1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/AssumeBundleQueries.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/LazyValueInfo.h" 34 #include "llvm/Analysis/MemoryBuiltins.h" 35 #include "llvm/Analysis/MemorySSAUpdater.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/BinaryFormat/Dwarf.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 static cl::opt<unsigned> PHICSENumPHISmallSize( 108 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 109 cl::desc( 110 "When the basic block contains not more than this number of PHI nodes, " 111 "perform a (faster!) exhaustive search instead of set-driven one.")); 112 113 // Max recursion depth for collectBitParts used when detecting bswap and 114 // bitreverse idioms 115 static const unsigned BitPartRecursionMaxDepth = 64; 116 117 //===----------------------------------------------------------------------===// 118 // Local constant propagation. 119 // 120 121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 122 /// constant value, convert it into an unconditional branch to the constant 123 /// destination. This is a nontrivial operation because the successors of this 124 /// basic block must have their PHI nodes updated. 125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 126 /// conditions and indirectbr addresses this might make dead if 127 /// DeleteDeadConditions is true. 128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 129 const TargetLibraryInfo *TLI, 130 DomTreeUpdater *DTU) { 131 Instruction *T = BB->getTerminator(); 132 IRBuilder<> Builder(T); 133 134 // Branch - See if we are conditional jumping on constant 135 if (auto *BI = dyn_cast<BranchInst>(T)) { 136 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 137 138 BasicBlock *Dest1 = BI->getSuccessor(0); 139 BasicBlock *Dest2 = BI->getSuccessor(1); 140 141 if (Dest2 == Dest1) { // Conditional branch to same location? 142 // This branch matches something like this: 143 // br bool %cond, label %Dest, label %Dest 144 // and changes it into: br label %Dest 145 146 // Let the basic block know that we are letting go of one copy of it. 147 assert(BI->getParent() && "Terminator not inserted in block!"); 148 Dest1->removePredecessor(BI->getParent()); 149 150 // Replace the conditional branch with an unconditional one. 151 Builder.CreateBr(Dest1); 152 Value *Cond = BI->getCondition(); 153 BI->eraseFromParent(); 154 if (DeleteDeadConditions) 155 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 156 return true; 157 } 158 159 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 160 // Are we branching on constant? 161 // YES. Change to unconditional branch... 162 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 163 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 164 165 // Let the basic block know that we are letting go of it. Based on this, 166 // it will adjust it's PHI nodes. 167 OldDest->removePredecessor(BB); 168 169 // Replace the conditional branch with an unconditional one. 170 Builder.CreateBr(Destination); 171 BI->eraseFromParent(); 172 if (DTU) 173 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 174 return true; 175 } 176 177 return false; 178 } 179 180 if (auto *SI = dyn_cast<SwitchInst>(T)) { 181 // If we are switching on a constant, we can convert the switch to an 182 // unconditional branch. 183 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 184 BasicBlock *DefaultDest = SI->getDefaultDest(); 185 BasicBlock *TheOnlyDest = DefaultDest; 186 187 // If the default is unreachable, ignore it when searching for TheOnlyDest. 188 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 189 SI->getNumCases() > 0) { 190 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 191 } 192 193 bool Changed = false; 194 195 // Figure out which case it goes to. 196 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 197 // Found case matching a constant operand? 198 if (i->getCaseValue() == CI) { 199 TheOnlyDest = i->getCaseSuccessor(); 200 break; 201 } 202 203 // Check to see if this branch is going to the same place as the default 204 // dest. If so, eliminate it as an explicit compare. 205 if (i->getCaseSuccessor() == DefaultDest) { 206 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 207 unsigned NCases = SI->getNumCases(); 208 // Fold the case metadata into the default if there will be any branches 209 // left, unless the metadata doesn't match the switch. 210 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 211 // Collect branch weights into a vector. 212 SmallVector<uint32_t, 8> Weights; 213 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 214 ++MD_i) { 215 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 216 Weights.push_back(CI->getValue().getZExtValue()); 217 } 218 // Merge weight of this case to the default weight. 219 unsigned idx = i->getCaseIndex(); 220 Weights[0] += Weights[idx+1]; 221 // Remove weight for this case. 222 std::swap(Weights[idx+1], Weights.back()); 223 Weights.pop_back(); 224 SI->setMetadata(LLVMContext::MD_prof, 225 MDBuilder(BB->getContext()). 226 createBranchWeights(Weights)); 227 } 228 // Remove this entry. 229 BasicBlock *ParentBB = SI->getParent(); 230 DefaultDest->removePredecessor(ParentBB); 231 i = SI->removeCase(i); 232 e = SI->case_end(); 233 Changed = true; 234 continue; 235 } 236 237 // Otherwise, check to see if the switch only branches to one destination. 238 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 239 // destinations. 240 if (i->getCaseSuccessor() != TheOnlyDest) 241 TheOnlyDest = nullptr; 242 243 // Increment this iterator as we haven't removed the case. 244 ++i; 245 } 246 247 if (CI && !TheOnlyDest) { 248 // Branching on a constant, but not any of the cases, go to the default 249 // successor. 250 TheOnlyDest = SI->getDefaultDest(); 251 } 252 253 // If we found a single destination that we can fold the switch into, do so 254 // now. 255 if (TheOnlyDest) { 256 // Insert the new branch. 257 Builder.CreateBr(TheOnlyDest); 258 BasicBlock *BB = SI->getParent(); 259 260 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 261 262 // Remove entries from PHI nodes which we no longer branch to... 263 BasicBlock *SuccToKeep = TheOnlyDest; 264 for (BasicBlock *Succ : successors(SI)) { 265 if (DTU && Succ != TheOnlyDest) 266 RemovedSuccessors.insert(Succ); 267 // Found case matching a constant operand? 268 if (Succ == SuccToKeep) { 269 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 270 } else { 271 Succ->removePredecessor(BB); 272 } 273 } 274 275 // Delete the old switch. 276 Value *Cond = SI->getCondition(); 277 SI->eraseFromParent(); 278 if (DeleteDeadConditions) 279 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 280 if (DTU) { 281 std::vector<DominatorTree::UpdateType> Updates; 282 Updates.reserve(RemovedSuccessors.size()); 283 for (auto *RemovedSuccessor : RemovedSuccessors) 284 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 285 DTU->applyUpdates(Updates); 286 } 287 return true; 288 } 289 290 if (SI->getNumCases() == 1) { 291 // Otherwise, we can fold this switch into a conditional branch 292 // instruction if it has only one non-default destination. 293 auto FirstCase = *SI->case_begin(); 294 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 295 FirstCase.getCaseValue(), "cond"); 296 297 // Insert the new branch. 298 BranchInst *NewBr = Builder.CreateCondBr(Cond, 299 FirstCase.getCaseSuccessor(), 300 SI->getDefaultDest()); 301 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 302 if (MD && MD->getNumOperands() == 3) { 303 ConstantInt *SICase = 304 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 305 ConstantInt *SIDef = 306 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 307 assert(SICase && SIDef); 308 // The TrueWeight should be the weight for the single case of SI. 309 NewBr->setMetadata(LLVMContext::MD_prof, 310 MDBuilder(BB->getContext()). 311 createBranchWeights(SICase->getValue().getZExtValue(), 312 SIDef->getValue().getZExtValue())); 313 } 314 315 // Update make.implicit metadata to the newly-created conditional branch. 316 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 317 if (MakeImplicitMD) 318 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 319 320 // Delete the old switch. 321 SI->eraseFromParent(); 322 return true; 323 } 324 return Changed; 325 } 326 327 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 328 // indirectbr blockaddress(@F, @BB) -> br label @BB 329 if (auto *BA = 330 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 331 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 332 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 333 334 // Insert the new branch. 335 Builder.CreateBr(TheOnlyDest); 336 337 BasicBlock *SuccToKeep = TheOnlyDest; 338 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 339 BasicBlock *DestBB = IBI->getDestination(i); 340 if (DTU && DestBB != TheOnlyDest) 341 RemovedSuccessors.insert(DestBB); 342 if (IBI->getDestination(i) == SuccToKeep) { 343 SuccToKeep = nullptr; 344 } else { 345 DestBB->removePredecessor(BB); 346 } 347 } 348 Value *Address = IBI->getAddress(); 349 IBI->eraseFromParent(); 350 if (DeleteDeadConditions) 351 // Delete pointer cast instructions. 352 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 353 354 // Also zap the blockaddress constant if there are no users remaining, 355 // otherwise the destination is still marked as having its address taken. 356 if (BA->use_empty()) 357 BA->destroyConstant(); 358 359 // If we didn't find our destination in the IBI successor list, then we 360 // have undefined behavior. Replace the unconditional branch with an 361 // 'unreachable' instruction. 362 if (SuccToKeep) { 363 BB->getTerminator()->eraseFromParent(); 364 new UnreachableInst(BB->getContext(), BB); 365 } 366 367 if (DTU) { 368 std::vector<DominatorTree::UpdateType> Updates; 369 Updates.reserve(RemovedSuccessors.size()); 370 for (auto *RemovedSuccessor : RemovedSuccessors) 371 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 372 DTU->applyUpdates(Updates); 373 } 374 return true; 375 } 376 } 377 378 return false; 379 } 380 381 //===----------------------------------------------------------------------===// 382 // Local dead code elimination. 383 // 384 385 /// isInstructionTriviallyDead - Return true if the result produced by the 386 /// instruction is not used, and the instruction has no side effects. 387 /// 388 bool llvm::isInstructionTriviallyDead(Instruction *I, 389 const TargetLibraryInfo *TLI) { 390 if (!I->use_empty()) 391 return false; 392 return wouldInstructionBeTriviallyDead(I, TLI); 393 } 394 395 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 396 const TargetLibraryInfo *TLI) { 397 if (I->isTerminator()) 398 return false; 399 400 // We don't want the landingpad-like instructions removed by anything this 401 // general. 402 if (I->isEHPad()) 403 return false; 404 405 // We don't want debug info removed by anything this general, unless 406 // debug info is empty. 407 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 408 if (DDI->getAddress()) 409 return false; 410 return true; 411 } 412 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 413 if (DVI->getValue()) 414 return false; 415 return true; 416 } 417 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 418 if (DLI->getLabel()) 419 return false; 420 return true; 421 } 422 423 if (auto *CB = dyn_cast<CallBase>(I)) { 424 // Treat calls that may not return as alive. 425 // TODO: Remove the intrinsic escape hatch once all intrinsics set 426 // willreturn properly. 427 if (!CB->willReturn() && !isa<IntrinsicInst>(I)) 428 return false; 429 } 430 431 if (!I->mayHaveSideEffects()) 432 return true; 433 434 // Special case intrinsics that "may have side effects" but can be deleted 435 // when dead. 436 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 437 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 438 if (II->getIntrinsicID() == Intrinsic::stacksave || 439 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 440 return true; 441 442 if (II->isLifetimeStartOrEnd()) { 443 auto *Arg = II->getArgOperand(1); 444 // Lifetime intrinsics are dead when their right-hand is undef. 445 if (isa<UndefValue>(Arg)) 446 return true; 447 // If the right-hand is an alloc, global, or argument and the only uses 448 // are lifetime intrinsics then the intrinsics are dead. 449 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 450 return llvm::all_of(Arg->uses(), [](Use &Use) { 451 if (IntrinsicInst *IntrinsicUse = 452 dyn_cast<IntrinsicInst>(Use.getUser())) 453 return IntrinsicUse->isLifetimeStartOrEnd(); 454 return false; 455 }); 456 return false; 457 } 458 459 // Assumptions are dead if their condition is trivially true. Guards on 460 // true are operationally no-ops. In the future we can consider more 461 // sophisticated tradeoffs for guards considering potential for check 462 // widening, but for now we keep things simple. 463 if ((II->getIntrinsicID() == Intrinsic::assume && 464 isAssumeWithEmptyBundle(*II)) || 465 II->getIntrinsicID() == Intrinsic::experimental_guard) { 466 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 467 return !Cond->isZero(); 468 469 return false; 470 } 471 } 472 473 if (isAllocLikeFn(I, TLI)) 474 return true; 475 476 if (CallInst *CI = isFreeCall(I, TLI)) 477 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 478 return C->isNullValue() || isa<UndefValue>(C); 479 480 if (auto *Call = dyn_cast<CallBase>(I)) 481 if (isMathLibCallNoop(Call, TLI)) 482 return true; 483 484 return false; 485 } 486 487 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 488 /// trivially dead instruction, delete it. If that makes any of its operands 489 /// trivially dead, delete them too, recursively. Return true if any 490 /// instructions were deleted. 491 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 492 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 493 std::function<void(Value *)> AboutToDeleteCallback) { 494 Instruction *I = dyn_cast<Instruction>(V); 495 if (!I || !isInstructionTriviallyDead(I, TLI)) 496 return false; 497 498 SmallVector<WeakTrackingVH, 16> DeadInsts; 499 DeadInsts.push_back(I); 500 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 501 AboutToDeleteCallback); 502 503 return true; 504 } 505 506 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 507 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 508 MemorySSAUpdater *MSSAU, 509 std::function<void(Value *)> AboutToDeleteCallback) { 510 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 511 for (; S != E; ++S) { 512 auto *I = cast<Instruction>(DeadInsts[S]); 513 if (!isInstructionTriviallyDead(I)) { 514 DeadInsts[S] = nullptr; 515 ++Alive; 516 } 517 } 518 if (Alive == E) 519 return false; 520 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 521 AboutToDeleteCallback); 522 return true; 523 } 524 525 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 526 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 527 MemorySSAUpdater *MSSAU, 528 std::function<void(Value *)> AboutToDeleteCallback) { 529 // Process the dead instruction list until empty. 