1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/AssumeBundleQueries.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/LazyValueInfo.h"
34 #include "llvm/Analysis/MemoryBuiltins.h"
35 #include "llvm/Analysis/MemorySSAUpdater.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/BinaryFormat/Dwarf.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/ValueMapper.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <climits>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <utility>
87 
88 using namespace llvm;
89 using namespace llvm::PatternMatch;
90 
91 #define DEBUG_TYPE "local"
92 
93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
95 
96 static cl::opt<bool> PHICSEDebugHash(
97     "phicse-debug-hash",
98 #ifdef EXPENSIVE_CHECKS
99     cl::init(true),
100 #else
101     cl::init(false),
102 #endif
103     cl::Hidden,
104     cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
105              "function is well-behaved w.r.t. its isEqual predicate"));
106 
107 static cl::opt<unsigned> PHICSENumPHISmallSize(
108     "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
109     cl::desc(
110         "When the basic block contains not more than this number of PHI nodes, "
111         "perform a (faster!) exhaustive search instead of set-driven one."));
112 
113 // Max recursion depth for collectBitParts used when detecting bswap and
114 // bitreverse idioms
115 static const unsigned BitPartRecursionMaxDepth = 64;
116 
117 //===----------------------------------------------------------------------===//
118 //  Local constant propagation.
119 //
120 
121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
122 /// constant value, convert it into an unconditional branch to the constant
123 /// destination.  This is a nontrivial operation because the successors of this
124 /// basic block must have their PHI nodes updated.
125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
126 /// conditions and indirectbr addresses this might make dead if
127 /// DeleteDeadConditions is true.
128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
129                                   const TargetLibraryInfo *TLI,
130                                   DomTreeUpdater *DTU) {
131   Instruction *T = BB->getTerminator();
132   IRBuilder<> Builder(T);
133 
134   // Branch - See if we are conditional jumping on constant
135   if (auto *BI = dyn_cast<BranchInst>(T)) {
136     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
137 
138     BasicBlock *Dest1 = BI->getSuccessor(0);
139     BasicBlock *Dest2 = BI->getSuccessor(1);
140 
141     if (Dest2 == Dest1) {       // Conditional branch to same location?
142       // This branch matches something like this:
143       //     br bool %cond, label %Dest, label %Dest
144       // and changes it into:  br label %Dest
145 
146       // Let the basic block know that we are letting go of one copy of it.
147       assert(BI->getParent() && "Terminator not inserted in block!");
148       Dest1->removePredecessor(BI->getParent());
149 
150       // Replace the conditional branch with an unconditional one.
151       Builder.CreateBr(Dest1);
152       Value *Cond = BI->getCondition();
153       BI->eraseFromParent();
154       if (DeleteDeadConditions)
155         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
156       return true;
157     }
158 
159     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
160       // Are we branching on constant?
161       // YES.  Change to unconditional branch...
162       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
163       BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
164 
165       // Let the basic block know that we are letting go of it.  Based on this,
166       // it will adjust it's PHI nodes.
167       OldDest->removePredecessor(BB);
168 
169       // Replace the conditional branch with an unconditional one.
170       Builder.CreateBr(Destination);
171       BI->eraseFromParent();
172       if (DTU)
173         DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
174       return true;
175     }
176 
177     return false;
178   }
179 
180   if (auto *SI = dyn_cast<SwitchInst>(T)) {
181     // If we are switching on a constant, we can convert the switch to an
182     // unconditional branch.
183     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
184     BasicBlock *DefaultDest = SI->getDefaultDest();
185     BasicBlock *TheOnlyDest = DefaultDest;
186 
187     // If the default is unreachable, ignore it when searching for TheOnlyDest.
188     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
189         SI->getNumCases() > 0) {
190       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
191     }
192 
193     bool Changed = false;
194 
195     // Figure out which case it goes to.
196     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
197       // Found case matching a constant operand?
198       if (i->getCaseValue() == CI) {
199         TheOnlyDest = i->getCaseSuccessor();
200         break;
201       }
202 
203       // Check to see if this branch is going to the same place as the default
204       // dest.  If so, eliminate it as an explicit compare.
205       if (i->getCaseSuccessor() == DefaultDest) {
206         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
207         unsigned NCases = SI->getNumCases();
208         // Fold the case metadata into the default if there will be any branches
209         // left, unless the metadata doesn't match the switch.
210         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
211           // Collect branch weights into a vector.
212           SmallVector<uint32_t, 8> Weights;
213           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
214                ++MD_i) {
215             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
216             Weights.push_back(CI->getValue().getZExtValue());
217           }
218           // Merge weight of this case to the default weight.
219           unsigned idx = i->getCaseIndex();
220           Weights[0] += Weights[idx+1];
221           // Remove weight for this case.
222           std::swap(Weights[idx+1], Weights.back());
223           Weights.pop_back();
224           SI->setMetadata(LLVMContext::MD_prof,
225                           MDBuilder(BB->getContext()).
226                           createBranchWeights(Weights));
227         }
228         // Remove this entry.
229         BasicBlock *ParentBB = SI->getParent();
230         DefaultDest->removePredecessor(ParentBB);
231         i = SI->removeCase(i);
232         e = SI->case_end();
233         Changed = true;
234         continue;
235       }
236 
237       // Otherwise, check to see if the switch only branches to one destination.
238       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
239       // destinations.
240       if (i->getCaseSuccessor() != TheOnlyDest)
241         TheOnlyDest = nullptr;
242 
243       // Increment this iterator as we haven't removed the case.
244       ++i;
245     }
246 
247     if (CI && !TheOnlyDest) {
248       // Branching on a constant, but not any of the cases, go to the default
249       // successor.
250       TheOnlyDest = SI->getDefaultDest();
251     }
252 
253     // If we found a single destination that we can fold the switch into, do so
254     // now.
255     if (TheOnlyDest) {
256       // Insert the new branch.
257       Builder.CreateBr(TheOnlyDest);
258       BasicBlock *BB = SI->getParent();
259 
260       SmallSetVector<BasicBlock *, 8> RemovedSuccessors;
261 
262       // Remove entries from PHI nodes which we no longer branch to...
263       BasicBlock *SuccToKeep = TheOnlyDest;
264       for (BasicBlock *Succ : successors(SI)) {
265         if (DTU && Succ != TheOnlyDest)
266           RemovedSuccessors.insert(Succ);
267         // Found case matching a constant operand?
268         if (Succ == SuccToKeep) {
269           SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
270         } else {
271           Succ->removePredecessor(BB);
272         }
273       }
274 
275       // Delete the old switch.
276       Value *Cond = SI->getCondition();
277       SI->eraseFromParent();
278       if (DeleteDeadConditions)
279         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
280       if (DTU) {
281         std::vector<DominatorTree::UpdateType> Updates;
282         Updates.reserve(RemovedSuccessors.size());
283         for (auto *RemovedSuccessor : RemovedSuccessors)
284           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
285         DTU->applyUpdates(Updates);
286       }
287       return true;
288     }
289 
290     if (SI->getNumCases() == 1) {
291       // Otherwise, we can fold this switch into a conditional branch
292       // instruction if it has only one non-default destination.
293       auto FirstCase = *SI->case_begin();
294       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
295           FirstCase.getCaseValue(), "cond");
296 
297       // Insert the new branch.
298       BranchInst *NewBr = Builder.CreateCondBr(Cond,
299                                                FirstCase.getCaseSuccessor(),
300                                                SI->getDefaultDest());
301       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
302       if (MD && MD->getNumOperands() == 3) {
303         ConstantInt *SICase =
304             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
305         ConstantInt *SIDef =
306             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
307         assert(SICase && SIDef);
308         // The TrueWeight should be the weight for the single case of SI.
309         NewBr->setMetadata(LLVMContext::MD_prof,
310                         MDBuilder(BB->getContext()).
311                         createBranchWeights(SICase->getValue().getZExtValue(),
312                                             SIDef->getValue().getZExtValue()));
313       }
314 
315       // Update make.implicit metadata to the newly-created conditional branch.
316       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
317       if (MakeImplicitMD)
318         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
319 
320       // Delete the old switch.
321       SI->eraseFromParent();
322       return true;
323     }
324     return Changed;
325   }
326 
327   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
328     // indirectbr blockaddress(@F, @BB) -> br label @BB
329     if (auto *BA =
330           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
331       BasicBlock *TheOnlyDest = BA->getBasicBlock();
332       SmallSetVector<BasicBlock *, 8> RemovedSuccessors;
333 
334       // Insert the new branch.
335       Builder.CreateBr(TheOnlyDest);
336 
337       BasicBlock *SuccToKeep = TheOnlyDest;
338       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
339         BasicBlock *DestBB = IBI->getDestination(i);
340         if (DTU && DestBB != TheOnlyDest)
341           RemovedSuccessors.insert(DestBB);
342         if (IBI->getDestination(i) == SuccToKeep) {
343           SuccToKeep = nullptr;
344         } else {
345           DestBB->removePredecessor(BB);
346         }
347       }
348       Value *Address = IBI->getAddress();
349       IBI->eraseFromParent();
350       if (DeleteDeadConditions)
351         // Delete pointer cast instructions.
352         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
353 
354       // Also zap the blockaddress constant if there are no users remaining,
355       // otherwise the destination is still marked as having its address taken.
356       if (BA->use_empty())
357         BA->destroyConstant();
358 
359       // If we didn't find our destination in the IBI successor list, then we
360       // have undefined behavior.  Replace the unconditional branch with an
361       // 'unreachable' instruction.
362       if (SuccToKeep) {
363         BB->getTerminator()->eraseFromParent();
364         new UnreachableInst(BB->getContext(), BB);
365       }
366 
367       if (DTU) {
368         std::vector<DominatorTree::UpdateType> Updates;
369         Updates.reserve(RemovedSuccessors.size());
370         for (auto *RemovedSuccessor : RemovedSuccessors)
371           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
372         DTU->applyUpdates(Updates);
373       }
374       return true;
375     }
376   }
377 
378   return false;
379 }
380 
381 //===----------------------------------------------------------------------===//
382 //  Local dead code elimination.
383 //
384 
385 /// isInstructionTriviallyDead - Return true if the result produced by the
386 /// instruction is not used, and the instruction has no side effects.
387 ///
388 bool llvm::isInstructionTriviallyDead(Instruction *I,
389                                       const TargetLibraryInfo *TLI) {
390   if (!I->use_empty())
391     return false;
392   return wouldInstructionBeTriviallyDead(I, TLI);
393 }
394 
395 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
396                                            const TargetLibraryInfo *TLI) {
397   if (I->isTerminator())
398     return false;
399 
400   // We don't want the landingpad-like instructions removed by anything this
401   // general.
402   if (I->isEHPad())
403     return false;
404 
405   // We don't want debug info removed by anything this general, unless
406   // debug info is empty.
407   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
408     if (DDI->getAddress())
409       return false;
410     return true;
411   }
412   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
413     if (DVI->getValue())
414       return false;
415     return true;
416   }
417   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
418     if (DLI->getLabel())
419       return false;
420     return true;
421   }
422 
423   if (!I->mayHaveSideEffects())
424     return true;
425 
426   // Special case intrinsics that "may have side effects" but can be deleted
427   // when dead.
428   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
429     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
430     if (II->getIntrinsicID() == Intrinsic::stacksave ||
431         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
432       return true;
433 
434     if (II->isLifetimeStartOrEnd()) {
435       auto *Arg = II->getArgOperand(1);
436       // Lifetime intrinsics are dead when their right-hand is undef.
437       if (isa<UndefValue>(Arg))
438         return true;
439       // If the right-hand is an alloc, global, or argument and the only uses
440       // are lifetime intrinsics then the intrinsics are dead.
441       if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
442         return llvm::all_of(Arg->uses(), [](Use &Use) {
443           if (IntrinsicInst *IntrinsicUse =
444                   dyn_cast<IntrinsicInst>(Use.getUser()))
445             return IntrinsicUse->isLifetimeStartOrEnd();
446           return false;
447         });
448       return false;
449     }
450 
451     // Assumptions are dead if their condition is trivially true.  Guards on
452     // true are operationally no-ops.  In the future we can consider more
453     // sophisticated tradeoffs for guards considering potential for check
454     // widening, but for now we keep things simple.
455     if ((II->getIntrinsicID() == Intrinsic::assume &&
456          isAssumeWithEmptyBundle(*II)) ||
457         II->getIntrinsicID() == Intrinsic::experimental_guard) {
458       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
459         return !Cond->isZero();
460 
461       return false;
462     }
463   }
464 
465   if (isAllocLikeFn(I, TLI))
466     return true;
467 
468   if (CallInst *CI = isFreeCall(I, TLI))
469     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
470       return C->isNullValue() || isa<UndefValue>(C);
471 
472   if (auto *Call = dyn_cast<CallBase>(I))
473     if (isMathLibCallNoop(Call, TLI))
474       return true;
475 
476   return false;
477 }
478 
479 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
480 /// trivially dead instruction, delete it.  If that makes any of its operands
481 /// trivially dead, delete them too, recursively.  Return true if any
482 /// instructions were deleted.
