true;
151     }
152     return false;
153   }
154 
155   if (auto *SI = dyn_cast<SwitchInst>(T)) {
156     // If we are switching on a constant, we can convert the switch to an
157     // unconditional branch.
158     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
159     BasicBlock *DefaultDest = SI->getDefaultDest();
160     BasicBlock *TheOnlyDest = DefaultDest;
161 
162     // If the default is unreachable, ignore it when searching for TheOnlyDest.
163     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
164         SI->getNumCases() > 0) {
165       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
166     }
167 
168     // Figure out which case it goes to.
169     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
170       // Found case matching a constant operand?
171       if (i->getCaseValue() == CI) {
172         TheOnlyDest = i->getCaseSuccessor();
173         break;
174       }
175 
176       // Check to see if this branch is going to the same place as the default
177       // dest.  If so, eliminate it as an explicit compare.
178       if (i->getCaseSuccessor() == DefaultDest) {
179         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
180         unsigned NCases = SI->getNumCases();
181         // Fold the case metadata into the default if there will be any branches
182         // left, unless the metadata doesn't match the switch.
183         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
184           // Collect branch weights into a vector.
185           SmallVector<uint32_t, 8> Weights;
186           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
187                ++MD_i) {
188             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
189             Weights.push_back(CI->getValue().getZExtValue());
190           }
191           // Merge weight of this case to the default weight.
192           unsigned idx = i->getCaseIndex();
193           Weights[0] += Weights[idx+1];
194           // Remove weight for this case.
195           std::swap(Weights[idx+1], Weights.back());
196           Weights.pop_back();
197           SI->setMetadata(LLVMContext::MD_prof,
198                           MDBuilder(BB->getContext()).
199                           createBranchWeights(Weights));
200         }
201         // Remove this entry.
202         BasicBlock *ParentBB = SI->getParent();
203         DefaultDest->removePredecessor(ParentBB);
204         i = SI->removeCase(i);
205         e = SI->case_end();
206         if (DTU)
207           DTU->applyUpdatesPermissive(
208               {{DominatorTree::Delete, ParentBB, DefaultDest}});
209         continue;
210       }
211 
212       // Otherwise, check to see if the switch only branches to one destination.
213       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
214       // destinations.
215       if (i->getCaseSuccessor() != TheOnlyDest)
216         TheOnlyDest = nullptr;
217 
218       // Increment this iterator as we haven't removed the case.
219       ++i;
220     }
221 
222     if (CI && !TheOnlyDest) {
223       // Branching on a constant, but not any of the cases, go to the default
224       // successor.
225       TheOnlyDest = SI->getDefaultDest();
226     }
227 
228     // If we found a single destination that we can fold the switch into, do so
229     // now.
230     if (TheOnlyDest) {
231       // Insert the new branch.
232       Builder.CreateBr(TheOnlyDest);
233       BasicBlock *BB = SI->getParent();
234       std::vector <DominatorTree::UpdateType> Updates;
235       if (DTU)
236         Updates.reserve(SI->getNumSuccessors() - 1);
237 
238       // Remove entries from PHI nodes which we no longer branch to...
239       for (BasicBlock *Succ : successors(SI)) {
240         // Found case matching a constant operand?
241         if (Succ == TheOnlyDest) {
242           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
243         } else {
244           Succ->removePredecessor(BB);
245           if (DTU)
246             Updates.push_back({DominatorTree::Delete, BB, Succ});
247         }
248       }
249 
250       // Delete the old switch.
251       Value *Cond = SI->getCondition();
252       SI->eraseFromParent();
253       if (DeleteDeadConditions)
254         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
255       if (DTU)
256         DTU->applyUpdatesPermissive(Updates);
257       return true;
258     }
259 
260     if (SI->getNumCases() == 1) {
261       // Otherwise, we can fold this switch into a conditional branch
262       // instruction if it has only one non-default destination.
263       auto FirstCase = *SI->case_begin();
264       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
265           FirstCase.getCaseValue(), "cond");
266 
267       // Insert the new branch.
268       BranchInst *NewBr = Builder.CreateCondBr(Cond,
269                                                FirstCase.getCaseSuccessor(),
270                                                SI->getDefaultDest());
271       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
272       if (MD && MD->getNumOperands() == 3) {
273         ConstantInt *SICase =
274             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
275         ConstantInt *SIDef =
276             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
277         assert(SICase && SIDef);
278         // The TrueWeight should be the weight for the single case of SI.
279         NewBr->setMetadata(LLVMContext::MD_prof,
280                         MDBuilder(BB->getContext()).
281                         createBranchWeights(SICase->getValue().getZExtValue(),
282                                             SIDef->getValue().getZExtValue()));
283       }
284 
285       // Update make.implicit metadata to the newly-created conditional branch.
286       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
287       if (MakeImplicitMD)
288         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
289 
290       // Delete the old switch.
291       SI->eraseFromParent();
292       return true;
293     }
294     return false;
295   }
296 
297   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
298     // indirectbr blockaddress(@F, @BB) -> br label @BB
299     if (auto *BA =
300           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
301       BasicBlock *TheOnlyDest = BA->getBasicBlock();
302       std::vector <DominatorTree::UpdateType> Updates;
303       if (DTU)
304         Updates.reserve(IBI->getNumDestinations() - 1);
305 
306       // Insert the new branch.
307       Builder.CreateBr(TheOnlyDest);
308 
309       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
310         if (IBI->getDestination(i) == TheOnlyDest) {
311           TheOnlyDest = nullptr;
312         } else {
313           BasicBlock *ParentBB = IBI->getParent();
314           BasicBlock *DestBB = IBI->getDestination(i);
315           DestBB->removePredecessor(ParentBB);
316           if (DTU)
317             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
318         }
319       }
320       Value *Address = IBI->getAddress();
321       IBI->eraseFromParent();
322       if (DeleteDeadConditions)
323         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
324 
325       // If we didn't find our destination in the IBI successor list, then we
326       // have undefined behavior.  Replace the unconditional branch with an
327       // 'unreachable' instruction.
328       if (TheOnlyDest) {
329         BB->getTerminator()->eraseFromParent();
330         new UnreachableInst(BB->getContext(), BB);
331       }
332 
333       if (DTU)
334         DTU->applyUpdatesPermissive(Updates);
335       return true;
336     }
337   }
338 
339   return false;
340 }
341 
342 //===----------------------------------------------------------------------===//
343 //  Local dead code elimination.
344 //
345 
346 /// isInstructionTriviallyDead - Return true if the result produced by the
347 /// instruction is not used, and the instruction has no side effects.
348 ///
349 bool llvm::isInstructionTriviallyDead(Instruction *I,
350                                       const TargetLibraryInfo *TLI) {
351   if (!I->use_empty())
352     return false;
353   return wouldInstructionBeTriviallyDead(I, TLI);
354 }
355 
356 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
357                                            const TargetLibraryInfo *TLI) {
358   if (I->isTerminator())
359     return false;
360 
361   // We don't want the landingpad-like instructions removed by anything this
362   // general.
363   if (I->isEHPad())
364     return false;
365 
366   // We don't want debug info removed by anything this general, unless
367   // debug info is empty.
368   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
369     if (DDI->getAddress())
370       return false;
371     return true;
372   }
373   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
374     if (DVI->getValue())
375       return false;
376     return true;
377   }
378   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
379     if (DLI->getLabel())
380       return false;
381     return true;
382   }
383 
384   if (!I->mayHaveSideEffects())
385     return true;
386 
387   // Special case intrinsics that "may have side effects" but can be deleted
388   // when dead.
389   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
390     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
391     if (II->getIntrinsicID() == Intrinsic::stacksave ||
392         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
393       return true;
394 
395     // Lifetime intrinsics are dead when their right-hand is undef.
396     if (II->isLifetimeStartOrEnd())
397       return isa<UndefValue>(II->getArgOperand(1));
398 
399     // Assumptions are dead if their condition is trivially true.  Guards on
400     // true are operationally no-ops.  In the future we can consider more
401     // sophisticated tradeoffs for guards considering potential for check
402     // widening, but for now we keep things simple.
403     if (II->getIntrinsicID() == Intrinsic::assume ||
404         II->getIntrinsicID() == Intrinsic::experimental_guard) {
405       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
406         return !Cond->isZero();
407 
408       return false;
409     }
410   }
411 
412   if (isAllocLikeFn(I, TLI))
413     return true;
414 
415   if (CallInst *CI = isFreeCall(I, TLI))
416     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
417       return C->isNullValue() || isa<UndefValue>(C);
418 
419   if (auto *Call = dyn_cast<CallBase>(I))
420     if (isMathLibCallNoop(Call, TLI))
421       return true;
422 
423   return false;
424 }
425 
426 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
427 /// trivially dead instruction, delete it.  If that makes any of its operands
428 /// trivially dead, delete them too, recursively.  Return true if any
429 /// instructions were deleted.
430 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
431     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
432   Instruction *I = dyn_cast<Instruction>(V);
433   if (!I || !isInstructionTriviallyDead(I, TLI))
434     return false;
435 
436   SmallVector<Instruction*, 16> DeadInsts;
437   DeadInsts.push_back(I);
438   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
439 
440   return true;
441 }
442 
443 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
444     SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI,
445     MemorySSAUpdater *MSSAU) {
446   // Process the dead instruction list until empty.
447   while (!DeadInsts.empty()) {
448     Instruction &I = *DeadInsts.pop_back_val();
449     assert(I.use_empty() && "Instructions with uses are not dead.");
450     assert(isInstructionTriviallyDead(&I, TLI) &&
451            "Live instruction found in dead worklist!");
452 
453     // Don't lose the debug info while deleting the instructions.
454     salvageDebugInfo(I);
455 
456     // Null out all of the instruction's operands to see if any operand becomes
457     // dead as we go.
458     for (Use &OpU : I.operands()) {
459       Value *OpV = OpU.get();
460       OpU.set(nullptr);
461 
462       if (!OpV->use_empty())
463         continue;
464 
465       // If the operand is an instruction that became dead as we nulled out the
466       // operand, and if it is 'trivially' dead, delete it in a future loop
467       // iteration.
468       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
469         if (isInstructionTriviallyDead(OpI, TLI))
470           DeadInsts.push_back(OpI);
471     }
472     if (MSSAU)
473       MSSAU->removeMemoryAccess(&I);
474 
475     I.eraseFromParent();
476   }
477 }
478 
479 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
480   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
481   findDbgUsers(DbgUsers, I);
482   for (auto *DII : DbgUsers) {
483     Value *Undef = UndefValue::get(I->getType());
484     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
485                                             ValueAsMetadata::get(Undef)));
486   }
487   return !DbgUsers.empty();
488 }
489 
490 /// areAllUsesEqual - Check whether the uses of a value are all the same.
491 /// This is similar to Instruction::hasOneUse() except this will also return
492 /// true when there are no uses or multiple uses that all refer to the same
493 /// value.
494 static bool areAllUsesEqual(Instruction *I) {
495   Value::user_iterator UI = I->user_begin();
496   Value::user_iterator UE = I->user_end();
497   if (UI == UE)
498     return true;
499 
500   User *TheUse = *UI;
501   for (++UI; UI != UE; ++UI) {
502     if (*UI != TheUse)
503       return false;
504   }
505   return true;
506 }
507 
508 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
509 /// dead PHI node, due to being a def-use chain of single-use nodes that
510 /// either forms a cycle or is terminated by a trivially dead instruction,
511 /// delete it.  If that makes any of its operands trivially dead, delete them
512 /// too, recursively.  Return true if a change was made.