530 while (!DeadInsts.empty()) { 531 Value *V = DeadInsts.pop_back_val(); 532 Instruction *I = cast_or_null<Instruction>(V); 533 if (!I) 534 continue; 535 assert(isInstructionTriviallyDead(I, TLI) && 536 "Live instruction found in dead worklist!"); 537 assert(I->use_empty() && "Instructions with uses are not dead."); 538 539 // Don't lose the debug info while deleting the instructions. 540 salvageDebugInfo(*I); 541 542 if (AboutToDeleteCallback) 543 AboutToDeleteCallback(I); 544 545 // Null out all of the instruction's operands to see if any operand becomes 546 // dead as we go. 547 for (Use &OpU : I->operands()) { 548 Value *OpV = OpU.get(); 549 OpU.set(nullptr); 550 551 if (!OpV->use_empty()) 552 continue; 553 554 // If the operand is an instruction that became dead as we nulled out the 555 // operand, and if it is 'trivially' dead, delete it in a future loop 556 // iteration. 557 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 558 if (isInstructionTriviallyDead(OpI, TLI)) 559 DeadInsts.push_back(OpI); 560 } 561 if (MSSAU) 562 MSSAU->removeMemoryAccess(I); 563 564 I->eraseFromParent(); 565 } 566 } 567 568 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 569 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 570 findDbgUsers(DbgUsers, I); 571 for (auto *DII : DbgUsers) { 572 Value *Undef = UndefValue::get(I->getType()); 573 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 574 ValueAsMetadata::get(Undef))); 575 } 576 return !DbgUsers.empty(); 577 } 578 579 /// areAllUsesEqual - Check whether the uses of a value are all the same. 580 /// This is similar to Instruction::hasOneUse() except this will also return 581 /// true when there are no uses or multiple uses that all refer to the same 582 /// value. 583 static bool areAllUsesEqual(Instruction *I) { 584 Value::user_iterator UI = I->user_begin(); 585 Value::user_iterator UE = I->user_end(); 586 if (UI == UE) 587 return true; 588 589 User *TheUse = *UI; 590 for (++UI; UI != UE; ++UI) { 591 if (*UI != TheUse) 592 return false; 593 } 594 return true; 595 } 596 597 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 598 /// dead PHI node, due to being a def-use chain of single-use nodes that 599 /// either forms a cycle or is terminated by a trivially dead instruction, 600 /// delete it. If that makes any of its operands trivially dead, delete them 601 /// too, recursively. Return true if a change was made. 602 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 603 const TargetLibraryInfo *TLI, 604 llvm::MemorySSAUpdater *MSSAU) { 605 SmallPtrSet<Instruction*, 4> Visited; 606 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 607 I = cast<Instruction>(*I->user_begin())) { 608 if (I->use_empty()) 609 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 610 611 // If we find an instruction more than once, we're on a cycle that 612 // won't prove fruitful. 613 if (!Visited.insert(I).second) { 614 // Break the cycle and delete the instruction and its operands. 615 I->replaceAllUsesWith(UndefValue::get(I->getType())); 616 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 617 return true; 618 } 619 } 620 return false; 621 } 622 623 static bool 624 simplifyAndDCEInstruction(Instruction *I, 625 SmallSetVector<Instruction *, 16> &WorkList, 626 const DataLayout &DL, 627 const TargetLibraryInfo *TLI) { 628 if (isInstructionTriviallyDead(I, TLI)) { 629 salvageDebugInfo(*I); 630 631 // Null out all of the instruction's operands to see if any operand becomes 632 // dead as we go. 633 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 634 Value *OpV = I->getOperand(i); 635 I->setOperand(i, nullptr); 636 637 if (!OpV->use_empty() || I == OpV) 638 continue; 639 640 // If the operand is an instruction that became dead as we nulled out the 641 // operand, and if it is 'trivially' dead, delete it in a future loop 642 // iteration. 643 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 644 if (isInstructionTriviallyDead(OpI, TLI)) 645 WorkList.insert(OpI); 646 } 647 648 I->eraseFromParent(); 649 650 return true; 651 } 652 653 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 654 // Add the users to the worklist. CAREFUL: an instruction can use itself, 655 // in the case of a phi node. 656 for (User *U : I->users()) { 657 if (U != I) { 658 WorkList.insert(cast<Instruction>(U)); 659 } 660 } 661 662 // Replace the instruction with its simplified value. 663 bool Changed = false; 664 if (!I->use_empty()) { 665 I->replaceAllUsesWith(SimpleV); 666 Changed = true; 667 } 668 if (isInstructionTriviallyDead(I, TLI)) { 669 I->eraseFromParent(); 670 Changed = true; 671 } 672 return Changed; 673 } 674 return false; 675 } 676 677 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 678 /// simplify any instructions in it and recursively delete dead instructions. 679 /// 680 /// This returns true if it changed the code, note that it can delete 681 /// instructions in other blocks as well in this block. 682 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 683 const TargetLibraryInfo *TLI) { 684 bool MadeChange = false; 685 const DataLayout &DL = BB->getModule()->getDataLayout(); 686 687 #ifndef NDEBUG 688 // In debug builds, ensure that the terminator of the block is never replaced 689 // or deleted by these simplifications. The idea of simplification is that it 690 // cannot introduce new instructions, and there is no way to replace the 691 // terminator of a block without introducing a new instruction. 692 AssertingVH<Instruction> TerminatorVH(&BB->back()); 693 #endif 694 695 SmallSetVector<Instruction *, 16> WorkList; 696 // Iterate over the original function, only adding insts to the worklist 697 // if they actually need to be revisited. This avoids having to pre-init 698 // the worklist with the entire function's worth of instructions. 699 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 700 BI != E;) { 701 assert(!BI->isTerminator()); 702 Instruction *I = &*BI; 703 ++BI; 704 705 // We're visiting this instruction now, so make sure it's not in the 706 // worklist from an earlier visit. 707 if (!WorkList.count(I)) 708 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 709 } 710 711 while (!WorkList.empty()) { 712 Instruction *I = WorkList.pop_back_val(); 713 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 714 } 715 return MadeChange; 716 } 717 718 //===----------------------------------------------------------------------===// 719 // Control Flow Graph Restructuring. 720 // 721 722 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 723 DomTreeUpdater *DTU) { 724 725 // If BB has single-entry PHI nodes, fold them. 726 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 727 Value *NewVal = PN->getIncomingValue(0); 728 // Replace self referencing PHI with undef, it must be dead. 729 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 730 PN->replaceAllUsesWith(NewVal); 731 PN->eraseFromParent(); 732 } 733 734 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 735 assert(PredBB && "Block doesn't have a single predecessor!"); 736 737 bool ReplaceEntryBB = false; 738 if (PredBB == &DestBB->getParent()->getEntryBlock()) 739 ReplaceEntryBB = true; 740 741 // DTU updates: Collect all the edges that enter 742 // PredBB. These dominator edges will be redirected to DestBB. 743 SmallVector<DominatorTree::UpdateType, 32> Updates; 744 745 if (DTU) { 746 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 747 // This predecessor of PredBB may already have DestBB as a successor. 748 if (!llvm::is_contained(successors(*I), DestBB)) 749 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 750 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 751 } 752 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 753 } 754 755 // Zap anything that took the address of DestBB. Not doing this will give the 756 // address an invalid value. 757 if (DestBB->hasAddressTaken()) { 758 BlockAddress *BA = BlockAddress::get(DestBB); 759 Constant *Replacement = 760 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 761 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 762 BA->getType())); 763 BA->destroyConstant(); 764 } 765 766 // Anything that branched to PredBB now branches to DestBB. 767 PredBB->replaceAllUsesWith(DestBB); 768 769 // Splice all the instructions from PredBB to DestBB. 770 PredBB->getTerminator()->eraseFromParent(); 771 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 772 new UnreachableInst(PredBB->getContext(), PredBB); 773 774 // If the PredBB is the entry block of the function, move DestBB up to 775 // become the entry block after we erase PredBB. 776 if (ReplaceEntryBB) 777 DestBB->moveAfter(PredBB); 778 779 if (DTU) { 780 assert(PredBB->getInstList().size() == 1 && 781 isa<UnreachableInst>(PredBB->getTerminator()) && 782 "The successor list of PredBB isn't empty before " 783 "applying corresponding DTU updates."); 784 DTU->applyUpdatesPermissive(Updates); 785 DTU->deleteBB(PredBB); 786 // Recalculation of DomTree is needed when updating a forward DomTree and 787 // the Entry BB is replaced. 788 if (ReplaceEntryBB && DTU->hasDomTree()) { 789 // The entry block was removed and there is no external interface for 790 // the dominator tree to be notified of this change. In this corner-case 791 // we recalculate the entire tree. 792 DTU->recalculate(*(DestBB->getParent())); 793 } 794 } 795 796 else { 797 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 798 } 799 } 800 801 /// Return true if we can choose one of these values to use in place of the 802 /// other. Note that we will always choose the non-undef value to keep. 803 static bool CanMergeValues(Value *First, Value *Second) { 804 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 805 } 806 807 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 808 /// branch to Succ, into Succ. 809 /// 810 /// Assumption: Succ is the single successor for BB. 811 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 812 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 813 814 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 815 << Succ->getName() << "\n"); 816 // Shortcut, if there is only a single predecessor it must be BB and merging 817 // is always safe 818 if (Succ->getSinglePredecessor()) return true; 819 820 // Make a list of the predecessors of BB 821 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 822 823 // Look at all the phi nodes in Succ, to see if they present a conflict when 824 // merging these blocks 825 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 826 PHINode *PN = cast<PHINode>(I); 827 828 // If the incoming value from BB is again a PHINode in 829 // BB which has the same incoming value for *PI as PN does, we can 830 // merge the phi nodes and then the blocks can still be merged 831 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 832 if (BBPN && BBPN->getParent() == BB) { 833 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 834 BasicBlock *IBB = PN->getIncomingBlock(PI); 835 if (BBPreds.count(IBB) && 836 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 837 PN->getIncomingValue(PI))) { 838 LLVM_DEBUG(dbgs() 839 << "Can't fold, phi node " << PN->getName() << " in " 840 << Succ->getName() << " is conflicting with " 841 << BBPN->getName() << " with regard to common predecessor " 842 << IBB->getName() << "\n"); 843 return false; 844 } 845 } 846 } else { 847 Value* Val = PN->getIncomingValueForBlock(BB); 848 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 849 // See if the incoming value for the common predecessor is equal to the 850 // one for BB, in which case this phi node will not prevent the merging 851 // of the block. 852 BasicBlock *IBB = PN->getIncomingBlock(PI); 853 if (BBPreds.count(IBB) && 854 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 855 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 856 << " in " << Succ->getName() 857 << " is conflicting with regard to common " 858 << "predecessor " << IBB->getName() << "\n"); 859 return false; 860 } 861 } 862 } 863 } 864 865 return true; 866 } 867 868 using PredBlockVector = SmallVector<BasicBlock *, 16>; 869 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 870 871 /// Determines the value to use as the phi node input for a block. 872 /// 873 /// Select between \p OldVal any value that we know flows from \p BB 874 /// to a particular phi on the basis of which one (if either) is not 875 /// undef. Update IncomingValues based on the selected value. 876 /// 877 /// \param OldVal The value we are considering selecting. 878 /// \param BB The block that the value flows in from. 879 /// \param IncomingValues A map from block-to-value for other phi inputs 880 /// that we have examined. 881 /// 882 /// \returns the selected value. 883 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 884 IncomingValueMap &IncomingValues) { 885 if (!isa<UndefValue>(OldVal)) { 886 assert((!IncomingValues.count(BB) || 887 IncomingValues.find(BB)->second == OldVal) && 888 "Expected OldVal to match incoming value from BB!"); 889 890 IncomingValues.insert(std::make_pair(BB, OldVal)); 891 return OldVal; 892 } 893 894 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 895 if (It != IncomingValues.end()) return It->second; 896 897 return OldVal; 898 } 899 900 /// Create a map from block to value for the operands of a 901 /// given phi. 902 /// 903 /// Create a map from block to value for each non-undef value flowing 904 /// into \p PN. 905 /// 906 /// \param PN The phi we are collecting the map for. 907 /// \param IncomingValues [out] The map from block to value for this phi. 908 static void gatherIncomingValuesToPhi(PHINode *PN, 909 IncomingValueMap &IncomingValues) { 910 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 911 BasicBlock *BB = PN->getIncomingBlock(i); 912 Value *V = PN->getIncomingValue(i); 913 914 if (!isa<UndefValue>(V)) 915 IncomingValues.insert(std::make_pair(BB, V)); 916 } 917 } 918 919 /// Replace the incoming undef values to a phi with the values 920 /// from a block-to-value map. 921 /// 922 /// \param PN The phi we are replacing the undefs in. 923 /// \param IncomingValues A map from block to value. 