483 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
484     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
485     std::function<void(Value *)> AboutToDeleteCallback) {
486   Instruction *I = dyn_cast<Instruction>(V);
487   if (!I || !isInstructionTriviallyDead(I, TLI))
488     return false;
489 
490   SmallVector<WeakTrackingVH, 16> DeadInsts;
491   DeadInsts.push_back(I);
492   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
493                                              AboutToDeleteCallback);
494 
495   return true;
496 }
497 
498 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
499     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
500     MemorySSAUpdater *MSSAU,
501     std::function<void(Value *)> AboutToDeleteCallback) {
502   unsigned S = 0, E = DeadInsts.size(), Alive = 0;
503   for (; S != E; ++S) {
504     auto *I = cast<Instruction>(DeadInsts[S]);
505     if (!isInstructionTriviallyDead(I)) {
506       DeadInsts[S] = nullptr;
507       ++Alive;
508     }
509   }
510   if (Alive == E)
511     return false;
512   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
513                                              AboutToDeleteCallback);
514   return true;
515 }
516 
517 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
518     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
519     MemorySSAUpdater *MSSAU,
520     std::function<void(Value *)> AboutToDeleteCallback) {
521   // Process the dead instruction list until empty.
522   while (!DeadInsts.empty()) {
523     Value *V = DeadInsts.pop_back_val();
524     Instruction *I = cast_or_null<Instruction>(V);
525     if (!I)
526       continue;
527     assert(isInstructionTriviallyDead(I, TLI) &&
528            "Live instruction found in dead worklist!");
529     assert(I->use_empty() && "Instructions with uses are not dead.");
530 
531     // Don't lose the debug info while deleting the instructions.
532     salvageDebugInfo(*I);
533 
534     if (AboutToDeleteCallback)
535       AboutToDeleteCallback(I);
536 
537     // Null out all of the instruction's operands to see if any operand becomes
538     // dead as we go.
539     for (Use &OpU : I->operands()) {
540       Value *OpV = OpU.get();
541       OpU.set(nullptr);
542 
543       if (!OpV->use_empty())
544         continue;
545 
546       // If the operand is an instruction that became dead as we nulled out the
547       // operand, and if it is 'trivially' dead, delete it in a future loop
548       // iteration.
549       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
550         if (isInstructionTriviallyDead(OpI, TLI))
551           DeadInsts.push_back(OpI);
552     }
553     if (MSSAU)
554       MSSAU->removeMemoryAccess(I);
555 
556     I->eraseFromParent();
557   }
558 }
559 
560 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
561   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
562   findDbgUsers(DbgUsers, I);
563   for (auto *DII : DbgUsers) {
564     Value *Undef = UndefValue::get(I->getType());
565     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
566                                             ValueAsMetadata::get(Undef)));
567   }
568   return !DbgUsers.empty();
569 }
570 
571 /// areAllUsesEqual - Check whether the uses of a value are all the same.
572 /// This is similar to Instruction::hasOneUse() except this will also return
573 /// true when there are no uses or multiple uses that all refer to the same
574 /// value.
575 static bool areAllUsesEqual(Instruction *I) {
576   Value::user_iterator UI = I->user_begin();
577   Value::user_iterator UE = I->user_end();
578   if (UI == UE)
579     return true;
580 
581   User *TheUse = *UI;
582   for (++UI; UI != UE; ++UI) {
583     if (*UI != TheUse)
584       return false;
585   }
586   return true;
587 }
588 
589 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
590 /// dead PHI node, due to being a def-use chain of single-use nodes that
591 /// either forms a cycle or is terminated by a trivially dead instruction,
592 /// delete it.  If that makes any of its operands trivially dead, delete them
593 /// too, recursively.  Return true if a change was made.
594 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
595                                         const TargetLibraryInfo *TLI,
596                                         llvm::MemorySSAUpdater *MSSAU) {
597   SmallPtrSet<Instruction*, 4> Visited;
598   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
599        I = cast<Instruction>(*I->user_begin())) {
600     if (I->use_empty())
601       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
602 
603     // If we find an instruction more than once, we're on a cycle that
604     // won't prove fruitful.
605     if (!Visited.insert(I).second) {
606       // Break the cycle and delete the instruction and its operands.
607       I->replaceAllUsesWith(UndefValue::get(I->getType()));
608       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
609       return true;
610     }
611   }
612   return false;
613 }
614 
615 static bool
616 simplifyAndDCEInstruction(Instruction *I,
617                           SmallSetVector<Instruction *, 16> &WorkList,
618                           const DataLayout &DL,
619                           const TargetLibraryInfo *TLI) {
620   if (isInstructionTriviallyDead(I, TLI)) {
621     salvageDebugInfo(*I);
622 
623     // Null out all of the instruction's operands to see if any operand becomes
624     // dead as we go.
625     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
626       Value *OpV = I->getOperand(i);
627       I->setOperand(i, nullptr);
628 
629       if (!OpV->use_empty() || I == OpV)
630         continue;
631 
632       // If the operand is an instruction that became dead as we nulled out the
633       // operand, and if it is 'trivially' dead, delete it in a future loop
634       // iteration.
635       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
636         if (isInstructionTriviallyDead(OpI, TLI))
637           WorkList.insert(OpI);
638     }
639 
640     I->eraseFromParent();
641 
642     return true;
643   }
644 
645   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
646     // Add the users to the worklist. CAREFUL: an instruction can use itself,
647     // in the case of a phi node.
648     for (User *U : I->users()) {
649       if (U != I) {
650         WorkList.insert(cast<Instruction>(U));
651       }
652     }
653 
654     // Replace the instruction with its simplified value.
655     bool Changed = false;
656     if (!I->use_empty()) {
657       I->replaceAllUsesWith(SimpleV);
658       Changed = true;
659     }
660     if (isInstructionTriviallyDead(I, TLI)) {
661       I->eraseFromParent();
662       Changed = true;
663     }
664     return Changed;
665   }
666   return false;
667 }
668 
669 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
670 /// simplify any instructions in it and recursively delete dead instructions.
671 ///
672 /// This returns true if it changed the code, note that it can delete
673 /// instructions in other blocks as well in this block.
674 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
675                                        const TargetLibraryInfo *TLI) {
676   bool MadeChange = false;
677   const DataLayout &DL = BB->getModule()->getDataLayout();
678 
679 #ifndef NDEBUG
680   // In debug builds, ensure that the terminator of the block is never replaced
681   // or deleted by these simplifications. The idea of simplification is that it
682   // cannot introduce new instructions, and there is no way to replace the
683   // terminator of a block without introducing a new instruction.
684   AssertingVH<Instruction> TerminatorVH(&BB->back());
685 #endif
686 
687   SmallSetVector<Instruction *, 16> WorkList;
688   // Iterate over the original function, only adding insts to the worklist
689   // if they actually need to be revisited. This avoids having to pre-init
690   // the worklist with the entire function's worth of instructions.
691   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
692        BI != E;) {
693     assert(!BI->isTerminator());
694     Instruction *I = &*BI;
695     ++BI;
696 
697     // We're visiting this instruction now, so make sure it's not in the
698     // worklist from an earlier visit.
699     if (!WorkList.count(I))
700       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
701   }
702 
703   while (!WorkList.empty()) {
704     Instruction *I = WorkList.pop_back_val();
705     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
706   }
707   return MadeChange;
708 }
709 
710 //===----------------------------------------------------------------------===//
711 //  Control Flow Graph Restructuring.
712 //
713 
714 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
715                                        DomTreeUpdater *DTU) {
716 
717   // If BB has single-entry PHI nodes, fold them.
718   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
719     Value *NewVal = PN->getIncomingValue(0);
720     // Replace self referencing PHI with undef, it must be dead.
721     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
722     PN->replaceAllUsesWith(NewVal);
723     PN->eraseFromParent();
724   }
725 
726   BasicBlock *PredBB = DestBB->getSinglePredecessor();
727   assert(PredBB && "Block doesn't have a single predecessor!");
728 
729   bool ReplaceEntryBB = false;
730   if (PredBB == &DestBB->getParent()->getEntryBlock())
731     ReplaceEntryBB = true;
732 
733   // DTU updates: Collect all the edges that enter
734   // PredBB. These dominator edges will be redirected to DestBB.
735   SmallVector<DominatorTree::UpdateType, 32> Updates;
736 
737   if (DTU) {
738     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
739       // This predecessor of PredBB may already have DestBB as a successor.
740       if (!llvm::is_contained(successors(*I), DestBB))
741         Updates.push_back({DominatorTree::Insert, *I, DestBB});
742       Updates.push_back({DominatorTree::Delete, *I, PredBB});
743     }
744     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
745   }
746 
747   // Zap anything that took the address of DestBB.  Not doing this will give the
748   // address an invalid value.
749   if (DestBB->hasAddressTaken()) {
750     BlockAddress *BA = BlockAddress::get(DestBB);
751     Constant *Replacement =
752       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
753     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
754                                                      BA->getType()));
755     BA->destroyConstant();
756   }
757 
758   // Anything that branched to PredBB now branches to DestBB.
759   PredBB->replaceAllUsesWith(DestBB);
760 
761   // Splice all the instructions from PredBB to DestBB.
762   PredBB->getTerminator()->eraseFromParent();
763   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
764   new UnreachableInst(PredBB->getContext(), PredBB);
765 
766   // If the PredBB is the entry block of the function, move DestBB up to
767   // become the entry block after we erase PredBB.
768   if (ReplaceEntryBB)
769     DestBB->moveAfter(PredBB);
770 
771   if (DTU) {
772     assert(PredBB->getInstList().size() == 1 &&
773            isa<UnreachableInst>(PredBB->getTerminator()) &&
774            "The successor list of PredBB isn't empty before "
775            "applying corresponding DTU updates.");
776     DTU->applyUpdatesPermissive(Updates);
777     DTU->deleteBB(PredBB);
778     // Recalculation of DomTree is needed when updating a forward DomTree and
779     // the Entry BB is replaced.
780     if (ReplaceEntryBB && DTU->hasDomTree()) {
781       // The entry block was removed and there is no external interface for
782       // the dominator tree to be notified of this change. In this corner-case
783       // we recalculate the entire tree.
784       DTU->recalculate(*(DestBB->getParent()));
785     }
786   }
787 
788   else {
789     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
790   }
791 }
792 
793 /// Return true if we can choose one of these values to use in place of the
794 /// other. Note that we will always choose the non-undef value to keep.
795 static bool CanMergeValues(Value *First, Value *Second) {
796   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
797 }
798 
799 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
800 /// branch to Succ, into Succ.
801 ///
802 /// Assumption: Succ is the single successor for BB.
803 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
804   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
805 
806   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
807                     << Succ->getName() << "\n");
808   // Shortcut, if there is only a single predecessor it must be BB and merging
809   // is always safe
810   if (Succ->getSinglePredecessor()) return true;
811 
812   // Make a list of the predecessors of BB
813   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
814 
815   // Look at all the phi nodes in Succ, to see if they present a conflict when
816   // merging these blocks
817   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
818     PHINode *PN = cast<PHINode>(I);
819 
820     // If the incoming value from BB is again a PHINode in
821     // BB which has the same incoming value for *PI as PN does, we can
822     // merge the phi nodes and then the blocks can still be merged
823     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
824     if (BBPN && BBPN->getParent() == BB) {
825       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
826         BasicBlock *IBB = PN->getIncomingBlock(PI);
827         if (BBPreds.count(IBB) &&
828             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
829                             PN->getIncomingValue(PI))) {
830           LLVM_DEBUG(dbgs()
831                      << "Can't fold, phi node " << PN->getName() << " in "
832                      << Succ->getName() << " is conflicting with "
833                      << BBPN->getName() << " with regard to common predecessor "
834                      << IBB->getName() << "\n");
835           return false;
836         }
837       }
838     } else {
839       Value* Val = PN->getIncomingValueForBlock(BB);
840       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
841         // See if the incoming value for the common predecessor is equal to the
842         // one for BB, in which case this phi node will not prevent the merging
843         // of the block.
844         BasicBlock *IBB = PN->getIncomingBlock(PI);
845         if (BBPreds.count(IBB) &&
846             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
847           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
848                             << " in " << Succ->getName()
849                             << " is conflicting with regard to common "
850                             << "predecessor " << IBB->getName() << "\n");
851           return false;
852         }
853       }
854     }
855   }
856 
857   return true;
858 }
859 
860 using PredBlockVector = SmallVector<BasicBlock *, 16>;
861 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
862 
863 /// Determines the value to use as the phi node input for a block.
864 ///
865 /// Select between \p OldVal any value that we know flows from \p BB
866 /// to a particular phi on the basis of which one (if either) is not
867 /// undef. Update IncomingValues based on the selected value.
868 ///
869 /// \param OldVal The value we are considering selecting.
870 /// \param BB The block that the value flows in from.
871 /// \param IncomingValues A map from block-to-value for other phi inputs
872 /// that we have examined.
873 ///
874 /// \returns the selected value.