513 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
514                                         const TargetLibraryInfo *TLI) {
515   SmallPtrSet<Instruction*, 4> Visited;
516   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
517        I = cast<Instruction>(*I->user_begin())) {
518     if (I->use_empty())
519       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
520 
521     // If we find an instruction more than once, we're on a cycle that
522     // won't prove fruitful.
523     if (!Visited.insert(I).second) {
524       // Break the cycle and delete the instruction and its operands.
525       I->replaceAllUsesWith(UndefValue::get(I->getType()));
526       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
527       return true;
528     }
529   }
530   return false;
531 }
532 
533 static bool
534 simplifyAndDCEInstruction(Instruction *I,
535                           SmallSetVector<Instruction *, 16> &WorkList,
536                           const DataLayout &DL,
537                           const TargetLibraryInfo *TLI) {
538   if (isInstructionTriviallyDead(I, TLI)) {
539     salvageDebugInfo(*I);
540 
541     // Null out all of the instruction's operands to see if any operand becomes
542     // dead as we go.
543     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
544       Value *OpV = I->getOperand(i);
545       I->setOperand(i, nullptr);
546 
547       if (!OpV->use_empty() || I == OpV)
548         continue;
549 
550       // If the operand is an instruction that became dead as we nulled out the
551       // operand, and if it is 'trivially' dead, delete it in a future loop
552       // iteration.
553       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
554         if (isInstructionTriviallyDead(OpI, TLI))
555           WorkList.insert(OpI);
556     }
557 
558     I->eraseFromParent();
559 
560     return true;
561   }
562 
563   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
564     // Add the users to the worklist. CAREFUL: an instruction can use itself,
565     // in the case of a phi node.
566     for (User *U : I->users()) {
567       if (U != I) {
568         WorkList.insert(cast<Instruction>(U));
569       }
570     }
571 
572     // Replace the instruction with its simplified value.
573     bool Changed = false;
574     if (!I->use_empty()) {
575       I->replaceAllUsesWith(SimpleV);
576       Changed = true;
577     }
578     if (isInstructionTriviallyDead(I, TLI)) {
579       I->eraseFromParent();
580       Changed = true;
581     }
582     return Changed;
583   }
584   return false;
585 }
586 
587 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
588 /// simplify any instructions in it and recursively delete dead instructions.
589 ///
590 /// This returns true if it changed the code, note that it can delete
591 /// instructions in other blocks as well in this block.
592 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
593                                        const TargetLibraryInfo *TLI) {
594   bool MadeChange = false;
595   const DataLayout &DL = BB->getModule()->getDataLayout();
596 
597 #ifndef NDEBUG
598   // In debug builds, ensure that the terminator of the block is never replaced
599   // or deleted by these simplifications. The idea of simplification is that it
600   // cannot introduce new instructions, and there is no way to replace the
601   // terminator of a block without introducing a new instruction.
602   AssertingVH<Instruction> TerminatorVH(&BB->back());
603 #endif
604 
605   SmallSetVector<Instruction *, 16> WorkList;
606   // Iterate over the original function, only adding insts to the worklist
607   // if they actually need to be revisited. This avoids having to pre-init
608   // the worklist with the entire function's worth of instructions.
609   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
610        BI != E;) {
611     assert(!BI->isTerminator());
612     Instruction *I = &*BI;
613     ++BI;
614 
615     // We're visiting this instruction now, so make sure it's not in the
616     // worklist from an earlier visit.
617     if (!WorkList.count(I))
618       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
619   }
620 
621   while (!WorkList.empty()) {
622     Instruction *I = WorkList.pop_back_val();
623     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
624   }
625   return MadeChange;
626 }
627 
628 //===----------------------------------------------------------------------===//
629 //  Control Flow Graph Restructuring.
630 //
631 
632 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
633 /// method is called when we're about to delete Pred as a predecessor of BB.  If
634 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
635 ///
636 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
637 /// nodes that collapse into identity values.  For example, if we have:
638 ///   x = phi(1, 0, 0, 0)
639 ///   y = and x, z
640 ///
641 /// .. and delete the predecessor corresponding to the '1', this will attempt to
642 /// recursively fold the and to 0.
643 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
644                                         DomTreeUpdater *DTU) {
645   // This only adjusts blocks with PHI nodes.
646   if (!isa<PHINode>(BB->begin()))
647     return;
648 
649   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
650   // them down.  This will leave us with single entry phi nodes and other phis
651   // that can be removed.
652   BB->removePredecessor(Pred, true);
653 
654   WeakTrackingVH PhiIt = &BB->front();
655   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
656     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
657     Value *OldPhiIt = PhiIt;
658 
659     if (!recursivelySimplifyInstruction(PN))
660       continue;
661 
662     // If recursive simplification ended up deleting the next PHI node we would
663     // iterate to, then our iterator is invalid, restart scanning from the top
664     // of the block.
665     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
666   }
667   if (DTU)
668     DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}});
669 }
670 
671 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
672 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
673 /// between them, moving the instructions in the predecessor into DestBB and
674 /// deleting the predecessor block.
675 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
676                                        DomTreeUpdater *DTU) {
677 
678   // If BB has single-entry PHI nodes, fold them.
679   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
680     Value *NewVal = PN->getIncomingValue(0);
681     // Replace self referencing PHI with undef, it must be dead.
682     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
683     PN->replaceAllUsesWith(NewVal);
684     PN->eraseFromParent();
685   }
686 
687   BasicBlock *PredBB = DestBB->getSinglePredecessor();
688   assert(PredBB && "Block doesn't have a single predecessor!");
689 
690   bool ReplaceEntryBB = false;
691   if (PredBB == &DestBB->getParent()->getEntryBlock())
692     ReplaceEntryBB = true;
693 
694   // DTU updates: Collect all the edges that enter
695   // PredBB. These dominator edges will be redirected to DestBB.
696   SmallVector<DominatorTree::UpdateType, 32> Updates;
697 
698   if (DTU) {
699     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
700     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
701       Updates.push_back({DominatorTree::Delete, *I, PredBB});
702       // This predecessor of PredBB may already have DestBB as a successor.
703       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
704         Updates.push_back({DominatorTree::Insert, *I, DestBB});
705     }
706   }
707 
708   // Zap anything that took the address of DestBB.  Not doing this will give the
709   // address an invalid value.
710   if (DestBB->hasAddressTaken()) {
711     BlockAddress *BA = BlockAddress::get(DestBB);
712     Constant *Replacement =
713       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
714     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
715                                                      BA->getType()));
716     BA->destroyConstant();
717   }
718 
719   // Anything that branched to PredBB now branches to DestBB.
720   PredBB->replaceAllUsesWith(DestBB);
721 
722   // Splice all the instructions from PredBB to DestBB.
723   PredBB->getTerminator()->eraseFromParent();
724   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
725   new UnreachableInst(PredBB->getContext(), PredBB);
726 
727   // If the PredBB is the entry block of the function, move DestBB up to
728   // become the entry block after we erase PredBB.
729   if (ReplaceEntryBB)
730     DestBB->moveAfter(PredBB);
731 
732   if (DTU) {
733     assert(PredBB->getInstList().size() == 1 &&
734            isa<UnreachableInst>(PredBB->getTerminator()) &&
735            "The successor list of PredBB isn't empty before "
736            "applying corresponding DTU updates.");
737     DTU->applyUpdatesPermissive(Updates);
738     DTU->deleteBB(PredBB);
739     // Recalculation of DomTree is needed when updating a forward DomTree and
740     // the Entry BB is replaced.
741     if (ReplaceEntryBB && DTU->hasDomTree()) {
742       // The entry block was removed and there is no external interface for
743       // the dominator tree to be notified of this change. In this corner-case
744       // we recalculate the entire tree.
745       DTU->recalculate(*(DestBB->getParent()));
746     }
747   }
748 
749   else {
750     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
751   }
752 }
753 
754 /// CanMergeValues - Return true if we can choose one of these values to use
755 /// in place of the other. Note that we will always choose the non-undef
756 /// value to keep.
757 static bool CanMergeValues(Value *First, Value *Second) {
758   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
759 }
760 
761 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
762 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
763 ///
764 /// Assumption: Succ is the single successor for BB.
765 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
766   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
767 
768   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
769                     << Succ->getName() << "\n");
770   // Shortcut, if there is only a single predecessor it must be BB and merging
771   // is always safe
772   if (Succ->getSinglePredecessor()) return true;
773 
774   // Make a list of the predecessors of BB
775   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
776 
777   // Look at all the phi nodes in Succ, to see if they present a conflict when
778   // merging these blocks
779   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
780     PHINode *PN = cast<PHINode>(I);
781 
782     // If the incoming value from BB is again a PHINode in
783     // BB which has the same incoming value for *PI as PN does, we can
784     // merge the phi nodes and then the blocks can still be merged
785     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
786     if (BBPN && BBPN->getParent() == BB) {
787       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
788         BasicBlock *IBB = PN->getIncomingBlock(PI);
789         if (BBPreds.count(IBB) &&
790             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
791                             PN->getIncomingValue(PI))) {
792           LLVM_DEBUG(dbgs()
793                      << "Can't fold, phi node " << PN->getName() << " in "
794                      << Succ->getName() << " is conflicting with "
795                      << BBPN->getName() << " with regard to common predecessor "
796                      << IBB->getName() << "\n");
797           return false;
798         }
799       }
800     } else {
801       Value* Val = PN->getIncomingValueForBlock(BB);
802       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
803         // See if the incoming value for the common predecessor is equal to the
804         // one for BB, in which case this phi node will not prevent the merging
805         // of the block.
806         BasicBlock *IBB = PN->getIncomingBlock(PI);
807         if (BBPreds.count(IBB) &&
808             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
809           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
810                             << " in " << Succ->getName()
811                             << " is conflicting with regard to common "
812                             << "predecessor " << IBB->getName() << "\n");
813           return false;
814         }
815       }
816     }
817   }
818 
819   return true;
820 }
821 
822 using PredBlockVector = SmallVector<BasicBlock *, 16>;
823 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
824 
825 /// Determines the value to use as the phi node input for a block.
826 ///
827 /// Select between \p OldVal any value that we know flows from \p BB
828 /// to a particular phi on the basis of which one (if either) is not
829 /// undef. Update IncomingValues based on the selected value.
830 ///
831 /// \param OldVal The value we are considering selecting.
832 /// \param BB The block that the value flows in from.
833 /// \param IncomingValues A map from block-to-value for other phi inputs
834 /// that we have examined.
835 ///
836 /// \returns the selected value.
837 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
838                                           IncomingValueMap &IncomingValues) {
839   if (!isa<UndefValue>(OldVal)) {
840     assert((!IncomingValues.count(BB) ||
841             IncomingValues.find(BB)->second == OldVal) &&
842            "Expected OldVal to match incoming value from BB!");
843 
844     IncomingValues.insert(std::make_pair(BB, OldVal));
845     return OldVal;
846   }
847 
848   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
849   if (It != IncomingValues.end()) return It->second;
850 
851   return OldVal;
852 }
853 
854 /// Create a map from block to value for the operands of a
855 /// given phi.