924 static void replaceUndefValuesInPhi(PHINode *PN, 925 const IncomingValueMap &IncomingValues) { 926 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 927 Value *V = PN->getIncomingValue(i); 928 929 if (!isa<UndefValue>(V)) continue; 930 931 BasicBlock *BB = PN->getIncomingBlock(i); 932 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 933 if (It == IncomingValues.end()) continue; 934 935 PN->setIncomingValue(i, It->second); 936 } 937 } 938 939 /// Replace a value flowing from a block to a phi with 940 /// potentially multiple instances of that value flowing from the 941 /// block's predecessors to the phi. 942 /// 943 /// \param BB The block with the value flowing into the phi. 944 /// \param BBPreds The predecessors of BB. 945 /// \param PN The phi that we are updating. 946 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 947 const PredBlockVector &BBPreds, 948 PHINode *PN) { 949 Value *OldVal = PN->removeIncomingValue(BB, false); 950 assert(OldVal && "No entry in PHI for Pred BB!"); 951 952 IncomingValueMap IncomingValues; 953 954 // We are merging two blocks - BB, and the block containing PN - and 955 // as a result we need to redirect edges from the predecessors of BB 956 // to go to the block containing PN, and update PN 957 // accordingly. Since we allow merging blocks in the case where the 958 // predecessor and successor blocks both share some predecessors, 959 // and where some of those common predecessors might have undef 960 // values flowing into PN, we want to rewrite those values to be 961 // consistent with the non-undef values. 962 963 gatherIncomingValuesToPhi(PN, IncomingValues); 964 965 // If this incoming value is one of the PHI nodes in BB, the new entries 966 // in the PHI node are the entries from the old PHI. 967 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 968 PHINode *OldValPN = cast<PHINode>(OldVal); 969 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 970 // Note that, since we are merging phi nodes and BB and Succ might 971 // have common predecessors, we could end up with a phi node with 972 // identical incoming branches. This will be cleaned up later (and 973 // will trigger asserts if we try to clean it up now, without also 974 // simplifying the corresponding conditional branch). 975 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 976 Value *PredVal = OldValPN->getIncomingValue(i); 977 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 978 IncomingValues); 979 980 // And add a new incoming value for this predecessor for the 981 // newly retargeted branch. 982 PN->addIncoming(Selected, PredBB); 983 } 984 } else { 985 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 986 // Update existing incoming values in PN for this 987 // predecessor of BB. 988 BasicBlock *PredBB = BBPreds[i]; 989 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 990 IncomingValues); 991 992 // And add a new incoming value for this predecessor for the 993 // newly retargeted branch. 994 PN->addIncoming(Selected, PredBB); 995 } 996 } 997 998 replaceUndefValuesInPhi(PN, IncomingValues); 999 } 1000 1001 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1002 DomTreeUpdater *DTU) { 1003 assert(BB != &BB->getParent()->getEntryBlock() && 1004 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1005 1006 // We can't eliminate infinite loops. 1007 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1008 if (BB == Succ) return false; 1009 1010 // Check to see if merging these blocks would cause conflicts for any of the 1011 // phi nodes in BB or Succ. If not, we can safely merge. 1012 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1013 1014 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1015 // has uses which will not disappear when the PHI nodes are merged. It is 1016 // possible to handle such cases, but difficult: it requires checking whether 1017 // BB dominates Succ, which is non-trivial to calculate in the case where 1018 // Succ has multiple predecessors. Also, it requires checking whether 1019 // constructing the necessary self-referential PHI node doesn't introduce any 1020 // conflicts; this isn't too difficult, but the previous code for doing this 1021 // was incorrect. 1022 // 1023 // Note that if this check finds a live use, BB dominates Succ, so BB is 1024 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1025 // folding the branch isn't profitable in that case anyway. 1026 if (!Succ->getSinglePredecessor()) { 1027 BasicBlock::iterator BBI = BB->begin(); 1028 while (isa<PHINode>(*BBI)) { 1029 for (Use &U : BBI->uses()) { 1030 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1031 if (PN->getIncomingBlock(U) != BB) 1032 return false; 1033 } else { 1034 return false; 1035 } 1036 } 1037 ++BBI; 1038 } 1039 } 1040 1041 // We cannot fold the block if it's a branch to an already present callbr 1042 // successor because that creates duplicate successors. 1043 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1044 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 1045 if (Succ == CBI->getDefaultDest()) 1046 return false; 1047 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1048 if (Succ == CBI->getIndirectDest(i)) 1049 return false; 1050 } 1051 } 1052 1053 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1054 1055 SmallVector<DominatorTree::UpdateType, 32> Updates; 1056 if (DTU) { 1057 // All predecessors of BB will be moved to Succ. 1058 SmallSetVector<BasicBlock *, 8> Predecessors(pred_begin(BB), pred_end(BB)); 1059 Updates.reserve(Updates.size() + 2 * Predecessors.size()); 1060 for (auto *Predecessor : Predecessors) { 1061 // This predecessor of BB may already have Succ as a successor. 1062 if (!llvm::is_contained(successors(Predecessor), Succ)) 1063 Updates.push_back({DominatorTree::Insert, Predecessor, Succ}); 1064 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 1065 } 1066 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1067 } 1068 1069 if (isa<PHINode>(Succ->begin())) { 1070 // If there is more than one pred of succ, and there are PHI nodes in 1071 // the successor, then we need to add incoming edges for the PHI nodes 1072 // 1073 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1074 1075 // Loop over all of the PHI nodes in the successor of BB. 1076 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1077 PHINode *PN = cast<PHINode>(I); 1078 1079 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1080 } 1081 } 1082 1083 if (Succ->getSinglePredecessor()) { 1084 // BB is the only predecessor of Succ, so Succ will end up with exactly 1085 // the same predecessors BB had. 1086 1087 // Copy over any phi, debug or lifetime instruction. 1088 BB->getTerminator()->eraseFromParent(); 1089 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1090 BB->getInstList()); 1091 } else { 1092 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1093 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1094 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1095 PN->eraseFromParent(); 1096 } 1097 } 1098 1099 // If the unconditional branch we replaced contains llvm.loop metadata, we 1100 // add the metadata to the branch instructions in the predecessors. 1101 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1102 Instruction *TI = BB->getTerminator(); 1103 if (TI) 1104 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1105 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1106 BasicBlock *Pred = *PI; 1107 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1108 } 1109 1110 // Everything that jumped to BB now goes to Succ. 1111 BB->replaceAllUsesWith(Succ); 1112 if (!Succ->hasName()) Succ->takeName(BB); 1113 1114 // Clear the successor list of BB to match updates applying to DTU later. 1115 if (BB->getTerminator()) 1116 BB->getInstList().pop_back(); 1117 new UnreachableInst(BB->getContext(), BB); 1118 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1119 "applying corresponding DTU updates."); 1120 1121 if (DTU) { 1122 DTU->applyUpdates(Updates); 1123 DTU->deleteBB(BB); 1124 } else { 1125 BB->eraseFromParent(); // Delete the old basic block. 1126 } 1127 return true; 1128 } 1129 1130 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1131 // This implementation doesn't currently consider undef operands 1132 // specially. Theoretically, two phis which are identical except for 1133 // one having an undef where the other doesn't could be collapsed. 1134 1135 bool Changed = false; 1136 1137 // Examine each PHI. 1138 // Note that increment of I must *NOT* be in the iteration_expression, since 1139 // we don't want to immediately advance when we restart from the beginning. 1140 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1141 ++I; 1142 // Is there an identical PHI node in this basic block? 1143 // Note that we only look in the upper square's triangle, 1144 // we already checked that the lower triangle PHI's aren't identical. 1145 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1146 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1147 continue; 1148 // A duplicate. Replace this PHI with the base PHI. 1149 ++NumPHICSEs; 1150 DuplicatePN->replaceAllUsesWith(PN); 1151 DuplicatePN->eraseFromParent(); 1152 Changed = true; 1153 1154 // The RAUW can change PHIs that we already visited. 1155 I = BB->begin(); 1156 break; // Start over from the beginning. 1157 } 1158 } 1159 return Changed; 1160 } 1161 1162 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1163 // This implementation doesn't currently consider undef operands 1164 // specially. Theoretically, two phis which are identical except for 1165 // one having an undef where the other doesn't could be collapsed. 1166 1167 struct PHIDenseMapInfo { 1168 static PHINode *getEmptyKey() { 1169 return DenseMapInfo<PHINode *>::getEmptyKey(); 1170 } 1171 1172 static PHINode *getTombstoneKey() { 1173 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1174 } 1175 1176 static bool isSentinel(PHINode *PN) { 1177 return PN == getEmptyKey() || PN == getTombstoneKey(); 1178 } 1179 1180 // WARNING: this logic must be kept in sync with 1181 // Instruction::isIdenticalToWhenDefined()! 1182 static unsigned getHashValueImpl(PHINode *PN) { 1183 // Compute a hash value on the operands. Instcombine will likely have 1184 // sorted them, which helps expose duplicates, but we have to check all 1185 // the operands to be safe in case instcombine hasn't run. 1186 return static_cast<unsigned>(hash_combine( 1187 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1188 hash_combine_range(PN->block_begin(), PN->block_end()))); 1189 } 1190 1191 static unsigned getHashValue(PHINode *PN) { 1192 #ifndef NDEBUG 1193 // If -phicse-debug-hash was specified, return a constant -- this 1194 // will force all hashing to collide, so we'll exhaustively search 1195 // the table for a match, and the assertion in isEqual will fire if 1196 // there's a bug causing equal keys to hash differently. 1197 if (PHICSEDebugHash) 1198 return 0; 1199 #endif 1200 return getHashValueImpl(PN); 1201 } 1202 1203 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1204 if (isSentinel(LHS) || isSentinel(RHS)) 1205 return LHS == RHS; 1206 return LHS->isIdenticalTo(RHS); 1207 } 1208 1209 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1210 // These comparisons are nontrivial, so assert that equality implies 1211 // hash equality (DenseMap demands this as an invariant). 1212 bool Result = isEqualImpl(LHS, RHS); 1213 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1214 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1215 return Result; 1216 } 1217 }; 1218 1219 // Set of unique PHINodes. 1220 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1221 PHISet.reserve(4 * PHICSENumPHISmallSize); 1222 1223 // Examine each PHI. 1224 bool Changed = false; 1225 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1226 auto Inserted = PHISet.insert(PN); 1227 if (!Inserted.second) { 1228 // A duplicate. Replace this PHI with its duplicate. 1229 ++NumPHICSEs; 1230 PN->replaceAllUsesWith(*Inserted.first); 1231 PN->eraseFromParent(); 1232 Changed = true; 1233 1234 // The RAUW can change PHIs that we already visited. Start over from the 1235 // beginning. 1236 PHISet.clear(); 1237 I = BB->begin(); 1238 } 1239 } 1240 1241 return Changed; 1242 } 1243 1244 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1245 if ( 1246 #ifndef NDEBUG 1247 !PHICSEDebugHash && 1248 #endif 1249 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1250 return EliminateDuplicatePHINodesNaiveImpl(BB); 1251 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1252 } 1253 1254 /// If the specified pointer points to an object that we control, try to modify 1255 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1256 /// the value after the operation, which may be lower than PrefAlign. 1257 /// 1258 /// Increating value alignment isn't often possible though. If alignment is 1259 /// important, a more reliable approach is to simply align all global variables 1260 /// and allocation instructions to their preferred alignment from the beginning. 1261 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1262 const DataLayout &DL) { 1263 V = V->stripPointerCasts(); 1264 1265 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1266 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1267 // than the current alignment, as the known bits calculation should have 1268 // already taken it into account. However, this is not always the case, 1269 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1270 // doesn't. 1271 Align CurrentAlign = AI->getAlign(); 1272 if (PrefAlign <= CurrentAlign) 1273 return CurrentAlign; 1274 1275 // If the preferred alignment is greater than the natural stack alignment 1276 // then don't round up. This avoids dynamic stack realignment. 1277 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1278 return CurrentAlign; 1279 AI->setAlignment(PrefAlign); 1280 return PrefAlign; 1281 } 1282 1283 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1284 // TODO: as above, this shouldn't be necessary. 