875 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
876                                           IncomingValueMap &IncomingValues) {
877   if (!isa<UndefValue>(OldVal)) {
878     assert((!IncomingValues.count(BB) ||
879             IncomingValues.find(BB)->second == OldVal) &&
880            "Expected OldVal to match incoming value from BB!");
881 
882     IncomingValues.insert(std::make_pair(BB, OldVal));
883     return OldVal;
884   }
885 
886   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
887   if (It != IncomingValues.end()) return It->second;
888 
889   return OldVal;
890 }
891 
892 /// Create a map from block to value for the operands of a
893 /// given phi.
894 ///
895 /// Create a map from block to value for each non-undef value flowing
896 /// into \p PN.
897 ///
898 /// \param PN The phi we are collecting the map for.
899 /// \param IncomingValues [out] The map from block to value for this phi.
900 static void gatherIncomingValuesToPhi(PHINode *PN,
901                                       IncomingValueMap &IncomingValues) {
902   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
903     BasicBlock *BB = PN->getIncomingBlock(i);
904     Value *V = PN->getIncomingValue(i);
905 
906     if (!isa<UndefValue>(V))
907       IncomingValues.insert(std::make_pair(BB, V));
908   }
909 }
910 
911 /// Replace the incoming undef values to a phi with the values
912 /// from a block-to-value map.
913 ///
914 /// \param PN The phi we are replacing the undefs in.
915 /// \param IncomingValues A map from block to value.
916 static void replaceUndefValuesInPhi(PHINode *PN,
917                                     const IncomingValueMap &IncomingValues) {
918   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
919     Value *V = PN->getIncomingValue(i);
920 
921     if (!isa<UndefValue>(V)) continue;
922 
923     BasicBlock *BB = PN->getIncomingBlock(i);
924     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
925     if (It == IncomingValues.end()) continue;
926 
927     PN->setIncomingValue(i, It->second);
928   }
929 }
930 
931 /// Replace a value flowing from a block to a phi with
932 /// potentially multiple instances of that value flowing from the
933 /// block's predecessors to the phi.
934 ///
935 /// \param BB The block with the value flowing into the phi.
936 /// \param BBPreds The predecessors of BB.
937 /// \param PN The phi that we are updating.
938 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
939                                                 const PredBlockVector &BBPreds,
940                                                 PHINode *PN) {
941   Value *OldVal = PN->removeIncomingValue(BB, false);
942   assert(OldVal && "No entry in PHI for Pred BB!");
943 
944   IncomingValueMap IncomingValues;
945 
946   // We are merging two blocks - BB, and the block containing PN - and
947   // as a result we need to redirect edges from the predecessors of BB
948   // to go to the block containing PN, and update PN
949   // accordingly. Since we allow merging blocks in the case where the
950   // predecessor and successor blocks both share some predecessors,
951   // and where some of those common predecessors might have undef
952   // values flowing into PN, we want to rewrite those values to be
953   // consistent with the non-undef values.
954 
955   gatherIncomingValuesToPhi(PN, IncomingValues);
956 
957   // If this incoming value is one of the PHI nodes in BB, the new entries
958   // in the PHI node are the entries from the old PHI.
959   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
960     PHINode *OldValPN = cast<PHINode>(OldVal);
961     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
962       // Note that, since we are merging phi nodes and BB and Succ might
963       // have common predecessors, we could end up with a phi node with
964       // identical incoming branches. This will be cleaned up later (and
965       // will trigger asserts if we try to clean it up now, without also
966       // simplifying the corresponding conditional branch).
967       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
968       Value *PredVal = OldValPN->getIncomingValue(i);
969       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
970                                                     IncomingValues);
971 
972       // And add a new incoming value for this predecessor for the
973       // newly retargeted branch.
974       PN->addIncoming(Selected, PredBB);
975     }
976   } else {
977     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
978       // Update existing incoming values in PN for this
979       // predecessor of BB.
980       BasicBlock *PredBB = BBPreds[i];
981       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
982                                                     IncomingValues);
983 
984       // And add a new incoming value for this predecessor for the
985       // newly retargeted branch.
986       PN->addIncoming(Selected, PredBB);
987     }
988   }
989 
990   replaceUndefValuesInPhi(PN, IncomingValues);
991 }
992 
993 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
994                                                    DomTreeUpdater *DTU) {
995   assert(BB != &BB->getParent()->getEntryBlock() &&
996          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
997 
998   // We can't eliminate infinite loops.
999   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1000   if (BB == Succ) return false;
1001 
1002   // Check to see if merging these blocks would cause conflicts for any of the
1003   // phi nodes in BB or Succ. If not, we can safely merge.
1004   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
1005 
1006   // Check for cases where Succ has multiple predecessors and a PHI node in BB
1007   // has uses which will not disappear when the PHI nodes are merged.  It is
1008   // possible to handle such cases, but difficult: it requires checking whether
1009   // BB dominates Succ, which is non-trivial to calculate in the case where
1010   // Succ has multiple predecessors.  Also, it requires checking whether
1011   // constructing the necessary self-referential PHI node doesn't introduce any
1012   // conflicts; this isn't too difficult, but the previous code for doing this
1013   // was incorrect.
1014   //
1015   // Note that if this check finds a live use, BB dominates Succ, so BB is
1016   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1017   // folding the branch isn't profitable in that case anyway.
1018   if (!Succ->getSinglePredecessor()) {
1019     BasicBlock::iterator BBI = BB->begin();
1020     while (isa<PHINode>(*BBI)) {
1021       for (Use &U : BBI->uses()) {
1022         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1023           if (PN->getIncomingBlock(U) != BB)
1024             return false;
1025         } else {
1026           return false;
1027         }
1028       }
1029       ++BBI;
1030     }
1031   }
1032 
1033   // We cannot fold the block if it's a branch to an already present callbr
1034   // successor because that creates duplicate successors.
1035   for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1036     if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) {
1037       if (Succ == CBI->getDefaultDest())
1038         return false;
1039       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1040         if (Succ == CBI->getIndirectDest(i))
1041           return false;
1042     }
1043   }
1044 
1045   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1046 
1047   SmallVector<DominatorTree::UpdateType, 32> Updates;
1048   if (DTU) {
1049     // All predecessors of BB will be moved to Succ.
1050     SmallSetVector<BasicBlock *, 8> Predecessors(pred_begin(BB), pred_end(BB));
1051     Updates.reserve(Updates.size() + 2 * Predecessors.size());
1052     for (auto *Predecessor : Predecessors) {
1053       // This predecessor of BB may already have Succ as a successor.
1054       if (!llvm::is_contained(successors(Predecessor), Succ))
1055         Updates.push_back({DominatorTree::Insert, Predecessor, Succ});
1056       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
1057     }
1058     Updates.push_back({DominatorTree::Delete, BB, Succ});
1059   }
1060 
1061   if (isa<PHINode>(Succ->begin())) {
1062     // If there is more than one pred of succ, and there are PHI nodes in
1063     // the successor, then we need to add incoming edges for the PHI nodes
1064     //
1065     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1066 
1067     // Loop over all of the PHI nodes in the successor of BB.
1068     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1069       PHINode *PN = cast<PHINode>(I);
1070 
1071       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1072     }
1073   }
1074 
1075   if (Succ->getSinglePredecessor()) {
1076     // BB is the only predecessor of Succ, so Succ will end up with exactly
1077     // the same predecessors BB had.
1078 
1079     // Copy over any phi, debug or lifetime instruction.
1080     BB->getTerminator()->eraseFromParent();
1081     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1082                                BB->getInstList());
1083   } else {
1084     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1085       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1086       assert(PN->use_empty() && "There shouldn't be any uses here!");
1087       PN->eraseFromParent();
1088     }
1089   }
1090 
1091   // If the unconditional branch we replaced contains llvm.loop metadata, we
1092   // add the metadata to the branch instructions in the predecessors.
1093   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1094   Instruction *TI = BB->getTerminator();
1095   if (TI)
1096     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1097       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1098         BasicBlock *Pred = *PI;
1099         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1100       }
1101 
1102   // Everything that jumped to BB now goes to Succ.
1103   BB->replaceAllUsesWith(Succ);
1104   if (!Succ->hasName()) Succ->takeName(BB);
1105 
1106   // Clear the successor list of BB to match updates applying to DTU later.
1107   if (BB->getTerminator())
1108     BB->getInstList().pop_back();
1109   new UnreachableInst(BB->getContext(), BB);
1110   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1111                            "applying corresponding DTU updates.");
1112 
1113   if (DTU) {
1114     DTU->applyUpdates(Updates);
1115     DTU->deleteBB(BB);
1116   } else {
1117     BB->eraseFromParent(); // Delete the old basic block.
1118   }
1119   return true;
1120 }
1121 
1122 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) {
1123   // This implementation doesn't currently consider undef operands
1124   // specially. Theoretically, two phis which are identical except for
1125   // one having an undef where the other doesn't could be collapsed.
1126 
1127   bool Changed = false;
1128 
1129   // Examine each PHI.
1130   // Note that increment of I must *NOT* be in the iteration_expression, since
1131   // we don't want to immediately advance when we restart from the beginning.
1132   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
1133     ++I;
1134     // Is there an identical PHI node in this basic block?
1135     // Note that we only look in the upper square's triangle,
1136     // we already checked that the lower triangle PHI's aren't identical.
1137     for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
1138       if (!DuplicatePN->isIdenticalToWhenDefined(PN))
1139         continue;
1140       // A duplicate. Replace this PHI with the base PHI.
1141       ++NumPHICSEs;
1142       DuplicatePN->replaceAllUsesWith(PN);
1143       DuplicatePN->eraseFromParent();
1144       Changed = true;
1145 
1146       // The RAUW can change PHIs that we already visited.
1147       I = BB->begin();
1148       break; // Start over from the beginning.
1149     }
1150   }
1151   return Changed;
1152 }
1153 
1154 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) {
1155   // This implementation doesn't currently consider undef operands
1156   // specially. Theoretically, two phis which are identical except for
1157   // one having an undef where the other doesn't could be collapsed.
1158 
1159   struct PHIDenseMapInfo {
1160     static PHINode *getEmptyKey() {
1161       return DenseMapInfo<PHINode *>::getEmptyKey();
1162     }
1163 
1164     static PHINode *getTombstoneKey() {
1165       return DenseMapInfo<PHINode *>::getTombstoneKey();
1166     }
1167 
1168     static bool isSentinel(PHINode *PN) {
1169       return PN == getEmptyKey() || PN == getTombstoneKey();
1170     }
1171 
1172     // WARNING: this logic must be kept in sync with
1173     //          Instruction::isIdenticalToWhenDefined()!
1174     static unsigned getHashValueImpl(PHINode *PN) {
1175       // Compute a hash value on the operands. Instcombine will likely have
1176       // sorted them, which helps expose duplicates, but we have to check all
1177       // the operands to be safe in case instcombine hasn't run.
1178       return static_cast<unsigned>(hash_combine(
1179           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1180           hash_combine_range(PN->block_begin(), PN->block_end())));
1181     }
1182 
1183     static unsigned getHashValue(PHINode *PN) {
1184 #ifndef NDEBUG
1185       // If -phicse-debug-hash was specified, return a constant -- this
1186       // will force all hashing to collide, so we'll exhaustively search
1187       // the table for a match, and the assertion in isEqual will fire if
1188       // there's a bug causing equal keys to hash differently.
1189       if (PHICSEDebugHash)
1190         return 0;
1191 #endif
1192       return getHashValueImpl(PN);
1193     }
1194 
1195     static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
1196       if (isSentinel(LHS) || isSentinel(RHS))
1197         return LHS == RHS;
1198       return LHS->isIdenticalTo(RHS);
1199     }
1200 
1201     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1202       // These comparisons are nontrivial, so assert that equality implies
1203       // hash equality (DenseMap demands this as an invariant).
1204       bool Result = isEqualImpl(LHS, RHS);
1205       assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
1206              getHashValueImpl(LHS) == getHashValueImpl(RHS));
1207       return Result;
1208     }
1209   };
1210 
1211   // Set of unique PHINodes.
1212   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1213   PHISet.reserve(4 * PHICSENumPHISmallSize);
1214 
1215   // Examine each PHI.
1216   bool Changed = false;
1217   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1218     auto Inserted = PHISet.insert(PN);
1219     if (!Inserted.second) {
1220       // A duplicate. Replace this PHI with its duplicate.
1221       ++NumPHICSEs;
1222       PN->replaceAllUsesWith(*Inserted.first);
1223       PN->eraseFromParent();
1224       Changed = true;
1225 
1226       // The RAUW can change PHIs that we already visited. Start over from the
1227       // beginning.
1228       PHISet.clear();
1229       I = BB->begin();
1230     }
1231   }
1232 
1233   return Changed;
1234 }
1235 
1236 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1237   if (
1238 #ifndef NDEBUG
1239       !PHICSEDebugHash &&
1240 #endif
1241       hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
1242     return EliminateDuplicatePHINodesNaiveImpl(BB);
1243   return EliminateDuplicatePHINodesSetBasedImpl(BB);
1244 }
1245 
1246 /// If the specified pointer points to an object that we control, try to modify
1247 /// the object's alignment to PrefAlign. Returns a minimum known alignment of
1248 /// the value after the operation, which may be lower than PrefAlign.