856 ///
857 /// Create a map from block to value for each non-undef value flowing
858 /// into \p PN.
859 ///
860 /// \param PN The phi we are collecting the map for.
861 /// \param IncomingValues [out] The map from block to value for this phi.
862 static void gatherIncomingValuesToPhi(PHINode *PN,
863                                       IncomingValueMap &IncomingValues) {
864   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
865     BasicBlock *BB = PN->getIncomingBlock(i);
866     Value *V = PN->getIncomingValue(i);
867 
868     if (!isa<UndefValue>(V))
869       IncomingValues.insert(std::make_pair(BB, V));
870   }
871 }
872 
873 /// Replace the incoming undef values to a phi with the values
874 /// from a block-to-value map.
875 ///
876 /// \param PN The phi we are replacing the undefs in.
877 /// \param IncomingValues A map from block to value.
878 static void replaceUndefValuesInPhi(PHINode *PN,
879                                     const IncomingValueMap &IncomingValues) {
880   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
881     Value *V = PN->getIncomingValue(i);
882 
883     if (!isa<UndefValue>(V)) continue;
884 
885     BasicBlock *BB = PN->getIncomingBlock(i);
886     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
887     if (It == IncomingValues.end()) continue;
888 
889     PN->setIncomingValue(i, It->second);
890   }
891 }
892 
893 /// Replace a value flowing from a block to a phi with
894 /// potentially multiple instances of that value flowing from the
895 /// block's predecessors to the phi.
896 ///
897 /// \param BB The block with the value flowing into the phi.
898 /// \param BBPreds The predecessors of BB.
899 /// \param PN The phi that we are updating.
900 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
901                                                 const PredBlockVector &BBPreds,
902                                                 PHINode *PN) {
903   Value *OldVal = PN->removeIncomingValue(BB, false);
904   assert(OldVal && "No entry in PHI for Pred BB!");
905 
906   IncomingValueMap IncomingValues;
907 
908   // We are merging two blocks - BB, and the block containing PN - and
909   // as a result we need to redirect edges from the predecessors of BB
910   // to go to the block containing PN, and update PN
911   // accordingly. Since we allow merging blocks in the case where the
912   // predecessor and successor blocks both share some predecessors,
913   // and where some of those common predecessors might have undef
914   // values flowing into PN, we want to rewrite those values to be
915   // consistent with the non-undef values.
916 
917   gatherIncomingValuesToPhi(PN, IncomingValues);
918 
919   // If this incoming value is one of the PHI nodes in BB, the new entries
920   // in the PHI node are the entries from the old PHI.
921   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
922     PHINode *OldValPN = cast<PHINode>(OldVal);
923     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
924       // Note that, since we are merging phi nodes and BB and Succ might
925       // have common predecessors, we could end up with a phi node with
926       // identical incoming branches. This will be cleaned up later (and
927       // will trigger asserts if we try to clean it up now, without also
928       // simplifying the corresponding conditional branch).
929       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
930       Value *PredVal = OldValPN->getIncomingValue(i);
931       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
932                                                     IncomingValues);
933 
934       // And add a new incoming value for this predecessor for the
935       // newly retargeted branch.
936       PN->addIncoming(Selected, PredBB);
937     }
938   } else {
939     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
940       // Update existing incoming values in PN for this
941       // predecessor of BB.
942       BasicBlock *PredBB = BBPreds[i];
943       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
944                                                     IncomingValues);
945 
946       // And add a new incoming value for this predecessor for the
947       // newly retargeted branch.
948       PN->addIncoming(Selected, PredBB);
949     }
950   }
951 
952   replaceUndefValuesInPhi(PN, IncomingValues);
953 }
954 
955 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
956 /// unconditional branch, and contains no instructions other than PHI nodes,
957 /// potential side-effect free intrinsics and the branch.  If possible,
958 /// eliminate BB by rewriting all the predecessors to branch to the successor
959 /// block and return true.  If we can't transform, return false.
960 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
961                                                    DomTreeUpdater *DTU) {
962   assert(BB != &BB->getParent()->getEntryBlock() &&
963          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
964 
965   // We can't eliminate infinite loops.
966   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
967   if (BB == Succ) return false;
968 
969   // Check to see if merging these blocks would cause conflicts for any of the
970   // phi nodes in BB or Succ. If not, we can safely merge.
971   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
972 
973   // Check for cases where Succ has multiple predecessors and a PHI node in BB
974   // has uses which will not disappear when the PHI nodes are merged.  It is
975   // possible to handle such cases, but difficult: it requires checking whether
976   // BB dominates Succ, which is non-trivial to calculate in the case where
977   // Succ has multiple predecessors.  Also, it requires checking whether
978   // constructing the necessary self-referential PHI node doesn't introduce any
979   // conflicts; this isn't too difficult, but the previous code for doing this
980   // was incorrect.
981   //
982   // Note that if this check finds a live use, BB dominates Succ, so BB is
983   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
984   // folding the branch isn't profitable in that case anyway.
985   if (!Succ->getSinglePredecessor()) {
986     BasicBlock::iterator BBI = BB->begin();
987     while (isa<PHINode>(*BBI)) {
988       for (Use &U : BBI->uses()) {
989         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
990           if (PN->getIncomingBlock(U) != BB)
991             return false;
992         } else {
993           return false;
994         }
995       }
996       ++BBI;
997     }
998   }
999 
1000   // We cannot fold the block if it's a branch to an already present callbr
1001   // successor because that creates duplicate successors.
1002   for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1003     if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) {
1004       if (Succ == CBI->getDefaultDest())
1005         return false;
1006       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1007         if (Succ == CBI->getIndirectDest(i))
1008           return false;
1009     }
1010   }
1011 
1012   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1013 
1014   SmallVector<DominatorTree::UpdateType, 32> Updates;
1015   if (DTU) {
1016     Updates.push_back({DominatorTree::Delete, BB, Succ});
1017     // All predecessors of BB will be moved to Succ.
1018     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1019       Updates.push_back({DominatorTree::Delete, *I, BB});
1020       // This predecessor of BB may already have Succ as a successor.
1021       if (llvm::find(successors(*I), Succ) == succ_end(*I))
1022         Updates.push_back({DominatorTree::Insert, *I, Succ});
1023     }
1024   }
1025 
1026   if (isa<PHINode>(Succ->begin())) {
1027     // If there is more than one pred of succ, and there are PHI nodes in
1028     // the successor, then we need to add incoming edges for the PHI nodes
1029     //
1030     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1031 
1032     // Loop over all of the PHI nodes in the successor of BB.
1033     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1034       PHINode *PN = cast<PHINode>(I);
1035 
1036       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1037     }
1038   }
1039 
1040   if (Succ->getSinglePredecessor()) {
1041     // BB is the only predecessor of Succ, so Succ will end up with exactly
1042     // the same predecessors BB had.
1043 
1044     // Copy over any phi, debug or lifetime instruction.
1045     BB->getTerminator()->eraseFromParent();
1046     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1047                                BB->getInstList());
1048   } else {
1049     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1050       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1051       assert(PN->use_empty() && "There shouldn't be any uses here!");
1052       PN->eraseFromParent();
1053     }
1054   }
1055 
1056   // If the unconditional branch we replaced contains llvm.loop metadata, we
1057   // add the metadata to the branch instructions in the predecessors.
1058   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1059   Instruction *TI = BB->getTerminator();
1060   if (TI)
1061     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1062       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1063         BasicBlock *Pred = *PI;
1064         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1065       }
1066 
1067   // Everything that jumped to BB now goes to Succ.
1068   BB->replaceAllUsesWith(Succ);
1069   if (!Succ->hasName()) Succ->takeName(BB);
1070 
1071   // Clear the successor list of BB to match updates applying to DTU later.
1072   if (BB->getTerminator())
1073     BB->getInstList().pop_back();
1074   new UnreachableInst(BB->getContext(), BB);
1075   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1076                            "applying corresponding DTU updates.");
1077 
1078   if (DTU) {
1079     DTU->applyUpdatesPermissive(Updates);
1080     DTU->deleteBB(BB);
1081   } else {
1082     BB->eraseFromParent(); // Delete the old basic block.
1083   }
1084   return true;
1085 }
1086 
1087 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1088 /// nodes in this block. This doesn't try to be clever about PHI nodes
1089 /// which differ only in the order of the incoming values, but instcombine
1090 /// orders them so it usually won't matter.
1091 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1092   // This implementation doesn't currently consider undef operands
1093   // specially. Theoretically, two phis which are identical except for
1094   // one having an undef where the other doesn't could be collapsed.
1095 
1096   struct PHIDenseMapInfo {
1097     static PHINode *getEmptyKey() {
1098       return DenseMapInfo<PHINode *>::getEmptyKey();
1099     }
1100 
1101     static PHINode *getTombstoneKey() {
1102       return DenseMapInfo<PHINode *>::getTombstoneKey();
1103     }
1104 
1105     static unsigned getHashValue(PHINode *PN) {
1106       // Compute a hash value on the operands. Instcombine will likely have
1107       // sorted them, which helps expose duplicates, but we have to check all
1108       // the operands to be safe in case instcombine hasn't run.
1109       return static_cast<unsigned>(hash_combine(
1110           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1111           hash_combine_range(PN->block_begin(), PN->block_end())));
1112     }
1113 
1114     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1115       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1116           RHS == getEmptyKey() || RHS == getTombstoneKey())
1117         return LHS == RHS;
1118       return LHS->isIdenticalTo(RHS);
1119     }
1120   };
1121 
1122   // Set of unique PHINodes.
1123   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1124 
1125   // Examine each PHI.
1126   bool Changed = false;
1127   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1128     auto Inserted = PHISet.insert(PN);
1129     if (!Inserted.second) {
1130       // A duplicate. Replace this PHI with its duplicate.
1131       PN->replaceAllUsesWith(*Inserted.first);
1132       PN->eraseFromParent();
1133       Changed = true;
1134 
1135       // The RAUW can change PHIs that we already visited. Start over from the
1136       // beginning.
1137       PHISet.clear();
1138       I = BB->begin();
1139     }
1140   }
1141 
1142   return Changed;
1143 }
1144 
1145 /// enforceKnownAlignment - If the specified pointer points to an object that
1146 /// we control, modify the object's alignment to PrefAlign. This isn't
1147 /// often possible though. If alignment is important, a more reliable approach
1148 /// is to simply align all global variables and allocation instructions to
1149 /// their preferred alignment from the beginning.
1150 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1151                                       unsigned PrefAlign,
1152                                       const DataLayout &DL) {
1153   assert(PrefAlign > Align);
1154 
1155   V = V->stripPointerCasts();
1156 
1157   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1158     // TODO: ideally, computeKnownBits ought to have used
1159     // AllocaInst::getAlignment() in its computation already, making
1160     // the below max redundant. But, as it turns out,
1161     // stripPointerCasts recurses through infinite layers of bitcasts,
1162     // while computeKnownBits is not allowed to traverse more than 6
1163     // levels.
1164     Align = std::max(AI->getAlignment(), Align);
1165     if (PrefAlign <= Align)
1166       return Align;
1167 
1168     // If the preferred alignment is greater than the natural stack alignment
1169     // then don't round up. This avoids dynamic stack realignment.
