1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/AssumeBundleQueries.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/LazyValueInfo.h" 34 #include "llvm/Analysis/MemoryBuiltins.h" 35 #include "llvm/Analysis/MemorySSAUpdater.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/BinaryFormat/Dwarf.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/PseudoProbe.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/Support/Casting.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/ErrorHandling.h" 77 #include "llvm/Support/KnownBits.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 80 #include "llvm/Transforms/Utils/ValueMapper.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <climits> 84 #include <cstdint> 85 #include <iterator> 86 #include <map> 87 #include <utility> 88 89 using namespace llvm; 90 using namespace llvm::PatternMatch; 91 92 #define DEBUG_TYPE "local" 93 94 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 95 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 96 97 static cl::opt<bool> PHICSEDebugHash( 98 "phicse-debug-hash", 99 #ifdef EXPENSIVE_CHECKS 100 cl::init(true), 101 #else 102 cl::init(false), 103 #endif 104 cl::Hidden, 105 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 106 "function is well-behaved w.r.t. its isEqual predicate")); 107 108 static cl::opt<unsigned> PHICSENumPHISmallSize( 109 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 110 cl::desc( 111 "When the basic block contains not more than this number of PHI nodes, " 112 "perform a (faster!) exhaustive search instead of set-driven one.")); 113 114 // Max recursion depth for collectBitParts used when detecting bswap and 115 // bitreverse idioms 116 static const unsigned BitPartRecursionMaxDepth = 64; 117 118 //===----------------------------------------------------------------------===// 119 // Local constant propagation. 120 // 121 122 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 123 /// constant value, convert it into an unconditional branch to the constant 124 /// destination. This is a nontrivial operation because the successors of this 125 /// basic block must have their PHI nodes updated. 126 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 127 /// conditions and indirectbr addresses this might make dead if 128 /// DeleteDeadConditions is true. 129 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 130 const TargetLibraryInfo *TLI, 131 DomTreeUpdater *DTU) { 132 Instruction *T = BB->getTerminator(); 133 IRBuilder<> Builder(T); 134 135 // Branch - See if we are conditional jumping on constant 136 if (auto *BI = dyn_cast<BranchInst>(T)) { 137 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 138 139 BasicBlock *Dest1 = BI->getSuccessor(0); 140 BasicBlock *Dest2 = BI->getSuccessor(1); 141 142 if (Dest2 == Dest1) { // Conditional branch to same location? 143 // This branch matches something like this: 144 // br bool %cond, label %Dest, label %Dest 145 // and changes it into: br label %Dest 146 147 // Let the basic block know that we are letting go of one copy of it. 148 assert(BI->getParent() && "Terminator not inserted in block!"); 149 Dest1->removePredecessor(BI->getParent()); 150 151 // Replace the conditional branch with an unconditional one. 152 Builder.CreateBr(Dest1); 153 Value *Cond = BI->getCondition(); 154 BI->eraseFromParent(); 155 if (DeleteDeadConditions) 156 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 157 return true; 158 } 159 160 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 161 // Are we branching on constant? 162 // YES. Change to unconditional branch... 163 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 164 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 165 166 // Let the basic block know that we are letting go of it. Based on this, 167 // it will adjust it's PHI nodes. 168 OldDest->removePredecessor(BB); 169 170 // Replace the conditional branch with an unconditional one. 171 Builder.CreateBr(Destination); 172 BI->eraseFromParent(); 173 if (DTU) 174 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 175 return true; 176 } 177 178 return false; 179 } 180 181 if (auto *SI = dyn_cast<SwitchInst>(T)) { 182 // If we are switching on a constant, we can convert the switch to an 183 // unconditional branch. 184 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 185 BasicBlock *DefaultDest = SI->getDefaultDest(); 186 BasicBlock *TheOnlyDest = DefaultDest; 187 188 // If the default is unreachable, ignore it when searching for TheOnlyDest. 189 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 190 SI->getNumCases() > 0) { 191 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 192 } 193 194 bool Changed = false; 195 196 // Figure out which case it goes to. 197 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 198 // Found case matching a constant operand? 199 if (i->getCaseValue() == CI) { 200 TheOnlyDest = i->getCaseSuccessor(); 201 break; 202 } 203 204 // Check to see if this branch is going to the same place as the default 205 // dest. If so, eliminate it as an explicit compare. 206 if (i->getCaseSuccessor() == DefaultDest) { 207 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 208 unsigned NCases = SI->getNumCases(); 209 // Fold the case metadata into the default if there will be any branches 210 // left, unless the metadata doesn't match the switch. 211 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 212 // Collect branch weights into a vector. 213 SmallVector<uint32_t, 8> Weights; 214 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 215 ++MD_i) { 216 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 217 Weights.push_back(CI->getValue().getZExtValue()); 218 } 219 // Merge weight of this case to the default weight. 220 unsigned idx = i->getCaseIndex(); 221 Weights[0] += Weights[idx+1]; 222 // Remove weight for this case. 223 std::swap(Weights[idx+1], Weights.back()); 224 Weights.pop_back(); 225 SI->setMetadata(LLVMContext::MD_prof, 226 MDBuilder(BB->getContext()). 227 createBranchWeights(Weights)); 228 } 229 // Remove this entry. 230 BasicBlock *ParentBB = SI->getParent(); 231 DefaultDest->removePredecessor(ParentBB); 232 i = SI->removeCase(i); 233 e = SI->case_end(); 234 Changed = true; 235 continue; 236 } 237 238 // Otherwise, check to see if the switch only branches to one destination. 239 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 240 // destinations. 241 if (i->getCaseSuccessor() != TheOnlyDest) 242 TheOnlyDest = nullptr; 243 244 // Increment this iterator as we haven't removed the case. 245 ++i; 246 } 247 248 if (CI && !TheOnlyDest) { 249 // Branching on a constant, but not any of the cases, go to the default 250 // successor. 251 TheOnlyDest = SI->getDefaultDest(); 252 } 253 254 // If we found a single destination that we can fold the switch into, do so 255 // now. 256 if (TheOnlyDest) { 257 // Insert the new branch. 