1249 ///
1250 /// Increating value alignment isn't often possible though. If alignment is
1251 /// important, a more reliable approach is to simply align all global variables
1252 /// and allocation instructions to their preferred alignment from the beginning.
1253 static Align tryEnforceAlignment(Value *V, Align PrefAlign,
1254                                  const DataLayout &DL) {
1255   V = V->stripPointerCasts();
1256 
1257   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1258     // TODO: Ideally, this function would not be called if PrefAlign is smaller
1259     // than the current alignment, as the known bits calculation should have
1260     // already taken it into account. However, this is not always the case,
1261     // as computeKnownBits() has a depth limit, while stripPointerCasts()
1262     // doesn't.
1263     Align CurrentAlign = AI->getAlign();
1264     if (PrefAlign <= CurrentAlign)
1265       return CurrentAlign;
1266 
1267     // If the preferred alignment is greater than the natural stack alignment
1268     // then don't round up. This avoids dynamic stack realignment.
1269     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1270       return CurrentAlign;
1271     AI->setAlignment(PrefAlign);
1272     return PrefAlign;
1273   }
1274 
1275   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1276     // TODO: as above, this shouldn't be necessary.
1277     Align CurrentAlign = GO->getPointerAlignment(DL);
1278     if (PrefAlign <= CurrentAlign)
1279       return CurrentAlign;
1280 
1281     // If there is a large requested alignment and we can, bump up the alignment
1282     // of the global.  If the memory we set aside for the global may not be the
1283     // memory used by the final program then it is impossible for us to reliably
1284     // enforce the preferred alignment.
1285     if (!GO->canIncreaseAlignment())
1286       return CurrentAlign;
1287 
1288     GO->setAlignment(PrefAlign);
1289     return PrefAlign;
1290   }
1291 
1292   return Align(1);
1293 }
1294 
1295 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1296                                        const DataLayout &DL,
1297                                        const Instruction *CxtI,
1298                                        AssumptionCache *AC,
1299                                        const DominatorTree *DT) {
1300   assert(V->getType()->isPointerTy() &&
1301          "getOrEnforceKnownAlignment expects a pointer!");
1302 
1303   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1304   unsigned TrailZ = Known.countMinTrailingZeros();
1305 
1306   // Avoid trouble with ridiculously large TrailZ values, such as
1307   // those computed from a null pointer.
1308   // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1309   TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1310 
1311   Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1312 
1313   if (PrefAlign && *PrefAlign > Alignment)
1314     Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
1315 
1316   // We don't need to make any adjustment.
1317   return Alignment;
1318 }
1319 
1320 ///===---------------------------------------------------------------------===//
1321 ///  Dbg Intrinsic utilities
1322 ///
1323 
1324 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1325 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1326                              DIExpression *DIExpr,
1327                              PHINode *APN) {
1328   // Since we can't guarantee that the original dbg.declare instrinsic
1329   // is removed by LowerDbgDeclare(), we need to make sure that we are
1330   // not inserting the same dbg.value intrinsic over and over.
1331   SmallVector<DbgValueInst *, 1> DbgValues;
1332   findDbgValues(DbgValues, APN);
1333   for (auto *DVI : DbgValues) {
1334     assert(DVI->getValue() == APN);
1335     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1336       return true;
1337   }
1338   return false;
1339 }
1340 
1341 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1342 /// (or fragment of the variable) described by \p DII.
1343 ///
1344 /// This is primarily intended as a helper for the different
1345 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1346 /// converted describes an alloca'd variable, so we need to use the
1347 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1348 /// identified as covering an n-bit fragment, if the store size of i1 is at
1349 /// least n bits.
1350 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1351   const DataLayout &DL = DII->getModule()->getDataLayout();
1352   TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1353   if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) {
1354     assert(!ValueSize.isScalable() &&
1355            "Fragments don't work on scalable types.");
1356     return ValueSize.getFixedSize() >= *FragmentSize;
1357   }
1358   // We can't always calculate the size of the DI variable (e.g. if it is a
1359   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1360   // intead.
1361   if (DII->isAddressOfVariable())
1362     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1363       if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
1364         assert(ValueSize.isScalable() == FragmentSize->isScalable() &&
1365                "Both sizes should agree on the scalable flag.");
1366         return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1367       }
1368   // Could not determine size of variable. Conservatively return false.
1369   return false;
1370 }
1371 
1372 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1373 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1374 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1375 /// case this DebugLoc leaks into any adjacent instructions.
1376 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1377   // Original dbg.declare must have a location.
1378   DebugLoc DeclareLoc = DII->getDebugLoc();
1379   MDNode *Scope = DeclareLoc.getScope();
1380   DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1381   // Produce an unknown location with the correct scope / inlinedAt fields.
1382   return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt);
1383 }
1384 
1385 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1386 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1387 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1388                                            StoreInst *SI, DIBuilder &Builder) {
1389   assert(DII->isAddressOfVariable());
1390   auto *DIVar = DII->getVariable();
1391   assert(DIVar && "Missing variable");
1392   auto *DIExpr = DII->getExpression();
1393   Value *DV = SI->getValueOperand();
1394 
1395   DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1396 
1397   if (!valueCoversEntireFragment(DV->getType(), DII)) {
1398     // FIXME: If storing to a part of the variable described by the dbg.declare,
1399     // then we want to insert a dbg.value for the corresponding fragment.
1400     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1401                       << *DII << '\n');
1402     // For now, when there is a store to parts of the variable (but we do not
1403     // know which part) we insert an dbg.value instrinsic to indicate that we
1404     // know nothing about the variable's content.
1405     DV = UndefValue::get(DV->getType());
1406     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1407     return;
1408   }
1409 
1410   Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1411 }
1412 
1413 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1414 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1415 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1416                                            LoadInst *LI, DIBuilder &Builder) {
1417   auto *DIVar = DII->getVariable();
1418   auto *DIExpr = DII->getExpression();
1419   assert(DIVar && "Missing variable");
1420 
1421   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1422     // FIXME: If only referring to a part of the variable described by the
1423     // dbg.declare, then we want to insert a dbg.value for the corresponding
1424     // fragment.
1425     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1426                       << *DII << '\n');
1427     return;
1428   }
1429 
1430   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1431 
1432   // We are now tracking the loaded value instead of the address. In the
1433   // future if multi-location support is added to the IR, it might be
1434   // preferable to keep tracking both the loaded value and the original
1435   // address in case the alloca can not be elided.
1436   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1437       LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1438   DbgValue->insertAfter(LI);
1439 }
1440 
1441 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1442 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1443 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1444                                            PHINode *APN, DIBuilder &Builder) {
1445   auto *DIVar = DII->getVariable();
1446   auto *DIExpr = DII->getExpression();
1447   assert(DIVar && "Missing variable");
1448 
1449   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1450     return;
1451 
1452   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1453     // FIXME: If only referring to a part of the variable described by the
1454     // dbg.declare, then we want to insert a dbg.value for the corresponding
1455     // fragment.
1456     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1457                       << *DII << '\n');
1458     return;
1459   }
1460 
1461   BasicBlock *BB = APN->getParent();
1462   auto InsertionPt = BB->getFirstInsertionPt();
1463 
1464   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1465 
1466   // The block may be a catchswitch block, which does not have a valid
1467   // insertion point.
1468   // FIXME: Insert dbg.value markers in the successors when appropriate.
1469   if (InsertionPt != BB->end())
1470     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1471 }
1472 
1473 /// Determine whether this alloca is either a VLA or an array.
1474 static bool isArray(AllocaInst *AI) {
1475   return AI->isArrayAllocation() ||
1476          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1477 }
1478 
1479 /// Determine whether this alloca is a structure.
1480 static bool isStructure(AllocaInst *AI) {
1481   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1482 }
1483 
1484 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1485 /// of llvm.dbg.value intrinsics.
1486 bool llvm::LowerDbgDeclare(Function &F) {
1487   bool Changed = false;
1488   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1489   SmallVector<DbgDeclareInst *, 4> Dbgs;
1490   for (auto &FI : F)
1491     for (Instruction &BI : FI)
1492       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1493         Dbgs.push_back(DDI);
1494 
1495   if (Dbgs.empty())
1496     return Changed;
1497 
1498   for (auto &I : Dbgs) {
1499     DbgDeclareInst *DDI = I;
1500     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1501     // If this is an alloca for a scalar variable, insert a dbg.value
1502     // at each load and store to the alloca and erase the dbg.declare.
1503     // The dbg.values allow tracking a variable even if it is not
1504     // stored on the stack, while the dbg.declare can only describe
1505     // the stack slot (and at a lexical-scope granularity). Later
1506     // passes will attempt to elide the stack slot.
1507     if (!AI || isArray(AI) || isStructure(AI))
1508       continue;
1509 
1510     // A volatile load/store means that the alloca can't be elided anyway.
1511     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1512           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1513             return LI->isVolatile();
1514           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1515             return SI->isVolatile();
1516           return false;
1517         }))
1518       continue;
1519 
1520     SmallVector<const Value *, 8> WorkList;
1521     WorkList.push_back(AI);
1522     while (!WorkList.empty()) {
1523       const Value *V = WorkList.pop_back_val();
1524       for (auto &AIUse : V->uses()) {
1525         User *U = AIUse.getUser();
1526         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1527           if (AIUse.getOperandNo() == 1)
1528             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1529         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1530           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1531         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1532           // This is a call by-value or some other instruction that takes a
1533           // pointer to the variable. Insert a *value* intrinsic that describes
1534           // the variable by dereferencing the alloca.
1535           if (!CI->isLifetimeStartOrEnd()) {
1536             DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1537             auto *DerefExpr =
1538                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1539             DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1540                                         NewLoc, CI);
1541           }
1542         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1543           if (BI->getType()->isPointerTy())
1544             WorkList.push_back(BI);
1545         }
1546       }
1547     }
1548     DDI->eraseFromParent();
1549     Changed = true;
1550   }
1551 
1552   if (Changed)
1553   for (BasicBlock &BB : F)
1554     RemoveRedundantDbgInstrs(&BB);
1555 
1556   return Changed;
1557 }
1558 
1559 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1560 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1561                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1562   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1563   if (InsertedPHIs.size() == 0)
1564     return;
1565 
1566   // Map existing PHI nodes to their dbg.values.
1567   ValueToValueMapTy DbgValueMap;
1568   for (auto &I : *BB) {
1569     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1570       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1571         DbgValueMap.insert({Loc, DbgII});
1572     }
1573   }
1574   if (DbgValueMap.size() == 0)
1575     return;
1576 
1577   // Then iterate through the new PHIs and look to see if they use one of the
1578   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1579   // propagate the info through the new PHI.
1580   LLVMContext &C = BB->getContext();
1581   for (auto PHI : InsertedPHIs) {
1582     BasicBlock *Parent = PHI->getParent();
1583     // Avoid inserting an intrinsic into an EH block.
1584     if (Parent->getFirstNonPHI()->isEHPad())
1585       continue;
1586     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1587     for (auto VI : PHI->operand_values()) {
1588       auto V = DbgValueMap.find(VI);
1589       if (V != DbgValueMap.end()) {
1590         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1591         Instruction *NewDbgII = DbgII->clone();
1592         NewDbgII->setOperand(0, PhiMAV);
1593         auto InsertionPt = Parent->getFirstInsertionPt();
1594         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1595         NewDbgII->insertBefore(&*InsertionPt);
1596       }
1597     }
1598   }
1599 }
1600 
1601 /// Finds all intrinsics declaring local variables as living in the memory that
1602 /// 'V' points to. This may include a mix of dbg.declare and
1603 /// dbg.addr intrinsics.
1604 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1605   // This function is hot. Check whether the value has any metadata to avoid a
1606   // DenseMap lookup.
1607   if (!V->isUsedByMetadata())
1608     return {};
1609   auto *L = LocalAsMetadata::getIfExists(V);
1610   if (!L)
1611     return {};
1612   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1613   if (!MDV)
1614     return {};
1615 
1616   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1617   for (User *U : MDV->users()) {
1618     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1619       if (DII->isAddressOfVariable())
1620         Declares.push_back(DII);
1621   }
1622 
1623   return Declares;
1624 }
1625 
1626 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) {
1627   TinyPtrVector<DbgDeclareInst *> DDIs;
1628   for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V))
1629     if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI))
1630       DDIs.push_back(DDI);
1631   return DDIs;
1632 }
1633 
1634 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1635   // This function is hot. Check whether the value has any metadata to avoid a
1636   // DenseMap lookup.
1637   if (!V->isUsedByMetadata())
1638     return;
1639   if (auto *L = LocalAsMetadata::getIfExists(V))
1640     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1641       for (User *U : MDV->users())
1642         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1643           DbgValues.push_back(DVI);
1644 }
1645 
1646 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1647                         Value *V) {
1648   // This function is hot. Check whether the value has any metadata to avoid a
1649   // DenseMap lookup.