1170     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1171       return Align;
1172     AI->setAlignment(PrefAlign);
1173     return PrefAlign;
1174   }
1175 
1176   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1177     // TODO: as above, this shouldn't be necessary.
1178     Align = std::max(GO->getAlignment(), Align);
1179     if (PrefAlign <= Align)
1180       return Align;
1181 
1182     // If there is a large requested alignment and we can, bump up the alignment
1183     // of the global.  If the memory we set aside for the global may not be the
1184     // memory used by the final program then it is impossible for us to reliably
1185     // enforce the preferred alignment.
1186     if (!GO->canIncreaseAlignment())
1187       return Align;
1188 
1189     GO->setAlignment(PrefAlign);
1190     return PrefAlign;
1191   }
1192 
1193   return Align;
1194 }
1195 
1196 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1197                                           const DataLayout &DL,
1198                                           const Instruction *CxtI,
1199                                           AssumptionCache *AC,
1200                                           const DominatorTree *DT) {
1201   assert(V->getType()->isPointerTy() &&
1202          "getOrEnforceKnownAlignment expects a pointer!");
1203 
1204   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1205   unsigned TrailZ = Known.countMinTrailingZeros();
1206 
1207   // Avoid trouble with ridiculously large TrailZ values, such as
1208   // those computed from a null pointer.
1209   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1210 
1211   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1212 
1213   // LLVM doesn't support alignments larger than this currently.
1214   Align = std::min(Align, +Value::MaximumAlignment);
1215 
1216   if (PrefAlign > Align)
1217     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1218 
1219   // We don't need to make any adjustment.
1220   return Align;
1221 }
1222 
1223 ///===---------------------------------------------------------------------===//
1224 ///  Dbg Intrinsic utilities
1225 ///
1226 
1227 /// See if there is a dbg.value intrinsic for DIVar before I.
1228 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1229                               Instruction *I) {
1230   // Since we can't guarantee that the original dbg.declare instrinsic
1231   // is removed by LowerDbgDeclare(), we need to make sure that we are
1232   // not inserting the same dbg.value intrinsic over and over.
1233   BasicBlock::InstListType::iterator PrevI(I);
1234   if (PrevI != I->getParent()->getInstList().begin()) {
1235     --PrevI;
1236     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1237       if (DVI->getValue() == I->getOperand(0) &&
1238           DVI->getVariable() == DIVar &&
1239           DVI->getExpression() == DIExpr)
1240         return true;
1241   }
1242   return false;
1243 }
1244 
1245 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1246 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1247                              DIExpression *DIExpr,
1248                              PHINode *APN) {
1249   // Since we can't guarantee that the original dbg.declare instrinsic
1250   // is removed by LowerDbgDeclare(), we need to make sure that we are
1251   // not inserting the same dbg.value intrinsic over and over.
1252   SmallVector<DbgValueInst *, 1> DbgValues;
1253   findDbgValues(DbgValues, APN);
1254   for (auto *DVI : DbgValues) {
1255     assert(DVI->getValue() == APN);
1256     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1257       return true;
1258   }
1259   return false;
1260 }
1261 
1262 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1263 /// (or fragment of the variable) described by \p DII.
1264 ///
1265 /// This is primarily intended as a helper for the different
1266 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1267 /// converted describes an alloca'd variable, so we need to use the
1268 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1269 /// identified as covering an n-bit fragment, if the store size of i1 is at
1270 /// least n bits.
1271 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1272   const DataLayout &DL = DII->getModule()->getDataLayout();
1273   uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1274   if (auto FragmentSize = DII->getFragmentSizeInBits())
1275     return ValueSize >= *FragmentSize;
1276   // We can't always calculate the size of the DI variable (e.g. if it is a
1277   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1278   // intead.
1279   if (DII->isAddressOfVariable())
1280     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1281       if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1282         return ValueSize >= *FragmentSize;
1283   // Could not determine size of variable. Conservatively return false.
1284   return false;
1285 }
1286 
1287 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1288 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1289 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1290                                            StoreInst *SI, DIBuilder &Builder) {
1291   assert(DII->isAddressOfVariable());
1292   auto *DIVar = DII->getVariable();
1293   assert(DIVar && "Missing variable");
1294   auto *DIExpr = DII->getExpression();
1295   Value *DV = SI->getOperand(0);
1296 
1297   if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) {
1298     // FIXME: If storing to a part of the variable described by the dbg.declare,
1299     // then we want to insert a dbg.value for the corresponding fragment.
1300     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1301                       << *DII << '\n');
1302     // For now, when there is a store to parts of the variable (but we do not
1303     // know which part) we insert an dbg.value instrinsic to indicate that we
1304     // know nothing about the variable's content.
1305     DV = UndefValue::get(DV->getType());
1306     if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1307       Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1308                                       SI);
1309     return;
1310   }
1311 
1312   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1313     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1314                                     SI);
1315 }
1316 
1317 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1318 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1319 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1320                                            LoadInst *LI, DIBuilder &Builder) {
1321   auto *DIVar = DII->getVariable();
1322   auto *DIExpr = DII->getExpression();
1323   assert(DIVar && "Missing variable");
1324 
1325   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1326     return;
1327 
1328   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1329     // FIXME: If only referring to a part of the variable described by the
1330     // dbg.declare, then we want to insert a dbg.value for the corresponding
1331     // fragment.
1332     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1333                       << *DII << '\n');
1334     return;
1335   }
1336 
1337   // We are now tracking the loaded value instead of the address. In the
1338   // future if multi-location support is added to the IR, it might be
1339   // preferable to keep tracking both the loaded value and the original
1340   // address in case the alloca can not be elided.
1341   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1342       LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1343   DbgValue->insertAfter(LI);
1344 }
1345 
1346 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1347 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1348 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1349                                            PHINode *APN, DIBuilder &Builder) {
1350   auto *DIVar = DII->getVariable();
1351   auto *DIExpr = DII->getExpression();
1352   assert(DIVar && "Missing variable");
1353 
1354   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1355     return;
1356 
1357   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1358     // FIXME: If only referring to a part of the variable described by the
1359     // dbg.declare, then we want to insert a dbg.value for the corresponding
1360     // fragment.
1361     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1362                       << *DII << '\n');
1363     return;
1364   }
1365 
1366   BasicBlock *BB = APN->getParent();
1367   auto InsertionPt = BB->getFirstInsertionPt();
1368 
1369   // The block may be a catchswitch block, which does not have a valid
1370   // insertion point.
1371   // FIXME: Insert dbg.value markers in the successors when appropriate.
1372   if (InsertionPt != BB->end())
1373     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1374                                     &*InsertionPt);
1375 }
1376 
1377 /// Determine whether this alloca is either a VLA or an array.
1378 static bool isArray(AllocaInst *AI) {
1379   return AI->isArrayAllocation() ||
1380     AI->getType()->getElementType()->isArrayTy();
1381 }
1382 
1383 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1384 /// of llvm.dbg.value intrinsics.
1385 bool llvm::LowerDbgDeclare(Function &F) {
1386   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1387   SmallVector<DbgDeclareInst *, 4> Dbgs;
1388   for (auto &FI : F)
1389     for (Instruction &BI : FI)
1390       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1391         Dbgs.push_back(DDI);
1392 
1393   if (Dbgs.empty())
1394     return false;
1395 
1396   for (auto &I : Dbgs) {
1397     DbgDeclareInst *DDI = I;
1398     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1399     // If this is an alloca for a scalar variable, insert a dbg.value
1400     // at each load and store to the alloca and erase the dbg.declare.
1401     // The dbg.values allow tracking a variable even if it is not
1402     // stored on the stack, while the dbg.declare can only describe
1403     // the stack slot (and at a lexical-scope granularity). Later
1404     // passes will attempt to elide the stack slot.
1405     if (!AI || isArray(AI))
1406       continue;
1407 
1408     // A volatile load/store means that the alloca can't be elided anyway.
1409     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1410           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1411             return LI->isVolatile();
1412           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1413             return SI->isVolatile();
1414           return false;
1415         }))
1416       continue;
1417 
1418     for (auto &AIUse : AI->uses()) {
1419       User *U = AIUse.getUser();
1420       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1421         if (AIUse.getOperandNo() == 1)
1422           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1423       } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1424         ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1425       } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1426         // This is a call by-value or some other instruction that takes a
1427         // pointer to the variable. Insert a *value* intrinsic that describes
1428         // the variable by dereferencing the alloca.
1429         auto *DerefExpr =
1430             DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1431         DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1432                                     DDI->getDebugLoc(), CI);
1433       }
1434     }
1435     DDI->eraseFromParent();
1436   }
1437   return true;
1438 }
1439 
1440 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1441 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1442                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1443   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1444   if (InsertedPHIs.size() == 0)
1445     return;
1446 
1447   // Map existing PHI nodes to their dbg.values.
1448   ValueToValueMapTy DbgValueMap;
1449   for (auto &I : *BB) {
1450     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1451       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1452         DbgValueMap.insert({Loc, DbgII});
1453     }
1454   }
1455   if (DbgValueMap.size() == 0)
1456     return;
1457 
1458   // Then iterate through the new PHIs and look to see if they use one of the
1459   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1460   // propagate the info through the new PHI.
1461   LLVMContext &C = BB->getContext();
1462   for (auto PHI : InsertedPHIs) {
1463     BasicBlock *Parent = PHI->getParent();
1464     // Avoid inserting an intrinsic into an EH block.
1465     if (Parent->getFirstNonPHI()->isEHPad())
1466       continue;
1467     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1468     for (auto VI : PHI->operand_values()) {
1469       auto V = DbgValueMap.find(VI);
1470       if (V != DbgValueMap.end()) {
1471         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1472         Instruction *NewDbgII = DbgII->clone();
1473         NewDbgII->setOperand(0, PhiMAV);
1474         auto InsertionPt = Parent->getFirstInsertionPt();
1475         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1476         NewDbgII->insertBefore(&*InsertionPt);
1477       }
1478     }
1479   }
1480 }
1481 
1482 /// Finds all intrinsics declaring local variables as living in the memory that
1483 /// 'V' points to. This may include a mix of dbg.declare and
1484 /// dbg.addr intrinsics.
1485 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1486   // This function is hot. Check whether the value has any metadata to avoid a
1487   // DenseMap lookup.
1488   if (!V->isUsedByMetadata())
1489     return {};
1490   auto *L = LocalAsMetadata::getIfExists(V);
1491   if (!L)
1492     return {};
1493   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1494   if (!MDV)
1495     return {};
1496 
1497   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1498   for (User *U : MDV->users()) {
1499     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1500       if (DII->isAddressOfVariable())
1501         Declares.push_back(DII);
1502   }
1503 
1504   return Declares;
1505 }
1506 
1507 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1508   // This function is hot. Check whether the value has any metadata to avoid a
1509   // DenseMap lookup.
1510   if (!V->isUsedByMetadata())
1511     return;
1512   if (auto *L = LocalAsMetadata::getIfExists(V))
1513     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1514       for (User *U : MDV->users())
1515         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1516           DbgValues.push_back(DVI);
1517 }
1518 
1519 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1520                         Value *V) {
1521   // This function is hot. Check whether the value has any metadata to avoid a
1522   // DenseMap lookup.