1285 Align CurrentAlign = GO->getPointerAlignment(DL); 1286 if (PrefAlign <= CurrentAlign) 1287 return CurrentAlign; 1288 1289 // If there is a large requested alignment and we can, bump up the alignment 1290 // of the global. If the memory we set aside for the global may not be the 1291 // memory used by the final program then it is impossible for us to reliably 1292 // enforce the preferred alignment. 1293 if (!GO->canIncreaseAlignment()) 1294 return CurrentAlign; 1295 1296 GO->setAlignment(PrefAlign); 1297 return PrefAlign; 1298 } 1299 1300 return Align(1); 1301 } 1302 1303 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1304 const DataLayout &DL, 1305 const Instruction *CxtI, 1306 AssumptionCache *AC, 1307 const DominatorTree *DT) { 1308 assert(V->getType()->isPointerTy() && 1309 "getOrEnforceKnownAlignment expects a pointer!"); 1310 1311 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1312 unsigned TrailZ = Known.countMinTrailingZeros(); 1313 1314 // Avoid trouble with ridiculously large TrailZ values, such as 1315 // those computed from a null pointer. 1316 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1317 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1318 1319 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1320 1321 if (PrefAlign && *PrefAlign > Alignment) 1322 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1323 1324 // We don't need to make any adjustment. 1325 return Alignment; 1326 } 1327 1328 ///===---------------------------------------------------------------------===// 1329 /// Dbg Intrinsic utilities 1330 /// 1331 1332 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1333 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1334 DIExpression *DIExpr, 1335 PHINode *APN) { 1336 // Since we can't guarantee that the original dbg.declare instrinsic 1337 // is removed by LowerDbgDeclare(), we need to make sure that we are 1338 // not inserting the same dbg.value intrinsic over and over. 1339 SmallVector<DbgValueInst *, 1> DbgValues; 1340 findDbgValues(DbgValues, APN); 1341 for (auto *DVI : DbgValues) { 1342 assert(DVI->getValue() == APN); 1343 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1344 return true; 1345 } 1346 return false; 1347 } 1348 1349 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1350 /// (or fragment of the variable) described by \p DII. 1351 /// 1352 /// This is primarily intended as a helper for the different 1353 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1354 /// converted describes an alloca'd variable, so we need to use the 1355 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1356 /// identified as covering an n-bit fragment, if the store size of i1 is at 1357 /// least n bits. 1358 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1359 const DataLayout &DL = DII->getModule()->getDataLayout(); 1360 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1361 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1362 assert(!ValueSize.isScalable() && 1363 "Fragments don't work on scalable types."); 1364 return ValueSize.getFixedSize() >= *FragmentSize; 1365 } 1366 // We can't always calculate the size of the DI variable (e.g. if it is a 1367 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1368 // intead. 1369 if (DII->isAddressOfVariable()) 1370 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1371 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1372 assert(ValueSize.isScalable() == FragmentSize->isScalable() && 1373 "Both sizes should agree on the scalable flag."); 1374 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1375 } 1376 // Could not determine size of variable. Conservatively return false. 1377 return false; 1378 } 1379 1380 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1381 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1382 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1383 /// case this DebugLoc leaks into any adjacent instructions. 1384 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1385 // Original dbg.declare must have a location. 1386 DebugLoc DeclareLoc = DII->getDebugLoc(); 1387 MDNode *Scope = DeclareLoc.getScope(); 1388 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1389 // Produce an unknown location with the correct scope / inlinedAt fields. 1390 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1391 } 1392 1393 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1394 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1395 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1396 StoreInst *SI, DIBuilder &Builder) { 1397 assert(DII->isAddressOfVariable()); 1398 auto *DIVar = DII->getVariable(); 1399 assert(DIVar && "Missing variable"); 1400 auto *DIExpr = DII->getExpression(); 1401 Value *DV = SI->getValueOperand(); 1402 1403 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1404 1405 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1406 // FIXME: If storing to a part of the variable described by the dbg.declare, 1407 // then we want to insert a dbg.value for the corresponding fragment. 1408 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1409 << *DII << '\n'); 1410 // For now, when there is a store to parts of the variable (but we do not 1411 // know which part) we insert an dbg.value instrinsic to indicate that we 1412 // know nothing about the variable's content. 1413 DV = UndefValue::get(DV->getType()); 1414 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1415 return; 1416 } 1417 1418 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1419 } 1420 1421 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1422 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1423 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1424 LoadInst *LI, DIBuilder &Builder) { 1425 auto *DIVar = DII->getVariable(); 1426 auto *DIExpr = DII->getExpression(); 1427 assert(DIVar && "Missing variable"); 1428 1429 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1430 // FIXME: If only referring to a part of the variable described by the 1431 // dbg.declare, then we want to insert a dbg.value for the corresponding 1432 // fragment. 1433 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1434 << *DII << '\n'); 1435 return; 1436 } 1437 1438 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1439 1440 // We are now tracking the loaded value instead of the address. In the 1441 // future if multi-location support is added to the IR, it might be 1442 // preferable to keep tracking both the loaded value and the original 1443 // address in case the alloca can not be elided. 1444 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1445 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1446 DbgValue->insertAfter(LI); 1447 } 1448 1449 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1450 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1451 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1452 PHINode *APN, DIBuilder &Builder) { 1453 auto *DIVar = DII->getVariable(); 1454 auto *DIExpr = DII->getExpression(); 1455 assert(DIVar && "Missing variable"); 1456 1457 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1458 return; 1459 1460 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1461 // FIXME: If only referring to a part of the variable described by the 1462 // dbg.declare, then we want to insert a dbg.value for the corresponding 1463 // fragment. 1464 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1465 << *DII << '\n'); 1466 return; 1467 } 1468 1469 BasicBlock *BB = APN->getParent(); 1470 auto InsertionPt = BB->getFirstInsertionPt(); 1471 1472 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1473 1474 // The block may be a catchswitch block, which does not have a valid 1475 // insertion point. 1476 // FIXME: Insert dbg.value markers in the successors when appropriate. 1477 if (InsertionPt != BB->end()) 1478 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1479 } 1480 1481 /// Determine whether this alloca is either a VLA or an array. 1482 static bool isArray(AllocaInst *AI) { 1483 return AI->isArrayAllocation() || 1484 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1485 } 1486 1487 /// Determine whether this alloca is a structure. 1488 static bool isStructure(AllocaInst *AI) { 1489 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1490 } 1491 1492 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1493 /// of llvm.dbg.value intrinsics. 1494 bool llvm::LowerDbgDeclare(Function &F) { 1495 bool Changed = false; 1496 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1497 SmallVector<DbgDeclareInst *, 4> Dbgs; 1498 for (auto &FI : F) 1499 for (Instruction &BI : FI) 1500 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1501 Dbgs.push_back(DDI); 1502 1503 if (Dbgs.empty()) 1504 return Changed; 1505 1506 for (auto &I : Dbgs) { 1507 DbgDeclareInst *DDI = I; 1508 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1509 // If this is an alloca for a scalar variable, insert a dbg.value 1510 // at each load and store to the alloca and erase the dbg.declare. 1511 // The dbg.values allow tracking a variable even if it is not 1512 // stored on the stack, while the dbg.declare can only describe 1513 // the stack slot (and at a lexical-scope granularity). Later 1514 // passes will attempt to elide the stack slot. 1515 if (!AI || isArray(AI) || isStructure(AI)) 1516 continue; 1517 1518 // A volatile load/store means that the alloca can't be elided anyway. 1519 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1520 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1521 return LI->isVolatile(); 1522 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1523 return SI->isVolatile(); 1524 return false; 1525 })) 1526 continue; 1527 1528 SmallVector<const Value *, 8> WorkList; 1529 WorkList.push_back(AI); 1530 while (!WorkList.empty()) { 1531 const Value *V = WorkList.pop_back_val(); 1532 for (auto &AIUse : V->uses()) { 1533 User *U = AIUse.getUser(); 1534 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1535 if (AIUse.getOperandNo() == 1) 1536 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1537 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1538 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1539 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1540 // This is a call by-value or some other instruction that takes a 1541 // pointer to the variable. Insert a *value* intrinsic that describes 1542 // the variable by dereferencing the alloca. 1543 if (!CI->isLifetimeStartOrEnd()) { 1544 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1545 auto *DerefExpr = 1546 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1547 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1548 NewLoc, CI); 1549 } 1550 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1551 if (BI->getType()->isPointerTy()) 1552 WorkList.push_back(BI); 1553 } 1554 } 1555 } 1556 DDI->eraseFromParent(); 1557 Changed = true; 1558 } 1559 1560 if (Changed) 1561 for (BasicBlock &BB : F) 1562 RemoveRedundantDbgInstrs(&BB); 1563 1564 return Changed; 1565 } 1566 1567 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1568 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1569 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1570 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1571 if (InsertedPHIs.size() == 0) 1572 return; 1573 1574 // Map existing PHI nodes to their dbg.values. 1575 ValueToValueMapTy DbgValueMap; 1576 for (auto &I : *BB) { 1577 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1578 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1579 DbgValueMap.insert({Loc, DbgII}); 1580 } 1581 } 1582 if (DbgValueMap.size() == 0) 1583 return; 1584 1585 // Then iterate through the new PHIs and look to see if they use one of the 1586 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1587 // propagate the info through the new PHI. 1588 LLVMContext &C = BB->getContext(); 1589 for (auto PHI : InsertedPHIs) { 1590 BasicBlock *Parent = PHI->getParent(); 1591 // Avoid inserting an intrinsic into an EH block. 1592 if (Parent->getFirstNonPHI()->isEHPad()) 1593 continue; 1594 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1595 for (auto VI : PHI->operand_values()) { 1596 auto V = DbgValueMap.find(VI); 1597 if (V != DbgValueMap.end()) { 1598 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1599 Instruction *NewDbgII = DbgII->clone(); 1600 NewDbgII->setOperand(0, PhiMAV); 1601 auto InsertionPt = Parent->getFirstInsertionPt(); 1602 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1603 NewDbgII->insertBefore(&*InsertionPt); 1604 } 1605 } 1606 } 1607 } 1608 1609 /// Finds all intrinsics declaring local variables as living in the memory that 1610 /// 'V' points to. This may include a mix of dbg.declare and 1611 /// dbg.addr intrinsics. 1612 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1613 // This function is hot. Check whether the value has any metadata to avoid a 1614 // DenseMap lookup. 1615 if (!V->isUsedByMetadata()) 1616 return {}; 1617 auto *L = LocalAsMetadata::getIfExists(V); 1618 if (!L) 1619 return {}; 1620 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1621 if (!MDV) 1622 return {}; 1623 1624 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1625 for (User *U : MDV->users()) { 1626 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1627 if (DII->isAddressOfVariable()) 1628 Declares.push_back(DII); 1629 } 1630 1631 return Declares; 1632 } 1633 1634 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) { 1635 TinyPtrVector<DbgDeclareInst *> DDIs; 1636 for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V)) 1637 if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI)) 1638 DDIs.push_back(DDI); 1639 return DDIs; 1640 } 1641 1642 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1643 // This function is hot. Check whether the value has any metadata to avoid a 1644 // DenseMap lookup. 1645 if (!V->isUsedByMetadata()) 1646 return; 1647 if (auto *L = LocalAsMetadata::getIfExists(V)) 1648 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1649 for (User *U : MDV->users()) 1650 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1651 DbgValues.push_back(DVI); 1652 } 1653 1654 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1655 Value *V) { 1656 // This function is hot. Check whether the value has any metadata to avoid a 1657 // DenseMap lookup. 