1650   if (!V->isUsedByMetadata())
1651     return;
1652   if (auto *L = LocalAsMetadata::getIfExists(V))
1653     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1654       for (User *U : MDV->users())
1655         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1656           DbgUsers.push_back(DII);
1657 }
1658 
1659 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1660                              DIBuilder &Builder, uint8_t DIExprFlags,
1661                              int Offset) {
1662   auto DbgAddrs = FindDbgAddrUses(Address);
1663   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1664     DebugLoc Loc = DII->getDebugLoc();
1665     auto *DIVar = DII->getVariable();
1666     auto *DIExpr = DII->getExpression();
1667     assert(DIVar && "Missing variable");
1668     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1669     // Insert llvm.dbg.declare immediately before DII, and remove old
1670     // llvm.dbg.declare.
1671     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
1672     DII->eraseFromParent();
1673   }
1674   return !DbgAddrs.empty();
1675 }
1676 
1677 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1678                                         DIBuilder &Builder, int Offset) {
1679   DebugLoc Loc = DVI->getDebugLoc();
1680   auto *DIVar = DVI->getVariable();
1681   auto *DIExpr = DVI->getExpression();
1682   assert(DIVar && "Missing variable");
1683 
1684   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1685   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1686   // it and give up.
1687   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1688       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1689     return;
1690 
1691   // Insert the offset before the first deref.
1692   // We could just change the offset argument of dbg.value, but it's unsigned...
1693   if (Offset)
1694     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1695 
1696   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1697   DVI->eraseFromParent();
1698 }
1699 
1700 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1701                                     DIBuilder &Builder, int Offset) {
1702   if (auto *L = LocalAsMetadata::getIfExists(AI))
1703     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1704       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1705         Use &U = *UI++;
1706         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1707           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1708       }
1709 }
1710 
1711 /// Wrap \p V in a ValueAsMetadata instance.
1712 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1713   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1714 }
1715 
1716 /// Where possible to salvage debug information for \p I do so
1717 /// and return True. If not possible mark undef and return False.
1718 void llvm::salvageDebugInfo(Instruction &I) {
1719   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1720   findDbgUsers(DbgUsers, &I);
1721   salvageDebugInfoForDbgValues(I, DbgUsers);
1722 }
1723 
1724 void llvm::salvageDebugInfoForDbgValues(
1725     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1726   auto &Ctx = I.getContext();
1727   bool Salvaged = false;
1728   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1729 
1730   for (auto *DII : DbgUsers) {
1731     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1732     // are implicitly pointing out the value as a DWARF memory location
1733     // description.
1734     bool StackValue = isa<DbgValueInst>(DII);
1735 
1736     DIExpression *DIExpr =
1737         salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1738 
1739     // salvageDebugInfoImpl should fail on examining the first element of
1740     // DbgUsers, or none of them.
1741     if (!DIExpr)
1742       break;
1743 
1744     DII->setOperand(0, wrapMD(I.getOperand(0)));
1745     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1746     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1747     Salvaged = true;
1748   }
1749 
1750   if (Salvaged)
1751     return;
1752 
1753   for (auto *DII : DbgUsers) {
1754     Value *Undef = UndefValue::get(I.getType());
1755     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
1756                                             ValueAsMetadata::get(Undef)));
1757   }
1758 }
1759 
1760 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1761                                          DIExpression *SrcDIExpr,
1762                                          bool WithStackValue) {
1763   auto &M = *I.getModule();
1764   auto &DL = M.getDataLayout();
1765 
1766   // Apply a vector of opcodes to the source DIExpression.
1767   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1768     DIExpression *DIExpr = SrcDIExpr;
1769     if (!Ops.empty()) {
1770       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1771     }
1772     return DIExpr;
1773   };
1774 
1775   // Apply the given offset to the source DIExpression.
1776   auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1777     SmallVector<uint64_t, 8> Ops;
1778     DIExpression::appendOffset(Ops, Offset);
1779     return doSalvage(Ops);
1780   };
1781 
1782   // initializer-list helper for applying operators to the source DIExpression.
1783   auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * {
1784     SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1785     return doSalvage(Ops);
1786   };
1787 
1788   if (auto *CI = dyn_cast<CastInst>(&I)) {
1789     // No-op casts are irrelevant for debug info.
1790     if (CI->isNoopCast(DL))
1791       return SrcDIExpr;
1792 
1793     Type *Type = CI->getType();
1794     // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
1795     if (Type->isVectorTy() ||
1796         !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I)))
1797       return nullptr;
1798 
1799     Value *FromValue = CI->getOperand(0);
1800     unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1801     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1802 
1803     return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1804                                             isa<SExtInst>(&I)));
1805   }
1806 
1807   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1808     unsigned BitWidth =
1809         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1810     // Rewrite a constant GEP into a DIExpression.
1811     APInt Offset(BitWidth, 0);
1812     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1813       return applyOffset(Offset.getSExtValue());
1814     } else {
1815       return nullptr;
1816     }
1817   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1818     // Rewrite binary operations with constant integer operands.
1819     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1820     if (!ConstInt || ConstInt->getBitWidth() > 64)
1821       return nullptr;
1822 
1823     uint64_t Val = ConstInt->getSExtValue();
1824     switch (BI->getOpcode()) {
1825     case Instruction::Add:
1826       return applyOffset(Val);
1827     case Instruction::Sub:
1828       return applyOffset(-int64_t(Val));
1829     case Instruction::Mul:
1830       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1831     case Instruction::SDiv:
1832       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1833     case Instruction::SRem:
1834       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1835     case Instruction::Or:
1836       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1837     case Instruction::And:
1838       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1839     case Instruction::Xor:
1840       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1841     case Instruction::Shl:
1842       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1843     case Instruction::LShr:
1844       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1845     case Instruction::AShr:
1846       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1847     default:
1848       // TODO: Salvage constants from each kind of binop we know about.
1849       return nullptr;
1850     }
1851     // *Not* to do: we should not attempt to salvage load instructions,
1852     // because the validity and lifetime of a dbg.value containing
1853     // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1854   }
1855   return nullptr;
1856 }
1857 
1858 /// A replacement for a dbg.value expression.
1859 using DbgValReplacement = Optional<DIExpression *>;
1860 
1861 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1862 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1863 /// changes are made.
1864 static bool rewriteDebugUsers(
1865     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1866     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1867   // Find debug users of From.
1868   SmallVector<DbgVariableIntrinsic *, 1> Users;
1869   findDbgUsers(Users, &From);
1870   if (Users.empty())
1871     return false;
1872 
1873   // Prevent use-before-def of To.
1874   bool Changed = false;
1875   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1876   if (isa<Instruction>(&To)) {
1877     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1878 
1879     for (auto *DII : Users) {
1880       // It's common to see a debug user between From and DomPoint. Move it
1881       // after DomPoint to preserve the variable update without any reordering.
1882       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1883         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1884         DII->moveAfter(&DomPoint);
1885         Changed = true;
1886 
1887       // Users which otherwise aren't dominated by the replacement value must
1888       // be salvaged or deleted.
1889       } else if (!DT.dominates(&DomPoint, DII)) {
1890         UndefOrSalvage.insert(DII);
1891       }
1892     }
1893   }
1894 
1895   // Update debug users without use-before-def risk.
1896   for (auto *DII : Users) {
1897     if (UndefOrSalvage.count(DII))
1898       continue;
1899 
1900     LLVMContext &Ctx = DII->getContext();
1901     DbgValReplacement DVR = RewriteExpr(*DII);
1902     if (!DVR)
1903       continue;
1904 
1905     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1906     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1907     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1908     Changed = true;
1909   }
1910 
1911   if (!UndefOrSalvage.empty()) {
1912     // Try to salvage the remaining debug users.
1913     salvageDebugInfo(From);
1914     Changed = true;
1915   }
1916 
1917   return Changed;
1918 }
1919 
1920 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1921 /// losslessly preserve the bits and semantics of the value. This predicate is
1922 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1923 ///
1924 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1925 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1926 /// and also does not allow lossless pointer <-> integer conversions.
1927 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1928                                          Type *ToTy) {
1929   // Trivially compatible types.
1930   if (FromTy == ToTy)
1931     return true;
1932 
1933   // Handle compatible pointer <-> integer conversions.
1934   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1935     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1936     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1937                               !DL.isNonIntegralPointerType(ToTy);
1938     return SameSize && LosslessConversion;
1939   }
1940 
1941   // TODO: This is not exhaustive.
1942   return false;
1943 }
1944 
1945 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1946                                  Instruction &DomPoint, DominatorTree &DT) {
1947   // Exit early if From has no debug users.
1948   if (!From.isUsedByMetadata())
1949     return false;
1950 
1951   assert(&From != &To && "Can't replace something with itself");
1952 
1953   Type *FromTy = From.getType();
1954   Type *ToTy = To.getType();
1955 
1956   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1957     return DII.getExpression();
1958   };
1959 
1960   // Handle no-op conversions.
1961   Module &M = *From.getModule();
1962   const DataLayout &DL = M.getDataLayout();
1963   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1964     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1965 
1966   // Handle integer-to-integer widening and narrowing.
1967   // FIXME: Use DW_OP_convert when it's available everywhere.
1968   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1969     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1970     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1971     assert(FromBits != ToBits && "Unexpected no-op conversion");
1972 
1973     // When the width of the result grows, assume that a debugger will only
1974     // access the low `FromBits` bits when inspecting the source variable.
1975     if (FromBits < ToBits)
1976       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1977 
1978     // The width of the result has shrunk. Use sign/zero extension to describe
1979     // the source variable's high bits.
1980     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1981       DILocalVariable *Var = DII.getVariable();
1982 
1983       // Without knowing signedness, sign/zero extension isn't possible.
1984       auto Signedness = Var->getSignedness();
1985       if (!Signedness)
1986         return None;
1987 
1988       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1989       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
1990                                      Signed);
1991     };
1992     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1993   }
1994 
1995   // TODO: Floating-point conversions, vectors.
1996   return false;
1997 }
1998 
1999 std::pair<unsigned, unsigned>
2000 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
2001   unsigned NumDeadInst = 0;
2002   unsigned NumDeadDbgInst = 0;
2003   // Delete the instructions backwards, as it has a reduced likelihood of
2004   // having to update as many def-use and use-def chains.
2005   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2006   while (EndInst != &BB->front()) {
2007     // Delete the next to last instruction.
2008     Instruction *Inst = &*--EndInst->getIterator();
2009     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
2010       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2011     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
2012       EndInst = Inst;
2013       continue;
2014     }
2015     if (isa<DbgInfoIntrinsic>(Inst))
2016       ++NumDeadDbgInst;
2017     else
2018       ++NumDeadInst;
2019     Inst->eraseFromParent();
2020   }
2021   return {NumDeadInst, NumDeadDbgInst};
2022 }
2023 
2024 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
2025                                    bool PreserveLCSSA, DomTreeUpdater *DTU,
2026                                    MemorySSAUpdater *MSSAU) {
2027   BasicBlock *BB = I->getParent();
2028 
2029   if (MSSAU)
2030     MSSAU->changeToUnreachable(I);
2031 
2032   SmallSetVector<BasicBlock *, 8> UniqueSuccessors;
2033 
2034   // Loop over all of the successors, removing BB's entry from any PHI
2035   // nodes.
2036   for (BasicBlock *Successor : successors(BB)) {
2037     Successor->removePredecessor(BB, PreserveLCSSA);
2038     if (DTU)
2039       UniqueSuccessors.insert(Successor);
2040   }
2041   // Insert a call to llvm.trap right before this.  This turns the undefined
2042   // behavior into a hard fail instead of falling through into random code.
2043   if (UseLLVMTrap) {
2044     Function *TrapFn =
2045       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
2046     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
2047     CallTrap->setDebugLoc(I->getDebugLoc());
2048   }
2049   auto *UI = new UnreachableInst(I->getContext(), I);
2050   UI->setDebugLoc(I->getDebugLoc());
2051 
2052   // All instructions after this are dead.
2053   unsigned NumInstrsRemoved = 0;
2054   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
2055   while (BBI != BBE) {
2056     if (!BBI->use_empty())
2057       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2058     BB->getInstList().erase(BBI++);
2059     ++NumInstrsRemoved;
2060   }
2061   if (DTU) {
2062     SmallVector<DominatorTree::UpdateType, 8> Updates;
2063     Updates.reserve(UniqueSuccessors.size());
2064     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
2065       Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2066     DTU->applyUpdates(Updates);
2067   }
2068   return NumInstrsRemoved;
2069 }
2070 
2071 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
2072   SmallVector<Value *, 8> Args(II->args());
2073   SmallVector<OperandBundleDef, 1> OpBundles;
2074   II->getOperandBundlesAsDefs(OpBundles);
2075   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
2076                                        II->getCalledOperand(), Args, OpBundles);
2077   NewCall->setCallingConv(II->getCallingConv());
2078   NewCall->setAttributes(II->getAttributes());
2079   NewCall->setDebugLoc(II->getDebugLoc());
2080   NewCall->copyMetadata(*II);
2081 
2082   // If the invoke had profile metadata, try converting them for CallInst.
2083   uint64_t TotalWeight;
2084   if (NewCall->extractProfTotalWeight(TotalWeight)) {
2085     // Set the total weight if it fits into i32, otherwise reset.
2086     MDBuilder MDB(NewCall->getContext());
2087     auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2088                           ? nullptr
2089                           : MDB.createBranchWeights({uint32_t(TotalWeight)});
2090     NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2091   }
2092 
2093   return NewCall;
2094 }
2095 
2096 /// changeToCall - Convert the specified invoke into a normal call.