1523   if (!V->isUsedByMetadata())
1524     return;
1525   if (auto *L = LocalAsMetadata::getIfExists(V))
1526     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1527       for (User *U : MDV->users())
1528         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1529           DbgUsers.push_back(DII);
1530 }
1531 
1532 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1533                              Instruction *InsertBefore, DIBuilder &Builder,
1534                              bool DerefBefore, int Offset, bool DerefAfter) {
1535   auto DbgAddrs = FindDbgAddrUses(Address);
1536   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1537     DebugLoc Loc = DII->getDebugLoc();
1538     auto *DIVar = DII->getVariable();
1539     auto *DIExpr = DII->getExpression();
1540     assert(DIVar && "Missing variable");
1541     DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1542     // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1543     // llvm.dbg.declare.
1544     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1545     if (DII == InsertBefore)
1546       InsertBefore = InsertBefore->getNextNode();
1547     DII->eraseFromParent();
1548   }
1549   return !DbgAddrs.empty();
1550 }
1551 
1552 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1553                                       DIBuilder &Builder, bool DerefBefore,
1554                                       int Offset, bool DerefAfter) {
1555   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1556                            DerefBefore, Offset, DerefAfter);
1557 }
1558 
1559 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1560                                         DIBuilder &Builder, int Offset) {
1561   DebugLoc Loc = DVI->getDebugLoc();
1562   auto *DIVar = DVI->getVariable();
1563   auto *DIExpr = DVI->getExpression();
1564   assert(DIVar && "Missing variable");
1565 
1566   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1567   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1568   // it and give up.
1569   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1570       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1571     return;
1572 
1573   // Insert the offset immediately after the first deref.
1574   // We could just change the offset argument of dbg.value, but it's unsigned...
1575   if (Offset) {
1576     SmallVector<uint64_t, 4> Ops;
1577     Ops.push_back(dwarf::DW_OP_deref);
1578     DIExpression::appendOffset(Ops, Offset);
1579     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1580     DIExpr = Builder.createExpression(Ops);
1581   }
1582 
1583   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1584   DVI->eraseFromParent();
1585 }
1586 
1587 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1588                                     DIBuilder &Builder, int Offset) {
1589   if (auto *L = LocalAsMetadata::getIfExists(AI))
1590     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1591       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1592         Use &U = *UI++;
1593         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1594           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1595       }
1596 }
1597 
1598 /// Wrap \p V in a ValueAsMetadata instance.
1599 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1600   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1601 }
1602 
1603 bool llvm::salvageDebugInfo(Instruction &I) {
1604   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1605   findDbgUsers(DbgUsers, &I);
1606   if (DbgUsers.empty())
1607     return false;
1608 
1609   return salvageDebugInfoForDbgValues(I, DbgUsers);
1610 }
1611 
1612 bool llvm::salvageDebugInfoForDbgValues(
1613     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1614   auto &Ctx = I.getContext();
1615   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1616 
1617   for (auto *DII : DbgUsers) {
1618     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1619     // are implicitly pointing out the value as a DWARF memory location
1620     // description.
1621     bool StackValue = isa<DbgValueInst>(DII);
1622 
1623     DIExpression *DIExpr =
1624         salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1625 
1626     // salvageDebugInfoImpl should fail on examining the first element of
1627     // DbgUsers, or none of them.
1628     if (!DIExpr)
1629       return false;
1630 
1631     DII->setOperand(0, wrapMD(I.getOperand(0)));
1632     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1633     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1634   }
1635 
1636   return true;
1637 }
1638 
1639 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1640                                          DIExpression *SrcDIExpr,
1641                                          bool WithStackValue) {
1642   auto &M = *I.getModule();
1643   auto &DL = M.getDataLayout();
1644 
1645   // Apply a vector of opcodes to the source DIExpression.
1646   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1647     DIExpression *DIExpr = SrcDIExpr;
1648     if (!Ops.empty()) {
1649       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1650     }
1651     return DIExpr;
1652   };
1653 
1654   // Apply the given offset to the source DIExpression.
1655   auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1656     SmallVector<uint64_t, 8> Ops;
1657     DIExpression::appendOffset(Ops, Offset);
1658     return doSalvage(Ops);
1659   };
1660 
1661   // initializer-list helper for applying operators to the source DIExpression.
1662   auto applyOps =
1663       [&](std::initializer_list<uint64_t> Opcodes) -> DIExpression * {
1664     SmallVector<uint64_t, 8> Ops(Opcodes);
1665     return doSalvage(Ops);
1666   };
1667 
1668   if (auto *CI = dyn_cast<CastInst>(&I)) {
1669     if (!CI->isNoopCast(DL))
1670       return nullptr;
1671 
1672     // No-op casts are irrelevant for debug info.
1673     return SrcDIExpr;
1674   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1675     unsigned BitWidth =
1676         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1677     // Rewrite a constant GEP into a DIExpression.
1678     APInt Offset(BitWidth, 0);
1679     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1680       return applyOffset(Offset.getSExtValue());
1681     } else {
1682       return nullptr;
1683     }
1684   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1685     // Rewrite binary operations with constant integer operands.
1686     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1687     if (!ConstInt || ConstInt->getBitWidth() > 64)
1688       return nullptr;
1689 
1690     uint64_t Val = ConstInt->getSExtValue();
1691     switch (BI->getOpcode()) {
1692     case Instruction::Add:
1693       return applyOffset(Val);
1694     case Instruction::Sub:
1695       return applyOffset(-int64_t(Val));
1696     case Instruction::Mul:
1697       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1698     case Instruction::SDiv:
1699       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1700     case Instruction::SRem:
1701       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1702     case Instruction::Or:
1703       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1704     case Instruction::And:
1705       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1706     case Instruction::Xor:
1707       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1708     case Instruction::Shl:
1709       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1710     case Instruction::LShr:
1711       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1712     case Instruction::AShr:
1713       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1714     default:
1715       // TODO: Salvage constants from each kind of binop we know about.
1716       return nullptr;
1717     }
1718     // *Not* to do: we should not attempt to salvage load instructions,
1719     // because the validity and lifetime of a dbg.value containing
1720     // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1721   }
1722   return nullptr;
1723 }
1724 
1725 /// A replacement for a dbg.value expression.
1726 using DbgValReplacement = Optional<DIExpression *>;
1727 
1728 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1729 /// possibly moving/deleting users to prevent use-before-def. Returns true if
1730 /// changes are made.
1731 static bool rewriteDebugUsers(
1732     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1733     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1734   // Find debug users of From.
1735   SmallVector<DbgVariableIntrinsic *, 1> Users;
1736   findDbgUsers(Users, &From);
1737   if (Users.empty())
1738     return false;
1739 
1740   // Prevent use-before-def of To.
1741   bool Changed = false;
1742   SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage;
1743   if (isa<Instruction>(&To)) {
1744     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1745 
1746     for (auto *DII : Users) {
1747       // It's common to see a debug user between From and DomPoint. Move it
1748       // after DomPoint to preserve the variable update without any reordering.
1749       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1750         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1751         DII->moveAfter(&DomPoint);
1752         Changed = true;
1753 
1754       // Users which otherwise aren't dominated by the replacement value must
1755       // be salvaged or deleted.
1756       } else if (!DT.dominates(&DomPoint, DII)) {
1757         DeleteOrSalvage.insert(DII);
1758       }
1759     }
1760   }
1761 
1762   // Update debug users without use-before-def risk.
1763   for (auto *DII : Users) {
1764     if (DeleteOrSalvage.count(DII))
1765       continue;
1766 
1767     LLVMContext &Ctx = DII->getContext();
1768     DbgValReplacement DVR = RewriteExpr(*DII);
1769     if (!DVR)
1770       continue;
1771 
1772     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1773     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1774     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1775     Changed = true;
1776   }
1777 
1778   if (!DeleteOrSalvage.empty()) {
1779     // Try to salvage the remaining debug users.
1780     Changed |= salvageDebugInfo(From);
1781 
1782     // Delete the debug users which weren't salvaged.
1783     for (auto *DII : DeleteOrSalvage) {
1784       if (DII->getVariableLocation() == &From) {
1785         LLVM_DEBUG(dbgs() << "Erased UseBeforeDef:  " << *DII << '\n');
1786         DII->eraseFromParent();
1787         Changed = true;
1788       }
1789     }
1790   }
1791 
1792   return Changed;
1793 }
1794 
1795 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1796 /// losslessly preserve the bits and semantics of the value. This predicate is
1797 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1798 ///
1799 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1800 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1801 /// and also does not allow lossless pointer <-> integer conversions.
1802 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1803                                          Type *ToTy) {
1804   // Trivially compatible types.
1805   if (FromTy == ToTy)
1806     return true;
1807 
1808   // Handle compatible pointer <-> integer conversions.
1809   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1810     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1811     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1812                               !DL.isNonIntegralPointerType(ToTy);
1813     return SameSize && LosslessConversion;
1814   }
1815 
1816   // TODO: This is not exhaustive.
1817   return false;
1818 }
1819 
1820 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1821                                  Instruction &DomPoint, DominatorTree &DT) {
1822   // Exit early if From has no debug users.
1823   if (!From.isUsedByMetadata())
1824     return false;
1825 
1826   assert(&From != &To && "Can't replace something with itself");
1827 
1828   Type *FromTy = From.getType();
1829   Type *ToTy = To.getType();
1830 
1831   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1832     return DII.getExpression();
1833   };
1834 
1835   // Handle no-op conversions.
1836   Module &M = *From.getModule();
1837   const DataLayout &DL = M.getDataLayout();
1838   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1839     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1840 
1841   // Handle integer-to-integer widening and narrowing.
1842   // FIXME: Use DW_OP_convert when it's available everywhere.
1843   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1844     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1845     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1846     assert(FromBits != ToBits && "Unexpected no-op conversion");
1847 
1848     // When the width of the result grows, assume that a debugger will only
1849     // access the low `FromBits` bits when inspecting the source variable.
1850     if (FromBits < ToBits)
1851       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1852 
1853     // The width of the result has shrunk. Use sign/zero extension to describe
1854     // the source variable's high bits.
1855     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1856       DILocalVariable *Var = DII.getVariable();
1857 
1858       // Without knowing signedness, sign/zero extension isn't possible.
1859       auto Signedness = Var->getSignedness();
1860       if (!Signedness)
1861         return None;
1862 
1863       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1864 
1865       if (!Signed) {
1866         // In the unsigned case, assume that a debugger will initialize the
1867         // high bits to 0 and do a no-op conversion.
1868         return Identity(DII);
1869       } else {
1870         // In the signed case, the high bits are given by sign extension, i.e:
1871         //   (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1)
1872         // Calculate the high bits and OR them together with the low bits.
1873         SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu,
1874                                       (ToBits - 1), dwarf::DW_OP_shr,
1875                                       dwarf::DW_OP_lit0, dwarf::DW_OP_not,
1876                                       dwarf::DW_OP_mul, dwarf::DW_OP_or});
1877         return DIExpression::appendToStack(DII.getExpression(), Ops);
1878       }
1879     };
1880     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1881   }
1882 
1883   // TODO: Floating-point conversions, vectors.
1884   return false;
1885 }
1886 
1887 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1888   unsigned NumDeadInst = 0;
1889   // Delete the instructions backwards, as it has a reduced likelihood of
1890   // having to update as many def-use and use-def chains.
1891   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1892   while (EndInst != &BB->front()) {
1893     // Delete the next to last instruction.
