1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/AssumeBundleQueries.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/LazyValueInfo.h" 34 #include "llvm/Analysis/MemoryBuiltins.h" 35 #include "llvm/Analysis/MemorySSAUpdater.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/BinaryFormat/Dwarf.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 static cl::opt<unsigned> PHICSENumPHISmallSize( 108 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 109 cl::desc( 110 "When the basic block contains not more than this number of PHI nodes, " 111 "perform a (faster!) exhaustive search instead of set-driven one.")); 112 113 // Max recursion depth for collectBitParts used when detecting bswap and 114 // bitreverse idioms 115 static const unsigned BitPartRecursionMaxDepth = 64; 116 117 //===----------------------------------------------------------------------===// 118 // Local constant propagation. 119 // 120 121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 122 /// constant value, convert it into an unconditional branch to the constant 123 /// destination. This is a nontrivial operation because the successors of this 124 /// basic block must have their PHI nodes updated. 125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 126 /// conditions and indirectbr addresses this might make dead if 127 /// DeleteDeadConditions is true. 128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 129 const TargetLibraryInfo *TLI, 130 DomTreeUpdater *DTU) { 131 Instruction *T = BB->getTerminator(); 132 IRBuilder<> Builder(T); 133 134 // Branch - See if we are conditional jumping on constant 135 if (auto *BI = dyn_cast<BranchInst>(T)) { 136 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 137 138 BasicBlock *Dest1 = BI->getSuccessor(0); 139 BasicBlock *Dest2 = BI->getSuccessor(1); 140 141 if (Dest2 == Dest1) { // Conditional branch to same location? 142 // This branch matches something like this: 143 // br bool %cond, label %Dest, label %Dest 144 // and changes it into: br label %Dest 145 146 // Let the basic block know that we are letting go of one copy of it. 147 assert(BI->getParent() && "Terminator not inserted in block!"); 148 Dest1->removePredecessor(BI->getParent()); 149 150 // Replace the conditional branch with an unconditional one. 151 Builder.CreateBr(Dest1); 152 Value *Cond = BI->getCondition(); 153 BI->eraseFromParent(); 154 if (DeleteDeadConditions) 155 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 156 return true; 157 } 158 159 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 160 // Are we branching on constant? 161 // YES. Change to unconditional branch... 162 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 163 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 164 165 // Let the basic block know that we are letting go of it. Based on this, 166 // it will adjust it's PHI nodes. 167 OldDest->removePredecessor(BB); 168 169 // Replace the conditional branch with an unconditional one. 170 Builder.CreateBr(Destination); 171 BI->eraseFromParent(); 172 if (DTU) 173 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 174 return true; 175 } 176 177 return false; 178 } 179 180 if (auto *SI = dyn_cast<SwitchInst>(T)) { 181 // If we are switching on a constant, we can convert the switch to an 182 // unconditional branch. 183 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 184 BasicBlock *DefaultDest = SI->getDefaultDest(); 185 BasicBlock *TheOnlyDest = DefaultDest; 186 187 // If the default is unreachable, ignore it when searching for TheOnlyDest. 188 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 189 SI->getNumCases() > 0) { 190 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 191 } 192 193 bool Changed = false; 194 195 // Figure out which case it goes to. 196 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 197 // Found case matching a constant operand? 198 if (i->getCaseValue() == CI) { 199 TheOnlyDest = i->getCaseSuccessor(); 200 break; 201 } 202 203 // Check to see if this branch is going to the same place as the default 204 // dest. If so, eliminate it as an explicit compare. 205 if (i->getCaseSuccessor() == DefaultDest) { 206 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 207 unsigned NCases = SI->getNumCases(); 208 // Fold the case metadata into the default if there will be any branches 209 // left, unless the metadata doesn't match the switch. 210 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 211 // Collect branch weights into a vector. 212 SmallVector<uint32_t, 8> Weights; 213 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 214 ++MD_i) { 215 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 216 Weights.push_back(CI->getValue().getZExtValue()); 217 } 218 // Merge weight of this case to the default weight. 219 unsigned idx = i->getCaseIndex(); 220 Weights[0] += Weights[idx+1]; 221 // Remove weight for this case. 222 std::swap(Weights[idx+1], Weights.back()); 223 Weights.pop_back(); 224 SI->setMetadata(LLVMContext::MD_prof, 225 MDBuilder(BB->getContext()). 226 createBranchWeights(Weights)); 227 } 228 // Remove this entry. 229 BasicBlock *ParentBB = SI->getParent(); 230 DefaultDest->removePredecessor(ParentBB); 231 i = SI->removeCase(i); 232 e = SI->case_end(); 233 Changed = true; 234 continue; 235 } 236 237 // Otherwise, check to see if the switch only branches to one destination. 238 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 239 // destinations. 240 if (i->getCaseSuccessor() != TheOnlyDest) 241 TheOnlyDest = nullptr; 242 243 // Increment this iterator as we haven't removed the case. 244 ++i; 245 } 246 247 if (CI && !TheOnlyDest) { 248 // Branching on a constant, but not any of the cases, go to the default 249 // successor. 250 TheOnlyDest = SI->getDefaultDest(); 251 } 252 253 // If we found a single destination that we can fold the switch into, do so 254 // now. 255 if (TheOnlyDest) { 256 // Insert the new branch. 257 Builder.CreateBr(TheOnlyDest); 258 BasicBlock *BB = SI->getParent(); 259 260 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 261 262 // Remove entries from PHI nodes which we no longer branch to... 263 BasicBlock *SuccToKeep = TheOnlyDest; 264 for (BasicBlock *Succ : successors(SI)) { 265 if (DTU && Succ != TheOnlyDest) 266 RemovedSuccessors.insert(Succ); 267 // Found case matching a constant operand? 268 if (Succ == SuccToKeep) { 269 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 270 } else { 271 Succ->removePredecessor(BB); 272 } 273 } 274 275 // Delete the old switch. 276 Value *Cond = SI->getCondition(); 277 SI->eraseFromParent(); 278 if (DeleteDeadConditions) 279 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 280 if (DTU) { 281 std::vector<DominatorTree::UpdateType> Updates; 282 Updates.reserve(RemovedSuccessors.size()); 283 for (auto *RemovedSuccessor : RemovedSuccessors) 284 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 285 DTU->applyUpdates(Updates); 286 } 287 return true; 288 } 289 290 if (SI->getNumCases() == 1) { 291 // Otherwise, we can fold this switch into a conditional branch 292 // instruction if it has only one non-default destination. 293 auto FirstCase = *SI->case_begin(); 294 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 295 FirstCase.getCaseValue(), "cond"); 296 297 // Insert the new branch. 298 BranchInst *NewBr = Builder.CreateCondBr(Cond, 299 FirstCase.getCaseSuccessor(), 300 SI->getDefaultDest()); 301 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 302 if (MD && MD->getNumOperands() == 3) { 303 ConstantInt *SICase = 304 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 305 ConstantInt *SIDef = 306 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 307 assert(SICase && SIDef); 308 // The TrueWeight should be the weight for the single case of SI. 309 NewBr->setMetadata(LLVMContext::MD_prof, 310 MDBuilder(BB->getContext()). 311 createBranchWeights(SICase->getValue().getZExtValue(), 312 SIDef->getValue().getZExtValue())); 313 } 314 315 // Update make.implicit metadata to the newly-created conditional branch. 316 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 317 if (MakeImplicitMD) 318 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 319 320 // Delete the old switch. 321 SI->eraseFromParent(); 322 return true; 323 } 324 return Changed; 325 } 326 327 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 328 // indirectbr blockaddress(@F, @BB) -> br label @BB 329 if (auto *BA = 330 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 331 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 332 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 333 334 // Insert the new branch. 335 Builder.CreateBr(TheOnlyDest); 336 337 BasicBlock *SuccToKeep = TheOnlyDest; 338 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 339 BasicBlock *DestBB = IBI->getDestination(i); 340 if (DTU && DestBB != TheOnlyDest) 341 RemovedSuccessors.insert(DestBB); 342 if (IBI->getDestination(i) == SuccToKeep) { 343 SuccToKeep = nullptr; 344 } else { 345 DestBB->removePredecessor(BB); 346 } 347 } 348 Value *Address = IBI->getAddress(); 349 IBI->eraseFromParent(); 350 if (DeleteDeadConditions) 351 // Delete pointer cast instructions. 352 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 353 354 // Also zap the blockaddress constant if there are no users remaining, 355 // otherwise the destination is still marked as having its address taken. 356 if (BA->use_empty()) 357 BA->destroyConstant(); 358 359 // If we didn't find our destination in the IBI successor list, then we 360 // have undefined behavior. Replace the unconditional branch with an 361 // 'unreachable' instruction. 362 if (SuccToKeep) { 363 BB->getTerminator()->eraseFromParent(); 364 new UnreachableInst(BB->getContext(), BB); 365 } 366 367 if (DTU) { 368 std::vector<DominatorTree::UpdateType> Updates; 369 Updates.reserve(RemovedSuccessors.size()); 370 for (auto *RemovedSuccessor : RemovedSuccessors) 371 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 372 DTU->applyUpdates(Updates); 373 } 374 return true; 375 } 376 } 377 378 return false; 379 } 380 381 //===----------------------------------------------------------------------===// 382 // Local dead code elimination. 383 // 384 385 /// isInstructionTriviallyDead - Return true if the result produced by the 386 /// instruction is not used, and the instruction has no side effects. 387 /// 388 bool llvm::isInstructionTriviallyDead(Instruction *I, 389 const TargetLibraryInfo *TLI) { 390 if (!I->use_empty()) 391 return false; 392 return wouldInstructionBeTriviallyDead(I, TLI); 393 } 394 395 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 396 const TargetLibraryInfo *TLI) { 397 if (I->isTerminator()) 398 return false; 399 400 // We don't want the landingpad-like instructions removed by anything this 401 // general. 402 if (I->isEHPad()) 403 return false; 404 405 // We don't want debug info removed by anything this general, unless 406 // debug info is empty. 407 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 408 if (DDI->getAddress()) 409 return false; 410 return true; 411 } 412 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 413 if (DVI->getValue()) 414 return false; 415 return true; 416 } 417 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 418 if (DLI->getLabel()) 419 return false; 420 return true; 421 } 422 423 if (!I->mayHaveSideEffects()) 424 return true; 425 426 // Special case intrinsics that "may have side effects" but can be deleted 427 // when dead. 428 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 429 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 430 if (II->getIntrinsicID() == Intrinsic::stacksave || 431 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 432 return true; 433 434 if (II->isLifetimeStartOrEnd()) { 435 auto *Arg = II->getArgOperand(1); 436 // Lifetime intrinsics are dead when their right-hand is undef. 437 if (isa<UndefValue>(Arg)) 438 return true; 439 // If the right-hand is an alloc, global, or argument and the only uses 440 // are lifetime intrinsics then the intrinsics are dead. 441 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 442 return llvm::all_of(Arg->uses(), [](Use &Use) { 443 if (IntrinsicInst *IntrinsicUse = 444 dyn_cast<IntrinsicInst>(Use.getUser())) 445 return IntrinsicUse->isLifetimeStartOrEnd(); 446 return false; 447 }); 448 return false; 449 } 450 451 // Assumptions are dead if their condition is trivially true. Guards on 452 // true are operationally no-ops. In the future we can consider more 453 // sophisticated tradeoffs for guards considering potential for check 454 // widening, but for now we keep things simple. 455 if ((II->getIntrinsicID() == Intrinsic::assume && 456 isAssumeWithEmptyBundle(*II)) || 457 II->getIntrinsicID() == Intrinsic::experimental_guard) { 458 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 459 return !Cond->isZero(); 460 461 return false; 462 } 463 } 464 465 if (isAllocLikeFn(I, TLI)) 466 return true; 467 468 if (CallInst *CI = isFreeCall(I, TLI)) 469 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 470 return C->isNullValue() || isa<UndefValue>(C); 471 472 if (auto *Call = dyn_cast<CallBase>(I)) 473 if (isMathLibCallNoop(Call, TLI)) 474 return true; 475 476 return false; 477 } 478 479 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 480 /// trivially dead instruction, delete it. If that makes any of its operands 481 /// trivially dead, delete them too, recursively. Return true if any 482 /// instructions were deleted. 483 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 484 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 485 std::function<void(Value *)> AboutToDeleteCallback) { 486 Instruction *I = dyn_cast<Instruction>(V); 487 if (!I || !isInstructionTriviallyDead(I, TLI)) 488 return false; 489 490 SmallVector<WeakTrackingVH, 16> DeadInsts; 491 DeadInsts.push_back(I); 492 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 493 AboutToDeleteCallback); 494 495 return true; 496 } 497 498 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 499 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 500 MemorySSAUpdater *MSSAU, 501 std::function<void(Value *)> AboutToDeleteCallback) { 502 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 503 for (; S != E; ++S) { 504 auto *I = cast<Instruction>(DeadInsts[S]); 505 if (!isInstructionTriviallyDead(I)) { 506 DeadInsts[S] = nullptr; 507 ++Alive; 508 } 509 } 510 if (Alive == E) 511 return false; 512 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 513 AboutToDeleteCallback); 514 return true; 515 } 516 517 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 518 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 519 MemorySSAUpdater *MSSAU, 520 std::function<void(Value *)> AboutToDeleteCallback) { 521 // Process the dead instruction list until empty. 