1658 if (!V->isUsedByMetadata()) 1659 return; 1660 if (auto *L = LocalAsMetadata::getIfExists(V)) 1661 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1662 for (User *U : MDV->users()) 1663 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1664 DbgUsers.push_back(DII); 1665 } 1666 1667 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1668 DIBuilder &Builder, uint8_t DIExprFlags, 1669 int Offset) { 1670 auto DbgAddrs = FindDbgAddrUses(Address); 1671 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1672 DebugLoc Loc = DII->getDebugLoc(); 1673 auto *DIVar = DII->getVariable(); 1674 auto *DIExpr = DII->getExpression(); 1675 assert(DIVar && "Missing variable"); 1676 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1677 // Insert llvm.dbg.declare immediately before DII, and remove old 1678 // llvm.dbg.declare. 1679 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1680 DII->eraseFromParent(); 1681 } 1682 return !DbgAddrs.empty(); 1683 } 1684 1685 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1686 DIBuilder &Builder, int Offset) { 1687 DebugLoc Loc = DVI->getDebugLoc(); 1688 auto *DIVar = DVI->getVariable(); 1689 auto *DIExpr = DVI->getExpression(); 1690 assert(DIVar && "Missing variable"); 1691 1692 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1693 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1694 // it and give up. 1695 if (!DIExpr || DIExpr->getNumElements() < 1 || 1696 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1697 return; 1698 1699 // Insert the offset before the first deref. 1700 // We could just change the offset argument of dbg.value, but it's unsigned... 1701 if (Offset) 1702 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1703 1704 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1705 DVI->eraseFromParent(); 1706 } 1707 1708 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1709 DIBuilder &Builder, int Offset) { 1710 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1711 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1712 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1713 Use &U = *UI++; 1714 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1715 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1716 } 1717 } 1718 1719 /// Wrap \p V in a ValueAsMetadata instance. 1720 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1721 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1722 } 1723 1724 /// Where possible to salvage debug information for \p I do so 1725 /// and return True. If not possible mark undef and return False. 1726 void llvm::salvageDebugInfo(Instruction &I) { 1727 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1728 findDbgUsers(DbgUsers, &I); 1729 salvageDebugInfoForDbgValues(I, DbgUsers); 1730 } 1731 1732 void llvm::salvageDebugInfoForDbgValues( 1733 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1734 auto &Ctx = I.getContext(); 1735 bool Salvaged = false; 1736 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1737 1738 for (auto *DII : DbgUsers) { 1739 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1740 // are implicitly pointing out the value as a DWARF memory location 1741 // description. 1742 bool StackValue = isa<DbgValueInst>(DII); 1743 1744 DIExpression *DIExpr = 1745 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1746 1747 // salvageDebugInfoImpl should fail on examining the first element of 1748 // DbgUsers, or none of them. 1749 if (!DIExpr) 1750 break; 1751 1752 DII->setOperand(0, wrapMD(I.getOperand(0))); 1753 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1754 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1755 Salvaged = true; 1756 } 1757 1758 if (Salvaged) 1759 return; 1760 1761 for (auto *DII : DbgUsers) { 1762 Value *Undef = UndefValue::get(I.getType()); 1763 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 1764 ValueAsMetadata::get(Undef))); 1765 } 1766 } 1767 1768 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1769 DIExpression *SrcDIExpr, 1770 bool WithStackValue) { 1771 auto &M = *I.getModule(); 1772 auto &DL = M.getDataLayout(); 1773 1774 // Apply a vector of opcodes to the source DIExpression. 1775 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1776 DIExpression *DIExpr = SrcDIExpr; 1777 if (!Ops.empty()) { 1778 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1779 } 1780 return DIExpr; 1781 }; 1782 1783 // Apply the given offset to the source DIExpression. 1784 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1785 SmallVector<uint64_t, 8> Ops; 1786 DIExpression::appendOffset(Ops, Offset); 1787 return doSalvage(Ops); 1788 }; 1789 1790 // initializer-list helper for applying operators to the source DIExpression. 1791 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1792 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1793 return doSalvage(Ops); 1794 }; 1795 1796 if (auto *CI = dyn_cast<CastInst>(&I)) { 1797 // No-op casts are irrelevant for debug info. 1798 if (CI->isNoopCast(DL)) 1799 return SrcDIExpr; 1800 1801 Type *Type = CI->getType(); 1802 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1803 if (Type->isVectorTy() || 1804 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1805 return nullptr; 1806 1807 Value *FromValue = CI->getOperand(0); 1808 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1809 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1810 1811 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1812 isa<SExtInst>(&I))); 1813 } 1814 1815 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1816 unsigned BitWidth = 1817 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1818 // Rewrite a constant GEP into a DIExpression. 1819 APInt Offset(BitWidth, 0); 1820 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1821 return applyOffset(Offset.getSExtValue()); 1822 } else { 1823 return nullptr; 1824 } 1825 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1826 // Rewrite binary operations with constant integer operands. 1827 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1828 if (!ConstInt || ConstInt->getBitWidth() > 64) 1829 return nullptr; 1830 1831 uint64_t Val = ConstInt->getSExtValue(); 1832 switch (BI->getOpcode()) { 1833 case Instruction::Add: 1834 return applyOffset(Val); 1835 case Instruction::Sub: 1836 return applyOffset(-int64_t(Val)); 1837 case Instruction::Mul: 1838 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1839 case Instruction::SDiv: 1840 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1841 case Instruction::SRem: 1842 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1843 case Instruction::Or: 1844 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1845 case Instruction::And: 1846 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1847 case Instruction::Xor: 1848 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1849 case Instruction::Shl: 1850 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1851 case Instruction::LShr: 1852 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1853 case Instruction::AShr: 1854 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1855 default: 1856 // TODO: Salvage constants from each kind of binop we know about. 1857 return nullptr; 1858 } 1859 // *Not* to do: we should not attempt to salvage load instructions, 1860 // because the validity and lifetime of a dbg.value containing 1861 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1862 } 1863 return nullptr; 1864 } 1865 1866 /// A replacement for a dbg.value expression. 1867 using DbgValReplacement = Optional<DIExpression *>; 1868 1869 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1870 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1871 /// changes are made. 1872 static bool rewriteDebugUsers( 1873 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1874 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1875 // Find debug users of From. 1876 SmallVector<DbgVariableIntrinsic *, 1> Users; 1877 findDbgUsers(Users, &From); 1878 if (Users.empty()) 1879 return false; 1880 1881 // Prevent use-before-def of To. 1882 bool Changed = false; 1883 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1884 if (isa<Instruction>(&To)) { 1885 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1886 1887 for (auto *DII : Users) { 1888 // It's common to see a debug user between From and DomPoint. Move it 1889 // after DomPoint to preserve the variable update without any reordering. 1890 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1891 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1892 DII->moveAfter(&DomPoint); 1893 Changed = true; 1894 1895 // Users which otherwise aren't dominated by the replacement value must 1896 // be salvaged or deleted. 1897 } else if (!DT.dominates(&DomPoint, DII)) { 1898 UndefOrSalvage.insert(DII); 1899 } 1900 } 1901 } 1902 1903 // Update debug users without use-before-def risk. 1904 for (auto *DII : Users) { 1905 if (UndefOrSalvage.count(DII)) 1906 continue; 1907 1908 LLVMContext &Ctx = DII->getContext(); 1909 DbgValReplacement DVR = RewriteExpr(*DII); 1910 if (!DVR) 1911 continue; 1912 1913 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1914 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1915 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1916 Changed = true; 1917 } 1918 1919 if (!UndefOrSalvage.empty()) { 1920 // Try to salvage the remaining debug users. 1921 salvageDebugInfo(From); 1922 Changed = true; 1923 } 1924 1925 return Changed; 1926 } 1927 1928 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1929 /// losslessly preserve the bits and semantics of the value. This predicate is 1930 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1931 /// 1932 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1933 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1934 /// and also does not allow lossless pointer <-> integer conversions. 1935 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1936 Type *ToTy) { 1937 // Trivially compatible types. 1938 if (FromTy == ToTy) 1939 return true; 1940 1941 // Handle compatible pointer <-> integer conversions. 1942 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1943 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1944 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1945 !DL.isNonIntegralPointerType(ToTy); 1946 return SameSize && LosslessConversion; 1947 } 1948 1949 // TODO: This is not exhaustive. 1950 return false; 1951 } 1952 1953 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1954 Instruction &DomPoint, DominatorTree &DT) { 1955 // Exit early if From has no debug users. 1956 if (!From.isUsedByMetadata()) 1957 return false; 1958 1959 assert(&From != &To && "Can't replace something with itself"); 1960 1961 Type *FromTy = From.getType(); 1962 Type *ToTy = To.getType(); 1963 1964 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1965 return DII.getExpression(); 1966 }; 1967 1968 // Handle no-op conversions. 1969 Module &M = *From.getModule(); 1970 const DataLayout &DL = M.getDataLayout(); 1971 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1972 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1973 1974 // Handle integer-to-integer widening and narrowing. 1975 // FIXME: Use DW_OP_convert when it's available everywhere. 1976 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1977 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1978 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1979 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1980 1981 // When the width of the result grows, assume that a debugger will only 1982 // access the low `FromBits` bits when inspecting the source variable. 1983 if (FromBits < ToBits) 1984 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1985 1986 // The width of the result has shrunk. Use sign/zero extension to describe 1987 // the source variable's high bits. 1988 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1989 DILocalVariable *Var = DII.getVariable(); 1990 1991 // Without knowing signedness, sign/zero extension isn't possible. 1992 auto Signedness = Var->getSignedness(); 1993 if (!Signedness) 1994 return None; 1995 1996 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1997 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 1998 Signed); 1999 }; 2000 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2001 } 2002 2003 // TODO: Floating-point conversions, vectors. 2004 return false; 2005 } 2006 2007 std::pair<unsigned, unsigned> 2008 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2009 unsigned NumDeadInst = 0; 2010 unsigned NumDeadDbgInst = 0; 2011 // Delete the instructions backwards, as it has a reduced likelihood of 2012 // having to update as many def-use and use-def chains. 2013 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2014 while (EndInst != &BB->front()) { 2015 // Delete the next to last instruction. 2016 Instruction *Inst = &*--EndInst->getIterator(); 2017 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2018 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2019 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2020 EndInst = Inst; 2021 continue; 2022 } 2023 if (isa<DbgInfoIntrinsic>(Inst)) 2024 ++NumDeadDbgInst; 2025 else 2026 ++NumDeadInst; 2027 Inst->eraseFromParent(); 2028 } 2029 return {NumDeadInst, NumDeadDbgInst}; 2030 } 2031 2032 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2033 bool PreserveLCSSA, DomTreeUpdater *DTU, 2034 MemorySSAUpdater *MSSAU) { 2035 BasicBlock *BB = I->getParent(); 2036 2037 if (MSSAU) 2038 MSSAU->changeToUnreachable(I); 2039 2040 SmallSetVector<BasicBlock *, 8> UniqueSuccessors; 2041 2042 // Loop over all of the successors, removing BB's entry from any PHI 2043 // nodes. 2044 for (BasicBlock *Successor : successors(BB)) { 2045 Successor->removePredecessor(BB, PreserveLCSSA); 2046 if (DTU) 2047 UniqueSuccessors.insert(Successor); 2048 } 2049 // Insert a call to llvm.trap right before this. This turns the undefined 2050 // behavior into a hard fail instead of falling through into random code. 2051 if (UseLLVMTrap) { 2052 Function *TrapFn = 2053 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2054 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2055 CallTrap->setDebugLoc(I->getDebugLoc()); 2056 } 2057 auto *UI = new UnreachableInst(I->getContext(), I); 2058 UI->setDebugLoc(I->getDebugLoc()); 2059 2060 // All instructions after this are dead. 2061 unsigned NumInstrsRemoved = 0; 2062 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2063 while (BBI != BBE) { 2064 if (!BBI->use_empty()) 2065 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2066 BB->getInstList().erase(BBI++); 2067 ++NumInstrsRemoved; 2068 } 2069 if (DTU) { 2070 SmallVector<DominatorTree::UpdateType, 8> Updates; 2071 Updates.reserve(UniqueSuccessors.size()); 2072 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2073 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2074 DTU->applyUpdates(Updates); 2075 } 2076 return NumInstrsRemoved; 2077 } 2078 2079 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2080 SmallVector<Value *, 8> Args(II->args()); 2081 SmallVector<OperandBundleDef, 1> OpBundles; 2082 II->getOperandBundlesAsDefs(OpBundles); 2083 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2084 II->getCalledOperand(), Args, OpBundles); 2085 NewCall->setCallingConv(II->getCallingConv()); 2086 NewCall->setAttributes(II->getAttributes()); 2087 NewCall->setDebugLoc(II->getDebugLoc()); 2088 NewCall->copyMetadata(*II); 2089 2090 // If the invoke had profile metadata, try converting them for CallInst. 