1894     Instruction *Inst = &*--EndInst->getIterator();
1895     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1896       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1897     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1898       EndInst = Inst;
1899       continue;
1900     }
1901     if (!isa<DbgInfoIntrinsic>(Inst))
1902       ++NumDeadInst;
1903     Inst->eraseFromParent();
1904   }
1905   return NumDeadInst;
1906 }
1907 
1908 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1909                                    bool PreserveLCSSA, DomTreeUpdater *DTU) {
1910   BasicBlock *BB = I->getParent();
1911   std::vector <DominatorTree::UpdateType> Updates;
1912 
1913   // Loop over all of the successors, removing BB's entry from any PHI
1914   // nodes.
1915   if (DTU)
1916     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1917   for (BasicBlock *Successor : successors(BB)) {
1918     Successor->removePredecessor(BB, PreserveLCSSA);
1919     if (DTU)
1920       Updates.push_back({DominatorTree::Delete, BB, Successor});
1921   }
1922   // Insert a call to llvm.trap right before this.  This turns the undefined
1923   // behavior into a hard fail instead of falling through into random code.
1924   if (UseLLVMTrap) {
1925     Function *TrapFn =
1926       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1927     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1928     CallTrap->setDebugLoc(I->getDebugLoc());
1929   }
1930   auto *UI = new UnreachableInst(I->getContext(), I);
1931   UI->setDebugLoc(I->getDebugLoc());
1932 
1933   // All instructions after this are dead.
1934   unsigned NumInstrsRemoved = 0;
1935   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1936   while (BBI != BBE) {
1937     if (!BBI->use_empty())
1938       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1939     BB->getInstList().erase(BBI++);
1940     ++NumInstrsRemoved;
1941   }
1942   if (DTU)
1943     DTU->applyUpdatesPermissive(Updates);
1944   return NumInstrsRemoved;
1945 }
1946 
1947 /// changeToCall - Convert the specified invoke into a normal call.
1948 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) {
1949   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1950   SmallVector<OperandBundleDef, 1> OpBundles;
1951   II->getOperandBundlesAsDefs(OpBundles);
1952   CallInst *NewCall = CallInst::Create(
1953       II->getFunctionType(), II->getCalledValue(), Args, OpBundles, "", II);
1954   NewCall->takeName(II);
1955   NewCall->setCallingConv(II->getCallingConv());
1956   NewCall->setAttributes(II->getAttributes());
1957   NewCall->setDebugLoc(II->getDebugLoc());
1958   NewCall->copyMetadata(*II);
1959   II->replaceAllUsesWith(NewCall);
1960 
1961   // Follow the call by a branch to the normal destination.
1962   BasicBlock *NormalDestBB = II->getNormalDest();
1963   BranchInst::Create(NormalDestBB, II);
1964 
1965   // Update PHI nodes in the unwind destination
1966   BasicBlock *BB = II->getParent();
1967   BasicBlock *UnwindDestBB = II->getUnwindDest();
1968   UnwindDestBB->removePredecessor(BB);
1969   II->eraseFromParent();
1970   if (DTU)
1971     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}});
1972 }
1973 
1974 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1975                                                    BasicBlock *UnwindEdge) {
1976   BasicBlock *BB = CI->getParent();
1977 
1978   // Convert this function call into an invoke instruction.  First, split the
1979   // basic block.
1980   BasicBlock *Split =
1981       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1982 
1983   // Delete the unconditional branch inserted by splitBasicBlock
1984   BB->getInstList().pop_back();
1985 
1986   // Create the new invoke instruction.
1987   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1988   SmallVector<OperandBundleDef, 1> OpBundles;
1989 
1990   CI->getOperandBundlesAsDefs(OpBundles);
1991 
1992   // Note: we're round tripping operand bundles through memory here, and that
1993   // can potentially be avoided with a cleverer API design that we do not have
1994   // as of this time.
1995 
1996   InvokeInst *II =
1997       InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split,
1998                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
1999   II->setDebugLoc(CI->getDebugLoc());
2000   II->setCallingConv(CI->getCallingConv());
2001   II->setAttributes(CI->getAttributes());
2002 
2003   // Make sure that anything using the call now uses the invoke!  This also
2004   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2005   CI->replaceAllUsesWith(II);
2006 
2007   // Delete the original call
2008   Split->getInstList().pop_front();
2009   return Split;
2010 }
2011 
2012 static bool markAliveBlocks(Function &F,
2013                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2014                             DomTreeUpdater *DTU = nullptr) {
2015   SmallVector<BasicBlock*, 128> Worklist;
2016   BasicBlock *BB = &F.front();
2017   Worklist.push_back(BB);
2018   Reachable.insert(BB);
2019   bool Changed = false;
2020   do {
2021     BB = Worklist.pop_back_val();
2022 
2023     // Do a quick scan of the basic block, turning any obviously unreachable
2024     // instructions into LLVM unreachable insts.  The instruction combining pass
2025     // canonicalizes unreachable insts into stores to null or undef.
2026     for (Instruction &I : *BB) {
2027       if (auto *CI = dyn_cast<CallInst>(&I)) {
2028         Value *Callee = CI->getCalledValue();
2029         // Handle intrinsic calls.
2030         if (Function *F = dyn_cast<Function>(Callee)) {
2031           auto IntrinsicID = F->getIntrinsicID();
2032           // Assumptions that are known to be false are equivalent to
2033           // unreachable. Also, if the condition is undefined, then we make the
2034           // choice most beneficial to the optimizer, and choose that to also be
2035           // unreachable.
2036           if (IntrinsicID == Intrinsic::assume) {
2037             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2038               // Don't insert a call to llvm.trap right before the unreachable.
2039               changeToUnreachable(CI, false, false, DTU);
2040               Changed = true;
2041               break;
2042             }
2043           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2044             // A call to the guard intrinsic bails out of the current
2045             // compilation unit if the predicate passed to it is false. If the
2046             // predicate is a constant false, then we know the guard will bail
2047             // out of the current compile unconditionally, so all code following
2048             // it is dead.
2049             //
2050             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2051             // guards to treat `undef` as `false` since a guard on `undef` can
2052             // still be useful for widening.
2053             if (match(CI->getArgOperand(0), m_Zero()))
2054               if (!isa<UnreachableInst>(CI->getNextNode())) {
2055                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2056                                     false, DTU);
2057                 Changed = true;
2058                 break;
2059               }
2060           }
2061         } else if ((isa<ConstantPointerNull>(Callee) &&
2062                     !NullPointerIsDefined(CI->getFunction())) ||
2063                    isa<UndefValue>(Callee)) {
2064           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2065           Changed = true;
2066           break;
2067         }
2068         if (CI->doesNotReturn()) {
2069           // If we found a call to a no-return function, insert an unreachable
2070           // instruction after it.  Make sure there isn't *already* one there
2071           // though.
2072           if (!isa<UnreachableInst>(CI->getNextNode())) {
2073             // Don't insert a call to llvm.trap right before the unreachable.
2074             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2075             Changed = true;
2076           }
2077           break;
2078         }
2079       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2080         // Store to undef and store to null are undefined and used to signal
2081         // that they should be changed to unreachable by passes that can't
2082         // modify the CFG.
2083 
2084         // Don't touch volatile stores.
2085         if (SI->isVolatile()) continue;
2086 
2087         Value *Ptr = SI->getOperand(1);
2088 
2089         if (isa<UndefValue>(Ptr) ||
2090             (isa<ConstantPointerNull>(Ptr) &&
2091              !NullPointerIsDefined(SI->getFunction(),
2092                                    SI->getPointerAddressSpace()))) {
2093           changeToUnreachable(SI, true, false, DTU);
2094           Changed = true;
2095           break;
2096         }
2097       }
2098     }
2099 
2100     Instruction *Terminator = BB->getTerminator();
2101     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2102       // Turn invokes that call 'nounwind' functions into ordinary calls.
2103       Value *Callee = II->getCalledValue();
2104       if ((isa<ConstantPointerNull>(Callee) &&
2105            !NullPointerIsDefined(BB->getParent())) ||
2106           isa<UndefValue>(Callee)) {
2107         changeToUnreachable(II, true, false, DTU);
2108         Changed = true;
2109       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2110         if (II->use_empty() && II->onlyReadsMemory()) {
2111           // jump to the normal destination branch.
2112           BasicBlock *NormalDestBB = II->getNormalDest();
2113           BasicBlock *UnwindDestBB = II->getUnwindDest();
2114           BranchInst::Create(NormalDestBB, II);
2115           UnwindDestBB->removePredecessor(II->getParent());
2116           II->eraseFromParent();
2117           if (DTU)
2118             DTU->applyUpdatesPermissive(
2119                 {{DominatorTree::Delete, BB, UnwindDestBB}});
2120         } else
2121           changeToCall(II, DTU);
2122         Changed = true;
2123       }
2124     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2125       // Remove catchpads which cannot be reached.
2126       struct CatchPadDenseMapInfo {
2127         static CatchPadInst *getEmptyKey() {
2128           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2129         }
2130 
2131         static CatchPadInst *getTombstoneKey() {
2132           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2133         }
2134 
2135         static unsigned getHashValue(CatchPadInst *CatchPad) {
2136           return static_cast<unsigned>(hash_combine_range(
2137               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2138         }
2139 
2140         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2141           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2142               RHS == getEmptyKey() || RHS == getTombstoneKey())
2143             return LHS == RHS;
2144           return LHS->isIdenticalTo(RHS);
2145         }
2146       };
2147 
2148       // Set of unique CatchPads.
2149       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2150                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2151           HandlerSet;
2152       detail::DenseSetEmpty Empty;
2153       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2154                                              E = CatchSwitch->handler_end();
2155            I != E; ++I) {
2156         BasicBlock *HandlerBB = *I;
2157         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2158         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2159           CatchSwitch->removeHandler(I);
2160           --I;
2161           --E;
2162           Changed = true;
2163         }
2164       }
2165     }
2166 
2167     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2168     for (BasicBlock *Successor : successors(BB))
2169       if (Reachable.insert(Successor).second)
2170         Worklist.push_back(Successor);
2171   } while (!Worklist.empty());
2172   return Changed;
2173 }
2174 
2175 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2176   Instruction *TI = BB->getTerminator();
2177 
2178   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2179     changeToCall(II, DTU);
2180     return;
2181   }
2182 
2183   Instruction *NewTI;
2184   BasicBlock *UnwindDest;
2185 
2186   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2187     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2188     UnwindDest = CRI->getUnwindDest();
2189   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2190     auto *NewCatchSwitch = CatchSwitchInst::Create(
2191         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2192         CatchSwitch->getName(), CatchSwitch);
2193     for (BasicBlock *PadBB : CatchSwitch->handlers())
2194       NewCatchSwitch->addHandler(PadBB);
2195 
2196     NewTI = NewCatchSwitch;
2197     UnwindDest = CatchSwitch->getUnwindDest();
2198   } else {
2199     llvm_unreachable("Could not find unwind successor");
2200   }
2201 
2202   NewTI->takeName(TI);
2203   NewTI->setDebugLoc(TI->getDebugLoc());
2204   UnwindDest->removePredecessor(BB);
2205   TI->replaceAllUsesWith(NewTI);
2206   TI->eraseFromParent();
2207   if (DTU)
2208     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}});
2209 }
2210 
2211 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2212 /// if they are in a dead cycle.  Return true if a change was made, false
2213 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
2214 /// after modifying the CFG.