522 while (!DeadInsts.empty()) { 523 Value *V = DeadInsts.pop_back_val(); 524 Instruction *I = cast_or_null<Instruction>(V); 525 if (!I) 526 continue; 527 assert(isInstructionTriviallyDead(I, TLI) && 528 "Live instruction found in dead worklist!"); 529 assert(I->use_empty() && "Instructions with uses are not dead."); 530 531 // Don't lose the debug info while deleting the instructions. 532 salvageDebugInfo(*I); 533 534 if (AboutToDeleteCallback) 535 AboutToDeleteCallback(I); 536 537 // Null out all of the instruction's operands to see if any operand becomes 538 // dead as we go. 539 for (Use &OpU : I->operands()) { 540 Value *OpV = OpU.get(); 541 OpU.set(nullptr); 542 543 if (!OpV->use_empty()) 544 continue; 545 546 // If the operand is an instruction that became dead as we nulled out the 547 // operand, and if it is 'trivially' dead, delete it in a future loop 548 // iteration. 549 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 550 if (isInstructionTriviallyDead(OpI, TLI)) 551 DeadInsts.push_back(OpI); 552 } 553 if (MSSAU) 554 MSSAU->removeMemoryAccess(I); 555 556 I->eraseFromParent(); 557 } 558 } 559 560 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 561 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 562 findDbgUsers(DbgUsers, I); 563 for (auto *DII : DbgUsers) { 564 Value *Undef = UndefValue::get(I->getType()); 565 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 566 ValueAsMetadata::get(Undef))); 567 } 568 return !DbgUsers.empty(); 569 } 570 571 /// areAllUsesEqual - Check whether the uses of a value are all the same. 572 /// This is similar to Instruction::hasOneUse() except this will also return 573 /// true when there are no uses or multiple uses that all refer to the same 574 /// value. 575 static bool areAllUsesEqual(Instruction *I) { 576 Value::user_iterator UI = I->user_begin(); 577 Value::user_iterator UE = I->user_end(); 578 if (UI == UE) 579 return true; 580 581 User *TheUse = *UI; 582 for (++UI; UI != UE; ++UI) { 583 if (*UI != TheUse) 584 return false; 585 } 586 return true; 587 } 588 589 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 590 /// dead PHI node, due to being a def-use chain of single-use nodes that 591 /// either forms a cycle or is terminated by a trivially dead instruction, 592 /// delete it. If that makes any of its operands trivially dead, delete them 593 /// too, recursively. Return true if a change was made. 594 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 595 const TargetLibraryInfo *TLI, 596 llvm::MemorySSAUpdater *MSSAU) { 597 SmallPtrSet<Instruction*, 4> Visited; 598 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 599 I = cast<Instruction>(*I->user_begin())) { 600 if (I->use_empty()) 601 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 602 603 // If we find an instruction more than once, we're on a cycle that 604 // won't prove fruitful. 605 if (!Visited.insert(I).second) { 606 // Break the cycle and delete the instruction and its operands. 607 I->replaceAllUsesWith(UndefValue::get(I->getType())); 608 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 609 return true; 610 } 611 } 612 return false; 613 } 614 615 static bool 616 simplifyAndDCEInstruction(Instruction *I, 617 SmallSetVector<Instruction *, 16> &WorkList, 618 const DataLayout &DL, 619 const TargetLibraryInfo *TLI) { 620 if (isInstructionTriviallyDead(I, TLI)) { 621 salvageDebugInfo(*I); 622 623 // Null out all of the instruction's operands to see if any operand becomes 624 // dead as we go. 625 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 626 Value *OpV = I->getOperand(i); 627 I->setOperand(i, nullptr); 628 629 if (!OpV->use_empty() || I == OpV) 630 continue; 631 632 // If the operand is an instruction that became dead as we nulled out the 633 // operand, and if it is 'trivially' dead, delete it in a future loop 634 // iteration. 635 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 636 if (isInstructionTriviallyDead(OpI, TLI)) 637 WorkList.insert(OpI); 638 } 639 640 I->eraseFromParent(); 641 642 return true; 643 } 644 645 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 646 // Add the users to the worklist. CAREFUL: an instruction can use itself, 647 // in the case of a phi node. 648 for (User *U : I->users()) { 649 if (U != I) { 650 WorkList.insert(cast<Instruction>(U)); 651 } 652 } 653 654 // Replace the instruction with its simplified value. 655 bool Changed = false; 656 if (!I->use_empty()) { 657 I->replaceAllUsesWith(SimpleV); 658 Changed = true; 659 } 660 if (isInstructionTriviallyDead(I, TLI)) { 661 I->eraseFromParent(); 662 Changed = true; 663 } 664 return Changed; 665 } 666 return false; 667 } 668 669 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 670 /// simplify any instructions in it and recursively delete dead instructions. 671 /// 672 /// This returns true if it changed the code, note that it can delete 673 /// instructions in other blocks as well in this block. 674 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 675 const TargetLibraryInfo *TLI) { 676 bool MadeChange = false; 677 const DataLayout &DL = BB->getModule()->getDataLayout(); 678 679 #ifndef NDEBUG 680 // In debug builds, ensure that the terminator of the block is never replaced 681 // or deleted by these simplifications. The idea of simplification is that it 682 // cannot introduce new instructions, and there is no way to replace the 683 // terminator of a block without introducing a new instruction. 684 AssertingVH<Instruction> TerminatorVH(&BB->back()); 685 #endif 686 687 SmallSetVector<Instruction *, 16> WorkList; 688 // Iterate over the original function, only adding insts to the worklist 689 // if they actually need to be revisited. This avoids having to pre-init 690 // the worklist with the entire function's worth of instructions. 691 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 692 BI != E;) { 693 assert(!BI->isTerminator()); 694 Instruction *I = &*BI; 695 ++BI; 696 697 // We're visiting this instruction now, so make sure it's not in the 698 // worklist from an earlier visit. 699 if (!WorkList.count(I)) 700 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 701 } 702 703 while (!WorkList.empty()) { 704 Instruction *I = WorkList.pop_back_val(); 705 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 706 } 707 return MadeChange; 708 } 709 710 //===----------------------------------------------------------------------===// 711 // Control Flow Graph Restructuring. 712 // 713 714 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 715 DomTreeUpdater *DTU) { 716 717 // If BB has single-entry PHI nodes, fold them. 718 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 719 Value *NewVal = PN->getIncomingValue(0); 720 // Replace self referencing PHI with undef, it must be dead. 721 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 722 PN->replaceAllUsesWith(NewVal); 723 PN->eraseFromParent(); 724 } 725 726 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 727 assert(PredBB && "Block doesn't have a single predecessor!"); 728 729 bool ReplaceEntryBB = false; 730 if (PredBB == &DestBB->getParent()->getEntryBlock()) 731 ReplaceEntryBB = true; 732 733 // DTU updates: Collect all the edges that enter 734 // PredBB. These dominator edges will be redirected to DestBB. 735 SmallVector<DominatorTree::UpdateType, 32> Updates; 736 737 if (DTU) { 738 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 739 // This predecessor of PredBB may already have DestBB as a successor. 740 if (!llvm::is_contained(successors(*I), DestBB)) 741 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 742 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 743 } 744 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 745 } 746 747 // Zap anything that took the address of DestBB. Not doing this will give the 748 // address an invalid value. 749 if (DestBB->hasAddressTaken()) { 750 BlockAddress *BA = BlockAddress::get(DestBB); 751 Constant *Replacement = 752 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 753 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 754 BA->getType())); 755 BA->destroyConstant(); 756 } 757 758 // Anything that branched to PredBB now branches to DestBB. 759 PredBB->replaceAllUsesWith(DestBB); 760 761 // Splice all the instructions from PredBB to DestBB. 762 PredBB->getTerminator()->eraseFromParent(); 763 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 764 new UnreachableInst(PredBB->getContext(), PredBB); 765 766 // If the PredBB is the entry block of the function, move DestBB up to 767 // become the entry block after we erase PredBB. 768 if (ReplaceEntryBB) 769 DestBB->moveAfter(PredBB); 770 771 if (DTU) { 772 assert(PredBB->getInstList().size() == 1 && 773 isa<UnreachableInst>(PredBB->getTerminator()) && 774 "The successor list of PredBB isn't empty before " 775 "applying corresponding DTU updates."); 776 DTU->applyUpdatesPermissive(Updates); 777 DTU->deleteBB(PredBB); 778 // Recalculation of DomTree is needed when updating a forward DomTree and 779 // the Entry BB is replaced. 780 if (ReplaceEntryBB && DTU->hasDomTree()) { 781 // The entry block was removed and there is no external interface for 782 // the dominator tree to be notified of this change. In this corner-case 783 // we recalculate the entire tree. 784 DTU->recalculate(*(DestBB->getParent())); 785 } 786 } 787 788 else { 789 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 790 } 791 } 792 793 /// Return true if we can choose one of these values to use in place of the 794 /// other. Note that we will always choose the non-undef value to keep. 795 static bool CanMergeValues(Value *First, Value *Second) { 796 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 797 } 798 799 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 800 /// branch to Succ, into Succ. 801 /// 802 /// Assumption: Succ is the single successor for BB. 803 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 804 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 805 806 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 807 << Succ->getName() << "\n"); 808 // Shortcut, if there is only a single predecessor it must be BB and merging 809 // is always safe 810 if (Succ->getSinglePredecessor()) return true; 811 812 // Make a list of the predecessors of BB 813 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 814 815 // Look at all the phi nodes in Succ, to see if they present a conflict when 816 // merging these blocks 817 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 818 PHINode *PN = cast<PHINode>(I); 819 820 // If the incoming value from BB is again a PHINode in 821 // BB which has the same incoming value for *PI as PN does, we can 822 // merge the phi nodes and then the blocks can still be merged 823 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 824 if (BBPN && BBPN->getParent() == BB) { 825 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 826 BasicBlock *IBB = PN->getIncomingBlock(PI); 827 if (BBPreds.count(IBB) && 828 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 829 PN->getIncomingValue(PI))) { 830 LLVM_DEBUG(dbgs() 831 << "Can't fold, phi node " << PN->getName() << " in " 832 << Succ->getName() << " is conflicting with " 833 << BBPN->getName() << " with regard to common predecessor " 834 << IBB->getName() << "\n"); 835 return false; 836 } 837 } 838 } else { 839 Value* Val = PN->getIncomingValueForBlock(BB); 840 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 841 // See if the incoming value for the common predecessor is equal to the 842 // one for BB, in which case this phi node will not prevent the merging 843 // of the block. 844 BasicBlock *IBB = PN->getIncomingBlock(PI); 845 if (BBPreds.count(IBB) && 846 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 847 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 848 << " in " << Succ->getName() 849 << " is conflicting with regard to common " 850 << "predecessor " << IBB->getName() << "\n"); 851 return false; 852 } 853 } 854 } 855 } 856 857 return true; 858 } 859 860 using PredBlockVector = SmallVector<BasicBlock *, 16>; 861 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 862 863 /// Determines the value to use as the phi node input for a block. 864 /// 865 /// Select between \p OldVal any value that we know flows from \p BB 866 /// to a particular phi on the basis of which one (if either) is not 867 /// undef. Update IncomingValues based on the selected value. 868 /// 869 /// \param OldVal The value we are considering selecting. 870 /// \param BB The block that the value flows in from. 871 /// \param IncomingValues A map from block-to-value for other phi inputs 872 /// that we have examined. 873 /// 874 /// \returns the selected value. 875 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 876 IncomingValueMap &IncomingValues) { 877 if (!isa<UndefValue>(OldVal)) { 878 assert((!IncomingValues.count(BB) || 879 IncomingValues.find(BB)->second == OldVal) && 880 "Expected OldVal to match incoming value from BB!"); 881 882 IncomingValues.insert(std::make_pair(BB, OldVal)); 883 return OldVal; 884 } 885 886 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 887 if (It != IncomingValues.end()) return It->second; 888 889 return OldVal; 890 } 891 892 /// Create a map from block to value for the operands of a 893 /// given phi. 894 /// 895 /// Create a map from block to value for each non-undef value flowing 896 /// into \p PN. 897 /// 898 /// \param PN The phi we are collecting the map for. 899 /// \param IncomingValues [out] The map from block to value for this phi. 900 static void gatherIncomingValuesToPhi(PHINode *PN, 901 IncomingValueMap &IncomingValues) { 902 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 903 BasicBlock *BB = PN->getIncomingBlock(i); 904 Value *V = PN->getIncomingValue(i); 905 906 if (!isa<UndefValue>(V)) 907 IncomingValues.insert(std::make_pair(BB, V)); 908 } 909 } 910 911 /// Replace the incoming undef values to a phi with the values 912 /// from a block-to-value map. 913 /// 914 /// \param PN The phi we are replacing the undefs in. 915 /// \param IncomingValues A map from block to value. 