2097 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2098   CallInst *NewCall = createCallMatchingInvoke(II);
2099   NewCall->takeName(II);
2100   NewCall->insertBefore(II);
2101   II->replaceAllUsesWith(NewCall);
2102 
2103   // Follow the call by a branch to the normal destination.
2104   BasicBlock *NormalDestBB = II->getNormalDest();
2105   BranchInst::Create(NormalDestBB, II);
2106 
2107   // Update PHI nodes in the unwind destination
2108   BasicBlock *BB = II->getParent();
2109   BasicBlock *UnwindDestBB = II->getUnwindDest();
2110   UnwindDestBB->removePredecessor(BB);
2111   II->eraseFromParent();
2112   if (DTU)
2113     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2114 }
2115 
2116 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2117                                                    BasicBlock *UnwindEdge) {
2118   BasicBlock *BB = CI->getParent();
2119 
2120   // Convert this function call into an invoke instruction.  First, split the
2121   // basic block.
2122   BasicBlock *Split =
2123       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
2124 
2125   // Delete the unconditional branch inserted by splitBasicBlock
2126   BB->getInstList().pop_back();
2127 
2128   // Create the new invoke instruction.
2129   SmallVector<Value *, 8> InvokeArgs(CI->args());
2130   SmallVector<OperandBundleDef, 1> OpBundles;
2131 
2132   CI->getOperandBundlesAsDefs(OpBundles);
2133 
2134   // Note: we're round tripping operand bundles through memory here, and that
2135   // can potentially be avoided with a cleverer API design that we do not have
2136   // as of this time.
2137 
2138   InvokeInst *II =
2139       InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2140                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2141   II->setDebugLoc(CI->getDebugLoc());
2142   II->setCallingConv(CI->getCallingConv());
2143   II->setAttributes(CI->getAttributes());
2144 
2145   // Make sure that anything using the call now uses the invoke!  This also
2146   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2147   CI->replaceAllUsesWith(II);
2148 
2149   // Delete the original call
2150   Split->getInstList().pop_front();
2151   return Split;
2152 }
2153 
2154 static bool markAliveBlocks(Function &F,
2155                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2156                             DomTreeUpdater *DTU = nullptr) {
2157   SmallVector<BasicBlock*, 128> Worklist;
2158   BasicBlock *BB = &F.front();
2159   Worklist.push_back(BB);
2160   Reachable.insert(BB);
2161   bool Changed = false;
2162   do {
2163     BB = Worklist.pop_back_val();
2164 
2165     // Do a quick scan of the basic block, turning any obviously unreachable
2166     // instructions into LLVM unreachable insts.  The instruction combining pass
2167     // canonicalizes unreachable insts into stores to null or undef.
2168     for (Instruction &I : *BB) {
2169       if (auto *CI = dyn_cast<CallInst>(&I)) {
2170         Value *Callee = CI->getCalledOperand();
2171         // Handle intrinsic calls.
2172         if (Function *F = dyn_cast<Function>(Callee)) {
2173           auto IntrinsicID = F->getIntrinsicID();
2174           // Assumptions that are known to be false are equivalent to
2175           // unreachable. Also, if the condition is undefined, then we make the
2176           // choice most beneficial to the optimizer, and choose that to also be
2177           // unreachable.
2178           if (IntrinsicID == Intrinsic::assume) {
2179             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2180               // Don't insert a call to llvm.trap right before the unreachable.
2181               changeToUnreachable(CI, false, false, DTU);
2182               Changed = true;
2183               break;
2184             }
2185           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2186             // A call to the guard intrinsic bails out of the current
2187             // compilation unit if the predicate passed to it is false. If the
2188             // predicate is a constant false, then we know the guard will bail
2189             // out of the current compile unconditionally, so all code following
2190             // it is dead.
2191             //
2192             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2193             // guards to treat `undef` as `false` since a guard on `undef` can
2194             // still be useful for widening.
2195             if (match(CI->getArgOperand(0), m_Zero()))
2196               if (!isa<UnreachableInst>(CI->getNextNode())) {
2197                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2198                                     false, DTU);
2199                 Changed = true;
2200                 break;
2201               }
2202           }
2203         } else if ((isa<ConstantPointerNull>(Callee) &&
2204                     !NullPointerIsDefined(CI->getFunction())) ||
2205                    isa<UndefValue>(Callee)) {
2206           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2207           Changed = true;
2208           break;
2209         }
2210         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2211           // If we found a call to a no-return function, insert an unreachable
2212           // instruction after it.  Make sure there isn't *already* one there
2213           // though.
2214           if (!isa<UnreachableInst>(CI->getNextNode())) {
2215             // Don't insert a call to llvm.trap right before the unreachable.
2216             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2217             Changed = true;
2218           }
2219           break;
2220         }
2221       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2222         // Store to undef and store to null are undefined and used to signal
2223         // that they should be changed to unreachable by passes that can't
2224         // modify the CFG.
2225 
2226         // Don't touch volatile stores.
2227         if (SI->isVolatile()) continue;
2228 
2229         Value *Ptr = SI->getOperand(1);
2230 
2231         if (isa<UndefValue>(Ptr) ||
2232             (isa<ConstantPointerNull>(Ptr) &&
2233              !NullPointerIsDefined(SI->getFunction(),
2234                                    SI->getPointerAddressSpace()))) {
2235           changeToUnreachable(SI, true, false, DTU);
2236           Changed = true;
2237           break;
2238         }
2239       }
2240     }
2241 
2242     Instruction *Terminator = BB->getTerminator();
2243     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2244       // Turn invokes that call 'nounwind' functions into ordinary calls.
2245       Value *Callee = II->getCalledOperand();
2246       if ((isa<ConstantPointerNull>(Callee) &&
2247            !NullPointerIsDefined(BB->getParent())) ||
2248           isa<UndefValue>(Callee)) {
2249         changeToUnreachable(II, true, false, DTU);
2250         Changed = true;
2251       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2252         if (II->use_empty() && II->onlyReadsMemory()) {
2253           // jump to the normal destination branch.
2254           BasicBlock *NormalDestBB = II->getNormalDest();
2255           BasicBlock *UnwindDestBB = II->getUnwindDest();
2256           BranchInst::Create(NormalDestBB, II);
2257           UnwindDestBB->removePredecessor(II->getParent());
2258           II->eraseFromParent();
2259           if (DTU)
2260             DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2261         } else
2262           changeToCall(II, DTU);
2263         Changed = true;
2264       }
2265     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2266       // Remove catchpads which cannot be reached.
2267       struct CatchPadDenseMapInfo {
2268         static CatchPadInst *getEmptyKey() {
2269           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2270         }
2271 
2272         static CatchPadInst *getTombstoneKey() {
2273           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2274         }
2275 
2276         static unsigned getHashValue(CatchPadInst *CatchPad) {
2277           return static_cast<unsigned>(hash_combine_range(
2278               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2279         }
2280 
2281         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2282           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2283               RHS == getEmptyKey() || RHS == getTombstoneKey())
2284             return LHS == RHS;
2285           return LHS->isIdenticalTo(RHS);
2286         }
2287       };
2288 
2289       SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
2290       // Set of unique CatchPads.
2291       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2292                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2293           HandlerSet;
2294       detail::DenseSetEmpty Empty;
2295       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2296                                              E = CatchSwitch->handler_end();
2297            I != E; ++I) {
2298         BasicBlock *HandlerBB = *I;
2299         ++NumPerSuccessorCases[HandlerBB];
2300         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2301         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2302           --NumPerSuccessorCases[HandlerBB];
2303           CatchSwitch->removeHandler(I);
2304           --I;
2305           --E;
2306           Changed = true;
2307         }
2308       }
2309       std::vector<DominatorTree::UpdateType> Updates;
2310       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
2311         if (I.second == 0)
2312           Updates.push_back({DominatorTree::Delete, BB, I.first});
2313       if (DTU)
2314         DTU->applyUpdates(Updates);
2315     }
2316 
2317     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2318     for (BasicBlock *Successor : successors(BB))
2319       if (Reachable.insert(Successor).second)
2320         Worklist.push_back(Successor);
2321   } while (!Worklist.empty());
2322   return Changed;
2323 }
2324 
2325 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2326   Instruction *TI = BB->getTerminator();
2327 
2328   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2329     changeToCall(II, DTU);
2330     return;
2331   }
2332 
2333   Instruction *NewTI;
2334   BasicBlock *UnwindDest;
2335 
2336   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2337     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2338     UnwindDest = CRI->getUnwindDest();
2339   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2340     auto *NewCatchSwitch = CatchSwitchInst::Create(
2341         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2342         CatchSwitch->getName(), CatchSwitch);
2343     for (BasicBlock *PadBB : CatchSwitch->handlers())
2344       NewCatchSwitch->addHandler(PadBB);
2345 
2346     NewTI = NewCatchSwitch;
2347     UnwindDest = CatchSwitch->getUnwindDest();
2348   } else {
2349     llvm_unreachable("Could not find unwind successor");
2350   }
2351 
2352   NewTI->takeName(TI);
2353   NewTI->setDebugLoc(TI->getDebugLoc());
2354   UnwindDest->removePredecessor(BB);
2355   TI->replaceAllUsesWith(NewTI);
2356   TI->eraseFromParent();
2357   if (DTU)
2358     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
2359 }
2360 
2361 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2362 /// if they are in a dead cycle.  Return true if a change was made, false
2363 /// otherwise.
2364 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2365                                    MemorySSAUpdater *MSSAU) {
2366   SmallPtrSet<BasicBlock *, 16> Reachable;
2367   bool Changed = markAliveBlocks(F, Reachable, DTU);
2368 
2369   // If there are unreachable blocks in the CFG...
2370   if (Reachable.size() == F.size())
2371     return Changed;
2372 
2373   assert(Reachable.size() < F.size());
2374 
2375   // Are there any blocks left to actually delete?
2376   SmallSetVector<BasicBlock *, 8> BlocksToRemove;
2377   for (BasicBlock &BB : F) {
2378     // Skip reachable basic blocks
2379     if (Reachable.count(&BB))
2380       continue;
2381     // Skip already-deleted blocks
2382     if (DTU && DTU->isBBPendingDeletion(&BB))
2383       continue;
2384     BlocksToRemove.insert(&BB);
2385   }
2386 
2387   if (BlocksToRemove.empty())
2388     return Changed;
2389 
2390   Changed = true;
2391   NumRemoved += BlocksToRemove.size();
2392 
2393   if (MSSAU)
2394     MSSAU->removeBlocks(BlocksToRemove);
2395 
2396   // Loop over all of the basic blocks that are up for removal, dropping all of
2397   // their internal references. Update DTU if available.
2398   std::vector<DominatorTree::UpdateType> Updates;
2399   for (auto *BB : BlocksToRemove) {
2400     SmallSetVector<BasicBlock *, 8> UniqueSuccessors;
2401     for (BasicBlock *Successor : successors(BB)) {
2402       // Only remove references to BB in reachable successors of BB.
2403       if (Reachable.count(Successor))
2404         Successor->removePredecessor(BB);
2405       if (DTU)
2406         UniqueSuccessors.insert(Successor);
2407     }
2408     BB->dropAllReferences();
2409     if (DTU) {
2410       Instruction *TI = BB->getTerminator();
2411       assert(TI && "Basic block should have a terminator");
2412       // Terminators like invoke can have users. We have to replace their users,
2413       // before removing them.
2414       if (!TI->use_empty())
2415         TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
2416       TI->eraseFromParent();
2417       new UnreachableInst(BB->getContext(), BB);
2418       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2419                                "applying corresponding DTU updates.");
2420       Updates.reserve(Updates.size() + UniqueSuccessors.size());
2421       for (auto *UniqueSuccessor : UniqueSuccessors)
2422         Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2423     }
2424   }
2425 
2426   if (DTU) {
2427     DTU->applyUpdates(Updates);
2428     for (auto *BB : BlocksToRemove)
2429       DTU->deleteBB(BB);
2430   } else {
2431     for (auto *BB : BlocksToRemove)
2432       BB->eraseFromParent();
2433   }
2434 
2435   return Changed;
2436 }
2437 
2438 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2439                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2440   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2441   K->dropUnknownNonDebugMetadata(KnownIDs);
2442   K->getAllMetadataOtherThanDebugLoc(Metadata);
2443   for (const auto &MD : Metadata) {
2444     unsigned Kind = MD.first;
2445     MDNode *JMD = J->getMetadata(Kind);
2446     MDNode *KMD = MD.second;
2447 
2448     switch (Kind) {
2449       default:
2450         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2451         break;
2452       case LLVMContext::MD_dbg:
2453         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2454       case LLVMContext::MD_tbaa:
2455         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2456         break;
2457       case LLVMContext::MD_alias_scope:
2458         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2459         break;
2460       case LLVMContext::MD_noalias:
2461       case LLVMContext::MD_mem_parallel_loop_access:
2462         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2463         break;
2464       case LLVMContext::MD_access_group:
2465         K->setMetadata(LLVMContext::MD_access_group,
2466                        intersectAccessGroups(K, J));
2467         break;
2468       case LLVMContext::MD_range:
2469 
2470         // If K does move, use most generic range. Otherwise keep the range of
2471         // K.