258 Builder.CreateBr(TheOnlyDest); 259 BasicBlock *BB = SI->getParent(); 260 261 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 262 263 // Remove entries from PHI nodes which we no longer branch to... 264 BasicBlock *SuccToKeep = TheOnlyDest; 265 for (BasicBlock *Succ : successors(SI)) { 266 if (DTU && Succ != TheOnlyDest) 267 RemovedSuccessors.insert(Succ); 268 // Found case matching a constant operand? 269 if (Succ == SuccToKeep) { 270 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 271 } else { 272 Succ->removePredecessor(BB); 273 } 274 } 275 276 // Delete the old switch. 277 Value *Cond = SI->getCondition(); 278 SI->eraseFromParent(); 279 if (DeleteDeadConditions) 280 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 281 if (DTU) { 282 std::vector<DominatorTree::UpdateType> Updates; 283 Updates.reserve(RemovedSuccessors.size()); 284 for (auto *RemovedSuccessor : RemovedSuccessors) 285 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 286 DTU->applyUpdates(Updates); 287 } 288 return true; 289 } 290 291 if (SI->getNumCases() == 1) { 292 // Otherwise, we can fold this switch into a conditional branch 293 // instruction if it has only one non-default destination. 294 auto FirstCase = *SI->case_begin(); 295 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 296 FirstCase.getCaseValue(), "cond"); 297 298 // Insert the new branch. 299 BranchInst *NewBr = Builder.CreateCondBr(Cond, 300 FirstCase.getCaseSuccessor(), 301 SI->getDefaultDest()); 302 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 303 if (MD && MD->getNumOperands() == 3) { 304 ConstantInt *SICase = 305 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 306 ConstantInt *SIDef = 307 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 308 assert(SICase && SIDef); 309 // The TrueWeight should be the weight for the single case of SI. 310 NewBr->setMetadata(LLVMContext::MD_prof, 311 MDBuilder(BB->getContext()). 312 createBranchWeights(SICase->getValue().getZExtValue(), 313 SIDef->getValue().getZExtValue())); 314 } 315 316 // Update make.implicit metadata to the newly-created conditional branch. 317 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 318 if (MakeImplicitMD) 319 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 320 321 // Delete the old switch. 322 SI->eraseFromParent(); 323 return true; 324 } 325 return Changed; 326 } 327 328 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 329 // indirectbr blockaddress(@F, @BB) -> br label @BB 330 if (auto *BA = 331 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 332 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 333 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 334 335 // Insert the new branch. 336 Builder.CreateBr(TheOnlyDest); 337 338 BasicBlock *SuccToKeep = TheOnlyDest; 339 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 340 BasicBlock *DestBB = IBI->getDestination(i); 341 if (DTU && DestBB != TheOnlyDest) 342 RemovedSuccessors.insert(DestBB); 343 if (IBI->getDestination(i) == SuccToKeep) { 344 SuccToKeep = nullptr; 345 } else { 346 DestBB->removePredecessor(BB); 347 } 348 } 349 Value *Address = IBI->getAddress(); 350 IBI->eraseFromParent(); 351 if (DeleteDeadConditions) 352 // Delete pointer cast instructions. 353 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 354 355 // Also zap the blockaddress constant if there are no users remaining, 356 // otherwise the destination is still marked as having its address taken. 357 if (BA->use_empty()) 358 BA->destroyConstant(); 359 360 // If we didn't find our destination in the IBI successor list, then we 361 // have undefined behavior. Replace the unconditional branch with an 362 // 'unreachable' instruction. 363 if (SuccToKeep) { 364 BB->getTerminator()->eraseFromParent(); 365 new UnreachableInst(BB->getContext(), BB); 366 } 367 368 if (DTU) { 369 std::vector<DominatorTree::UpdateType> Updates; 370 Updates.reserve(RemovedSuccessors.size()); 371 for (auto *RemovedSuccessor : RemovedSuccessors) 372 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 373 DTU->applyUpdates(Updates); 374 } 375 return true; 376 } 377 } 378 379 return false; 380 } 381 382 //===----------------------------------------------------------------------===// 383 // Local dead code elimination. 384 // 385 386 /// isInstructionTriviallyDead - Return true if the result produced by the 387 /// instruction is not used, and the instruction has no side effects. 388 /// 389 bool llvm::isInstructionTriviallyDead(Instruction *I, 390 const TargetLibraryInfo *TLI) { 391 if (!I->use_empty()) 392 return false; 393 return wouldInstructionBeTriviallyDead(I, TLI); 394 } 395 396 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 397 const TargetLibraryInfo *TLI) { 398 if (I->isTerminator()) 399 return false; 400 401 // We don't want the landingpad-like instructions removed by anything this 402 // general. 403 if (I->isEHPad()) 404 return false; 405 406 // We don't want debug info removed by anything this general, unless 407 // debug info is empty. 408 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 409 if (DDI->getAddress()) 410 return false; 411 return true; 412 } 413 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 414 if (DVI->getValue()) 415 return false; 416 return true; 417 } 418 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 419 if (DLI->getLabel()) 420 return false; 421 return true; 422 } 423 424 if (!I->willReturn()) 425 return false; 426 427 if (!I->mayHaveSideEffects()) 428 return true; 429 430 // Special case intrinsics that "may have side effects" but can be deleted 431 // when dead. 432 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 433 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 434 if (II->getIntrinsicID() == Intrinsic::stacksave || 435 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 436 return true; 437 438 if (II->isLifetimeStartOrEnd()) { 439 auto *Arg = II->getArgOperand(1); 440 // Lifetime intrinsics are dead when their right-hand is undef. 441 if (isa<UndefValue>(Arg)) 442 return true; 443 // If the right-hand is an alloc, global, or argument and the only uses 444 // are lifetime intrinsics then the intrinsics are dead. 445 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 446 return llvm::all_of(Arg->uses(), [](Use &Use) { 447 if (IntrinsicInst *IntrinsicUse = 448 dyn_cast<IntrinsicInst>(Use.getUser())) 449 return IntrinsicUse->isLifetimeStartOrEnd(); 450 return false; 451 }); 452 return false; 453 } 454 455 // Assumptions are dead if their condition is trivially true. Guards on 456 // true are operationally no-ops. In the future we can consider more 457 // sophisticated tradeoffs for guards considering potential for check 458 // widening, but for now we keep things simple. 