916 static void replaceUndefValuesInPhi(PHINode *PN, 917 const IncomingValueMap &IncomingValues) { 918 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 919 Value *V = PN->getIncomingValue(i); 920 921 if (!isa<UndefValue>(V)) continue; 922 923 BasicBlock *BB = PN->getIncomingBlock(i); 924 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 925 if (It == IncomingValues.end()) continue; 926 927 PN->setIncomingValue(i, It->second); 928 } 929 } 930 931 /// Replace a value flowing from a block to a phi with 932 /// potentially multiple instances of that value flowing from the 933 /// block's predecessors to the phi. 934 /// 935 /// \param BB The block with the value flowing into the phi. 936 /// \param BBPreds The predecessors of BB. 937 /// \param PN The phi that we are updating. 938 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 939 const PredBlockVector &BBPreds, 940 PHINode *PN) { 941 Value *OldVal = PN->removeIncomingValue(BB, false); 942 assert(OldVal && "No entry in PHI for Pred BB!"); 943 944 IncomingValueMap IncomingValues; 945 946 // We are merging two blocks - BB, and the block containing PN - and 947 // as a result we need to redirect edges from the predecessors of BB 948 // to go to the block containing PN, and update PN 949 // accordingly. Since we allow merging blocks in the case where the 950 // predecessor and successor blocks both share some predecessors, 951 // and where some of those common predecessors might have undef 952 // values flowing into PN, we want to rewrite those values to be 953 // consistent with the non-undef values. 954 955 gatherIncomingValuesToPhi(PN, IncomingValues); 956 957 // If this incoming value is one of the PHI nodes in BB, the new entries 958 // in the PHI node are the entries from the old PHI. 959 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 960 PHINode *OldValPN = cast<PHINode>(OldVal); 961 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 962 // Note that, since we are merging phi nodes and BB and Succ might 963 // have common predecessors, we could end up with a phi node with 964 // identical incoming branches. This will be cleaned up later (and 965 // will trigger asserts if we try to clean it up now, without also 966 // simplifying the corresponding conditional branch). 967 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 968 Value *PredVal = OldValPN->getIncomingValue(i); 969 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 970 IncomingValues); 971 972 // And add a new incoming value for this predecessor for the 973 // newly retargeted branch. 974 PN->addIncoming(Selected, PredBB); 975 } 976 } else { 977 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 978 // Update existing incoming values in PN for this 979 // predecessor of BB. 980 BasicBlock *PredBB = BBPreds[i]; 981 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 982 IncomingValues); 983 984 // And add a new incoming value for this predecessor for the 985 // newly retargeted branch. 986 PN->addIncoming(Selected, PredBB); 987 } 988 } 989 990 replaceUndefValuesInPhi(PN, IncomingValues); 991 } 992 993 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 994 DomTreeUpdater *DTU) { 995 assert(BB != &BB->getParent()->getEntryBlock() && 996 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 997 998 // We can't eliminate infinite loops. 999 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1000 if (BB == Succ) return false; 1001 1002 // Check to see if merging these blocks would cause conflicts for any of the 1003 // phi nodes in BB or Succ. If not, we can safely merge. 1004 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1005 1006 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1007 // has uses which will not disappear when the PHI nodes are merged. It is 1008 // possible to handle such cases, but difficult: it requires checking whether 1009 // BB dominates Succ, which is non-trivial to calculate in the case where 1010 // Succ has multiple predecessors. Also, it requires checking whether 1011 // constructing the necessary self-referential PHI node doesn't introduce any 1012 // conflicts; this isn't too difficult, but the previous code for doing this 1013 // was incorrect. 1014 // 1015 // Note that if this check finds a live use, BB dominates Succ, so BB is 1016 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1017 // folding the branch isn't profitable in that case anyway. 1018 if (!Succ->getSinglePredecessor()) { 1019 BasicBlock::iterator BBI = BB->begin(); 1020 while (isa<PHINode>(*BBI)) { 1021 for (Use &U : BBI->uses()) { 1022 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1023 if (PN->getIncomingBlock(U) != BB) 1024 return false; 1025 } else { 1026 return false; 1027 } 1028 } 1029 ++BBI; 1030 } 1031 } 1032 1033 // We cannot fold the block if it's a branch to an already present callbr 1034 // successor because that creates duplicate successors. 1035 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1036 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 1037 if (Succ == CBI->getDefaultDest()) 1038 return false; 1039 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1040 if (Succ == CBI->getIndirectDest(i)) 1041 return false; 1042 } 1043 } 1044 1045 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1046 1047 SmallVector<DominatorTree::UpdateType, 32> Updates; 1048 if (DTU) { 1049 // All predecessors of BB will be moved to Succ. 1050 SmallSetVector<BasicBlock *, 8> Predecessors(pred_begin(BB), pred_end(BB)); 1051 Updates.reserve(Updates.size() + 2 * Predecessors.size()); 1052 for (auto *Predecessor : Predecessors) { 1053 // This predecessor of BB may already have Succ as a successor. 1054 if (!llvm::is_contained(successors(Predecessor), Succ)) 1055 Updates.push_back({DominatorTree::Insert, Predecessor, Succ}); 1056 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 1057 } 1058 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1059 } 1060 1061 if (isa<PHINode>(Succ->begin())) { 1062 // If there is more than one pred of succ, and there are PHI nodes in 1063 // the successor, then we need to add incoming edges for the PHI nodes 1064 // 1065 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1066 1067 // Loop over all of the PHI nodes in the successor of BB. 1068 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1069 PHINode *PN = cast<PHINode>(I); 1070 1071 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1072 } 1073 } 1074 1075 if (Succ->getSinglePredecessor()) { 1076 // BB is the only predecessor of Succ, so Succ will end up with exactly 1077 // the same predecessors BB had. 1078 1079 // Copy over any phi, debug or lifetime instruction. 1080 BB->getTerminator()->eraseFromParent(); 1081 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1082 BB->getInstList()); 1083 } else { 1084 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1085 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1086 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1087 PN->eraseFromParent(); 1088 } 1089 } 1090 1091 // If the unconditional branch we replaced contains llvm.loop metadata, we 1092 // add the metadata to the branch instructions in the predecessors. 1093 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1094 Instruction *TI = BB->getTerminator(); 1095 if (TI) 1096 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1097 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1098 BasicBlock *Pred = *PI; 1099 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1100 } 1101 1102 // Everything that jumped to BB now goes to Succ. 1103 BB->replaceAllUsesWith(Succ); 1104 if (!Succ->hasName()) Succ->takeName(BB); 1105 1106 // Clear the successor list of BB to match updates applying to DTU later. 1107 if (BB->getTerminator()) 1108 BB->getInstList().pop_back(); 1109 new UnreachableInst(BB->getContext(), BB); 1110 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1111 "applying corresponding DTU updates."); 1112 1113 if (DTU) { 1114 DTU->applyUpdates(Updates); 1115 DTU->deleteBB(BB); 1116 } else { 1117 BB->eraseFromParent(); // Delete the old basic block. 1118 } 1119 return true; 1120 } 1121 1122 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1123 // This implementation doesn't currently consider undef operands 1124 // specially. Theoretically, two phis which are identical except for 1125 // one having an undef where the other doesn't could be collapsed. 1126 1127 bool Changed = false; 1128 1129 // Examine each PHI. 1130 // Note that increment of I must *NOT* be in the iteration_expression, since 1131 // we don't want to immediately advance when we restart from the beginning. 1132 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1133 ++I; 1134 // Is there an identical PHI node in this basic block? 1135 // Note that we only look in the upper square's triangle, 1136 // we already checked that the lower triangle PHI's aren't identical. 1137 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1138 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1139 continue; 1140 // A duplicate. Replace this PHI with the base PHI. 1141 ++NumPHICSEs; 1142 DuplicatePN->replaceAllUsesWith(PN); 1143 DuplicatePN->eraseFromParent(); 1144 Changed = true; 1145 1146 // The RAUW can change PHIs that we already visited. 1147 I = BB->begin(); 1148 break; // Start over from the beginning. 1149 } 1150 } 1151 return Changed; 1152 } 1153 1154 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1155 // This implementation doesn't currently consider undef operands 1156 // specially. Theoretically, two phis which are identical except for 1157 // one having an undef where the other doesn't could be collapsed. 1158 1159 struct PHIDenseMapInfo { 1160 static PHINode *getEmptyKey() { 1161 return DenseMapInfo<PHINode *>::getEmptyKey(); 1162 } 1163 1164 static PHINode *getTombstoneKey() { 1165 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1166 } 1167 1168 static bool isSentinel(PHINode *PN) { 1169 return PN == getEmptyKey() || PN == getTombstoneKey(); 1170 } 1171 1172 // WARNING: this logic must be kept in sync with 1173 // Instruction::isIdenticalToWhenDefined()! 1174 static unsigned getHashValueImpl(PHINode *PN) { 1175 // Compute a hash value on the operands. Instcombine will likely have 1176 // sorted them, which helps expose duplicates, but we have to check all 1177 // the operands to be safe in case instcombine hasn't run. 1178 return static_cast<unsigned>(hash_combine( 1179 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1180 hash_combine_range(PN->block_begin(), PN->block_end()))); 1181 } 1182 1183 static unsigned getHashValue(PHINode *PN) { 1184 #ifndef NDEBUG 1185 // If -phicse-debug-hash was specified, return a constant -- this 1186 // will force all hashing to collide, so we'll exhaustively search 1187 // the table for a match, and the assertion in isEqual will fire if 1188 // there's a bug causing equal keys to hash differently. 1189 if (PHICSEDebugHash) 1190 return 0; 1191 #endif 1192 return getHashValueImpl(PN); 1193 } 1194 1195 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1196 if (isSentinel(LHS) || isSentinel(RHS)) 1197 return LHS == RHS; 1198 return LHS->isIdenticalTo(RHS); 1199 } 1200 1201 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1202 // These comparisons are nontrivial, so assert that equality implies 1203 // hash equality (DenseMap demands this as an invariant). 1204 bool Result = isEqualImpl(LHS, RHS); 1205 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1206 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1207 return Result; 1208 } 1209 }; 1210 1211 // Set of unique PHINodes. 1212 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1213 PHISet.reserve(4 * PHICSENumPHISmallSize); 1214 1215 // Examine each PHI. 1216 bool Changed = false; 1217 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1218 auto Inserted = PHISet.insert(PN); 1219 if (!Inserted.second) { 1220 // A duplicate. Replace this PHI with its duplicate. 1221 ++NumPHICSEs; 1222 PN->replaceAllUsesWith(*Inserted.first); 1223 PN->eraseFromParent(); 1224 Changed = true; 1225 1226 // The RAUW can change PHIs that we already visited. Start over from the 1227 // beginning. 1228 PHISet.clear(); 1229 I = BB->begin(); 1230 } 1231 } 1232 1233 return Changed; 1234 } 1235 1236 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1237 if ( 1238 #ifndef NDEBUG 1239 !PHICSEDebugHash && 1240 #endif 1241 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1242 return EliminateDuplicatePHINodesNaiveImpl(BB); 1243 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1244 } 1245 1246 /// If the specified pointer points to an object that we control, try to modify 1247 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1248 /// the value after the operation, which may be lower than PrefAlign. 1249 /// 1250 /// Increating value alignment isn't often possible though. If alignment is 1251 /// important, a more reliable approach is to simply align all global variables 1252 /// and allocation instructions to their preferred alignment from the beginning. 1253 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1254 const DataLayout &DL) { 1255 V = V->stripPointerCasts(); 1256 1257 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1258 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1259 // than the current alignment, as the known bits calculation should have 1260 // already taken it into account. However, this is not always the case, 1261 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1262 // doesn't. 1263 Align CurrentAlign = AI->getAlign(); 1264 if (PrefAlign <= CurrentAlign) 1265 return CurrentAlign; 1266 1267 // If the preferred alignment is greater than the natural stack alignment 1268 // then don't round up. This avoids dynamic stack realignment. 1269 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1270 return CurrentAlign; 1271 AI->setAlignment(PrefAlign); 1272 return PrefAlign; 1273 } 1274 1275 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1276 // TODO: as above, this shouldn't be necessary. 1277 Align CurrentAlign = GO->getPointerAlignment(DL); 1278 if (PrefAlign <= CurrentAlign) 1279 return CurrentAlign; 1280 1281 // If there is a large requested alignment and we can, bump up the alignment 1282 // of the global. If the memory we set aside for the global may not be the 1283 // memory used by the final program then it is impossible for us to reliably 1284 // enforce the preferred alignment. 