2091 uint64_t TotalWeight; 2092 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2093 // Set the total weight if it fits into i32, otherwise reset. 2094 MDBuilder MDB(NewCall->getContext()); 2095 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2096 ? nullptr 2097 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2098 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2099 } 2100 2101 return NewCall; 2102 } 2103 2104 /// changeToCall - Convert the specified invoke into a normal call. 2105 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2106 CallInst *NewCall = createCallMatchingInvoke(II); 2107 NewCall->takeName(II); 2108 NewCall->insertBefore(II); 2109 II->replaceAllUsesWith(NewCall); 2110 2111 // Follow the call by a branch to the normal destination. 2112 BasicBlock *NormalDestBB = II->getNormalDest(); 2113 BranchInst::Create(NormalDestBB, II); 2114 2115 // Update PHI nodes in the unwind destination 2116 BasicBlock *BB = II->getParent(); 2117 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2118 UnwindDestBB->removePredecessor(BB); 2119 II->eraseFromParent(); 2120 if (DTU) 2121 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2122 } 2123 2124 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2125 BasicBlock *UnwindEdge) { 2126 BasicBlock *BB = CI->getParent(); 2127 2128 // Convert this function call into an invoke instruction. First, split the 2129 // basic block. 2130 BasicBlock *Split = 2131 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 2132 2133 // Delete the unconditional branch inserted by splitBasicBlock 2134 BB->getInstList().pop_back(); 2135 2136 // Create the new invoke instruction. 2137 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2138 SmallVector<OperandBundleDef, 1> OpBundles; 2139 2140 CI->getOperandBundlesAsDefs(OpBundles); 2141 2142 // Note: we're round tripping operand bundles through memory here, and that 2143 // can potentially be avoided with a cleverer API design that we do not have 2144 // as of this time. 2145 2146 InvokeInst *II = 2147 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2148 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2149 II->setDebugLoc(CI->getDebugLoc()); 2150 II->setCallingConv(CI->getCallingConv()); 2151 II->setAttributes(CI->getAttributes()); 2152 2153 // Make sure that anything using the call now uses the invoke! This also 2154 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2155 CI->replaceAllUsesWith(II); 2156 2157 // Delete the original call 2158 Split->getInstList().pop_front(); 2159 return Split; 2160 } 2161 2162 static bool markAliveBlocks(Function &F, 2163 SmallPtrSetImpl<BasicBlock *> &Reachable, 2164 DomTreeUpdater *DTU = nullptr) { 2165 SmallVector<BasicBlock*, 128> Worklist; 2166 BasicBlock *BB = &F.front(); 2167 Worklist.push_back(BB); 2168 Reachable.insert(BB); 2169 bool Changed = false; 2170 do { 2171 BB = Worklist.pop_back_val(); 2172 2173 // Do a quick scan of the basic block, turning any obviously unreachable 2174 // instructions into LLVM unreachable insts. The instruction combining pass 2175 // canonicalizes unreachable insts into stores to null or undef. 2176 for (Instruction &I : *BB) { 2177 if (auto *CI = dyn_cast<CallInst>(&I)) { 2178 Value *Callee = CI->getCalledOperand(); 2179 // Handle intrinsic calls. 2180 if (Function *F = dyn_cast<Function>(Callee)) { 2181 auto IntrinsicID = F->getIntrinsicID(); 2182 // Assumptions that are known to be false are equivalent to 2183 // unreachable. Also, if the condition is undefined, then we make the 2184 // choice most beneficial to the optimizer, and choose that to also be 2185 // unreachable. 2186 if (IntrinsicID == Intrinsic::assume) { 2187 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2188 // Don't insert a call to llvm.trap right before the unreachable. 2189 changeToUnreachable(CI, false, false, DTU); 2190 Changed = true; 2191 break; 2192 } 2193 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2194 // A call to the guard intrinsic bails out of the current 2195 // compilation unit if the predicate passed to it is false. If the 2196 // predicate is a constant false, then we know the guard will bail 2197 // out of the current compile unconditionally, so all code following 2198 // it is dead. 2199 // 2200 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2201 // guards to treat `undef` as `false` since a guard on `undef` can 2202 // still be useful for widening. 2203 if (match(CI->getArgOperand(0), m_Zero())) 2204 if (!isa<UnreachableInst>(CI->getNextNode())) { 2205 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2206 false, DTU); 2207 Changed = true; 2208 break; 2209 } 2210 } 2211 } else if ((isa<ConstantPointerNull>(Callee) && 2212 !NullPointerIsDefined(CI->getFunction())) || 2213 isa<UndefValue>(Callee)) { 2214 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2215 Changed = true; 2216 break; 2217 } 2218 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2219 // If we found a call to a no-return function, insert an unreachable 2220 // instruction after it. Make sure there isn't *already* one there 2221 // though. 2222 if (!isa<UnreachableInst>(CI->getNextNode())) { 2223 // Don't insert a call to llvm.trap right before the unreachable. 2224 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2225 Changed = true; 2226 } 2227 break; 2228 } 2229 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2230 // Store to undef and store to null are undefined and used to signal 2231 // that they should be changed to unreachable by passes that can't 2232 // modify the CFG. 2233 2234 // Don't touch volatile stores. 2235 if (SI->isVolatile()) continue; 2236 2237 Value *Ptr = SI->getOperand(1); 2238 2239 if (isa<UndefValue>(Ptr) || 2240 (isa<ConstantPointerNull>(Ptr) && 2241 !NullPointerIsDefined(SI->getFunction(), 2242 SI->getPointerAddressSpace()))) { 2243 changeToUnreachable(SI, true, false, DTU); 2244 Changed = true; 2245 break; 2246 } 2247 } 2248 } 2249 2250 Instruction *Terminator = BB->getTerminator(); 2251 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2252 // Turn invokes that call 'nounwind' functions into ordinary calls. 2253 Value *Callee = II->getCalledOperand(); 2254 if ((isa<ConstantPointerNull>(Callee) && 2255 !NullPointerIsDefined(BB->getParent())) || 2256 isa<UndefValue>(Callee)) { 2257 changeToUnreachable(II, true, false, DTU); 2258 Changed = true; 2259 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2260 if (II->use_empty() && II->onlyReadsMemory()) { 2261 // jump to the normal destination branch. 2262 BasicBlock *NormalDestBB = II->getNormalDest(); 2263 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2264 BranchInst::Create(NormalDestBB, II); 2265 UnwindDestBB->removePredecessor(II->getParent()); 2266 II->eraseFromParent(); 2267 if (DTU) 2268 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2269 } else 2270 changeToCall(II, DTU); 2271 Changed = true; 2272 } 2273 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2274 // Remove catchpads which cannot be reached. 2275 struct CatchPadDenseMapInfo { 2276 static CatchPadInst *getEmptyKey() { 2277 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2278 } 2279 2280 static CatchPadInst *getTombstoneKey() { 2281 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2282 } 2283 2284 static unsigned getHashValue(CatchPadInst *CatchPad) { 2285 return static_cast<unsigned>(hash_combine_range( 2286 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2287 } 2288 2289 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2290 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2291 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2292 return LHS == RHS; 2293 return LHS->isIdenticalTo(RHS); 2294 } 2295 }; 2296 2297 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 2298 // Set of unique CatchPads. 2299 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2300 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2301 HandlerSet; 2302 detail::DenseSetEmpty Empty; 2303 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2304 E = CatchSwitch->handler_end(); 2305 I != E; ++I) { 2306 BasicBlock *HandlerBB = *I; 2307 ++NumPerSuccessorCases[HandlerBB]; 2308 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2309 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2310 --NumPerSuccessorCases[HandlerBB]; 2311 CatchSwitch->removeHandler(I); 2312 --I; 2313 --E; 2314 Changed = true; 2315 } 2316 } 2317 std::vector<DominatorTree::UpdateType> Updates; 2318 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2319 if (I.second == 0) 2320 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2321 if (DTU) 2322 DTU->applyUpdates(Updates); 2323 } 2324 2325 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2326 for (BasicBlock *Successor : successors(BB)) 2327 if (Reachable.insert(Successor).second) 2328 Worklist.push_back(Successor); 2329 } while (!Worklist.empty()); 2330 return Changed; 2331 } 2332 2333 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2334 Instruction *TI = BB->getTerminator(); 2335 2336 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2337 changeToCall(II, DTU); 2338 return; 2339 } 2340 2341 Instruction *NewTI; 2342 BasicBlock *UnwindDest; 2343 2344 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2345 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2346 UnwindDest = CRI->getUnwindDest(); 2347 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2348 auto *NewCatchSwitch = CatchSwitchInst::Create( 2349 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2350 CatchSwitch->getName(), CatchSwitch); 2351 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2352 NewCatchSwitch->addHandler(PadBB); 2353 2354 NewTI = NewCatchSwitch; 2355 UnwindDest = CatchSwitch->getUnwindDest(); 2356 } else { 2357 llvm_unreachable("Could not find unwind successor"); 2358 } 2359 2360 NewTI->takeName(TI); 2361 NewTI->setDebugLoc(TI->getDebugLoc()); 2362 UnwindDest->removePredecessor(BB); 2363 TI->replaceAllUsesWith(NewTI); 2364 TI->eraseFromParent(); 2365 if (DTU) 2366 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2367 } 2368 2369 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2370 /// if they are in a dead cycle. Return true if a change was made, false 2371 /// otherwise. 2372 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2373 MemorySSAUpdater *MSSAU) { 2374 SmallPtrSet<BasicBlock *, 16> Reachable; 2375 bool Changed = markAliveBlocks(F, Reachable, DTU); 2376 2377 // If there are unreachable blocks in the CFG... 2378 if (Reachable.size() == F.size()) 2379 return Changed; 2380 2381 assert(Reachable.size() < F.size()); 2382 2383 // Are there any blocks left to actually delete? 2384 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2385 for (BasicBlock &BB : F) { 2386 // Skip reachable basic blocks 2387 if (Reachable.count(&BB)) 2388 continue; 2389 // Skip already-deleted blocks 2390 if (DTU && DTU->isBBPendingDeletion(&BB)) 2391 continue; 2392 BlocksToRemove.insert(&BB); 2393 } 2394 2395 if (BlocksToRemove.empty()) 2396 return Changed; 2397 2398 Changed = true; 2399 NumRemoved += BlocksToRemove.size(); 2400 2401 if (MSSAU) 2402 MSSAU->removeBlocks(BlocksToRemove); 2403 2404 // Loop over all of the basic blocks that are up for removal, dropping all of 2405 // their internal references. Update DTU if available. 2406 std::vector<DominatorTree::UpdateType> Updates; 2407 for (auto *BB : BlocksToRemove) { 2408 SmallSetVector<BasicBlock *, 8> UniqueSuccessors; 2409 for (BasicBlock *Successor : successors(BB)) { 2410 // Only remove references to BB in reachable successors of BB. 2411 if (Reachable.count(Successor)) 2412 Successor->removePredecessor(BB); 2413 if (DTU) 2414 UniqueSuccessors.insert(Successor); 2415 } 2416 BB->dropAllReferences(); 2417 if (DTU) { 2418 Instruction *TI = BB->getTerminator(); 2419 assert(TI && "Basic block should have a terminator"); 2420 // Terminators like invoke can have users. We have to replace their users, 2421 // before removing them. 2422 if (!TI->use_empty()) 2423 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2424 TI->eraseFromParent(); 2425 new UnreachableInst(BB->getContext(), BB); 2426 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2427 "applying corresponding DTU updates."); 2428 Updates.reserve(Updates.size() + UniqueSuccessors.size()); 2429 for (auto *UniqueSuccessor : UniqueSuccessors) 2430 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2431 } 2432 } 2433 2434 if (DTU) { 2435 DTU->applyUpdates(Updates); 2436 for (auto *BB : BlocksToRemove) 2437 DTU->deleteBB(BB); 2438 } else { 2439 for (auto *BB : BlocksToRemove) 2440 BB->eraseFromParent(); 2441 } 2442 2443 return Changed; 2444 } 2445 2446 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2447 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2448 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2449 K->dropUnknownNonDebugMetadata(KnownIDs); 2450 K->getAllMetadataOtherThanDebugLoc(Metadata); 2451 for (const auto &MD : Metadata) { 2452 unsigned Kind = MD.first; 2453 MDNode *JMD = J->getMetadata(Kind); 2454 MDNode *KMD = MD.second; 2455 2456 switch (Kind) { 2457 default: 2458 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2459 break; 2460 case LLVMContext::MD_dbg: 2461 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2462 case LLVMContext::MD_tbaa: 2463 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2464 break; 2465 case LLVMContext::MD_alias_scope: 2466 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2467 break; 2468 case LLVMContext::MD_noalias: 2469 case LLVMContext::MD_mem_parallel_loop_access: 2470 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2471 break; 2472 case LLVMContext::MD_access_group: 2473 K->setMetadata(LLVMContext::MD_access_group, 2474 intersectAccessGroups(K, J)); 2475 break; 2476 case LLVMContext::MD_range: 2477 2478 // If K does move, use most generic range. Otherwise keep the range of 2479 // K. 2480 if (DoesKMove) 2481 // FIXME: If K does move, we should drop the range info and nonnull. 