2215 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
2216                                    DomTreeUpdater *DTU,
2217                                    MemorySSAUpdater *MSSAU) {
2218   SmallPtrSet<BasicBlock*, 16> Reachable;
2219   bool Changed = markAliveBlocks(F, Reachable, DTU);
2220 
2221   // If there are unreachable blocks in the CFG...
2222   if (Reachable.size() == F.size())
2223     return Changed;
2224 
2225   assert(Reachable.size() < F.size());
2226   NumRemoved += F.size()-Reachable.size();
2227 
2228   SmallPtrSet<BasicBlock *, 16> DeadBlockSet;
2229   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
2230     auto *BB = &*I;
2231     if (Reachable.count(BB))
2232       continue;
2233     DeadBlockSet.insert(BB);
2234   }
2235 
2236   if (MSSAU)
2237     MSSAU->removeBlocks(DeadBlockSet);
2238 
2239   // Loop over all of the basic blocks that are not reachable, dropping all of
2240   // their internal references. Update DTU and LVI if available.
2241   std::vector<DominatorTree::UpdateType> Updates;
2242   for (auto *BB : DeadBlockSet) {
2243     for (BasicBlock *Successor : successors(BB)) {
2244       if (!DeadBlockSet.count(Successor))
2245         Successor->removePredecessor(BB);
2246       if (DTU)
2247         Updates.push_back({DominatorTree::Delete, BB, Successor});
2248     }
2249     if (LVI)
2250       LVI->eraseBlock(BB);
2251     BB->dropAllReferences();
2252   }
2253   for (Function::iterator I = ++F.begin(); I != F.end();) {
2254     auto *BB = &*I;
2255     if (Reachable.count(BB)) {
2256       ++I;
2257       continue;
2258     }
2259     if (DTU) {
2260       // Remove the terminator of BB to clear the successor list of BB.
2261       if (BB->getTerminator())
2262         BB->getInstList().pop_back();
2263       new UnreachableInst(BB->getContext(), BB);
2264       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2265                                "applying corresponding DTU updates.");
2266       ++I;
2267     } else {
2268       I = F.getBasicBlockList().erase(I);
2269     }
2270   }
2271 
2272   if (DTU) {
2273     DTU->applyUpdatesPermissive(Updates);
2274     bool Deleted = false;
2275     for (auto *BB : DeadBlockSet) {
2276       if (DTU->isBBPendingDeletion(BB))
2277         --NumRemoved;
2278       else
2279         Deleted = true;
2280       DTU->deleteBB(BB);
2281     }
2282     if (!Deleted)
2283       return false;
2284   }
2285   return true;
2286 }
2287 
2288 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2289                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2290   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2291   K->dropUnknownNonDebugMetadata(KnownIDs);
2292   K->getAllMetadataOtherThanDebugLoc(Metadata);
2293   for (const auto &MD : Metadata) {
2294     unsigned Kind = MD.first;
2295     MDNode *JMD = J->getMetadata(Kind);
2296     MDNode *KMD = MD.second;
2297 
2298     switch (Kind) {
2299       default:
2300         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2301         break;
2302       case LLVMContext::MD_dbg:
2303         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2304       case LLVMContext::MD_tbaa:
2305         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2306         break;
2307       case LLVMContext::MD_alias_scope:
2308         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2309         break;
2310       case LLVMContext::MD_noalias:
2311       case LLVMContext::MD_mem_parallel_loop_access:
2312         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2313         break;
2314       case LLVMContext::MD_access_group:
2315         K->setMetadata(LLVMContext::MD_access_group,
2316                        intersectAccessGroups(K, J));
2317         break;
2318       case LLVMContext::MD_range:
2319 
2320         // If K does move, use most generic range. Otherwise keep the range of
2321         // K.
2322         if (DoesKMove)
2323           // FIXME: If K does move, we should drop the range info and nonnull.
2324           //        Currently this function is used with DoesKMove in passes
2325           //        doing hoisting/sinking and the current behavior of using the
2326           //        most generic range is correct in those cases.
2327           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2328         break;
2329       case LLVMContext::MD_fpmath:
2330         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2331         break;
2332       case LLVMContext::MD_invariant_load:
2333         // Only set the !invariant.load if it is present in both instructions.
2334         K->setMetadata(Kind, JMD);
2335         break;
2336       case LLVMContext::MD_nonnull:
2337         // If K does move, keep nonull if it is present in both instructions.
2338         if (DoesKMove)
2339           K->setMetadata(Kind, JMD);
2340         break;
2341       case LLVMContext::MD_invariant_group:
2342         // Preserve !invariant.group in K.
2343         break;
2344       case LLVMContext::MD_align:
2345         K->setMetadata(Kind,
2346           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2347         break;
2348       case LLVMContext::MD_dereferenceable:
2349       case LLVMContext::MD_dereferenceable_or_null:
2350         K->setMetadata(Kind,
2351           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2352         break;
2353     }
2354   }
2355   // Set !invariant.group from J if J has it. If both instructions have it
2356   // then we will just pick it from J - even when they are different.
2357   // Also make sure that K is load or store - f.e. combining bitcast with load
2358   // could produce bitcast with invariant.group metadata, which is invalid.
2359   // FIXME: we should try to preserve both invariant.group md if they are
2360   // different, but right now instruction can only have one invariant.group.
2361   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2362     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2363       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2364 }
2365 
2366 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2367                                  bool KDominatesJ) {
2368   unsigned KnownIDs[] = {
2369       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2370       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2371       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2372       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2373       LLVMContext::MD_dereferenceable,
2374       LLVMContext::MD_dereferenceable_or_null,
2375       LLVMContext::MD_access_group};
2376   combineMetadata(K, J, KnownIDs, KDominatesJ);
2377 }
2378 
2379 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2380   auto *ReplInst = dyn_cast<Instruction>(Repl);
2381   if (!ReplInst)
2382     return;
2383 
2384   // Patch the replacement so that it is not more restrictive than the value
2385   // being replaced.
2386   // Note that if 'I' is a load being replaced by some operation,
2387   // for example, by an arithmetic operation, then andIRFlags()
2388   // would just erase all math flags from the original arithmetic
2389   // operation, which is clearly not wanted and not needed.
2390   if (!isa<LoadInst>(I))
2391     ReplInst->andIRFlags(I);
2392 
2393   // FIXME: If both the original and replacement value are part of the
2394   // same control-flow region (meaning that the execution of one
2395   // guarantees the execution of the other), then we can combine the
2396   // noalias scopes here and do better than the general conservative
2397   // answer used in combineMetadata().
2398 
2399   // In general, GVN unifies expressions over different control-flow
2400   // regions, and so we need a conservative combination of the noalias
2401   // scopes.
2402   static const unsigned KnownIDs[] = {
2403       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2404       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2405       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2406       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2407       LLVMContext::MD_access_group};
2408   combineMetadata(ReplInst, I, KnownIDs, false);
2409 }
2410 
2411 template <typename RootType, typename DominatesFn>
2412 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2413                                          const RootType &Root,
2414                                          const DominatesFn &Dominates) {
2415   assert(From->getType() == To->getType());
2416 
2417   unsigned Count = 0;
2418   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2419        UI != UE;) {
2420     Use &U = *UI++;
2421     if (!Dominates(Root, U))
2422       continue;
2423     U.set(To);
2424     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2425                       << "' as " << *To << " in " << *U << "\n");
2426     ++Count;
2427   }
2428   return Count;
2429 }
2430 
2431 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2432    assert(From->getType() == To->getType());
2433    auto *BB = From->getParent();
2434    unsigned Count = 0;
2435 
2436   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2437        UI != UE;) {
2438     Use &U = *UI++;
2439     auto *I = cast<Instruction>(U.getUser());
2440     if (I->getParent() == BB)
2441       continue;
2442     U.set(To);
2443     ++Count;
2444   }
2445   return Count;
2446 }
2447 
2448 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2449                                         DominatorTree &DT,
2450                                         const BasicBlockEdge &Root) {
2451   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2452     return DT.dominates(Root, U);
2453   };
2454   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2455 }
2456 
2457 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2458                                         DominatorTree &DT,
2459                                         const BasicBlock *BB) {
2460   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2461     auto *I = cast<Instruction>(U.getUser())->getParent();
2462     return DT.properlyDominates(BB, I);
2463   };
2464   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2465 }
2466 
2467 bool llvm::callsGCLeafFunction(const CallBase *Call,
2468                                const TargetLibraryInfo &TLI) {
2469   // Check if the function is specifically marked as a gc leaf function.
2470   if (Call->hasFnAttr("gc-leaf-function"))
2471     return true;
2472   if (const Function *F = Call->getCalledFunction()) {
2473     if (F->hasFnAttribute("gc-leaf-function"))
2474       return true;
2475 
2476     if (auto IID = F->getIntrinsicID())
2477       // Most LLVM intrinsics do not take safepoints.
2478       return IID != Intrinsic::experimental_gc_statepoint &&
2479              IID != Intrinsic::experimental_deoptimize;
2480   }
2481 
2482   // Lib calls can be materialized by some passes, and won't be
2483   // marked as 'gc-leaf-function.' All available Libcalls are
2484   // GC-leaf.
2485   LibFunc LF;
2486   if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) {
2487     return TLI.has(LF);
2488   }
2489 
2490   return false;
2491 }
2492 
2493 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2494                                LoadInst &NewLI) {
2495   auto *NewTy = NewLI.getType();
2496 
2497   // This only directly applies if the new type is also a pointer.
2498   if (NewTy->isPointerTy()) {
2499     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2500     return;
2501   }
2502 
2503   // The only other translation we can do is to integral loads with !range
2504   // metadata.
2505   if (!NewTy->isIntegerTy())
2506     return;
2507 
2508   MDBuilder MDB(NewLI.getContext());
2509   const Value *Ptr = OldLI.getPointerOperand();
2510   auto *ITy = cast<IntegerType>(NewTy);
2511   auto *NullInt = ConstantExpr::getPtrToInt(
2512       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2513   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2514   NewLI.setMetadata(LLVMContext::MD_range,
2515                     MDB.createRange(NonNullInt, NullInt));
2516 }
2517 
2518 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2519                              MDNode *N, LoadInst &NewLI) {
2520   auto *NewTy = NewLI.getType();
2521 
2522   // Give up unless it is converted to a pointer where there is a single very
2523   // valuable mapping we can do reliably.
2524   // FIXME: It would be nice to propagate this in more ways, but the type
2525   // conversions make it hard.
2526   if (!NewTy->isPointerTy())
2527     return;
2528 
2529   unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2530   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2531     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2532     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2533   }
2534 }
2535 
2536 void llvm::dropDebugUsers(Instruction &I) {
2537   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2538   findDbgUsers(DbgUsers, &I);
2539   for (auto *DII : DbgUsers)
2540     DII->eraseFromParent();
2541 }
2542 
2543 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2544                                     BasicBlock *BB) {
2545   // Since we are moving the instructions out of its basic block, we do not
2546   // retain their original debug locations (DILocations) and debug intrinsic
2547   // instructions.
2548   //
2549   // Doing so would degrade the debugging experience and adversely affect the
2550   // accuracy of profiling information.