1285 if (!GO->canIncreaseAlignment()) 1286 return CurrentAlign; 1287 1288 GO->setAlignment(PrefAlign); 1289 return PrefAlign; 1290 } 1291 1292 return Align(1); 1293 } 1294 1295 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1296 const DataLayout &DL, 1297 const Instruction *CxtI, 1298 AssumptionCache *AC, 1299 const DominatorTree *DT) { 1300 assert(V->getType()->isPointerTy() && 1301 "getOrEnforceKnownAlignment expects a pointer!"); 1302 1303 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1304 unsigned TrailZ = Known.countMinTrailingZeros(); 1305 1306 // Avoid trouble with ridiculously large TrailZ values, such as 1307 // those computed from a null pointer. 1308 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1309 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1310 1311 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1312 1313 if (PrefAlign && *PrefAlign > Alignment) 1314 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1315 1316 // We don't need to make any adjustment. 1317 return Alignment; 1318 } 1319 1320 ///===---------------------------------------------------------------------===// 1321 /// Dbg Intrinsic utilities 1322 /// 1323 1324 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1325 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1326 DIExpression *DIExpr, 1327 PHINode *APN) { 1328 // Since we can't guarantee that the original dbg.declare instrinsic 1329 // is removed by LowerDbgDeclare(), we need to make sure that we are 1330 // not inserting the same dbg.value intrinsic over and over. 1331 SmallVector<DbgValueInst *, 1> DbgValues; 1332 findDbgValues(DbgValues, APN); 1333 for (auto *DVI : DbgValues) { 1334 assert(DVI->getValue() == APN); 1335 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1336 return true; 1337 } 1338 return false; 1339 } 1340 1341 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1342 /// (or fragment of the variable) described by \p DII. 1343 /// 1344 /// This is primarily intended as a helper for the different 1345 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1346 /// converted describes an alloca'd variable, so we need to use the 1347 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1348 /// identified as covering an n-bit fragment, if the store size of i1 is at 1349 /// least n bits. 1350 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1351 const DataLayout &DL = DII->getModule()->getDataLayout(); 1352 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1353 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1354 assert(!ValueSize.isScalable() && 1355 "Fragments don't work on scalable types."); 1356 return ValueSize.getFixedSize() >= *FragmentSize; 1357 } 1358 // We can't always calculate the size of the DI variable (e.g. if it is a 1359 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1360 // intead. 1361 if (DII->isAddressOfVariable()) 1362 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1363 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1364 assert(ValueSize.isScalable() == FragmentSize->isScalable() && 1365 "Both sizes should agree on the scalable flag."); 1366 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1367 } 1368 // Could not determine size of variable. Conservatively return false. 1369 return false; 1370 } 1371 1372 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1373 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1374 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1375 /// case this DebugLoc leaks into any adjacent instructions. 1376 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1377 // Original dbg.declare must have a location. 1378 DebugLoc DeclareLoc = DII->getDebugLoc(); 1379 MDNode *Scope = DeclareLoc.getScope(); 1380 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1381 // Produce an unknown location with the correct scope / inlinedAt fields. 1382 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1383 } 1384 1385 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1386 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1387 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1388 StoreInst *SI, DIBuilder &Builder) { 1389 assert(DII->isAddressOfVariable()); 1390 auto *DIVar = DII->getVariable(); 1391 assert(DIVar && "Missing variable"); 1392 auto *DIExpr = DII->getExpression(); 1393 Value *DV = SI->getValueOperand(); 1394 1395 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1396 1397 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1398 // FIXME: If storing to a part of the variable described by the dbg.declare, 1399 // then we want to insert a dbg.value for the corresponding fragment. 1400 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1401 << *DII << '\n'); 1402 // For now, when there is a store to parts of the variable (but we do not 1403 // know which part) we insert an dbg.value instrinsic to indicate that we 1404 // know nothing about the variable's content. 1405 DV = UndefValue::get(DV->getType()); 1406 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1407 return; 1408 } 1409 1410 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1411 } 1412 1413 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1414 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1415 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1416 LoadInst *LI, DIBuilder &Builder) { 1417 auto *DIVar = DII->getVariable(); 1418 auto *DIExpr = DII->getExpression(); 1419 assert(DIVar && "Missing variable"); 1420 1421 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1422 // FIXME: If only referring to a part of the variable described by the 1423 // dbg.declare, then we want to insert a dbg.value for the corresponding 1424 // fragment. 1425 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1426 << *DII << '\n'); 1427 return; 1428 } 1429 1430 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1431 1432 // We are now tracking the loaded value instead of the address. In the 1433 // future if multi-location support is added to the IR, it might be 1434 // preferable to keep tracking both the loaded value and the original 1435 // address in case the alloca can not be elided. 1436 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1437 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1438 DbgValue->insertAfter(LI); 1439 } 1440 1441 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1442 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1443 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1444 PHINode *APN, DIBuilder &Builder) { 1445 auto *DIVar = DII->getVariable(); 1446 auto *DIExpr = DII->getExpression(); 1447 assert(DIVar && "Missing variable"); 1448 1449 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1450 return; 1451 1452 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1453 // FIXME: If only referring to a part of the variable described by the 1454 // dbg.declare, then we want to insert a dbg.value for the corresponding 1455 // fragment. 1456 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1457 << *DII << '\n'); 1458 return; 1459 } 1460 1461 BasicBlock *BB = APN->getParent(); 1462 auto InsertionPt = BB->getFirstInsertionPt(); 1463 1464 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1465 1466 // The block may be a catchswitch block, which does not have a valid 1467 // insertion point. 1468 // FIXME: Insert dbg.value markers in the successors when appropriate. 1469 if (InsertionPt != BB->end()) 1470 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1471 } 1472 1473 /// Determine whether this alloca is either a VLA or an array. 1474 static bool isArray(AllocaInst *AI) { 1475 return AI->isArrayAllocation() || 1476 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1477 } 1478 1479 /// Determine whether this alloca is a structure. 1480 static bool isStructure(AllocaInst *AI) { 1481 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1482 } 1483 1484 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1485 /// of llvm.dbg.value intrinsics. 1486 bool llvm::LowerDbgDeclare(Function &F) { 1487 bool Changed = false; 1488 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1489 SmallVector<DbgDeclareInst *, 4> Dbgs; 1490 for (auto &FI : F) 1491 for (Instruction &BI : FI) 1492 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1493 Dbgs.push_back(DDI); 1494 1495 if (Dbgs.empty()) 1496 return Changed; 1497 1498 for (auto &I : Dbgs) { 1499 DbgDeclareInst *DDI = I; 1500 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1501 // If this is an alloca for a scalar variable, insert a dbg.value 1502 // at each load and store to the alloca and erase the dbg.declare. 1503 // The dbg.values allow tracking a variable even if it is not 1504 // stored on the stack, while the dbg.declare can only describe 1505 // the stack slot (and at a lexical-scope granularity). Later 1506 // passes will attempt to elide the stack slot. 1507 if (!AI || isArray(AI) || isStructure(AI)) 1508 continue; 1509 1510 // A volatile load/store means that the alloca can't be elided anyway. 1511 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1512 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1513 return LI->isVolatile(); 1514 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1515 return SI->isVolatile(); 1516 return false; 1517 })) 1518 continue; 1519 1520 SmallVector<const Value *, 8> WorkList; 1521 WorkList.push_back(AI); 1522 while (!WorkList.empty()) { 1523 const Value *V = WorkList.pop_back_val(); 1524 for (auto &AIUse : V->uses()) { 1525 User *U = AIUse.getUser(); 1526 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1527 if (AIUse.getOperandNo() == 1) 1528 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1529 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1530 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1531 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1532 // This is a call by-value or some other instruction that takes a 1533 // pointer to the variable. Insert a *value* intrinsic that describes 1534 // the variable by dereferencing the alloca. 1535 if (!CI->isLifetimeStartOrEnd()) { 1536 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1537 auto *DerefExpr = 1538 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1539 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1540 NewLoc, CI); 1541 } 1542 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1543 if (BI->getType()->isPointerTy()) 1544 WorkList.push_back(BI); 1545 } 1546 } 1547 } 1548 DDI->eraseFromParent(); 1549 Changed = true; 1550 } 1551 1552 if (Changed) 1553 for (BasicBlock &BB : F) 1554 RemoveRedundantDbgInstrs(&BB); 1555 1556 return Changed; 1557 } 1558 1559 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1560 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1561 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1562 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1563 if (InsertedPHIs.size() == 0) 1564 return; 1565 1566 // Map existing PHI nodes to their dbg.values. 1567 ValueToValueMapTy DbgValueMap; 1568 for (auto &I : *BB) { 1569 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1570 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1571 DbgValueMap.insert({Loc, DbgII}); 1572 } 1573 } 1574 if (DbgValueMap.size() == 0) 1575 return; 1576 1577 // Then iterate through the new PHIs and look to see if they use one of the 1578 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1579 // propagate the info through the new PHI. 1580 LLVMContext &C = BB->getContext(); 1581 for (auto PHI : InsertedPHIs) { 1582 BasicBlock *Parent = PHI->getParent(); 1583 // Avoid inserting an intrinsic into an EH block. 1584 if (Parent->getFirstNonPHI()->isEHPad()) 1585 continue; 1586 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1587 for (auto VI : PHI->operand_values()) { 1588 auto V = DbgValueMap.find(VI); 1589 if (V != DbgValueMap.end()) { 1590 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1591 Instruction *NewDbgII = DbgII->clone(); 1592 NewDbgII->setOperand(0, PhiMAV); 1593 auto InsertionPt = Parent->getFirstInsertionPt(); 1594 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1595 NewDbgII->insertBefore(&*InsertionPt); 1596 } 1597 } 1598 } 1599 } 1600 1601 /// Finds all intrinsics declaring local variables as living in the memory that 1602 /// 'V' points to. This may include a mix of dbg.declare and 1603 /// dbg.addr intrinsics. 1604 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1605 // This function is hot. Check whether the value has any metadata to avoid a 1606 // DenseMap lookup. 1607 if (!V->isUsedByMetadata()) 1608 return {}; 1609 auto *L = LocalAsMetadata::getIfExists(V); 1610 if (!L) 1611 return {}; 1612 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1613 if (!MDV) 1614 return {}; 1615 1616 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1617 for (User *U : MDV->users()) { 1618 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1619 if (DII->isAddressOfVariable()) 1620 Declares.push_back(DII); 1621 } 1622 1623 return Declares; 1624 } 1625 1626 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) { 1627 TinyPtrVector<DbgDeclareInst *> DDIs; 1628 for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V)) 1629 if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI)) 1630 DDIs.push_back(DDI); 1631 return DDIs; 1632 } 1633 1634 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1635 // This function is hot. Check whether the value has any metadata to avoid a 1636 // DenseMap lookup. 1637 if (!V->isUsedByMetadata()) 1638 return; 1639 if (auto *L = LocalAsMetadata::getIfExists(V)) 1640 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1641 for (User *U : MDV->users()) 1642 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1643 DbgValues.push_back(DVI); 1644 } 1645 1646 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1647 Value *V) { 1648 // This function is hot. Check whether the value has any metadata to avoid a 1649 // DenseMap lookup. 1650 if (!V->isUsedByMetadata()) 1651 return; 1652 if (auto *L = LocalAsMetadata::getIfExists(V)) 1653 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1654 for (User *U : MDV->users()) 1655 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1656 DbgUsers.push_back(DII); 1657 } 1658 1659 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1660 DIBuilder &Builder, uint8_t DIExprFlags, 1661 int Offset) { 1662 auto DbgAddrs = FindDbgAddrUses(Address); 1663 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1664 DebugLoc Loc = DII->getDebugLoc(); 1665 auto *DIVar = DII->getVariable(); 1666 auto *DIExpr = DII->getExpression(); 1667 assert(DIVar && "Missing variable"); 1668 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1669 // Insert llvm.dbg.declare immediately before DII, and remove old 1670 // llvm.dbg.declare. 