459 if ((II->getIntrinsicID() == Intrinsic::assume && 460 isAssumeWithEmptyBundle(*II)) || 461 II->getIntrinsicID() == Intrinsic::experimental_guard) { 462 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 463 return !Cond->isZero(); 464 465 return false; 466 } 467 } 468 469 if (isAllocLikeFn(I, TLI)) 470 return true; 471 472 if (CallInst *CI = isFreeCall(I, TLI)) 473 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 474 return C->isNullValue() || isa<UndefValue>(C); 475 476 if (auto *Call = dyn_cast<CallBase>(I)) 477 if (isMathLibCallNoop(Call, TLI)) 478 return true; 479 480 return false; 481 } 482 483 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 484 /// trivially dead instruction, delete it. If that makes any of its operands 485 /// trivially dead, delete them too, recursively. Return true if any 486 /// instructions were deleted. 487 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 488 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 489 std::function<void(Value *)> AboutToDeleteCallback) { 490 Instruction *I = dyn_cast<Instruction>(V); 491 if (!I || !isInstructionTriviallyDead(I, TLI)) 492 return false; 493 494 SmallVector<WeakTrackingVH, 16> DeadInsts; 495 DeadInsts.push_back(I); 496 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 497 AboutToDeleteCallback); 498 499 return true; 500 } 501 502 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 503 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 504 MemorySSAUpdater *MSSAU, 505 std::function<void(Value *)> AboutToDeleteCallback) { 506 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 507 for (; S != E; ++S) { 508 auto *I = cast<Instruction>(DeadInsts[S]); 509 if (!isInstructionTriviallyDead(I)) { 510 DeadInsts[S] = nullptr; 511 ++Alive; 512 } 513 } 514 if (Alive == E) 515 return false; 516 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 517 AboutToDeleteCallback); 518 return true; 519 } 520 521 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 522 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 523 MemorySSAUpdater *MSSAU, 524 std::function<void(Value *)> AboutToDeleteCallback) { 525 // Process the dead instruction list until empty. 526 while (!DeadInsts.empty()) { 527 Value *V = DeadInsts.pop_back_val(); 528 Instruction *I = cast_or_null<Instruction>(V); 529 if (!I) 530 continue; 531 assert(isInstructionTriviallyDead(I, TLI) && 532 "Live instruction found in dead worklist!"); 533 assert(I->use_empty() && "Instructions with uses are not dead."); 534 535 // Don't lose the debug info while deleting the instructions. 536 salvageDebugInfo(*I); 537 538 if (AboutToDeleteCallback) 539 AboutToDeleteCallback(I); 540 541 // Null out all of the instruction's operands to see if any operand becomes 542 // dead as we go. 543 for (Use &OpU : I->operands()) { 544 Value *OpV = OpU.get(); 545 OpU.set(nullptr); 546 547 if (!OpV->use_empty()) 548 continue; 549 550 // If the operand is an instruction that became dead as we nulled out the 551 // operand, and if it is 'trivially' dead, delete it in a future loop 552 // iteration. 553 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 554 if (isInstructionTriviallyDead(OpI, TLI)) 555 DeadInsts.push_back(OpI); 556 } 557 if (MSSAU) 558 MSSAU->removeMemoryAccess(I); 559 560 I->eraseFromParent(); 561 } 562 } 563 564 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 565 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 566 findDbgUsers(DbgUsers, I); 567 for (auto *DII : DbgUsers) { 568 Value *Undef = UndefValue::get(I->getType()); 569 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 570 ValueAsMetadata::get(Undef))); 571 } 572 return !DbgUsers.empty(); 573 } 574 575 /// areAllUsesEqual - Check whether the uses of a value are all the same. 576 /// This is similar to Instruction::hasOneUse() except this will also return 577 /// true when there are no uses or multiple uses that all refer to the same 578 /// value. 579 static bool areAllUsesEqual(Instruction *I) { 580 Value::user_iterator UI = I->user_begin(); 581 Value::user_iterator UE = I->user_end(); 582 if (UI == UE) 583 return true; 584 585 User *TheUse = *UI; 586 for (++UI; UI != UE; ++UI) { 587 if (*UI != TheUse) 588 return false; 589 } 590 return true; 591 } 592 593 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 594 /// dead PHI node, due to being a def-use chain of single-use nodes that 595 /// either forms a cycle or is terminated by a trivially dead instruction, 596 /// delete it. If that makes any of its operands trivially dead, delete them 597 /// too, recursively. Return true if a change was made. 598 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 599 const TargetLibraryInfo *TLI, 600 llvm::MemorySSAUpdater *MSSAU) { 601 SmallPtrSet<Instruction*, 4> Visited; 602 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 603 I = cast<Instruction>(*I->user_begin())) { 604 if (I->use_empty()) 605 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 606 607 // If we find an instruction more than once, we're on a cycle that 608 // won't prove fruitful. 609 if (!Visited.insert(I).second) { 610 // Break the cycle and delete the instruction and its operands. 611 I->replaceAllUsesWith(UndefValue::get(I->getType())); 612 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 613 return true; 614 } 615 } 616 return false; 617 } 618 619 static bool 620 simplifyAndDCEInstruction(Instruction *I, 621 SmallSetVector<Instruction *, 16> &WorkList, 622 const DataLayout &DL, 623 const TargetLibraryInfo *TLI) { 624 if (isInstructionTriviallyDead(I, TLI)) { 625 salvageDebugInfo(*I); 626 627 // Null out all of the instruction's operands to see if any operand becomes 628 // dead as we go. 629 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 630 Value *OpV = I->getOperand(i); 631 I->setOperand(i, nullptr); 632 633 if (!OpV->use_empty() || I == OpV) 634 continue; 635 636 // If the operand is an instruction that became dead as we nulled out the 637 // operand, and if it is 'trivially' dead, delete it in a future loop 638 // iteration. 639 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 640 if (isInstructionTriviallyDead(OpI, TLI)) 641 WorkList.insert(OpI); 642 } 643 644 I->eraseFromParent(); 645 646 return true; 647 } 648 649 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 650 // Add the users to the worklist. CAREFUL: an instruction can use itself, 651 // in the case of a phi node. 652 for (User *U : I->users()) { 653 if (U != I) { 654 WorkList.insert(cast<Instruction>(U)); 655 } 656 } 657 658 // Replace the instruction with its simplified value. 