2482 // Currently this function is used with DoesKMove in passes 2483 // doing hoisting/sinking and the current behavior of using the 2484 // most generic range is correct in those cases. 2485 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2486 break; 2487 case LLVMContext::MD_fpmath: 2488 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2489 break; 2490 case LLVMContext::MD_invariant_load: 2491 // Only set the !invariant.load if it is present in both instructions. 2492 K->setMetadata(Kind, JMD); 2493 break; 2494 case LLVMContext::MD_nonnull: 2495 // If K does move, keep nonull if it is present in both instructions. 2496 if (DoesKMove) 2497 K->setMetadata(Kind, JMD); 2498 break; 2499 case LLVMContext::MD_invariant_group: 2500 // Preserve !invariant.group in K. 2501 break; 2502 case LLVMContext::MD_align: 2503 K->setMetadata(Kind, 2504 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2505 break; 2506 case LLVMContext::MD_dereferenceable: 2507 case LLVMContext::MD_dereferenceable_or_null: 2508 K->setMetadata(Kind, 2509 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2510 break; 2511 case LLVMContext::MD_preserve_access_index: 2512 // Preserve !preserve.access.index in K. 2513 break; 2514 } 2515 } 2516 // Set !invariant.group from J if J has it. If both instructions have it 2517 // then we will just pick it from J - even when they are different. 2518 // Also make sure that K is load or store - f.e. combining bitcast with load 2519 // could produce bitcast with invariant.group metadata, which is invalid. 2520 // FIXME: we should try to preserve both invariant.group md if they are 2521 // different, but right now instruction can only have one invariant.group. 2522 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2523 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2524 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2525 } 2526 2527 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2528 bool KDominatesJ) { 2529 unsigned KnownIDs[] = { 2530 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2531 LLVMContext::MD_noalias, LLVMContext::MD_range, 2532 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2533 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2534 LLVMContext::MD_dereferenceable, 2535 LLVMContext::MD_dereferenceable_or_null, 2536 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2537 combineMetadata(K, J, KnownIDs, KDominatesJ); 2538 } 2539 2540 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2541 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2542 Source.getAllMetadata(MD); 2543 MDBuilder MDB(Dest.getContext()); 2544 Type *NewType = Dest.getType(); 2545 const DataLayout &DL = Source.getModule()->getDataLayout(); 2546 for (const auto &MDPair : MD) { 2547 unsigned ID = MDPair.first; 2548 MDNode *N = MDPair.second; 2549 // Note, essentially every kind of metadata should be preserved here! This 2550 // routine is supposed to clone a load instruction changing *only its type*. 2551 // The only metadata it makes sense to drop is metadata which is invalidated 2552 // when the pointer type changes. This should essentially never be the case 2553 // in LLVM, but we explicitly switch over only known metadata to be 2554 // conservatively correct. If you are adding metadata to LLVM which pertains 2555 // to loads, you almost certainly want to add it here. 2556 switch (ID) { 2557 case LLVMContext::MD_dbg: 2558 case LLVMContext::MD_tbaa: 2559 case LLVMContext::MD_prof: 2560 case LLVMContext::MD_fpmath: 2561 case LLVMContext::MD_tbaa_struct: 2562 case LLVMContext::MD_invariant_load: 2563 case LLVMContext::MD_alias_scope: 2564 case LLVMContext::MD_noalias: 2565 case LLVMContext::MD_nontemporal: 2566 case LLVMContext::MD_mem_parallel_loop_access: 2567 case LLVMContext::MD_access_group: 2568 // All of these directly apply. 2569 Dest.setMetadata(ID, N); 2570 break; 2571 2572 case LLVMContext::MD_nonnull: 2573 copyNonnullMetadata(Source, N, Dest); 2574 break; 2575 2576 case LLVMContext::MD_align: 2577 case LLVMContext::MD_dereferenceable: 2578 case LLVMContext::MD_dereferenceable_or_null: 2579 // These only directly apply if the new type is also a pointer. 2580 if (NewType->isPointerTy()) 2581 Dest.setMetadata(ID, N); 2582 break; 2583 2584 case LLVMContext::MD_range: 2585 copyRangeMetadata(DL, Source, N, Dest); 2586 break; 2587 } 2588 } 2589 } 2590 2591 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2592 auto *ReplInst = dyn_cast<Instruction>(Repl); 2593 if (!ReplInst) 2594 return; 2595 2596 // Patch the replacement so that it is not more restrictive than the value 2597 // being replaced. 2598 // Note that if 'I' is a load being replaced by some operation, 2599 // for example, by an arithmetic operation, then andIRFlags() 2600 // would just erase all math flags from the original arithmetic 2601 // operation, which is clearly not wanted and not needed. 2602 if (!isa<LoadInst>(I)) 2603 ReplInst->andIRFlags(I); 2604 2605 // FIXME: If both the original and replacement value are part of the 2606 // same control-flow region (meaning that the execution of one 2607 // guarantees the execution of the other), then we can combine the 2608 // noalias scopes here and do better than the general conservative 2609 // answer used in combineMetadata(). 2610 2611 // In general, GVN unifies expressions over different control-flow 2612 // regions, and so we need a conservative combination of the noalias 2613 // scopes. 2614 static const unsigned KnownIDs[] = { 2615 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2616 LLVMContext::MD_noalias, LLVMContext::MD_range, 2617 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2618 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2619 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2620 combineMetadata(ReplInst, I, KnownIDs, false); 2621 } 2622 2623 template <typename RootType, typename DominatesFn> 2624 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2625 const RootType &Root, 2626 const DominatesFn &Dominates) { 2627 assert(From->getType() == To->getType()); 2628 2629 unsigned Count = 0; 2630 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2631 UI != UE;) { 2632 Use &U = *UI++; 2633 if (!Dominates(Root, U)) 2634 continue; 2635 U.set(To); 2636 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2637 << "' as " << *To << " in " << *U << "\n"); 2638 ++Count; 2639 } 2640 return Count; 2641 } 2642 2643 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2644 assert(From->getType() == To->getType()); 2645 auto *BB = From->getParent(); 2646 unsigned Count = 0; 2647 2648 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2649 UI != UE;) { 2650 Use &U = *UI++; 2651 auto *I = cast<Instruction>(U.getUser()); 2652 if (I->getParent() == BB) 2653 continue; 2654 U.set(To); 2655 ++Count; 2656 } 2657 return Count; 2658 } 2659 2660 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2661 DominatorTree &DT, 2662 const BasicBlockEdge &Root) { 2663 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2664 return DT.dominates(Root, U); 2665 }; 2666 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2667 } 2668 2669 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2670 DominatorTree &DT, 2671 const BasicBlock *BB) { 2672 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2673 auto *I = cast<Instruction>(U.getUser())->getParent(); 2674 return DT.properlyDominates(BB, I); 2675 }; 2676 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2677 } 2678 2679 bool llvm::callsGCLeafFunction(const CallBase *Call, 2680 const TargetLibraryInfo &TLI) { 2681 // Check if the function is specifically marked as a gc leaf function. 2682 if (Call->hasFnAttr("gc-leaf-function")) 2683 return true; 2684 if (const Function *F = Call->getCalledFunction()) { 2685 if (F->hasFnAttribute("gc-leaf-function")) 2686 return true; 2687 2688 if (auto IID = F->getIntrinsicID()) { 2689 // Most LLVM intrinsics do not take safepoints. 2690 return IID != Intrinsic::experimental_gc_statepoint && 2691 IID != Intrinsic::experimental_deoptimize && 2692 IID != Intrinsic::memcpy_element_unordered_atomic && 2693 IID != Intrinsic::memmove_element_unordered_atomic; 2694 } 2695 } 2696 2697 // Lib calls can be materialized by some passes, and won't be 2698 // marked as 'gc-leaf-function.' All available Libcalls are 2699 // GC-leaf. 2700 LibFunc LF; 2701 if (TLI.getLibFunc(*Call, LF)) { 2702 return TLI.has(LF); 2703 } 2704 2705 return false; 2706 } 2707 2708 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2709 LoadInst &NewLI) { 2710 auto *NewTy = NewLI.getType(); 2711 2712 // This only directly applies if the new type is also a pointer. 2713 if (NewTy->isPointerTy()) { 2714 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2715 return; 2716 } 2717 2718 // The only other translation we can do is to integral loads with !range 2719 // metadata. 2720 if (!NewTy->isIntegerTy()) 2721 return; 2722 2723 MDBuilder MDB(NewLI.getContext()); 2724 const Value *Ptr = OldLI.getPointerOperand(); 2725 auto *ITy = cast<IntegerType>(NewTy); 2726 auto *NullInt = ConstantExpr::getPtrToInt( 2727 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2728 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2729 NewLI.setMetadata(LLVMContext::MD_range, 2730 MDB.createRange(NonNullInt, NullInt)); 2731 } 2732 2733 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2734 MDNode *N, LoadInst &NewLI) { 2735 auto *NewTy = NewLI.getType(); 2736 2737 // Give up unless it is converted to a pointer where there is a single very 2738 // valuable mapping we can do reliably. 2739 // FIXME: It would be nice to propagate this in more ways, but the type 2740 // conversions make it hard. 2741 if (!NewTy->isPointerTy()) 2742 return; 2743 2744 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2745 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2746 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2747 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2748 } 2749 } 2750 2751 void llvm::dropDebugUsers(Instruction &I) { 2752 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2753 findDbgUsers(DbgUsers, &I); 2754 for (auto *DII : DbgUsers) 2755 DII->eraseFromParent(); 2756 } 2757 2758 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2759 BasicBlock *BB) { 2760 // Since we are moving the instructions out of its basic block, we do not 2761 // retain their original debug locations (DILocations) and debug intrinsic 2762 // instructions. 2763 // 2764 // Doing so would degrade the debugging experience and adversely affect the 2765 // accuracy of profiling information. 2766 // 2767 // Currently, when hoisting the instructions, we take the following actions: 2768 // - Remove their debug intrinsic instructions. 2769 // - Set their debug locations to the values from the insertion point. 2770 // 2771 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2772 // need to be deleted, is because there will not be any instructions with a 2773 // DILocation in either branch left after performing the transformation. We 2774 // can only insert a dbg.value after the two branches are joined again. 2775 // 2776 // See PR38762, PR39243 for more details. 2777 // 2778 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2779 // encode predicated DIExpressions that yield different results on different 2780 // code paths. 2781 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2782 Instruction *I = &*II; 2783 I->dropUnknownNonDebugMetadata(); 2784 if (I->isUsedByMetadata()) 2785 dropDebugUsers(*I); 2786 if (isa<DbgInfoIntrinsic>(I)) { 2787 // Remove DbgInfo Intrinsics. 2788 II = I->eraseFromParent(); 2789 continue; 2790 } 2791 I->setDebugLoc(InsertPt->getDebugLoc()); 2792 ++II; 2793 } 2794 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2795 BB->begin(), 2796 BB->getTerminator()->getIterator()); 2797 } 2798 2799 namespace { 2800 2801 /// A potential constituent of a bitreverse or bswap expression. See 2802 /// collectBitParts for a fuller explanation. 2803 struct BitPart { 2804 BitPart(Value *P, unsigned BW) : Provider(P) { 2805 Provenance.resize(BW); 2806 } 2807 2808 /// The Value that this is a bitreverse/bswap of. 2809 Value *Provider; 2810 2811 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2812 /// in Provider becomes bit B in the result of this expression. 2813 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2814 2815 enum { Unset = -1 }; 2816 }; 2817 2818 } // end anonymous namespace 2819 2820 /// Analyze the specified subexpression and see if it is capable of providing 2821 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2822 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2823 /// the output of the expression came from a corresponding bit in some other 2824 /// value. This function is recursive, and the end result is a mapping of 2825 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2826 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2827 /// 2828 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2829 /// that the expression deposits the low byte of %X into the high byte of the 2830 /// result and that all other bits are zero. This expression is accepted and a 2831 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2832 /// [0-7]. 2833 /// 2834 /// For vector types, all analysis is performed at the per-element level. No 2835 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2836 /// constant masks must be splatted across all elements. 2837 /// 2838 /// To avoid revisiting values, the BitPart results are memoized into the 2839 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2840 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2841 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2842 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2843 /// type instead to provide the same functionality. 2844 /// 2845 /// Because we pass around references into \c BPS, we must use a container that 2846 /// does not invalidate internal references (std::map instead of DenseMap). 