1671 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1672 DII->eraseFromParent(); 1673 } 1674 return !DbgAddrs.empty(); 1675 } 1676 1677 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1678 DIBuilder &Builder, int Offset) { 1679 DebugLoc Loc = DVI->getDebugLoc(); 1680 auto *DIVar = DVI->getVariable(); 1681 auto *DIExpr = DVI->getExpression(); 1682 assert(DIVar && "Missing variable"); 1683 1684 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1685 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1686 // it and give up. 1687 if (!DIExpr || DIExpr->getNumElements() < 1 || 1688 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1689 return; 1690 1691 // Insert the offset before the first deref. 1692 // We could just change the offset argument of dbg.value, but it's unsigned... 1693 if (Offset) 1694 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1695 1696 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1697 DVI->eraseFromParent(); 1698 } 1699 1700 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1701 DIBuilder &Builder, int Offset) { 1702 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1703 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1704 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1705 Use &U = *UI++; 1706 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1707 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1708 } 1709 } 1710 1711 /// Wrap \p V in a ValueAsMetadata instance. 1712 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1713 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1714 } 1715 1716 /// Where possible to salvage debug information for \p I do so 1717 /// and return True. If not possible mark undef and return False. 1718 void llvm::salvageDebugInfo(Instruction &I) { 1719 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1720 findDbgUsers(DbgUsers, &I); 1721 salvageDebugInfoForDbgValues(I, DbgUsers); 1722 } 1723 1724 void llvm::salvageDebugInfoForDbgValues( 1725 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1726 auto &Ctx = I.getContext(); 1727 bool Salvaged = false; 1728 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1729 1730 for (auto *DII : DbgUsers) { 1731 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1732 // are implicitly pointing out the value as a DWARF memory location 1733 // description. 1734 bool StackValue = isa<DbgValueInst>(DII); 1735 1736 DIExpression *DIExpr = 1737 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1738 1739 // salvageDebugInfoImpl should fail on examining the first element of 1740 // DbgUsers, or none of them. 1741 if (!DIExpr) 1742 break; 1743 1744 DII->setOperand(0, wrapMD(I.getOperand(0))); 1745 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1746 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1747 Salvaged = true; 1748 } 1749 1750 if (Salvaged) 1751 return; 1752 1753 for (auto *DII : DbgUsers) { 1754 Value *Undef = UndefValue::get(I.getType()); 1755 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 1756 ValueAsMetadata::get(Undef))); 1757 } 1758 } 1759 1760 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1761 DIExpression *SrcDIExpr, 1762 bool WithStackValue) { 1763 auto &M = *I.getModule(); 1764 auto &DL = M.getDataLayout(); 1765 1766 // Apply a vector of opcodes to the source DIExpression. 1767 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1768 DIExpression *DIExpr = SrcDIExpr; 1769 if (!Ops.empty()) { 1770 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1771 } 1772 return DIExpr; 1773 }; 1774 1775 // Apply the given offset to the source DIExpression. 1776 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1777 SmallVector<uint64_t, 8> Ops; 1778 DIExpression::appendOffset(Ops, Offset); 1779 return doSalvage(Ops); 1780 }; 1781 1782 // initializer-list helper for applying operators to the source DIExpression. 1783 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1784 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1785 return doSalvage(Ops); 1786 }; 1787 1788 if (auto *CI = dyn_cast<CastInst>(&I)) { 1789 // No-op casts are irrelevant for debug info. 1790 if (CI->isNoopCast(DL)) 1791 return SrcDIExpr; 1792 1793 Type *Type = CI->getType(); 1794 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1795 if (Type->isVectorTy() || 1796 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1797 return nullptr; 1798 1799 Value *FromValue = CI->getOperand(0); 1800 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1801 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1802 1803 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1804 isa<SExtInst>(&I))); 1805 } 1806 1807 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1808 unsigned BitWidth = 1809 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1810 // Rewrite a constant GEP into a DIExpression. 1811 APInt Offset(BitWidth, 0); 1812 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1813 return applyOffset(Offset.getSExtValue()); 1814 } else { 1815 return nullptr; 1816 } 1817 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1818 // Rewrite binary operations with constant integer operands. 1819 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1820 if (!ConstInt || ConstInt->getBitWidth() > 64) 1821 return nullptr; 1822 1823 uint64_t Val = ConstInt->getSExtValue(); 1824 switch (BI->getOpcode()) { 1825 case Instruction::Add: 1826 return applyOffset(Val); 1827 case Instruction::Sub: 1828 return applyOffset(-int64_t(Val)); 1829 case Instruction::Mul: 1830 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1831 case Instruction::SDiv: 1832 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1833 case Instruction::SRem: 1834 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1835 case Instruction::Or: 1836 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1837 case Instruction::And: 1838 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1839 case Instruction::Xor: 1840 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1841 case Instruction::Shl: 1842 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1843 case Instruction::LShr: 1844 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1845 case Instruction::AShr: 1846 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1847 default: 1848 // TODO: Salvage constants from each kind of binop we know about. 1849 return nullptr; 1850 } 1851 // *Not* to do: we should not attempt to salvage load instructions, 1852 // because the validity and lifetime of a dbg.value containing 1853 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1854 } 1855 return nullptr; 1856 } 1857 1858 /// A replacement for a dbg.value expression. 1859 using DbgValReplacement = Optional<DIExpression *>; 1860 1861 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1862 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1863 /// changes are made. 1864 static bool rewriteDebugUsers( 1865 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1866 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1867 // Find debug users of From. 1868 SmallVector<DbgVariableIntrinsic *, 1> Users; 1869 findDbgUsers(Users, &From); 1870 if (Users.empty()) 1871 return false; 1872 1873 // Prevent use-before-def of To. 1874 bool Changed = false; 1875 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1876 if (isa<Instruction>(&To)) { 1877 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1878 1879 for (auto *DII : Users) { 1880 // It's common to see a debug user between From and DomPoint. Move it 1881 // after DomPoint to preserve the variable update without any reordering. 1882 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1883 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1884 DII->moveAfter(&DomPoint); 1885 Changed = true; 1886 1887 // Users which otherwise aren't dominated by the replacement value must 1888 // be salvaged or deleted. 1889 } else if (!DT.dominates(&DomPoint, DII)) { 1890 UndefOrSalvage.insert(DII); 1891 } 1892 } 1893 } 1894 1895 // Update debug users without use-before-def risk. 1896 for (auto *DII : Users) { 1897 if (UndefOrSalvage.count(DII)) 1898 continue; 1899 1900 LLVMContext &Ctx = DII->getContext(); 1901 DbgValReplacement DVR = RewriteExpr(*DII); 1902 if (!DVR) 1903 continue; 1904 1905 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1906 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1907 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1908 Changed = true; 1909 } 1910 1911 if (!UndefOrSalvage.empty()) { 1912 // Try to salvage the remaining debug users. 1913 salvageDebugInfo(From); 1914 Changed = true; 1915 } 1916 1917 return Changed; 1918 } 1919 1920 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1921 /// losslessly preserve the bits and semantics of the value. This predicate is 1922 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1923 /// 1924 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1925 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1926 /// and also does not allow lossless pointer <-> integer conversions. 1927 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1928 Type *ToTy) { 1929 // Trivially compatible types. 1930 if (FromTy == ToTy) 1931 return true; 1932 1933 // Handle compatible pointer <-> integer conversions. 1934 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1935 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1936 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1937 !DL.isNonIntegralPointerType(ToTy); 1938 return SameSize && LosslessConversion; 1939 } 1940 1941 // TODO: This is not exhaustive. 1942 return false; 1943 } 1944 1945 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1946 Instruction &DomPoint, DominatorTree &DT) { 1947 // Exit early if From has no debug users. 1948 if (!From.isUsedByMetadata()) 1949 return false; 1950 1951 assert(&From != &To && "Can't replace something with itself"); 1952 1953 Type *FromTy = From.getType(); 1954 Type *ToTy = To.getType(); 1955 1956 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1957 return DII.getExpression(); 1958 }; 1959 1960 // Handle no-op conversions. 1961 Module &M = *From.getModule(); 1962 const DataLayout &DL = M.getDataLayout(); 1963 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1964 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1965 1966 // Handle integer-to-integer widening and narrowing. 1967 // FIXME: Use DW_OP_convert when it's available everywhere. 1968 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1969 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1970 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1971 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1972 1973 // When the width of the result grows, assume that a debugger will only 1974 // access the low `FromBits` bits when inspecting the source variable. 1975 if (FromBits < ToBits) 1976 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1977 1978 // The width of the result has shrunk. Use sign/zero extension to describe 1979 // the source variable's high bits. 1980 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1981 DILocalVariable *Var = DII.getVariable(); 1982 1983 // Without knowing signedness, sign/zero extension isn't possible. 1984 auto Signedness = Var->getSignedness(); 1985 if (!Signedness) 1986 return None; 1987 1988 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1989 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 1990 Signed); 1991 }; 1992 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1993 } 1994 1995 // TODO: Floating-point conversions, vectors. 1996 return false; 1997 } 1998 1999 std::pair<unsigned, unsigned> 2000 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2001 unsigned NumDeadInst = 0; 2002 unsigned NumDeadDbgInst = 0; 2003 // Delete the instructions backwards, as it has a reduced likelihood of 2004 // having to update as many def-use and use-def chains. 2005 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2006 while (EndInst != &BB->front()) { 2007 // Delete the next to last instruction. 2008 Instruction *Inst = &*--EndInst->getIterator(); 2009 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2010 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2011 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2012 EndInst = Inst; 2013 continue; 2014 } 2015 if (isa<DbgInfoIntrinsic>(Inst)) 2016 ++NumDeadDbgInst; 2017 else 2018 ++NumDeadInst; 2019 Inst->eraseFromParent(); 2020 } 2021 return {NumDeadInst, NumDeadDbgInst}; 2022 } 2023 2024 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2025 bool PreserveLCSSA, DomTreeUpdater *DTU, 2026 MemorySSAUpdater *MSSAU) { 2027 BasicBlock *BB = I->getParent(); 2028 2029 if (MSSAU) 2030 MSSAU->changeToUnreachable(I); 2031 2032 SmallSetVector<BasicBlock *, 8> UniqueSuccessors; 2033 2034 // Loop over all of the successors, removing BB's entry from any PHI 2035 // nodes. 2036 for (BasicBlock *Successor : successors(BB)) { 2037 Successor->removePredecessor(BB, PreserveLCSSA); 2038 if (DTU) 2039 UniqueSuccessors.insert(Successor); 2040 } 2041 // Insert a call to llvm.trap right before this. This turns the undefined 2042 // behavior into a hard fail instead of falling through into random code. 2043 if (UseLLVMTrap) { 2044 Function *TrapFn = 2045 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2046 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2047 CallTrap->setDebugLoc(I->getDebugLoc()); 2048 } 2049 auto *UI = new UnreachableInst(I->getContext(), I); 2050 UI->setDebugLoc(I->getDebugLoc()); 2051 2052 // All instructions after this are dead. 2053 unsigned NumInstrsRemoved = 0; 2054 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2055 while (BBI != BBE) { 2056 if (!BBI->use_empty()) 2057 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2058 BB->getInstList().erase(BBI++); 2059 ++NumInstrsRemoved; 2060 } 2061 if (DTU) { 2062 SmallVector<DominatorTree::UpdateType, 8> Updates; 2063 Updates.reserve(UniqueSuccessors.size()); 2064 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2065 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2066 DTU->applyUpdates(Updates); 2067 } 2068 return NumInstrsRemoved; 2069 } 2070 2071 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2072 SmallVector<Value *, 8> Args(II->args()); 2073 SmallVector<OperandBundleDef, 1> OpBundles; 2074 II->getOperandBundlesAsDefs(OpBundles); 2075 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2076 II->getCalledOperand(), Args, OpBundles); 2077 NewCall->setCallingConv(II->getCallingConv()); 2078 NewCall->setAttributes(II->getAttributes()); 2079 NewCall->setDebugLoc(II->getDebugLoc()); 2080 NewCall->copyMetadata(*II); 2081 2082 // If the invoke had profile metadata, try converting them for CallInst. 