659 bool Changed = false; 660 if (!I->use_empty()) { 661 I->replaceAllUsesWith(SimpleV); 662 Changed = true; 663 } 664 if (isInstructionTriviallyDead(I, TLI)) { 665 I->eraseFromParent(); 666 Changed = true; 667 } 668 return Changed; 669 } 670 return false; 671 } 672 673 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 674 /// simplify any instructions in it and recursively delete dead instructions. 675 /// 676 /// This returns true if it changed the code, note that it can delete 677 /// instructions in other blocks as well in this block. 678 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 679 const TargetLibraryInfo *TLI) { 680 bool MadeChange = false; 681 const DataLayout &DL = BB->getModule()->getDataLayout(); 682 683 #ifndef NDEBUG 684 // In debug builds, ensure that the terminator of the block is never replaced 685 // or deleted by these simplifications. The idea of simplification is that it 686 // cannot introduce new instructions, and there is no way to replace the 687 // terminator of a block without introducing a new instruction. 688 AssertingVH<Instruction> TerminatorVH(&BB->back()); 689 #endif 690 691 SmallSetVector<Instruction *, 16> WorkList; 692 // Iterate over the original function, only adding insts to the worklist 693 // if they actually need to be revisited. This avoids having to pre-init 694 // the worklist with the entire function's worth of instructions. 695 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 696 BI != E;) { 697 assert(!BI->isTerminator()); 698 Instruction *I = &*BI; 699 ++BI; 700 701 // We're visiting this instruction now, so make sure it's not in the 702 // worklist from an earlier visit. 703 if (!WorkList.count(I)) 704 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 705 } 706 707 while (!WorkList.empty()) { 708 Instruction *I = WorkList.pop_back_val(); 709 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 710 } 711 return MadeChange; 712 } 713 714 //===----------------------------------------------------------------------===// 715 // Control Flow Graph Restructuring. 716 // 717 718 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 719 DomTreeUpdater *DTU) { 720 721 // If BB has single-entry PHI nodes, fold them. 722 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 723 Value *NewVal = PN->getIncomingValue(0); 724 // Replace self referencing PHI with undef, it must be dead. 725 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 726 PN->replaceAllUsesWith(NewVal); 727 PN->eraseFromParent(); 728 } 729 730 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 731 assert(PredBB && "Block doesn't have a single predecessor!"); 732 733 bool ReplaceEntryBB = false; 734 if (PredBB == &DestBB->getParent()->getEntryBlock()) 735 ReplaceEntryBB = true; 736 737 // DTU updates: Collect all the edges that enter 738 // PredBB. These dominator edges will be redirected to DestBB. 739 SmallVector<DominatorTree::UpdateType, 32> Updates; 740 741 if (DTU) { 742 for (BasicBlock *PredPredBB : predecessors(PredBB)) { 743 // This predecessor of PredBB may already have DestBB as a successor. 744 if (!llvm::is_contained(successors(PredPredBB), DestBB)) 745 Updates.push_back({DominatorTree::Insert, PredPredBB, DestBB}); 746 Updates.push_back({DominatorTree::Delete, PredPredBB, PredBB}); 747 } 748 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 749 } 750 751 // Zap anything that took the address of DestBB. Not doing this will give the 752 // address an invalid value. 753 if (DestBB->hasAddressTaken()) { 754 BlockAddress *BA = BlockAddress::get(DestBB); 755 Constant *Replacement = 756 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 757 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 758 BA->getType())); 759 BA->destroyConstant(); 760 } 761 762 // Anything that branched to PredBB now branches to DestBB. 763 PredBB->replaceAllUsesWith(DestBB); 764 765 // Splice all the instructions from PredBB to DestBB. 766 PredBB->getTerminator()->eraseFromParent(); 767 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 768 new UnreachableInst(PredBB->getContext(), PredBB); 769 770 // If the PredBB is the entry block of the function, move DestBB up to 771 // become the entry block after we erase PredBB. 772 if (ReplaceEntryBB) 773 DestBB->moveAfter(PredBB); 774 775 if (DTU) { 776 assert(PredBB->getInstList().size() == 1 && 777 isa<UnreachableInst>(PredBB->getTerminator()) && 778 "The successor list of PredBB isn't empty before " 779 "applying corresponding DTU updates."); 780 DTU->applyUpdatesPermissive(Updates); 781 DTU->deleteBB(PredBB); 782 // Recalculation of DomTree is needed when updating a forward DomTree and 783 // the Entry BB is replaced. 784 if (ReplaceEntryBB && DTU->hasDomTree()) { 785 // The entry block was removed and there is no external interface for 786 // the dominator tree to be notified of this change. In this corner-case 787 // we recalculate the entire tree. 788 DTU->recalculate(*(DestBB->getParent())); 789 } 790 } 791 792 else { 793 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 794 } 795 } 796 797 /// Return true if we can choose one of these values to use in place of the 798 /// other. Note that we will always choose the non-undef value to keep. 799 static bool CanMergeValues(Value *First, Value *Second) { 800 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 801 } 802 803 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 804 /// branch to Succ, into Succ. 805 /// 806 /// Assumption: Succ is the single successor for BB. 807 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 808 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 809 810 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 811 << Succ->getName() << "\n"); 812 // Shortcut, if there is only a single predecessor it must be BB and merging 813 // is always safe 814 if (Succ->getSinglePredecessor()) return true; 815 816 // Make a list of the predecessors of BB 817 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 818 819 // Look at all the phi nodes in Succ, to see if they present a conflict when 820 // merging these blocks 821 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 822 PHINode *PN = cast<PHINode>(I); 823 824 // If the incoming value from BB is again a PHINode in 825 // BB which has the same incoming value for *PI as PN does, we can 826 // merge the phi nodes and then the blocks can still be merged 827 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 828 if (BBPN && BBPN->getParent() == BB) { 829 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 830 BasicBlock *IBB = PN->getIncomingBlock(PI); 831 if (BBPreds.count(IBB) && 832 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 833 PN->getIncomingValue(PI))) { 834 LLVM_DEBUG(dbgs() 835 << "Can't fold, phi node " << PN->getName() << " in " 836 << Succ->getName() << " is conflicting with " 837 << BBPN->getName() << " with regard to common predecessor " 838 << IBB->getName() << "\n"); 839 return false; 840 } 841 } 842 } else { 843 Value* Val = PN->getIncomingValueForBlock(BB); 844 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 845 // See if the incoming value for the common predecessor is equal to the 846 // one for BB, in which case this phi node will not prevent the merging 847 // of the block. 