2472         if (DoesKMove)
2473           // FIXME: If K does move, we should drop the range info and nonnull.
2474           //        Currently this function is used with DoesKMove in passes
2475           //        doing hoisting/sinking and the current behavior of using the
2476           //        most generic range is correct in those cases.
2477           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2478         break;
2479       case LLVMContext::MD_fpmath:
2480         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2481         break;
2482       case LLVMContext::MD_invariant_load:
2483         // Only set the !invariant.load if it is present in both instructions.
2484         K->setMetadata(Kind, JMD);
2485         break;
2486       case LLVMContext::MD_nonnull:
2487         // If K does move, keep nonull if it is present in both instructions.
2488         if (DoesKMove)
2489           K->setMetadata(Kind, JMD);
2490         break;
2491       case LLVMContext::MD_invariant_group:
2492         // Preserve !invariant.group in K.
2493         break;
2494       case LLVMContext::MD_align:
2495         K->setMetadata(Kind,
2496           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2497         break;
2498       case LLVMContext::MD_dereferenceable:
2499       case LLVMContext::MD_dereferenceable_or_null:
2500         K->setMetadata(Kind,
2501           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2502         break;
2503       case LLVMContext::MD_preserve_access_index:
2504         // Preserve !preserve.access.index in K.
2505         break;
2506     }
2507   }
2508   // Set !invariant.group from J if J has it. If both instructions have it
2509   // then we will just pick it from J - even when they are different.
2510   // Also make sure that K is load or store - f.e. combining bitcast with load
2511   // could produce bitcast with invariant.group metadata, which is invalid.
2512   // FIXME: we should try to preserve both invariant.group md if they are
2513   // different, but right now instruction can only have one invariant.group.
2514   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2515     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2516       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2517 }
2518 
2519 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2520                                  bool KDominatesJ) {
2521   unsigned KnownIDs[] = {
2522       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2523       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2524       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2525       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2526       LLVMContext::MD_dereferenceable,
2527       LLVMContext::MD_dereferenceable_or_null,
2528       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2529   combineMetadata(K, J, KnownIDs, KDominatesJ);
2530 }
2531 
2532 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2533   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2534   Source.getAllMetadata(MD);
2535   MDBuilder MDB(Dest.getContext());
2536   Type *NewType = Dest.getType();
2537   const DataLayout &DL = Source.getModule()->getDataLayout();
2538   for (const auto &MDPair : MD) {
2539     unsigned ID = MDPair.first;
2540     MDNode *N = MDPair.second;
2541     // Note, essentially every kind of metadata should be preserved here! This
2542     // routine is supposed to clone a load instruction changing *only its type*.
2543     // The only metadata it makes sense to drop is metadata which is invalidated
2544     // when the pointer type changes. This should essentially never be the case
2545     // in LLVM, but we explicitly switch over only known metadata to be
2546     // conservatively correct. If you are adding metadata to LLVM which pertains
2547     // to loads, you almost certainly want to add it here.
2548     switch (ID) {
2549     case LLVMContext::MD_dbg:
2550     case LLVMContext::MD_tbaa:
2551     case LLVMContext::MD_prof:
2552     case LLVMContext::MD_fpmath:
2553     case LLVMContext::MD_tbaa_struct:
2554     case LLVMContext::MD_invariant_load:
2555     case LLVMContext::MD_alias_scope:
2556     case LLVMContext::MD_noalias:
2557     case LLVMContext::MD_nontemporal:
2558     case LLVMContext::MD_mem_parallel_loop_access:
2559     case LLVMContext::MD_access_group:
2560       // All of these directly apply.
2561       Dest.setMetadata(ID, N);
2562       break;
2563 
2564     case LLVMContext::MD_nonnull:
2565       copyNonnullMetadata(Source, N, Dest);
2566       break;
2567 
2568     case LLVMContext::MD_align:
2569     case LLVMContext::MD_dereferenceable:
2570     case LLVMContext::MD_dereferenceable_or_null:
2571       // These only directly apply if the new type is also a pointer.
2572       if (NewType->isPointerTy())
2573         Dest.setMetadata(ID, N);
2574       break;
2575 
2576     case LLVMContext::MD_range:
2577       copyRangeMetadata(DL, Source, N, Dest);
2578       break;
2579     }
2580   }
2581 }
2582 
2583 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2584   auto *ReplInst = dyn_cast<Instruction>(Repl);
2585   if (!ReplInst)
2586     return;
2587 
2588   // Patch the replacement so that it is not more restrictive than the value
2589   // being replaced.
2590   // Note that if 'I' is a load being replaced by some operation,
2591   // for example, by an arithmetic operation, then andIRFlags()
2592   // would just erase all math flags from the original arithmetic
2593   // operation, which is clearly not wanted and not needed.
2594   if (!isa<LoadInst>(I))
2595     ReplInst->andIRFlags(I);
2596 
2597   // FIXME: If both the original and replacement value are part of the
2598   // same control-flow region (meaning that the execution of one
2599   // guarantees the execution of the other), then we can combine the
2600   // noalias scopes here and do better than the general conservative
2601   // answer used in combineMetadata().
2602 
2603   // In general, GVN unifies expressions over different control-flow
2604   // regions, and so we need a conservative combination of the noalias
2605   // scopes.
2606   static const unsigned KnownIDs[] = {
2607       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2608       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2609       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2610       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2611       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2612   combineMetadata(ReplInst, I, KnownIDs, false);
2613 }
2614 
2615 template <typename RootType, typename DominatesFn>
2616 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2617                                          const RootType &Root,
2618                                          const DominatesFn &Dominates) {
2619   assert(From->getType() == To->getType());
2620 
2621   unsigned Count = 0;
2622   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2623        UI != UE;) {
2624     Use &U = *UI++;
2625     if (!Dominates(Root, U))
2626       continue;
2627     U.set(To);
2628     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2629                       << "' as " << *To << " in " << *U << "\n");
2630     ++Count;
2631   }
2632   return Count;
2633 }
2634 
2635 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2636    assert(From->getType() == To->getType());
2637    auto *BB = From->getParent();
2638    unsigned Count = 0;
2639 
2640   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2641        UI != UE;) {
2642     Use &U = *UI++;
2643     auto *I = cast<Instruction>(U.getUser());
2644     if (I->getParent() == BB)
2645       continue;
2646     U.set(To);
2647     ++Count;
2648   }
2649   return Count;
2650 }
2651 
2652 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2653                                         DominatorTree &DT,
2654                                         const BasicBlockEdge &Root) {
2655   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2656     return DT.dominates(Root, U);
2657   };
2658   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2659 }
2660 
2661 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2662                                         DominatorTree &DT,
2663                                         const BasicBlock *BB) {
2664   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2665     auto *I = cast<Instruction>(U.getUser())->getParent();
2666     return DT.properlyDominates(BB, I);
2667   };
2668   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2669 }
2670 
2671 bool llvm::callsGCLeafFunction(const CallBase *Call,
2672                                const TargetLibraryInfo &TLI) {
2673   // Check if the function is specifically marked as a gc leaf function.
2674   if (Call->hasFnAttr("gc-leaf-function"))
2675     return true;
2676   if (const Function *F = Call->getCalledFunction()) {
2677     if (F->hasFnAttribute("gc-leaf-function"))
2678       return true;
2679 
2680     if (auto IID = F->getIntrinsicID()) {
2681       // Most LLVM intrinsics do not take safepoints.
2682       return IID != Intrinsic::experimental_gc_statepoint &&
2683              IID != Intrinsic::experimental_deoptimize &&
2684              IID != Intrinsic::memcpy_element_unordered_atomic &&
2685              IID != Intrinsic::memmove_element_unordered_atomic;
2686     }
2687   }
2688 
2689   // Lib calls can be materialized by some passes, and won't be
2690   // marked as 'gc-leaf-function.' All available Libcalls are
2691   // GC-leaf.
2692   LibFunc LF;
2693   if (TLI.getLibFunc(*Call, LF)) {
2694     return TLI.has(LF);
2695   }
2696 
2697   return false;
2698 }
2699 
2700 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2701                                LoadInst &NewLI) {
2702   auto *NewTy = NewLI.getType();
2703 
2704   // This only directly applies if the new type is also a pointer.
2705   if (NewTy->isPointerTy()) {
2706     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2707     return;
2708   }
2709 
2710   // The only other translation we can do is to integral loads with !range
2711   // metadata.
2712   if (!NewTy->isIntegerTy())
2713     return;
2714 
2715   MDBuilder MDB(NewLI.getContext());
2716   const Value *Ptr = OldLI.getPointerOperand();
2717   auto *ITy = cast<IntegerType>(NewTy);
2718   auto *NullInt = ConstantExpr::getPtrToInt(
2719       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2720   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2721   NewLI.setMetadata(LLVMContext::MD_range,
2722                     MDB.createRange(NonNullInt, NullInt));
2723 }
2724 
2725 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2726                              MDNode *N, LoadInst &NewLI) {
2727   auto *NewTy = NewLI.getType();
2728 
2729   // Give up unless it is converted to a pointer where there is a single very
2730   // valuable mapping we can do reliably.
2731   // FIXME: It would be nice to propagate this in more ways, but the type
2732   // conversions make it hard.
2733   if (!NewTy->isPointerTy())
2734     return;
2735 
2736   unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2737   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2738     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2739     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2740   }
2741 }
2742 
2743 void llvm::dropDebugUsers(Instruction &I) {
2744   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2745   findDbgUsers(DbgUsers, &I);
2746   for (auto *DII : DbgUsers)
2747     DII->eraseFromParent();
2748 }
2749 
2750 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2751                                     BasicBlock *BB) {
2752   // Since we are moving the instructions out of its basic block, we do not
2753   // retain their original debug locations (DILocations) and debug intrinsic
2754   // instructions.
2755   //
2756   // Doing so would degrade the debugging experience and adversely affect the
2757   // accuracy of profiling information.
2758   //
2759   // Currently, when hoisting the instructions, we take the following actions:
2760   // - Remove their debug intrinsic instructions.
2761   // - Set their debug locations to the values from the insertion point.
2762   //
2763   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2764   // need to be deleted, is because there will not be any instructions with a
2765   // DILocation in either branch left after performing the transformation. We
2766   // can only insert a dbg.value after the two branches are joined again.
2767   //
2768   // See PR38762, PR39243 for more details.
2769   //
2770   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2771   // encode predicated DIExpressions that yield different results on different
2772   // code paths.
2773   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2774     Instruction *I = &*II;
2775     I->dropUnknownNonDebugMetadata();
2776     if (I->isUsedByMetadata())
2777       dropDebugUsers(*I);
2778     if (isa<DbgInfoIntrinsic>(I)) {
2779       // Remove DbgInfo Intrinsics.
2780       II = I->eraseFromParent();
2781       continue;
2782     }
2783     I->setDebugLoc(InsertPt->getDebugLoc());
2784     ++II;
2785   }
2786   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2787                                  BB->begin(),
2788                                  BB->getTerminator()->getIterator());
2789 }
2790 
2791 namespace {
2792 
2793 /// A potential constituent of a bitreverse or bswap expression. See
2794 /// collectBitParts for a fuller explanation.
2795 struct BitPart {
2796   BitPart(Value *P, unsigned BW) : Provider(P) {
2797     Provenance.resize(BW);
2798   }
2799 
2800   /// The Value that this is a bitreverse/bswap of.
2801   Value *Provider;
2802 
2803   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2804   /// in Provider becomes bit B in the result of this expression.
2805   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2806 
2807   enum { Unset = -1 };
2808 };
2809 
2810 } // end anonymous namespace
2811 
2812 /// Analyze the specified subexpression and see if it is capable of providing
2813 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2814 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
2815 /// the output of the expression came from a corresponding bit in some other
2816 /// value. This function is recursive, and the end result is a mapping of
2817 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2818 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2819 ///
2820 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2821 /// that the expression deposits the low byte of %X into the high byte of the
2822 /// result and that all other bits are zero. This expression is accepted and a
2823 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2824 /// [0-7].
2825 ///
2826 /// For vector types, all analysis is performed at the per-element level. No
2827 /// cross-element analysis is supported (shuffle/insertion/reduction), and all
2828 /// constant masks must be splatted across all elements.
2829 ///
2830 /// To avoid revisiting values, the BitPart results are memoized into the
2831 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2832 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2833 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2834 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2835 /// type instead to provide the same functionality.
2836 ///
2837 /// Because we pass around references into \c BPS, we must use a container that
2838 /// does not invalidate internal references (std::map instead of DenseMap).
2839 static const Optional<BitPart> &
2840 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2841                 std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
2842   auto I = BPS.find(V);
2843   if (I != BPS.end())
2844     return I->second;
2845 
2846   auto &Result = BPS[V] = None;
2847   auto BitWidth = V->getType()->getScalarSizeInBits();
2848 
2849   // Prevent stack overflow by limiting the recursion depth
2850   if (Depth == BitPartRecursionMaxDepth) {
2851     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2852     return Result;
2853   }
2854 
2855   if (auto *I = dyn_cast<Instruction>(V)) {
2856     Value *X, *Y;
2857     const APInt *C;
2858 
2859     // If this is an or instruction, it may be an inner node of the bswap.