2083 uint64_t TotalWeight; 2084 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2085 // Set the total weight if it fits into i32, otherwise reset. 2086 MDBuilder MDB(NewCall->getContext()); 2087 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2088 ? nullptr 2089 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2090 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2091 } 2092 2093 return NewCall; 2094 } 2095 2096 /// changeToCall - Convert the specified invoke into a normal call. 2097 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2098 CallInst *NewCall = createCallMatchingInvoke(II); 2099 NewCall->takeName(II); 2100 NewCall->insertBefore(II); 2101 II->replaceAllUsesWith(NewCall); 2102 2103 // Follow the call by a branch to the normal destination. 2104 BasicBlock *NormalDestBB = II->getNormalDest(); 2105 BranchInst::Create(NormalDestBB, II); 2106 2107 // Update PHI nodes in the unwind destination 2108 BasicBlock *BB = II->getParent(); 2109 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2110 UnwindDestBB->removePredecessor(BB); 2111 II->eraseFromParent(); 2112 if (DTU) 2113 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2114 } 2115 2116 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2117 BasicBlock *UnwindEdge) { 2118 BasicBlock *BB = CI->getParent(); 2119 2120 // Convert this function call into an invoke instruction. First, split the 2121 // basic block. 2122 BasicBlock *Split = 2123 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 2124 2125 // Delete the unconditional branch inserted by splitBasicBlock 2126 BB->getInstList().pop_back(); 2127 2128 // Create the new invoke instruction. 2129 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2130 SmallVector<OperandBundleDef, 1> OpBundles; 2131 2132 CI->getOperandBundlesAsDefs(OpBundles); 2133 2134 // Note: we're round tripping operand bundles through memory here, and that 2135 // can potentially be avoided with a cleverer API design that we do not have 2136 // as of this time. 2137 2138 InvokeInst *II = 2139 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2140 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2141 II->setDebugLoc(CI->getDebugLoc()); 2142 II->setCallingConv(CI->getCallingConv()); 2143 II->setAttributes(CI->getAttributes()); 2144 2145 // Make sure that anything using the call now uses the invoke! This also 2146 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2147 CI->replaceAllUsesWith(II); 2148 2149 // Delete the original call 2150 Split->getInstList().pop_front(); 2151 return Split; 2152 } 2153 2154 static bool markAliveBlocks(Function &F, 2155 SmallPtrSetImpl<BasicBlock *> &Reachable, 2156 DomTreeUpdater *DTU = nullptr) { 2157 SmallVector<BasicBlock*, 128> Worklist; 2158 BasicBlock *BB = &F.front(); 2159 Worklist.push_back(BB); 2160 Reachable.insert(BB); 2161 bool Changed = false; 2162 do { 2163 BB = Worklist.pop_back_val(); 2164 2165 // Do a quick scan of the basic block, turning any obviously unreachable 2166 // instructions into LLVM unreachable insts. The instruction combining pass 2167 // canonicalizes unreachable insts into stores to null or undef. 2168 for (Instruction &I : *BB) { 2169 if (auto *CI = dyn_cast<CallInst>(&I)) { 2170 Value *Callee = CI->getCalledOperand(); 2171 // Handle intrinsic calls. 2172 if (Function *F = dyn_cast<Function>(Callee)) { 2173 auto IntrinsicID = F->getIntrinsicID(); 2174 // Assumptions that are known to be false are equivalent to 2175 // unreachable. Also, if the condition is undefined, then we make the 2176 // choice most beneficial to the optimizer, and choose that to also be 2177 // unreachable. 2178 if (IntrinsicID == Intrinsic::assume) { 2179 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2180 // Don't insert a call to llvm.trap right before the unreachable. 2181 changeToUnreachable(CI, false, false, DTU); 2182 Changed = true; 2183 break; 2184 } 2185 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2186 // A call to the guard intrinsic bails out of the current 2187 // compilation unit if the predicate passed to it is false. If the 2188 // predicate is a constant false, then we know the guard will bail 2189 // out of the current compile unconditionally, so all code following 2190 // it is dead. 2191 // 2192 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2193 // guards to treat `undef` as `false` since a guard on `undef` can 2194 // still be useful for widening. 2195 if (match(CI->getArgOperand(0), m_Zero())) 2196 if (!isa<UnreachableInst>(CI->getNextNode())) { 2197 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2198 false, DTU); 2199 Changed = true; 2200 break; 2201 } 2202 } 2203 } else if ((isa<ConstantPointerNull>(Callee) && 2204 !NullPointerIsDefined(CI->getFunction())) || 2205 isa<UndefValue>(Callee)) { 2206 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2207 Changed = true; 2208 break; 2209 } 2210 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2211 // If we found a call to a no-return function, insert an unreachable 2212 // instruction after it. Make sure there isn't *already* one there 2213 // though. 2214 if (!isa<UnreachableInst>(CI->getNextNode())) { 2215 // Don't insert a call to llvm.trap right before the unreachable. 2216 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2217 Changed = true; 2218 } 2219 break; 2220 } 2221 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2222 // Store to undef and store to null are undefined and used to signal 2223 // that they should be changed to unreachable by passes that can't 2224 // modify the CFG. 2225 2226 // Don't touch volatile stores. 2227 if (SI->isVolatile()) continue; 2228 2229 Value *Ptr = SI->getOperand(1); 2230 2231 if (isa<UndefValue>(Ptr) || 2232 (isa<ConstantPointerNull>(Ptr) && 2233 !NullPointerIsDefined(SI->getFunction(), 2234 SI->getPointerAddressSpace()))) { 2235 changeToUnreachable(SI, true, false, DTU); 2236 Changed = true; 2237 break; 2238 } 2239 } 2240 } 2241 2242 Instruction *Terminator = BB->getTerminator(); 2243 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2244 // Turn invokes that call 'nounwind' functions into ordinary calls. 2245 Value *Callee = II->getCalledOperand(); 2246 if ((isa<ConstantPointerNull>(Callee) && 2247 !NullPointerIsDefined(BB->getParent())) || 2248 isa<UndefValue>(Callee)) { 2249 changeToUnreachable(II, true, false, DTU); 2250 Changed = true; 2251 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2252 if (II->use_empty() && II->onlyReadsMemory()) { 2253 // jump to the normal destination branch. 2254 BasicBlock *NormalDestBB = II->getNormalDest(); 2255 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2256 BranchInst::Create(NormalDestBB, II); 2257 UnwindDestBB->removePredecessor(II->getParent()); 2258 II->eraseFromParent(); 2259 if (DTU) 2260 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2261 } else 2262 changeToCall(II, DTU); 2263 Changed = true; 2264 } 2265 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2266 // Remove catchpads which cannot be reached. 2267 struct CatchPadDenseMapInfo { 2268 static CatchPadInst *getEmptyKey() { 2269 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2270 } 2271 2272 static CatchPadInst *getTombstoneKey() { 2273 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2274 } 2275 2276 static unsigned getHashValue(CatchPadInst *CatchPad) { 2277 return static_cast<unsigned>(hash_combine_range( 2278 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2279 } 2280 2281 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2282 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2283 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2284 return LHS == RHS; 2285 return LHS->isIdenticalTo(RHS); 2286 } 2287 }; 2288 2289 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 2290 // Set of unique CatchPads. 2291 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2292 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2293 HandlerSet; 2294 detail::DenseSetEmpty Empty; 2295 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2296 E = CatchSwitch->handler_end(); 2297 I != E; ++I) { 2298 BasicBlock *HandlerBB = *I; 2299 ++NumPerSuccessorCases[HandlerBB]; 2300 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2301 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2302 --NumPerSuccessorCases[HandlerBB]; 2303 CatchSwitch->removeHandler(I); 2304 --I; 2305 --E; 2306 Changed = true; 2307 } 2308 } 2309 std::vector<DominatorTree::UpdateType> Updates; 2310 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2311 if (I.second == 0) 2312 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2313 if (DTU) 2314 DTU->applyUpdates(Updates); 2315 } 2316 2317 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2318 for (BasicBlock *Successor : successors(BB)) 2319 if (Reachable.insert(Successor).second) 2320 Worklist.push_back(Successor); 2321 } while (!Worklist.empty()); 2322 return Changed; 2323 } 2324 2325 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2326 Instruction *TI = BB->getTerminator(); 2327 2328 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2329 changeToCall(II, DTU); 2330 return; 2331 } 2332 2333 Instruction *NewTI; 2334 BasicBlock *UnwindDest; 2335 2336 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2337 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2338 UnwindDest = CRI->getUnwindDest(); 2339 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2340 auto *NewCatchSwitch = CatchSwitchInst::Create( 2341 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2342 CatchSwitch->getName(), CatchSwitch); 2343 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2344 NewCatchSwitch->addHandler(PadBB); 2345 2346 NewTI = NewCatchSwitch; 2347 UnwindDest = CatchSwitch->getUnwindDest(); 2348 } else { 2349 llvm_unreachable("Could not find unwind successor"); 2350 } 2351 2352 NewTI->takeName(TI); 2353 NewTI->setDebugLoc(TI->getDebugLoc()); 2354 UnwindDest->removePredecessor(BB); 2355 TI->replaceAllUsesWith(NewTI); 2356 TI->eraseFromParent(); 2357 if (DTU) 2358 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2359 } 2360 2361 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2362 /// if they are in a dead cycle. Return true if a change was made, false 2363 /// otherwise. 2364 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2365 MemorySSAUpdater *MSSAU) { 2366 SmallPtrSet<BasicBlock *, 16> Reachable; 2367 bool Changed = markAliveBlocks(F, Reachable, DTU); 2368 2369 // If there are unreachable blocks in the CFG... 2370 if (Reachable.size() == F.size()) 2371 return Changed; 2372 2373 assert(Reachable.size() < F.size()); 2374 2375 // Are there any blocks left to actually delete? 2376 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2377 for (BasicBlock &BB : F) { 2378 // Skip reachable basic blocks 2379 if (Reachable.count(&BB)) 2380 continue; 2381 // Skip already-deleted blocks 2382 if (DTU && DTU->isBBPendingDeletion(&BB)) 2383 continue; 2384 BlocksToRemove.insert(&BB); 2385 } 2386 2387 if (BlocksToRemove.empty()) 2388 return Changed; 2389 2390 Changed = true; 2391 NumRemoved += BlocksToRemove.size(); 2392 2393 if (MSSAU) 2394 MSSAU->removeBlocks(BlocksToRemove); 2395 2396 // Loop over all of the basic blocks that are up for removal, dropping all of 2397 // their internal references. Update DTU if available. 2398 std::vector<DominatorTree::UpdateType> Updates; 2399 for (auto *BB : BlocksToRemove) { 2400 SmallSetVector<BasicBlock *, 8> UniqueSuccessors; 2401 for (BasicBlock *Successor : successors(BB)) { 2402 // Only remove references to BB in reachable successors of BB. 2403 if (Reachable.count(Successor)) 2404 Successor->removePredecessor(BB); 2405 if (DTU) 2406 UniqueSuccessors.insert(Successor); 2407 } 2408 BB->dropAllReferences(); 2409 if (DTU) { 2410 Instruction *TI = BB->getTerminator(); 2411 assert(TI && "Basic block should have a terminator"); 2412 // Terminators like invoke can have users. We have to replace their users, 2413 // before removing them. 2414 if (!TI->use_empty()) 2415 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2416 TI->eraseFromParent(); 2417 new UnreachableInst(BB->getContext(), BB); 2418 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2419 "applying corresponding DTU updates."); 2420 Updates.reserve(Updates.size() + UniqueSuccessors.size()); 2421 for (auto *UniqueSuccessor : UniqueSuccessors) 2422 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2423 } 2424 } 2425 2426 if (DTU) { 2427 DTU->applyUpdates(Updates); 2428 for (auto *BB : BlocksToRemove) 2429 DTU->deleteBB(BB); 2430 } else { 2431 for (auto *BB : BlocksToRemove) 2432 BB->eraseFromParent(); 2433 } 2434 2435 return Changed; 2436 } 2437 2438 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2439 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2440 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2441 K->dropUnknownNonDebugMetadata(KnownIDs); 2442 K->getAllMetadataOtherThanDebugLoc(Metadata); 2443 for (const auto &MD : Metadata) { 2444 unsigned Kind = MD.first; 2445 MDNode *JMD = J->getMetadata(Kind); 2446 MDNode *KMD = MD.second; 2447 2448 switch (Kind) { 2449 default: 2450 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2451 break; 2452 case LLVMContext::MD_dbg: 2453 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2454 case LLVMContext::MD_tbaa: 2455 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2456 break; 2457 case LLVMContext::MD_alias_scope: 2458 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2459 break; 2460 case LLVMContext::MD_noalias: 2461 case LLVMContext::MD_mem_parallel_loop_access: 2462 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2463 break; 2464 case LLVMContext::MD_access_group: 2465 K->setMetadata(LLVMContext::MD_access_group, 2466 intersectAccessGroups(K, J)); 2467 break; 2468 case LLVMContext::MD_range: 2469 2470 // If K does move, use most generic range. Otherwise keep the range of 2471 // K. 2472 if (DoesKMove) 2473 // FIXME: If K does move, we should drop the range info and nonnull. 