848 BasicBlock *IBB = PN->getIncomingBlock(PI); 849 if (BBPreds.count(IBB) && 850 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 851 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 852 << " in " << Succ->getName() 853 << " is conflicting with regard to common " 854 << "predecessor " << IBB->getName() << "\n"); 855 return false; 856 } 857 } 858 } 859 } 860 861 return true; 862 } 863 864 using PredBlockVector = SmallVector<BasicBlock *, 16>; 865 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 866 867 /// Determines the value to use as the phi node input for a block. 868 /// 869 /// Select between \p OldVal any value that we know flows from \p BB 870 /// to a particular phi on the basis of which one (if either) is not 871 /// undef. Update IncomingValues based on the selected value. 872 /// 873 /// \param OldVal The value we are considering selecting. 874 /// \param BB The block that the value flows in from. 875 /// \param IncomingValues A map from block-to-value for other phi inputs 876 /// that we have examined. 877 /// 878 /// \returns the selected value. 879 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 880 IncomingValueMap &IncomingValues) { 881 if (!isa<UndefValue>(OldVal)) { 882 assert((!IncomingValues.count(BB) || 883 IncomingValues.find(BB)->second == OldVal) && 884 "Expected OldVal to match incoming value from BB!"); 885 886 IncomingValues.insert(std::make_pair(BB, OldVal)); 887 return OldVal; 888 } 889 890 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 891 if (It != IncomingValues.end()) return It->second; 892 893 return OldVal; 894 } 895 896 /// Create a map from block to value for the operands of a 897 /// given phi. 898 /// 899 /// Create a map from block to value for each non-undef value flowing 900 /// into \p PN. 901 /// 902 /// \param PN The phi we are collecting the map for. 903 /// \param IncomingValues [out] The map from block to value for this phi. 904 static void gatherIncomingValuesToPhi(PHINode *PN, 905 IncomingValueMap &IncomingValues) { 906 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 907 BasicBlock *BB = PN->getIncomingBlock(i); 908 Value *V = PN->getIncomingValue(i); 909 910 if (!isa<UndefValue>(V)) 911 IncomingValues.insert(std::make_pair(BB, V)); 912 } 913 } 914 915 /// Replace the incoming undef values to a phi with the values 916 /// from a block-to-value map. 917 /// 918 /// \param PN The phi we are replacing the undefs in. 919 /// \param IncomingValues A map from block to value. 920 static void replaceUndefValuesInPhi(PHINode *PN, 921 const IncomingValueMap &IncomingValues) { 922 SmallVector<unsigned> TrueUndefOps; 923 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 924 Value *V = PN->getIncomingValue(i); 925 926 if (!isa<UndefValue>(V)) continue; 927 928 BasicBlock *BB = PN->getIncomingBlock(i); 929 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 930 931 // Keep track of undef/poison incoming values. Those must match, so we fix 932 // them up below if needed. 933 // Note: this is conservatively correct, but we could try harder and group 934 // the undef values per incoming basic block. 935 if (It == IncomingValues.end()) { 936 TrueUndefOps.push_back(i); 937 continue; 938 } 939 940 // There is a defined value for this incoming block, so map this undef 941 // incoming value to the defined value. 942 PN->setIncomingValue(i, It->second); 943 } 944 945 // If there are both undef and poison values incoming, then convert those 946 // values to undef. It is invalid to have different values for the same 947 // incoming block. 948 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 949 return isa<PoisonValue>(PN->getIncomingValue(i)); 950 }); 951 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 952 for (unsigned i : TrueUndefOps) 953 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 954 } 955 } 956 957 /// Replace a value flowing from a block to a phi with 958 /// potentially multiple instances of that value flowing from the 959 /// block's predecessors to the phi. 960 /// 961 /// \param BB The block with the value flowing into the phi. 962 /// \param BBPreds The predecessors of BB. 963 /// \param PN The phi that we are updating. 964 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 965 const PredBlockVector &BBPreds, 966 PHINode *PN) { 967 Value *OldVal = PN->removeIncomingValue(BB, false); 968 assert(OldVal && "No entry in PHI for Pred BB!"); 969 970 IncomingValueMap IncomingValues; 971 972 // We are merging two blocks - BB, and the block containing PN - and 973 // as a result we need to redirect edges from the predecessors of BB 974 // to go to the block containing PN, and update PN 975 // accordingly. Since we allow merging blocks in the case where the 976 // predecessor and successor blocks both share some predecessors, 977 // and where some of those common predecessors might have undef 978 // values flowing into PN, we want to rewrite those values to be 979 // consistent with the non-undef values. 980 981 gatherIncomingValuesToPhi(PN, IncomingValues); 982 983 // If this incoming value is one of the PHI nodes in BB, the new entries 984 // in the PHI node are the entries from the old PHI. 985 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 986 PHINode *OldValPN = cast<PHINode>(OldVal); 987 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 988 // Note that, since we are merging phi nodes and BB and Succ might 989 // have common predecessors, we could end up with a phi node with 990 // identical incoming branches. This will be cleaned up later (and 991 // will trigger asserts if we try to clean it up now, without also 992 // simplifying the corresponding conditional branch). 993 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 994 Value *PredVal = OldValPN->getIncomingValue(i); 995 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 996 IncomingValues); 997 998 // And add a new incoming value for this predecessor for the 999 // newly retargeted branch. 1000 PN->addIncoming(Selected, PredBB); 1001 } 1002 } else { 1003 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1004 // Update existing incoming values in PN for this 1005 // predecessor of BB. 1006 BasicBlock *PredBB = BBPreds[i]; 1007 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1008 IncomingValues); 1009 1010 // And add a new incoming value for this predecessor for the 1011 // newly retargeted branch. 