2847 static const Optional<BitPart> & 2848 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2849 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2850 auto I = BPS.find(V); 2851 if (I != BPS.end()) 2852 return I->second; 2853 2854 auto &Result = BPS[V] = None; 2855 auto BitWidth = V->getType()->getScalarSizeInBits(); 2856 2857 // Prevent stack overflow by limiting the recursion depth 2858 if (Depth == BitPartRecursionMaxDepth) { 2859 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2860 return Result; 2861 } 2862 2863 if (auto *I = dyn_cast<Instruction>(V)) { 2864 Value *X, *Y; 2865 const APInt *C; 2866 2867 // If this is an or instruction, it may be an inner node of the bswap. 2868 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2869 const auto &A = 2870 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2871 const auto &B = 2872 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2873 if (!A || !B) 2874 return Result; 2875 2876 // Try and merge the two together. 2877 if (!A->Provider || A->Provider != B->Provider) 2878 return Result; 2879 2880 Result = BitPart(A->Provider, BitWidth); 2881 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2882 if (A->Provenance[BitIdx] != BitPart::Unset && 2883 B->Provenance[BitIdx] != BitPart::Unset && 2884 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2885 return Result = None; 2886 2887 if (A->Provenance[BitIdx] == BitPart::Unset) 2888 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2889 else 2890 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2891 } 2892 2893 return Result; 2894 } 2895 2896 // If this is a logical shift by a constant, recurse then shift the result. 2897 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2898 const APInt &BitShift = *C; 2899 2900 // Ensure the shift amount is defined. 2901 if (BitShift.uge(BitWidth)) 2902 return Result; 2903 2904 const auto &Res = 2905 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2906 if (!Res) 2907 return Result; 2908 Result = Res; 2909 2910 // Perform the "shift" on BitProvenance. 2911 auto &P = Result->Provenance; 2912 if (I->getOpcode() == Instruction::Shl) { 2913 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2914 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2915 } else { 2916 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2917 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2918 } 2919 2920 return Result; 2921 } 2922 2923 // If this is a logical 'and' with a mask that clears bits, recurse then 2924 // unset the appropriate bits. 2925 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 2926 const APInt &AndMask = *C; 2927 2928 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2929 // early exit. 2930 unsigned NumMaskedBits = AndMask.countPopulation(); 2931 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 2932 return Result; 2933 2934 const auto &Res = 2935 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2936 if (!Res) 2937 return Result; 2938 Result = Res; 2939 2940 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2941 // If the AndMask is zero for this bit, clear the bit. 2942 if (AndMask[BitIdx] == 0) 2943 Result->Provenance[BitIdx] = BitPart::Unset; 2944 return Result; 2945 } 2946 2947 // If this is a zext instruction zero extend the result. 2948 if (match(V, m_ZExt(m_Value(X)))) { 2949 const auto &Res = 2950 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2951 if (!Res) 2952 return Result; 2953 2954 Result = BitPart(Res->Provider, BitWidth); 2955 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 2956 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 2957 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 2958 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 2959 Result->Provenance[BitIdx] = BitPart::Unset; 2960 return Result; 2961 } 2962 2963 // BITREVERSE - most likely due to us previous matching a partial 2964 // bitreverse. 2965 if (match(V, m_BitReverse(m_Value(X)))) { 2966 const auto &Res = 2967 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2968 if (!Res) 2969 return Result; 2970 2971 Result = BitPart(Res->Provider, BitWidth); 2972 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2973 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 2974 return Result; 2975 } 2976 2977 // BSWAP - most likely due to us previous matching a partial bswap. 2978 if (match(V, m_BSwap(m_Value(X)))) { 2979 const auto &Res = 2980 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2981 if (!Res) 2982 return Result; 2983 2984 unsigned ByteWidth = BitWidth / 8; 2985 Result = BitPart(Res->Provider, BitWidth); 2986 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 2987 unsigned ByteBitOfs = ByteIdx * 8; 2988 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 2989 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 2990 Res->Provenance[ByteBitOfs + BitIdx]; 2991 } 2992 return Result; 2993 } 2994 2995 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 2996 // amount (modulo). 2997 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2998 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2999 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3000 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3001 // We can treat fshr as a fshl by flipping the modulo amount. 3002 unsigned ModAmt = C->urem(BitWidth); 3003 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3004 ModAmt = BitWidth - ModAmt; 3005 3006 const auto &LHS = 3007 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3008 const auto &RHS = 3009 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3010 3011 // Check we have both sources and they are from the same provider. 3012 if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider) 3013 return Result; 3014 3015 unsigned StartBitRHS = BitWidth - ModAmt; 3016 Result = BitPart(LHS->Provider, BitWidth); 3017 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3018 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3019 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3020 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3021 return Result; 3022 } 3023 } 3024 3025 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 3026 // the input value to the bswap/bitreverse. 3027 Result = BitPart(V, BitWidth); 3028 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3029 Result->Provenance[BitIdx] = BitIdx; 3030 return Result; 3031 } 3032 3033 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3034 unsigned BitWidth) { 3035 if (From % 8 != To % 8) 3036 return false; 3037 // Convert from bit indices to byte indices and check for a byte reversal. 3038 From >>= 3; 3039 To >>= 3; 3040 BitWidth >>= 3; 3041 return From == BitWidth - To - 1; 3042 } 3043 3044 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3045 unsigned BitWidth) { 3046 return From == BitWidth - To - 1; 3047 } 3048 3049 bool llvm::recognizeBSwapOrBitReverseIdiom( 3050 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3051 SmallVectorImpl<Instruction *> &InsertedInsts) { 3052 if (Operator::getOpcode(I) != Instruction::Or) 3053 return false; 3054 if (!MatchBSwaps && !MatchBitReversals) 3055 return false; 3056 Type *ITy = I->getType(); 3057 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3058 return false; // Can't do integer/elements > 128 bits. 3059 3060 Type *DemandedTy = ITy; 3061 if (I->hasOneUse()) 3062 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3063 DemandedTy = Trunc->getType(); 3064 3065 // Try to find all the pieces corresponding to the bswap. 3066 std::map<Value *, Optional<BitPart>> BPS; 3067 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 3068 if (!Res) 3069 return false; 3070 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3071 assert(all_of(BitProvenance, 3072 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3073 "Illegal bit provenance index"); 3074 3075 // If the upper bits are zero, then attempt to perform as a truncated op. 3076 if (BitProvenance.back() == BitPart::Unset) { 3077 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3078 BitProvenance = BitProvenance.drop_back(); 3079 if (BitProvenance.empty()) 3080 return false; // TODO - handle null value? 3081 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3082 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3083 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3084 } 3085 3086 // Check BitProvenance hasn't found a source larger than the result type. 3087 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3088 if (DemandedBW > ITy->getScalarSizeInBits()) 3089 return false; 3090 3091 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3092 // only byteswap values with an even number of bytes. 3093 APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); 3094 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3095 bool OKForBitReverse = MatchBitReversals; 3096 for (unsigned BitIdx = 0; 3097 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3098 if (BitProvenance[BitIdx] == BitPart::Unset) { 3099 DemandedMask.clearBit(BitIdx); 3100 continue; 3101 } 3102 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3103 DemandedBW); 3104 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3105 BitIdx, DemandedBW); 3106 } 3107 3108 Intrinsic::ID Intrin; 3109 if (OKForBSwap) 3110 Intrin = Intrinsic::bswap; 3111 else if (OKForBitReverse) 3112 Intrin = Intrinsic::bitreverse; 3113 else 3114 return false; 3115 3116 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3117 Value *Provider = Res->Provider; 3118 3119 // We may need to truncate the provider. 3120 if (DemandedTy != Provider->getType()) { 3121 auto *Trunc = 3122 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3123 InsertedInsts.push_back(Trunc); 3124 Provider = Trunc; 3125 } 3126 3127 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3128 InsertedInsts.push_back(Result); 3129 3130 if (!DemandedMask.isAllOnesValue()) { 3131 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3132 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3133 InsertedInsts.push_back(Result); 3134 } 3135 3136 // We may need to zeroextend back to the result type. 3137 if (ITy != Result->getType()) { 3138 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3139 InsertedInsts.push_back(ExtInst); 3140 } 3141 3142 return true; 3143 } 3144 3145 // CodeGen has special handling for some string functions that may replace 3146 // them with target-specific intrinsics. Since that'd skip our interceptors 3147 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3148 // we mark affected calls as NoBuiltin, which will disable optimization 3149 // in CodeGen. 3150 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3151 CallInst *CI, const TargetLibraryInfo *TLI) { 3152 Function *F = CI->getCalledFunction(); 3153 LibFunc Func; 3154 if (F && !F->hasLocalLinkage() && F->hasName() && 3155 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3156 !F->doesNotAccessMemory()) 3157 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3158 } 3159 3160 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3161 // We can't have a PHI with a metadata type. 3162 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3163 return false; 3164 3165 // Early exit. 3166 if (!isa<Constant>(I->getOperand(OpIdx))) 3167 return true; 3168 3169 switch (I->getOpcode()) { 3170 default: 3171 return true; 3172 case Instruction::Call: 3173 case Instruction::Invoke: { 3174 const auto &CB = cast<CallBase>(*I); 3175 3176 // Can't handle inline asm. Skip it. 3177 if (CB.isInlineAsm()) 3178 return false; 3179 3180 // Constant bundle operands may need to retain their constant-ness for 3181 // correctness. 3182 if (CB.isBundleOperand(OpIdx)) 3183 return false; 3184 3185 if (OpIdx < CB.getNumArgOperands()) { 3186 // Some variadic intrinsics require constants in the variadic arguments, 3187 // which currently aren't markable as immarg. 3188 if (isa<IntrinsicInst>(CB) && 3189 OpIdx >= CB.getFunctionType()->getNumParams()) { 3190 // This is known to be OK for stackmap. 3191 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3192 } 3193 3194 // gcroot is a special case, since it requires a constant argument which 3195 // isn't also required to be a simple ConstantInt. 3196 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3197 return false; 3198 3199 // Some intrinsic operands are required to be immediates. 3200 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3201 } 3202 3203 // It is never allowed to replace the call argument to an intrinsic, but it 3204 // may be possible for a call. 3205 return !isa<IntrinsicInst>(CB); 3206 } 3207 case Instruction::ShuffleVector: 3208 // Shufflevector masks are constant. 3209 return OpIdx != 2; 3210 case Instruction::Switch: 3211 case Instruction::ExtractValue: 3212 // All operands apart from the first are constant. 3213 return OpIdx == 0; 3214 case Instruction::InsertValue: 3215 // All operands apart from the first and the second are constant. 3216 return OpIdx < 2; 3217 case Instruction::Alloca: 3218 // Static allocas (constant size in the entry block) are handled by 3219 // prologue/epilogue insertion so they're free anyway. We definitely don't 3220 // want to make them non-constant. 3221 return !cast<AllocaInst>(I)->isStaticAlloca(); 3222 case Instruction::GetElementPtr: 3223 if (OpIdx == 0) 3224 return true; 3225 gep_type_iterator It = gep_type_begin(I); 3226 for (auto E = std::next(It, OpIdx); It != E; ++It) 3227 if (It.isStruct()) 3228 return false; 3229 return true; 3230 } 3231 } 3232 3233 Value *llvm::invertCondition(Value *Condition) { 3234 // First: Check if it's a constant 3235 if (Constant *C = dyn_cast<Constant>(Condition)) 3236 return ConstantExpr::getNot(C); 3237 3238 // Second: If the condition is already inverted, return the original value 3239 Value *NotCondition; 3240 if (match(Condition, m_Not(m_Value(NotCondition)))) 3241 return NotCondition; 3242 3243 BasicBlock *Parent = nullptr; 3244 Instruction *Inst = dyn_cast<Instruction>(Condition); 3245 if (Inst) 3246 Parent = Inst->getParent(); 3247 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3248 Parent = &Arg->getParent()->getEntryBlock(); 3249 assert(Parent && "Unsupported condition to invert"); 3250 3251 // Third: Check all the users for an invert 3252 for (User *U : Condition->users()) 3253 if (Instruction *I = dyn_cast<Instruction>(U)) 3254 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3255 return I; 3256 3257 // Last option: Create a new instruction 3258 auto *Inverted = 3259 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3260 if (Inst && !isa<PHINode>(Inst)) 3261 Inverted->insertAfter(Inst); 3262 else 3263 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3264 return Inverted; 3265 } 3266