2474 // Currently this function is used with DoesKMove in passes 2475 // doing hoisting/sinking and the current behavior of using the 2476 // most generic range is correct in those cases. 2477 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2478 break; 2479 case LLVMContext::MD_fpmath: 2480 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2481 break; 2482 case LLVMContext::MD_invariant_load: 2483 // Only set the !invariant.load if it is present in both instructions. 2484 K->setMetadata(Kind, JMD); 2485 break; 2486 case LLVMContext::MD_nonnull: 2487 // If K does move, keep nonull if it is present in both instructions. 2488 if (DoesKMove) 2489 K->setMetadata(Kind, JMD); 2490 break; 2491 case LLVMContext::MD_invariant_group: 2492 // Preserve !invariant.group in K. 2493 break; 2494 case LLVMContext::MD_align: 2495 K->setMetadata(Kind, 2496 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2497 break; 2498 case LLVMContext::MD_dereferenceable: 2499 case LLVMContext::MD_dereferenceable_or_null: 2500 K->setMetadata(Kind, 2501 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2502 break; 2503 case LLVMContext::MD_preserve_access_index: 2504 // Preserve !preserve.access.index in K. 2505 break; 2506 } 2507 } 2508 // Set !invariant.group from J if J has it. If both instructions have it 2509 // then we will just pick it from J - even when they are different. 2510 // Also make sure that K is load or store - f.e. combining bitcast with load 2511 // could produce bitcast with invariant.group metadata, which is invalid. 2512 // FIXME: we should try to preserve both invariant.group md if they are 2513 // different, but right now instruction can only have one invariant.group. 2514 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2515 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2516 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2517 } 2518 2519 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2520 bool KDominatesJ) { 2521 unsigned KnownIDs[] = { 2522 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2523 LLVMContext::MD_noalias, LLVMContext::MD_range, 2524 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2525 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2526 LLVMContext::MD_dereferenceable, 2527 LLVMContext::MD_dereferenceable_or_null, 2528 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2529 combineMetadata(K, J, KnownIDs, KDominatesJ); 2530 } 2531 2532 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2533 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2534 Source.getAllMetadata(MD); 2535 MDBuilder MDB(Dest.getContext()); 2536 Type *NewType = Dest.getType(); 2537 const DataLayout &DL = Source.getModule()->getDataLayout(); 2538 for (const auto &MDPair : MD) { 2539 unsigned ID = MDPair.first; 2540 MDNode *N = MDPair.second; 2541 // Note, essentially every kind of metadata should be preserved here! This 2542 // routine is supposed to clone a load instruction changing *only its type*. 2543 // The only metadata it makes sense to drop is metadata which is invalidated 2544 // when the pointer type changes. This should essentially never be the case 2545 // in LLVM, but we explicitly switch over only known metadata to be 2546 // conservatively correct. If you are adding metadata to LLVM which pertains 2547 // to loads, you almost certainly want to add it here. 2548 switch (ID) { 2549 case LLVMContext::MD_dbg: 2550 case LLVMContext::MD_tbaa: 2551 case LLVMContext::MD_prof: 2552 case LLVMContext::MD_fpmath: 2553 case LLVMContext::MD_tbaa_struct: 2554 case LLVMContext::MD_invariant_load: 2555 case LLVMContext::MD_alias_scope: 2556 case LLVMContext::MD_noalias: 2557 case LLVMContext::MD_nontemporal: 2558 case LLVMContext::MD_mem_parallel_loop_access: 2559 case LLVMContext::MD_access_group: 2560 // All of these directly apply. 2561 Dest.setMetadata(ID, N); 2562 break; 2563 2564 case LLVMContext::MD_nonnull: 2565 copyNonnullMetadata(Source, N, Dest); 2566 break; 2567 2568 case LLVMContext::MD_align: 2569 case LLVMContext::MD_dereferenceable: 2570 case LLVMContext::MD_dereferenceable_or_null: 2571 // These only directly apply if the new type is also a pointer. 2572 if (NewType->isPointerTy()) 2573 Dest.setMetadata(ID, N); 2574 break; 2575 2576 case LLVMContext::MD_range: 2577 copyRangeMetadata(DL, Source, N, Dest); 2578 break; 2579 } 2580 } 2581 } 2582 2583 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2584 auto *ReplInst = dyn_cast<Instruction>(Repl); 2585 if (!ReplInst) 2586 return; 2587 2588 // Patch the replacement so that it is not more restrictive than the value 2589 // being replaced. 2590 // Note that if 'I' is a load being replaced by some operation, 2591 // for example, by an arithmetic operation, then andIRFlags() 2592 // would just erase all math flags from the original arithmetic 2593 // operation, which is clearly not wanted and not needed. 2594 if (!isa<LoadInst>(I)) 2595 ReplInst->andIRFlags(I); 2596 2597 // FIXME: If both the original and replacement value are part of the 2598 // same control-flow region (meaning that the execution of one 2599 // guarantees the execution of the other), then we can combine the 2600 // noalias scopes here and do better than the general conservative 2601 // answer used in combineMetadata(). 2602 2603 // In general, GVN unifies expressions over different control-flow 2604 // regions, and so we need a conservative combination of the noalias 2605 // scopes. 2606 static const unsigned KnownIDs[] = { 2607 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2608 LLVMContext::MD_noalias, LLVMContext::MD_range, 2609 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2610 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2611 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2612 combineMetadata(ReplInst, I, KnownIDs, false); 2613 } 2614 2615 template <typename RootType, typename DominatesFn> 2616 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2617 const RootType &Root, 2618 const DominatesFn &Dominates) { 2619 assert(From->getType() == To->getType()); 2620 2621 unsigned Count = 0; 2622 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2623 UI != UE;) { 2624 Use &U = *UI++; 2625 if (!Dominates(Root, U)) 2626 continue; 2627 U.set(To); 2628 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2629 << "' as " << *To << " in " << *U << "\n"); 2630 ++Count; 2631 } 2632 return Count; 2633 } 2634 2635 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2636 assert(From->getType() == To->getType()); 2637 auto *BB = From->getParent(); 2638 unsigned Count = 0; 2639 2640 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2641 UI != UE;) { 2642 Use &U = *UI++; 2643 auto *I = cast<Instruction>(U.getUser()); 2644 if (I->getParent() == BB) 2645 continue; 2646 U.set(To); 2647 ++Count; 2648 } 2649 return Count; 2650 } 2651 2652 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2653 DominatorTree &DT, 2654 const BasicBlockEdge &Root) { 2655 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2656 return DT.dominates(Root, U); 2657 }; 2658 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2659 } 2660 2661 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2662 DominatorTree &DT, 2663 const BasicBlock *BB) { 2664 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2665 auto *I = cast<Instruction>(U.getUser())->getParent(); 2666 return DT.properlyDominates(BB, I); 2667 }; 2668 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2669 } 2670 2671 bool llvm::callsGCLeafFunction(const CallBase *Call, 2672 const TargetLibraryInfo &TLI) { 2673 // Check if the function is specifically marked as a gc leaf function. 2674 if (Call->hasFnAttr("gc-leaf-function")) 2675 return true; 2676 if (const Function *F = Call->getCalledFunction()) { 2677 if (F->hasFnAttribute("gc-leaf-function")) 2678 return true; 2679 2680 if (auto IID = F->getIntrinsicID()) { 2681 // Most LLVM intrinsics do not take safepoints. 2682 return IID != Intrinsic::experimental_gc_statepoint && 2683 IID != Intrinsic::experimental_deoptimize && 2684 IID != Intrinsic::memcpy_element_unordered_atomic && 2685 IID != Intrinsic::memmove_element_unordered_atomic; 2686 } 2687 } 2688 2689 // Lib calls can be materialized by some passes, and won't be 2690 // marked as 'gc-leaf-function.' All available Libcalls are 2691 // GC-leaf. 2692 LibFunc LF; 2693 if (TLI.getLibFunc(*Call, LF)) { 2694 return TLI.has(LF); 2695 } 2696 2697 return false; 2698 } 2699 2700 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2701 LoadInst &NewLI) { 2702 auto *NewTy = NewLI.getType(); 2703 2704 // This only directly applies if the new type is also a pointer. 2705 if (NewTy->isPointerTy()) { 2706 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2707 return; 2708 } 2709 2710 // The only other translation we can do is to integral loads with !range 2711 // metadata. 2712 if (!NewTy->isIntegerTy()) 2713 return; 2714 2715 MDBuilder MDB(NewLI.getContext()); 2716 const Value *Ptr = OldLI.getPointerOperand(); 2717 auto *ITy = cast<IntegerType>(NewTy); 2718 auto *NullInt = ConstantExpr::getPtrToInt( 2719 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2720 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2721 NewLI.setMetadata(LLVMContext::MD_range, 2722 MDB.createRange(NonNullInt, NullInt)); 2723 } 2724 2725 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2726 MDNode *N, LoadInst &NewLI) { 2727 auto *NewTy = NewLI.getType(); 2728 2729 // Give up unless it is converted to a pointer where there is a single very 2730 // valuable mapping we can do reliably. 2731 // FIXME: It would be nice to propagate this in more ways, but the type 2732 // conversions make it hard. 2733 if (!NewTy->isPointerTy()) 2734 return; 2735 2736 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2737 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2738 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2739 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2740 } 2741 } 2742 2743 void llvm::dropDebugUsers(Instruction &I) { 2744 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2745 findDbgUsers(DbgUsers, &I); 2746 for (auto *DII : DbgUsers) 2747 DII->eraseFromParent(); 2748 } 2749 2750 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2751 BasicBlock *BB) { 2752 // Since we are moving the instructions out of its basic block, we do not 2753 // retain their original debug locations (DILocations) and debug intrinsic 2754 // instructions. 2755 // 2756 // Doing so would degrade the debugging experience and adversely affect the 2757 // accuracy of profiling information. 2758 // 2759 // Currently, when hoisting the instructions, we take the following actions: 2760 // - Remove their debug intrinsic instructions. 2761 // - Set their debug locations to the values from the insertion point. 2762 // 2763 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2764 // need to be deleted, is because there will not be any instructions with a 2765 // DILocation in either branch left after performing the transformation. We 2766 // can only insert a dbg.value after the two branches are joined again. 2767 // 2768 // See PR38762, PR39243 for more details. 2769 // 2770 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2771 // encode predicated DIExpressions that yield different results on different 2772 // code paths. 2773 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2774 Instruction *I = &*II; 2775 I->dropUnknownNonDebugMetadata(); 2776 if (I->isUsedByMetadata()) 2777 dropDebugUsers(*I); 2778 if (isa<DbgInfoIntrinsic>(I)) { 2779 // Remove DbgInfo Intrinsics. 2780 II = I->eraseFromParent(); 2781 continue; 2782 } 2783 I->setDebugLoc(InsertPt->getDebugLoc()); 2784 ++II; 2785 } 2786 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2787 BB->begin(), 2788 BB->getTerminator()->getIterator()); 2789 } 2790 2791 namespace { 2792 2793 /// A potential constituent of a bitreverse or bswap expression. See 2794 /// collectBitParts for a fuller explanation. 2795 struct BitPart { 2796 BitPart(Value *P, unsigned BW) : Provider(P) { 2797 Provenance.resize(BW); 2798 } 2799 2800 /// The Value that this is a bitreverse/bswap of. 2801 Value *Provider; 2802 2803 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2804 /// in Provider becomes bit B in the result of this expression. 2805 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2806 2807 enum { Unset = -1 }; 2808 }; 2809 2810 } // end anonymous namespace 2811 2812 /// Analyze the specified subexpression and see if it is capable of providing 2813 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2814 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2815 /// the output of the expression came from a corresponding bit in some other 2816 /// value. This function is recursive, and the end result is a mapping of 2817 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2818 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2819 /// 2820 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2821 /// that the expression deposits the low byte of %X into the high byte of the 2822 /// result and that all other bits are zero. This expression is accepted and a 2823 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2824 /// [0-7]. 2825 /// 2826 /// For vector types, all analysis is performed at the per-element level. No 2827 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2828 /// constant masks must be splatted across all elements. 2829 /// 2830 /// To avoid revisiting values, the BitPart results are memoized into the 2831 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2832 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2833 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2834 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2835 /// type instead to provide the same functionality. 2836 /// 2837 /// Because we pass around references into \c BPS, we must use a container that 2838 /// does not invalidate internal references (std::map instead of DenseMap). 