1012 PN->addIncoming(Selected, PredBB); 1013 } 1014 } 1015 1016 replaceUndefValuesInPhi(PN, IncomingValues); 1017 } 1018 1019 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1020 DomTreeUpdater *DTU) { 1021 assert(BB != &BB->getParent()->getEntryBlock() && 1022 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1023 1024 // We can't eliminate infinite loops. 1025 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1026 if (BB == Succ) return false; 1027 1028 // Check to see if merging these blocks would cause conflicts for any of the 1029 // phi nodes in BB or Succ. If not, we can safely merge. 1030 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1031 1032 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1033 // has uses which will not disappear when the PHI nodes are merged. It is 1034 // possible to handle such cases, but difficult: it requires checking whether 1035 // BB dominates Succ, which is non-trivial to calculate in the case where 1036 // Succ has multiple predecessors. Also, it requires checking whether 1037 // constructing the necessary self-referential PHI node doesn't introduce any 1038 // conflicts; this isn't too difficult, but the previous code for doing this 1039 // was incorrect. 1040 // 1041 // Note that if this check finds a live use, BB dominates Succ, so BB is 1042 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1043 // folding the branch isn't profitable in that case anyway. 1044 if (!Succ->getSinglePredecessor()) { 1045 BasicBlock::iterator BBI = BB->begin(); 1046 while (isa<PHINode>(*BBI)) { 1047 for (Use &U : BBI->uses()) { 1048 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1049 if (PN->getIncomingBlock(U) != BB) 1050 return false; 1051 } else { 1052 return false; 1053 } 1054 } 1055 ++BBI; 1056 } 1057 } 1058 1059 // We cannot fold the block if it's a branch to an already present callbr 1060 // successor because that creates duplicate successors. 1061 for (BasicBlock *PredBB : predecessors(BB)) { 1062 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { 1063 if (Succ == CBI->getDefaultDest()) 1064 return false; 1065 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1066 if (Succ == CBI->getIndirectDest(i)) 1067 return false; 1068 } 1069 } 1070 1071 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1072 1073 SmallVector<DominatorTree::UpdateType, 32> Updates; 1074 if (DTU) { 1075 // All predecessors of BB will be moved to Succ. 1076 SmallSetVector<BasicBlock *, 8> Predecessors(pred_begin(BB), pred_end(BB)); 1077 Updates.reserve(Updates.size() + 2 * Predecessors.size()); 1078 for (auto *Predecessor : Predecessors) { 1079 // This predecessor of BB may already have Succ as a successor. 1080 if (!llvm::is_contained(successors(Predecessor), Succ)) 1081 Updates.push_back({DominatorTree::Insert, Predecessor, Succ}); 1082 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 1083 } 1084 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1085 } 1086 1087 if (isa<PHINode>(Succ->begin())) { 1088 // If there is more than one pred of succ, and there are PHI nodes in 1089 // the successor, then we need to add incoming edges for the PHI nodes 1090 // 1091 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1092 1093 // Loop over all of the PHI nodes in the successor of BB. 1094 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1095 PHINode *PN = cast<PHINode>(I); 1096 1097 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1098 } 1099 } 1100 1101 if (Succ->getSinglePredecessor()) { 1102 // BB is the only predecessor of Succ, so Succ will end up with exactly 1103 // the same predecessors BB had. 1104 1105 // Copy over any phi, debug or lifetime instruction. 1106 BB->getTerminator()->eraseFromParent(); 1107 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1108 BB->getInstList()); 1109 } else { 1110 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1111 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1112 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1113 PN->eraseFromParent(); 1114 } 1115 } 1116 1117 // If the unconditional branch we replaced contains llvm.loop metadata, we 1118 // add the metadata to the branch instructions in the predecessors. 1119 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1120 Instruction *TI = BB->getTerminator(); 1121 if (TI) 1122 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1123 for (BasicBlock *Pred : predecessors(BB)) 1124 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1125 1126 // For AutoFDO, since BB is going to be removed, we won't be able to sample 1127 // it. To avoid assigning a zero weight for BB, move all its pseudo probes 1128 // into Succ and mark them dangling. This should allow the counts inference a 1129 // chance to get a more reasonable weight for BB. 1130 moveAndDanglePseudoProbes(BB, &*Succ->getFirstInsertionPt()); 1131 1132 // Everything that jumped to BB now goes to Succ. 1133 BB->replaceAllUsesWith(Succ); 1134 if (!Succ->hasName()) Succ->takeName(BB); 1135 1136 // Clear the successor list of BB to match updates applying to DTU later. 1137 if (BB->getTerminator()) 1138 BB->getInstList().pop_back(); 1139 new UnreachableInst(BB->getContext(), BB); 1140 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1141 "applying corresponding DTU updates."); 1142 1143 if (DTU) { 1144 DTU->applyUpdates(Updates); 1145 DTU->deleteBB(BB); 1146 } else { 1147 BB->eraseFromParent(); // Delete the old basic block. 1148 } 1149 return true; 1150 } 1151 1152 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1153 // This implementation doesn't currently consider undef operands 1154 // specially. Theoretically, two phis which are identical except for 1155 // one having an undef where the other doesn't could be collapsed. 1156 1157 bool Changed = false; 1158 1159 // Examine each PHI. 1160 // Note that increment of I must *NOT* be in the iteration_expression, since 1161 // we don't want to immediately advance when we restart from the beginning. 1162 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1163 ++I; 1164 // Is there an identical PHI node in this basic block? 1165 // Note that we only look in the upper square's triangle, 1166 // we already checked that the lower triangle PHI's aren't identical. 1167 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1168 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1169 continue; 1170 // A duplicate. Replace this PHI with the base PHI. 1171 ++NumPHICSEs; 1172 DuplicatePN->replaceAllUsesWith(PN); 1173 DuplicatePN->eraseFromParent(); 1174 Changed = true; 1175 1176 // The RAUW can change PHIs that we already visited. 1177 I = BB->begin(); 1178 break; // Start over from the beginning. 1179 } 1180 } 1181 return Changed; 1182 } 1183 1184 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1185 // This implementation doesn't currently consider undef operands 1186 // specially. Theoretically, two phis which are identical except for 1187 // one having an undef where the other doesn't could be collapsed. 