2860     if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
2861       const auto &A =
2862           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2863       const auto &B =
2864           collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2865       if (!A || !B)
2866         return Result;
2867 
2868       // Try and merge the two together.
2869       if (!A->Provider || A->Provider != B->Provider)
2870         return Result;
2871 
2872       Result = BitPart(A->Provider, BitWidth);
2873       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
2874         if (A->Provenance[BitIdx] != BitPart::Unset &&
2875             B->Provenance[BitIdx] != BitPart::Unset &&
2876             A->Provenance[BitIdx] != B->Provenance[BitIdx])
2877           return Result = None;
2878 
2879         if (A->Provenance[BitIdx] == BitPart::Unset)
2880           Result->Provenance[BitIdx] = B->Provenance[BitIdx];
2881         else
2882           Result->Provenance[BitIdx] = A->Provenance[BitIdx];
2883       }
2884 
2885       return Result;
2886     }
2887 
2888     // If this is a logical shift by a constant, recurse then shift the result.
2889     if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
2890       const APInt &BitShift = *C;
2891 
2892       // Ensure the shift amount is defined.
2893       if (BitShift.uge(BitWidth))
2894         return Result;
2895 
2896       const auto &Res =
2897           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2898       if (!Res)
2899         return Result;
2900       Result = Res;
2901 
2902       // Perform the "shift" on BitProvenance.
2903       auto &P = Result->Provenance;
2904       if (I->getOpcode() == Instruction::Shl) {
2905         P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
2906         P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
2907       } else {
2908         P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
2909         P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
2910       }
2911 
2912       return Result;
2913     }
2914 
2915     // If this is a logical 'and' with a mask that clears bits, recurse then
2916     // unset the appropriate bits.
2917     if (match(V, m_And(m_Value(X), m_APInt(C)))) {
2918       const APInt &AndMask = *C;
2919 
2920       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2921       // early exit.
2922       unsigned NumMaskedBits = AndMask.countPopulation();
2923       if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
2924         return Result;
2925 
2926       const auto &Res =
2927           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2928       if (!Res)
2929         return Result;
2930       Result = Res;
2931 
2932       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
2933         // If the AndMask is zero for this bit, clear the bit.
2934         if (AndMask[BitIdx] == 0)
2935           Result->Provenance[BitIdx] = BitPart::Unset;
2936       return Result;
2937     }
2938 
2939     // If this is a zext instruction zero extend the result.
2940     if (match(V, m_ZExt(m_Value(X)))) {
2941       const auto &Res =
2942           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2943       if (!Res)
2944         return Result;
2945 
2946       Result = BitPart(Res->Provider, BitWidth);
2947       auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
2948       for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
2949         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
2950       for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
2951         Result->Provenance[BitIdx] = BitPart::Unset;
2952       return Result;
2953     }
2954 
2955     // BITREVERSE - most likely due to us previous matching a partial
2956     // bitreverse.
2957     if (match(V, m_BitReverse(m_Value(X)))) {
2958       const auto &Res =
2959           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2960       if (!Res)
2961         return Result;
2962 
2963       Result = BitPart(Res->Provider, BitWidth);
2964       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
2965         Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
2966       return Result;
2967     }
2968 
2969     // BSWAP - most likely due to us previous matching a partial bswap.
2970     if (match(V, m_BSwap(m_Value(X)))) {
2971       const auto &Res =
2972           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2973       if (!Res)
2974         return Result;
2975 
2976       unsigned ByteWidth = BitWidth / 8;
2977       Result = BitPart(Res->Provider, BitWidth);
2978       for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
2979         unsigned ByteBitOfs = ByteIdx * 8;
2980         for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
2981           Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
2982               Res->Provenance[ByteBitOfs + BitIdx];
2983       }
2984       return Result;
2985     }
2986 
2987     // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
2988     // amount (modulo).
2989     // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2990     // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2991     if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
2992         match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
2993       // We can treat fshr as a fshl by flipping the modulo amount.
2994       unsigned ModAmt = C->urem(BitWidth);
2995       if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
2996         ModAmt = BitWidth - ModAmt;
2997 
2998       const auto &LHS =
2999           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3000       const auto &RHS =
3001           collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3002 
3003       // Check we have both sources and they are from the same provider.
3004       if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider)
3005         return Result;
3006 
3007       unsigned StartBitRHS = BitWidth - ModAmt;
3008       Result = BitPart(LHS->Provider, BitWidth);
3009       for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
3010         Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
3011       for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
3012         Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
3013       return Result;
3014     }
3015   }
3016 
3017   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
3018   // the input value to the bswap/bitreverse.
3019   Result = BitPart(V, BitWidth);
3020   for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3021     Result->Provenance[BitIdx] = BitIdx;
3022   return Result;
3023 }
3024 
3025 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
3026                                           unsigned BitWidth) {
3027   if (From % 8 != To % 8)
3028     return false;
3029   // Convert from bit indices to byte indices and check for a byte reversal.
3030   From >>= 3;
3031   To >>= 3;
3032   BitWidth >>= 3;
3033   return From == BitWidth - To - 1;
3034 }
3035 
3036 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
3037                                                unsigned BitWidth) {
3038   return From == BitWidth - To - 1;
3039 }
3040 
3041 bool llvm::recognizeBSwapOrBitReverseIdiom(
3042     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
3043     SmallVectorImpl<Instruction *> &InsertedInsts) {
3044   if (Operator::getOpcode(I) != Instruction::Or)
3045     return false;
3046   if (!MatchBSwaps && !MatchBitReversals)
3047     return false;
3048   Type *ITy = I->getType();
3049   if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
3050     return false;  // Can't do integer/elements > 128 bits.
3051 
3052   Type *DemandedTy = ITy;
3053   if (I->hasOneUse())
3054     if (auto *Trunc = dyn_cast<TruncInst>(I->user_back()))
3055       DemandedTy = Trunc->getType();
3056 
3057   // Try to find all the pieces corresponding to the bswap.
3058   std::map<Value *, Optional<BitPart>> BPS;
3059   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
3060   if (!Res)
3061     return false;
3062   ArrayRef<int8_t> BitProvenance = Res->Provenance;
3063   assert(all_of(BitProvenance,
3064                 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
3065          "Illegal bit provenance index");
3066 
3067   // If the upper bits are zero, then attempt to perform as a truncated op.
3068   if (BitProvenance.back() == BitPart::Unset) {
3069     while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
3070       BitProvenance = BitProvenance.drop_back();
3071     if (BitProvenance.empty())
3072       return false; // TODO - handle null value?
3073     DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
3074     if (auto *IVecTy = dyn_cast<VectorType>(ITy))
3075       DemandedTy = VectorType::get(DemandedTy, IVecTy);
3076   }
3077 
3078   // Check BitProvenance hasn't found a source larger than the result type.
3079   unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
3080   if (DemandedBW > ITy->getScalarSizeInBits())
3081     return false;
3082 
3083   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
3084   // only byteswap values with an even number of bytes.
3085   APInt DemandedMask = APInt::getAllOnesValue(DemandedBW);
3086   bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
3087   bool OKForBitReverse = MatchBitReversals;
3088   for (unsigned BitIdx = 0;
3089        (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
3090     if (BitProvenance[BitIdx] == BitPart::Unset) {
3091       DemandedMask.clearBit(BitIdx);
3092       continue;
3093     }
3094     OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
3095                                                 DemandedBW);
3096     OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
3097                                                           BitIdx, DemandedBW);
3098   }
3099 
3100   Intrinsic::ID Intrin;
3101   if (OKForBSwap)
3102     Intrin = Intrinsic::bswap;
3103   else if (OKForBitReverse)
3104     Intrin = Intrinsic::bitreverse;
3105   else
3106     return false;
3107 
3108   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
3109   Value *Provider = Res->Provider;
3110 
3111   // We may need to truncate the provider.
3112   if (DemandedTy != Provider->getType()) {
3113     auto *Trunc =
3114         CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I);
3115     InsertedInsts.push_back(Trunc);
3116     Provider = Trunc;
3117   }
3118 
3119   Instruction *Result = CallInst::Create(F, Provider, "rev", I);
3120   InsertedInsts.push_back(Result);
3121 
3122   if (!DemandedMask.isAllOnesValue()) {
3123     auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
3124     Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I);
3125     InsertedInsts.push_back(Result);
3126   }
3127 
3128   // We may need to zeroextend back to the result type.
3129   if (ITy != Result->getType()) {
3130     auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I);
3131     InsertedInsts.push_back(ExtInst);
3132   }
3133 
3134   return true;
3135 }
3136 
3137 // CodeGen has special handling for some string functions that may replace
3138 // them with target-specific intrinsics.  Since that'd skip our interceptors
3139 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
3140 // we mark affected calls as NoBuiltin, which will disable optimization
3141 // in CodeGen.
3142 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
3143     CallInst *CI, const TargetLibraryInfo *TLI) {
3144   Function *F = CI->getCalledFunction();
3145   LibFunc Func;
3146   if (F && !F->hasLocalLinkage() && F->hasName() &&
3147       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
3148       !F->doesNotAccessMemory())
3149     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
3150 }
3151 
3152 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
3153   // We can't have a PHI with a metadata type.
3154   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
3155     return false;
3156 
3157   // Early exit.
3158   if (!isa<Constant>(I->getOperand(OpIdx)))
3159     return true;
3160 
3161   switch (I->getOpcode()) {
3162   default:
3163     return true;
3164   case Instruction::Call:
3165   case Instruction::Invoke: {
3166     const auto &CB = cast<CallBase>(*I);
3167 
3168     // Can't handle inline asm. Skip it.
3169     if (CB.isInlineAsm())
3170       return false;
3171 
3172     // Constant bundle operands may need to retain their constant-ness for
3173     // correctness.
3174     if (CB.isBundleOperand(OpIdx))
3175       return false;
3176 
3177     if (OpIdx < CB.getNumArgOperands()) {
3178       // Some variadic intrinsics require constants in the variadic arguments,
3179       // which currently aren't markable as immarg.
3180       if (isa<IntrinsicInst>(CB) &&
3181           OpIdx >= CB.getFunctionType()->getNumParams()) {
3182         // This is known to be OK for stackmap.
3183         return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
3184       }
3185 
3186       // gcroot is a special case, since it requires a constant argument which
3187       // isn't also required to be a simple ConstantInt.
3188       if (CB.getIntrinsicID() == Intrinsic::gcroot)
3189         return false;
3190 
3191       // Some intrinsic operands are required to be immediates.
3192       return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
3193     }
3194 
3195     // It is never allowed to replace the call argument to an intrinsic, but it
3196     // may be possible for a call.
3197     return !isa<IntrinsicInst>(CB);
3198   }
3199   case Instruction::ShuffleVector:
3200     // Shufflevector masks are constant.
3201     return OpIdx != 2;
3202   case Instruction::Switch:
3203   case Instruction::ExtractValue:
3204     // All operands apart from the first are constant.
3205     return OpIdx == 0;
3206   case Instruction::InsertValue:
3207     // All operands apart from the first and the second are constant.
3208     return OpIdx < 2;
3209   case Instruction::Alloca:
3210     // Static allocas (constant size in the entry block) are handled by
3211     // prologue/epilogue insertion so they're free anyway. We definitely don't
3212     // want to make them non-constant.
3213     return !cast<AllocaInst>(I)->isStaticAlloca();
3214   case Instruction::GetElementPtr:
3215     if (OpIdx == 0)
3216       return true;
3217     gep_type_iterator It = gep_type_begin(I);
3218     for (auto E = std::next(It, OpIdx); It != E; ++It)
3219       if (It.isStruct())
3220         return false;
3221     return true;
3222   }
3223 }
3224 
3225 Value *llvm::invertCondition(Value *Condition) {
3226   // First: Check if it's a constant
3227   if (Constant *C = dyn_cast<Constant>(Condition))
3228     return ConstantExpr::getNot(C);
3229 
3230   // Second: If the condition is already inverted, return the original value
3231   Value *NotCondition;
3232   if (match(Condition, m_Not(m_Value(NotCondition))))
3233     return NotCondition;
3234 
3235   BasicBlock *Parent = nullptr;
3236   Instruction *Inst = dyn_cast<Instruction>(Condition);
3237   if (Inst)
3238     Parent = Inst->getParent();
3239   else if (Argument *Arg = dyn_cast<Argument>(Condition))
3240     Parent = &Arg->getParent()->getEntryBlock();
3241   assert(Parent && "Unsupported condition to invert");
3242 
3243   // Third: Check all the users for an invert
3244   for (User *U : Condition->users())
3245     if (Instruction *I = dyn_cast<Instruction>(U))
3246       if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
3247         return I;
3248 
3249   // Last option: Create a new instruction
3250   auto *Inverted =
3251       BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
3252   if (Inst && !isa<PHINode>(Inst))
3253     Inverted->insertAfter(Inst);
3254   else
3255     Inverted->insertBefore(&*Parent->getFirstInsertionPt());
3256   return Inverted;
3257 }
3258