2551   //
2552   // Currently, when hoisting the instructions, we take the following actions:
2553   // - Remove their debug intrinsic instructions.
2554   // - Set their debug locations to the values from the insertion point.
2555   //
2556   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2557   // need to be deleted, is because there will not be any instructions with a
2558   // DILocation in either branch left after performing the transformation. We
2559   // can only insert a dbg.value after the two branches are joined again.
2560   //
2561   // See PR38762, PR39243 for more details.
2562   //
2563   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2564   // encode predicated DIExpressions that yield different results on different
2565   // code paths.
2566   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2567     Instruction *I = &*II;
2568     I->dropUnknownNonDebugMetadata();
2569     if (I->isUsedByMetadata())
2570       dropDebugUsers(*I);
2571     if (isa<DbgInfoIntrinsic>(I)) {
2572       // Remove DbgInfo Intrinsics.
2573       II = I->eraseFromParent();
2574       continue;
2575     }
2576     I->setDebugLoc(InsertPt->getDebugLoc());
2577     ++II;
2578   }
2579   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2580                                  BB->begin(),
2581                                  BB->getTerminator()->getIterator());
2582 }
2583 
2584 namespace {
2585 
2586 /// A potential constituent of a bitreverse or bswap expression. See
2587 /// collectBitParts for a fuller explanation.
2588 struct BitPart {
2589   BitPart(Value *P, unsigned BW) : Provider(P) {
2590     Provenance.resize(BW);
2591   }
2592 
2593   /// The Value that this is a bitreverse/bswap of.
2594   Value *Provider;
2595 
2596   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2597   /// in Provider becomes bit B in the result of this expression.
2598   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2599 
2600   enum { Unset = -1 };
2601 };
2602 
2603 } // end anonymous namespace
2604 
2605 /// Analyze the specified subexpression and see if it is capable of providing
2606 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2607 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2608 /// the output of the expression came from a corresponding bit in some other
2609 /// value. This function is recursive, and the end result is a mapping of
2610 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2611 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2612 ///
2613 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2614 /// that the expression deposits the low byte of %X into the high byte of the
2615 /// result and that all other bits are zero. This expression is accepted and a
2616 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2617 /// [0-7].
2618 ///
2619 /// To avoid revisiting values, the BitPart results are memoized into the
2620 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2621 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2622 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2623 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2624 /// type instead to provide the same functionality.
2625 ///
2626 /// Because we pass around references into \c BPS, we must use a container that
2627 /// does not invalidate internal references (std::map instead of DenseMap).
2628 static const Optional<BitPart> &
2629 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2630                 std::map<Value *, Optional<BitPart>> &BPS) {
2631   auto I = BPS.find(V);
2632   if (I != BPS.end())
2633     return I->second;
2634 
2635   auto &Result = BPS[V] = None;
2636   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2637 
2638   if (Instruction *I = dyn_cast<Instruction>(V)) {
2639     // If this is an or instruction, it may be an inner node of the bswap.
2640     if (I->getOpcode() == Instruction::Or) {
2641       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2642                                 MatchBitReversals, BPS);
2643       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2644                                 MatchBitReversals, BPS);
2645       if (!A || !B)
2646         return Result;
2647 
2648       // Try and merge the two together.
2649       if (!A->Provider || A->Provider != B->Provider)
2650         return Result;
2651 
2652       Result = BitPart(A->Provider, BitWidth);
2653       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2654         if (A->Provenance[i] != BitPart::Unset &&
2655             B->Provenance[i] != BitPart::Unset &&
2656             A->Provenance[i] != B->Provenance[i])
2657           return Result = None;
2658 
2659         if (A->Provenance[i] == BitPart::Unset)
2660           Result->Provenance[i] = B->Provenance[i];
2661         else
2662           Result->Provenance[i] = A->Provenance[i];
2663       }
2664 
2665       return Result;
2666     }
2667 
2668     // If this is a logical shift by a constant, recurse then shift the result.
2669     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2670       unsigned BitShift =
2671           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2672       // Ensure the shift amount is defined.
2673       if (BitShift > BitWidth)
2674         return Result;
2675 
2676       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2677                                   MatchBitReversals, BPS);
2678       if (!Res)
2679         return Result;
2680       Result = Res;
2681 
2682       // Perform the "shift" on BitProvenance.
2683       auto &P = Result->Provenance;
2684       if (I->getOpcode() == Instruction::Shl) {
2685         P.erase(std::prev(P.end(), BitShift), P.end());
2686         P.insert(P.begin(), BitShift, BitPart::Unset);
2687       } else {
2688         P.erase(P.begin(), std::next(P.begin(), BitShift));
2689         P.insert(P.end(), BitShift, BitPart::Unset);
2690       }
2691 
2692       return Result;
2693     }
2694 
2695     // If this is a logical 'and' with a mask that clears bits, recurse then
2696     // unset the appropriate bits.
2697     if (I->getOpcode() == Instruction::And &&
2698         isa<ConstantInt>(I->getOperand(1))) {
2699       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2700       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2701 
2702       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2703       // early exit.
2704       unsigned NumMaskedBits = AndMask.countPopulation();
2705       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2706         return Result;
2707 
2708       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2709                                   MatchBitReversals, BPS);
2710       if (!Res)
2711         return Result;
2712       Result = Res;
2713 
2714       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2715         // If the AndMask is zero for this bit, clear the bit.
2716         if ((AndMask & Bit) == 0)
2717           Result->Provenance[i] = BitPart::Unset;
2718       return Result;
2719     }
2720 
2721     // If this is a zext instruction zero extend the result.
2722     if (I->getOpcode() == Instruction::ZExt) {
2723       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2724                                   MatchBitReversals, BPS);
2725       if (!Res)
2726         return Result;
2727 
2728       Result = BitPart(Res->Provider, BitWidth);
2729       auto NarrowBitWidth =
2730           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2731       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2732         Result->Provenance[i] = Res->Provenance[i];
2733       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2734         Result->Provenance[i] = BitPart::Unset;
2735       return Result;
2736     }
2737   }
2738 
2739   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2740   // the input value to the bswap/bitreverse.
2741   Result = BitPart(V, BitWidth);
2742   for (unsigned i = 0; i < BitWidth; ++i)
2743     Result->Provenance[i] = i;
2744   return Result;
2745 }
2746 
2747 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2748                                           unsigned BitWidth) {
2749   if (From % 8 != To % 8)
2750     return false;
2751   // Convert from bit indices to byte indices and check for a byte reversal.
2752   From >>= 3;
2753   To >>= 3;
2754   BitWidth >>= 3;
2755   return From == BitWidth - To - 1;
2756 }
2757 
2758 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2759                                                unsigned BitWidth) {
2760   return From == BitWidth - To - 1;
2761 }
2762 
2763 bool llvm::recognizeBSwapOrBitReverseIdiom(
2764     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2765     SmallVectorImpl<Instruction *> &InsertedInsts) {
2766   if (Operator::getOpcode(I) != Instruction::Or)
2767     return false;
2768   if (!MatchBSwaps && !MatchBitReversals)
2769     return false;
2770   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2771   if (!ITy || ITy->getBitWidth() > 128)
2772     return false;   // Can't do vectors or integers > 128 bits.
2773   unsigned BW = ITy->getBitWidth();
2774 
2775   unsigned DemandedBW = BW;
2776   IntegerType *DemandedTy = ITy;
2777   if (I->hasOneUse()) {
2778     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2779       DemandedTy = cast<IntegerType>(Trunc->getType());
2780       DemandedBW = DemandedTy->getBitWidth();
2781     }
2782   }
2783 
2784   // Try to find all the pieces corresponding to the bswap.
2785   std::map<Value *, Optional<BitPart>> BPS;
2786   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2787   if (!Res)
2788     return false;
2789   auto &BitProvenance = Res->Provenance;
2790 
2791   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2792   // only byteswap values with an even number of bytes.
2793   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2794   for (unsigned i = 0; i < DemandedBW; ++i) {
2795     OKForBSwap &=
2796         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2797     OKForBitReverse &=
2798         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2799   }
2800 
2801   Intrinsic::ID Intrin;
2802   if (OKForBSwap && MatchBSwaps)
2803     Intrin = Intrinsic::bswap;
2804   else if (OKForBitReverse && MatchBitReversals)
2805     Intrin = Intrinsic::bitreverse;
2806   else
2807     return false;
2808 
2809   if (ITy != DemandedTy) {
2810     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2811     Value *Provider = Res->Provider;
2812     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2813     // We may need to truncate the provider.
2814     if (DemandedTy != ProviderTy) {
2815       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2816                                      "trunc", I);
2817       InsertedInsts.push_back(Trunc);
2818       Provider = Trunc;
2819     }
2820     auto *CI = CallInst::Create(F, Provider, "rev", I);
2821     InsertedInsts.push_back(CI);
2822     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2823     InsertedInsts.push_back(ExtInst);
2824     return true;
2825   }
2826 
2827   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2828   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2829   return true;
2830 }
2831 
2832 // CodeGen has special handling for some string functions that may replace
2833 // them with target-specific intrinsics.  Since that'd skip our interceptors
2834 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2835 // we mark affected calls as NoBuiltin, which will disable optimization
2836 // in CodeGen.
2837 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2838     CallInst *CI, const TargetLibraryInfo *TLI) {
2839   Function *F = CI->getCalledFunction();
2840   LibFunc Func;
2841   if (F && !F->hasLocalLinkage() && F->hasName() &&
2842       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2843       !F->doesNotAccessMemory())
2844     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2845 }
2846 
2847 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2848   // We can't have a PHI with a metadata type.
2849   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2850     return false;
2851 
2852   // Early exit.
2853   if (!isa<Constant>(I->getOperand(OpIdx)))
2854     return true;
2855 
2856   switch (I->getOpcode()) {
2857   default:
2858     return true;
2859   case Instruction::Call:
2860   case Instruction::Invoke:
2861     // Can't handle inline asm. Skip it.
2862     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2863       return false;
2864     // Many arithmetic intrinsics have no issue taking a
2865     // variable, however it's hard to distingish these from
2866     // specials such as @llvm.frameaddress that require a constant.
2867     if (isa<IntrinsicInst>(I))
2868       return false;
2869 
2870     // Constant bundle operands may need to retain their constant-ness for
2871     // correctness.
2872     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2873       return false;
2874     return true;
2875   case Instruction::ShuffleVector:
2876     // Shufflevector masks are constant.
2877     return OpIdx != 2;
2878   case Instruction::Switch:
2879   case Instruction::ExtractValue:
2880     // All operands apart from the first are constant.
2881     return OpIdx == 0;
2882   case Instruction::InsertValue:
2883     // All operands apart from the first and the second are constant.
2884     return OpIdx < 2;
2885   case Instruction::Alloca:
2886     // Static allocas (constant size in the entry block) are handled by
2887     // prologue/epilogue insertion so they're free anyway. We definitely don't
2888     // want to make them non-constant.
2889     return !cast<AllocaInst>(I)->isStaticAlloca();
2890   case Instruction::GetElementPtr:
2891     if (OpIdx == 0)
2892       return true;
2893     gep_type_iterator It = gep_type_begin(I);
2894     for (auto E = std::next(It, OpIdx); It != E; ++It)
2895       if (It.isStruct())
2896         return false;
2897     return true;
2898   }
2899 }
2900