1188 1189 struct PHIDenseMapInfo { 1190 static PHINode *getEmptyKey() { 1191 return DenseMapInfo<PHINode *>::getEmptyKey(); 1192 } 1193 1194 static PHINode *getTombstoneKey() { 1195 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1196 } 1197 1198 static bool isSentinel(PHINode *PN) { 1199 return PN == getEmptyKey() || PN == getTombstoneKey(); 1200 } 1201 1202 // WARNING: this logic must be kept in sync with 1203 // Instruction::isIdenticalToWhenDefined()! 1204 static unsigned getHashValueImpl(PHINode *PN) { 1205 // Compute a hash value on the operands. Instcombine will likely have 1206 // sorted them, which helps expose duplicates, but we have to check all 1207 // the operands to be safe in case instcombine hasn't run. 1208 return static_cast<unsigned>(hash_combine( 1209 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1210 hash_combine_range(PN->block_begin(), PN->block_end()))); 1211 } 1212 1213 static unsigned getHashValue(PHINode *PN) { 1214 #ifndef NDEBUG 1215 // If -phicse-debug-hash was specified, return a constant -- this 1216 // will force all hashing to collide, so we'll exhaustively search 1217 // the table for a match, and the assertion in isEqual will fire if 1218 // there's a bug causing equal keys to hash differently. 1219 if (PHICSEDebugHash) 1220 return 0; 1221 #endif 1222 return getHashValueImpl(PN); 1223 } 1224 1225 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1226 if (isSentinel(LHS) || isSentinel(RHS)) 1227 return LHS == RHS; 1228 return LHS->isIdenticalTo(RHS); 1229 } 1230 1231 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1232 // These comparisons are nontrivial, so assert that equality implies 1233 // hash equality (DenseMap demands this as an invariant). 1234 bool Result = isEqualImpl(LHS, RHS); 1235 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1236 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1237 return Result; 1238 } 1239 }; 1240 1241 // Set of unique PHINodes. 1242 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1243 PHISet.reserve(4 * PHICSENumPHISmallSize); 1244 1245 // Examine each PHI. 1246 bool Changed = false; 1247 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1248 auto Inserted = PHISet.insert(PN); 1249 if (!Inserted.second) { 1250 // A duplicate. Replace this PHI with its duplicate. 1251 ++NumPHICSEs; 1252 PN->replaceAllUsesWith(*Inserted.first); 1253 PN->eraseFromParent(); 1254 Changed = true; 1255 1256 // The RAUW can change PHIs that we already visited. Start over from the 1257 // beginning. 1258 PHISet.clear(); 1259 I = BB->begin(); 1260 } 1261 } 1262 1263 return Changed; 1264 } 1265 1266 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1267 if ( 1268 #ifndef NDEBUG 1269 !PHICSEDebugHash && 1270 #endif 1271 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1272 return EliminateDuplicatePHINodesNaiveImpl(BB); 1273 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1274 } 1275 1276 /// If the specified pointer points to an object that we control, try to modify 1277 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1278 /// the value after the operation, which may be lower than PrefAlign. 1279 /// 1280 /// Increating value alignment isn't often possible though. If alignment is 1281 /// important, a more reliable approach is to simply align all global variables 1282 /// and allocation instructions to their preferred alignment from the beginning. 1283 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1284 const DataLayout &DL) { 1285 V = V->stripPointerCasts(); 1286 1287 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1288 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1289 // than the current alignment, as the known bits calculation should have 1290 // already taken it into account. However, this is not always the case, 1291 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1292 // doesn't. 1293 Align CurrentAlign = AI->getAlign(); 1294 if (PrefAlign <= CurrentAlign) 1295 return CurrentAlign; 1296 1297 // If the preferred alignment is greater than the natural stack alignment 1298 // then don't round up. This avoids dynamic stack realignment. 1299 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1300 return CurrentAlign; 1301 AI->setAlignment(PrefAlign); 1302 return PrefAlign; 1303 } 1304 1305 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1306 // TODO: as above, this shouldn't be necessary. 1307 Align CurrentAlign = GO->getPointerAlignment(DL); 1308 if (PrefAlign <= CurrentAlign) 1309 return CurrentAlign; 1310 1311 // If there is a large requested alignment and we can, bump up the alignment 1312 // of the global. If the memory we set aside for the global may not be the 1313 // memory used by the final program then it is impossible for us to reliably 1314 // enforce the preferred alignment. 1315 if (!GO->canIncreaseAlignment()) 1316 return CurrentAlign; 1317 1318 GO->setAlignment(PrefAlign); 1319 return PrefAlign; 1320 } 1321 1322 return Align(1); 1323 } 1324 1325 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1326 const DataLayout &DL, 1327 const Instruction *CxtI, 1328 AssumptionCache *AC, 1329 const DominatorTree *DT) { 1330 assert(V->getType()->isPointerTy() && 1331 "getOrEnforceKnownAlignment expects a pointer!"); 1332 1333 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1334 unsigned TrailZ = Known.countMinTrailingZeros(); 1335 1336 // Avoid trouble with ridiculously large TrailZ values, such as 1337 // those computed from a null pointer. 1338 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1339 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1340 1341 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1342 1343 if (PrefAlign && *PrefAlign > Alignment) 1344 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1345 1346 // We don't need to make any adjustment. 