2839 static const Optional<BitPart> & 2840 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2841 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2842 auto I = BPS.find(V); 2843 if (I != BPS.end()) 2844 return I->second; 2845 2846 auto &Result = BPS[V] = None; 2847 auto BitWidth = V->getType()->getScalarSizeInBits(); 2848 2849 // Prevent stack overflow by limiting the recursion depth 2850 if (Depth == BitPartRecursionMaxDepth) { 2851 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2852 return Result; 2853 } 2854 2855 if (auto *I = dyn_cast<Instruction>(V)) { 2856 Value *X, *Y; 2857 const APInt *C; 2858 2859 // If this is an or instruction, it may be an inner node of the bswap. 2860 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2861 const auto &A = 2862 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2863 const auto &B = 2864 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2865 if (!A || !B) 2866 return Result; 2867 2868 // Try and merge the two together. 2869 if (!A->Provider || A->Provider != B->Provider) 2870 return Result; 2871 2872 Result = BitPart(A->Provider, BitWidth); 2873 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2874 if (A->Provenance[BitIdx] != BitPart::Unset && 2875 B->Provenance[BitIdx] != BitPart::Unset && 2876 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2877 return Result = None; 2878 2879 if (A->Provenance[BitIdx] == BitPart::Unset) 2880 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2881 else 2882 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2883 } 2884 2885 return Result; 2886 } 2887 2888 // If this is a logical shift by a constant, recurse then shift the result. 2889 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2890 const APInt &BitShift = *C; 2891 2892 // Ensure the shift amount is defined. 2893 if (BitShift.uge(BitWidth)) 2894 return Result; 2895 2896 const auto &Res = 2897 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2898 if (!Res) 2899 return Result; 2900 Result = Res; 2901 2902 // Perform the "shift" on BitProvenance. 2903 auto &P = Result->Provenance; 2904 if (I->getOpcode() == Instruction::Shl) { 2905 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2906 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2907 } else { 2908 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2909 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2910 } 2911 2912 return Result; 2913 } 2914 2915 // If this is a logical 'and' with a mask that clears bits, recurse then 2916 // unset the appropriate bits. 2917 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 2918 const APInt &AndMask = *C; 2919 2920 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2921 // early exit. 2922 unsigned NumMaskedBits = AndMask.countPopulation(); 2923 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 2924 return Result; 2925 2926 const auto &Res = 2927 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2928 if (!Res) 2929 return Result; 2930 Result = Res; 2931 2932 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2933 // If the AndMask is zero for this bit, clear the bit. 2934 if (AndMask[BitIdx] == 0) 2935 Result->Provenance[BitIdx] = BitPart::Unset; 2936 return Result; 2937 } 2938 2939 // If this is a zext instruction zero extend the result. 2940 if (match(V, m_ZExt(m_Value(X)))) { 2941 const auto &Res = 2942 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2943 if (!Res) 2944 return Result; 2945 2946 Result = BitPart(Res->Provider, BitWidth); 2947 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 2948 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 2949 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 2950 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 2951 Result->Provenance[BitIdx] = BitPart::Unset; 2952 return Result; 2953 } 2954 2955 // BITREVERSE - most likely due to us previous matching a partial 2956 // bitreverse. 2957 if (match(V, m_BitReverse(m_Value(X)))) { 2958 const auto &Res = 2959 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2960 if (!Res) 2961 return Result; 2962 2963 Result = BitPart(Res->Provider, BitWidth); 2964 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2965 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 2966 return Result; 2967 } 2968 2969 // BSWAP - most likely due to us previous matching a partial bswap. 2970 if (match(V, m_BSwap(m_Value(X)))) { 2971 const auto &Res = 2972 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2973 if (!Res) 2974 return Result; 2975 2976 unsigned ByteWidth = BitWidth / 8; 2977 Result = BitPart(Res->Provider, BitWidth); 2978 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 2979 unsigned ByteBitOfs = ByteIdx * 8; 2980 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 2981 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 2982 Res->Provenance[ByteBitOfs + BitIdx]; 2983 } 2984 return Result; 2985 } 2986 2987 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 2988 // amount (modulo). 2989 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2990 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2991 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 2992 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 2993 // We can treat fshr as a fshl by flipping the modulo amount. 2994 unsigned ModAmt = C->urem(BitWidth); 2995 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 2996 ModAmt = BitWidth - ModAmt; 2997 2998 const auto &LHS = 2999 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3000 const auto &RHS = 3001 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3002 3003 // Check we have both sources and they are from the same provider. 3004 if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider) 3005 return Result; 3006 3007 unsigned StartBitRHS = BitWidth - ModAmt; 3008 Result = BitPart(LHS->Provider, BitWidth); 3009 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3010 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3011 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3012 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3013 return Result; 3014 } 3015 } 3016 3017 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 3018 // the input value to the bswap/bitreverse. 3019 Result = BitPart(V, BitWidth); 3020 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3021 Result->Provenance[BitIdx] = BitIdx; 3022 return Result; 3023 } 3024 3025 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3026 unsigned BitWidth) { 3027 if (From % 8 != To % 8) 3028 return false; 3029 // Convert from bit indices to byte indices and check for a byte reversal. 3030 From >>= 3; 3031 To >>= 3; 3032 BitWidth >>= 3; 3033 return From == BitWidth - To - 1; 3034 } 3035 3036 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3037 unsigned BitWidth) { 3038 return From == BitWidth - To - 1; 3039 } 3040 3041 bool llvm::recognizeBSwapOrBitReverseIdiom( 3042 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3043 SmallVectorImpl<Instruction *> &InsertedInsts) { 3044 if (Operator::getOpcode(I) != Instruction::Or) 3045 return false; 3046 if (!MatchBSwaps && !MatchBitReversals) 3047 return false; 3048 Type *ITy = I->getType(); 3049 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3050 return false; // Can't do integer/elements > 128 bits. 3051 3052 Type *DemandedTy = ITy; 3053 if (I->hasOneUse()) 3054 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3055 DemandedTy = Trunc->getType(); 3056 3057 // Try to find all the pieces corresponding to the bswap. 3058 std::map<Value *, Optional<BitPart>> BPS; 3059 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 3060 if (!Res) 3061 return false; 3062 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3063 assert(all_of(BitProvenance, 3064 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3065 "Illegal bit provenance index"); 3066 3067 // If the upper bits are zero, then attempt to perform as a truncated op. 3068 if (BitProvenance.back() == BitPart::Unset) { 3069 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3070 BitProvenance = BitProvenance.drop_back(); 3071 if (BitProvenance.empty()) 3072 return false; // TODO - handle null value? 3073 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3074 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3075 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3076 } 3077 3078 // Check BitProvenance hasn't found a source larger than the result type. 3079 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3080 if (DemandedBW > ITy->getScalarSizeInBits()) 3081 return false; 3082 3083 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3084 // only byteswap values with an even number of bytes. 3085 APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); 3086 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3087 bool OKForBitReverse = MatchBitReversals; 3088 for (unsigned BitIdx = 0; 3089 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3090 if (BitProvenance[BitIdx] == BitPart::Unset) { 3091 DemandedMask.clearBit(BitIdx); 3092 continue; 3093 } 3094 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3095 DemandedBW); 3096 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3097 BitIdx, DemandedBW); 3098 } 3099 3100 Intrinsic::ID Intrin; 3101 if (OKForBSwap) 3102 Intrin = Intrinsic::bswap; 3103 else if (OKForBitReverse) 3104 Intrin = Intrinsic::bitreverse; 3105 else 3106 return false; 3107 3108 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3109 Value *Provider = Res->Provider; 3110 3111 // We may need to truncate the provider. 3112 if (DemandedTy != Provider->getType()) { 3113 auto *Trunc = 3114 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3115 InsertedInsts.push_back(Trunc); 3116 Provider = Trunc; 3117 } 3118 3119 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3120 InsertedInsts.push_back(Result); 3121 3122 if (!DemandedMask.isAllOnesValue()) { 3123 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3124 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3125 InsertedInsts.push_back(Result); 3126 } 3127 3128 // We may need to zeroextend back to the result type. 3129 if (ITy != Result->getType()) { 3130 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3131 InsertedInsts.push_back(ExtInst); 3132 } 3133 3134 return true; 3135 } 3136 3137 // CodeGen has special handling for some string functions that may replace 3138 // them with target-specific intrinsics. Since that'd skip our interceptors 3139 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3140 // we mark affected calls as NoBuiltin, which will disable optimization 3141 // in CodeGen. 3142 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3143 CallInst *CI, const TargetLibraryInfo *TLI) { 3144 Function *F = CI->getCalledFunction(); 3145 LibFunc Func; 3146 if (F && !F->hasLocalLinkage() && F->hasName() && 3147 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3148 !F->doesNotAccessMemory()) 3149 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3150 } 3151 3152 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3153 // We can't have a PHI with a metadata type. 3154 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3155 return false; 3156 3157 // Early exit. 3158 if (!isa<Constant>(I->getOperand(OpIdx))) 3159 return true; 3160 3161 switch (I->getOpcode()) { 3162 default: 3163 return true; 3164 case Instruction::Call: 3165 case Instruction::Invoke: { 3166 const auto &CB = cast<CallBase>(*I); 3167 3168 // Can't handle inline asm. Skip it. 3169 if (CB.isInlineAsm()) 3170 return false; 3171 3172 // Constant bundle operands may need to retain their constant-ness for 3173 // correctness. 3174 if (CB.isBundleOperand(OpIdx)) 3175 return false; 3176 3177 if (OpIdx < CB.getNumArgOperands()) { 3178 // Some variadic intrinsics require constants in the variadic arguments, 3179 // which currently aren't markable as immarg. 3180 if (isa<IntrinsicInst>(CB) && 3181 OpIdx >= CB.getFunctionType()->getNumParams()) { 3182 // This is known to be OK for stackmap. 3183 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3184 } 3185 3186 // gcroot is a special case, since it requires a constant argument which 3187 // isn't also required to be a simple ConstantInt. 3188 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3189 return false; 3190 3191 // Some intrinsic operands are required to be immediates. 3192 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3193 } 3194 3195 // It is never allowed to replace the call argument to an intrinsic, but it 3196 // may be possible for a call. 3197 return !isa<IntrinsicInst>(CB); 3198 } 3199 case Instruction::ShuffleVector: 3200 // Shufflevector masks are constant. 3201 return OpIdx != 2; 3202 case Instruction::Switch: 3203 case Instruction::ExtractValue: 3204 // All operands apart from the first are constant. 3205 return OpIdx == 0; 3206 case Instruction::InsertValue: 3207 // All operands apart from the first and the second are constant. 3208 return OpIdx < 2; 3209 case Instruction::Alloca: 3210 // Static allocas (constant size in the entry block) are handled by 3211 // prologue/epilogue insertion so they're free anyway. We definitely don't 3212 // want to make them non-constant. 3213 return !cast<AllocaInst>(I)->isStaticAlloca(); 3214 case Instruction::GetElementPtr: 3215 if (OpIdx == 0) 3216 return true; 3217 gep_type_iterator It = gep_type_begin(I); 3218 for (auto E = std::next(It, OpIdx); It != E; ++It) 3219 if (It.isStruct()) 3220 return false; 3221 return true; 3222 } 3223 } 3224 3225 Value *llvm::invertCondition(Value *Condition) { 3226 // First: Check if it's a constant 3227 if (Constant *C = dyn_cast<Constant>(Condition)) 3228 return ConstantExpr::getNot(C); 3229 3230 // Second: If the condition is already inverted, return the original value 3231 Value *NotCondition; 3232 if (match(Condition, m_Not(m_Value(NotCondition)))) 3233 return NotCondition; 3234 3235 BasicBlock *Parent = nullptr; 3236 Instruction *Inst = dyn_cast<Instruction>(Condition); 3237 if (Inst) 3238 Parent = Inst->getParent(); 3239 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3240 Parent = &Arg->getParent()->getEntryBlock(); 3241 assert(Parent && "Unsupported condition to invert"); 3242 3243 // Third: Check all the users for an invert 3244 for (User *U : Condition->users()) 3245 if (Instruction *I = dyn_cast<Instruction>(U)) 3246 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3247 return I; 3248 3249 // Last option: Create a new instruction 3250 auto *Inverted = 3251 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3252 if (Inst && !isa<PHINode>(Inst)) 3253 Inverted->insertAfter(Inst); 3254 else 3255 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3256 return Inverted; 3257 } 3258