1347 return Alignment; 1348 } 1349 1350 ///===---------------------------------------------------------------------===// 1351 /// Dbg Intrinsic utilities 1352 /// 1353 1354 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1355 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1356 DIExpression *DIExpr, 1357 PHINode *APN) { 1358 // Since we can't guarantee that the original dbg.declare instrinsic 1359 // is removed by LowerDbgDeclare(), we need to make sure that we are 1360 // not inserting the same dbg.value intrinsic over and over. 1361 SmallVector<DbgValueInst *, 1> DbgValues; 1362 findDbgValues(DbgValues, APN); 1363 for (auto *DVI : DbgValues) { 1364 assert(DVI->getValue() == APN); 1365 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1366 return true; 1367 } 1368 return false; 1369 } 1370 1371 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1372 /// (or fragment of the variable) described by \p DII. 1373 /// 1374 /// This is primarily intended as a helper for the different 1375 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1376 /// converted describes an alloca'd variable, so we need to use the 1377 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1378 /// identified as covering an n-bit fragment, if the store size of i1 is at 1379 /// least n bits. 1380 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1381 const DataLayout &DL = DII->getModule()->getDataLayout(); 1382 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1383 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1384 assert(!ValueSize.isScalable() && 1385 "Fragments don't work on scalable types."); 1386 return ValueSize.getFixedSize() >= *FragmentSize; 1387 } 1388 // We can't always calculate the size of the DI variable (e.g. if it is a 1389 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1390 // intead. 1391 if (DII->isAddressOfVariable()) 1392 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1393 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1394 assert(ValueSize.isScalable() == FragmentSize->isScalable() && 1395 "Both sizes should agree on the scalable flag."); 1396 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1397 } 1398 // Could not determine size of variable. Conservatively return false. 1399 return false; 1400 } 1401 1402 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1403 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1404 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1405 /// case this DebugLoc leaks into any adjacent instructions. 1406 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1407 // Original dbg.declare must have a location. 1408 DebugLoc DeclareLoc = DII->getDebugLoc(); 1409 MDNode *Scope = DeclareLoc.getScope(); 1410 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1411 // Produce an unknown location with the correct scope / inlinedAt fields. 1412 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1413 } 1414 1415 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1416 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1417 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1418 StoreInst *SI, DIBuilder &Builder) { 1419 assert(DII->isAddressOfVariable()); 1420 auto *DIVar = DII->getVariable(); 1421 assert(DIVar && "Missing variable"); 1422 auto *DIExpr = DII->getExpression(); 1423 Value *DV = SI->getValueOperand(); 1424 1425 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1426 1427 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1428 // FIXME: If storing to a part of the variable described by the dbg.declare, 1429 // then we want to insert a dbg.value for the corresponding fragment. 1430 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1431 << *DII << '\n'); 1432 // For now, when there is a store to parts of the variable (but we do not 1433 // know which part) we insert an dbg.value instrinsic to indicate that we 1434 // know nothing about the variable's content. 1435 DV = UndefValue::get(DV->getType()); 1436 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1437 return; 1438 } 1439 1440 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1441 } 1442 1443 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1444 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1445 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1446 LoadInst *LI, DIBuilder &Builder) { 1447 auto *DIVar = DII->getVariable(); 1448 auto *DIExpr = DII->getExpression(); 1449 assert(DIVar && "Missing variable"); 1450 1451 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1452 // FIXME: If only referring to a part of the variable described by the 1453 // dbg.declare, then we want to insert a dbg.value for the corresponding 1454 // fragment. 1455 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1456 << *DII << '\n'); 1457 return; 1458 } 1459 1460 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1461 1462 // We are now tracking the loaded value instead of the address. In the 1463 // future if multi-location support is added to the IR, it might be 1464 // preferable to keep tracking both the loaded value and the original 1465 // address in case the alloca can not be elided. 1466 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1467 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1468 DbgValue->insertAfter(LI); 1469 } 1470 1471 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1472 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1473 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1474 PHINode *APN, DIBuilder &Builder) { 1475 auto *DIVar = DII->getVariable(); 1476 auto *DIExpr = DII->getExpression(); 1477 assert(DIVar && "Missing variable"); 1478 1479 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1480 return; 1481 1482 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1483 // FIXME: If only referring to a part of the variable described by the 1484 // dbg.declare, then we want to insert a dbg.value for the corresponding 1485 // fragment. 1486 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1487 << *DII << '\n'); 1488 return; 1489 } 1490 1491 BasicBlock *BB = APN->getParent(); 1492 auto InsertionPt = BB->getFirstInsertionPt(); 1493 1494 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1495 1496 // The block may be a catchswitch block, which does not have a valid 1497 // insertion point. 1498 // FIXME: Insert dbg.value markers in the successors when appropriate. 1499 if (InsertionPt != BB->end()) 1500 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1501 } 1502 1503 /// Determine whether this alloca is either a VLA or an array. 1504 static bool isArray(AllocaInst *AI) { 1505 return AI->isArrayAllocation() || 1506 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1507 } 1508 1509 /// Determine whether this alloca is a structure. 1510 static bool isStructure(AllocaInst *AI) { 1511 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1512 } 1513 1514 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1515 /// of llvm.dbg.value intrinsics. 1516 bool llvm::LowerDbgDeclare(Function &F) { 1517 bool Changed = false; 1518 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1519 SmallVector<DbgDeclareInst *, 4> Dbgs; 1520 for (auto &FI : F) 1521 for (Instruction &BI : FI) 1522 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1523 Dbgs.push_back(DDI); 1524 1525 if (Dbgs.empty()) 1526 return Changed; 1527 1528 for (auto &I : Dbgs) { 1529 DbgDeclareInst *DDI = I; 1530 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1531 // If this is an alloca for a scalar variable, insert a dbg.value 1532 // at each load and store to the alloca and erase the dbg.declare. 1533 // The dbg.values allow tracking a variable even if it is not 1534 // stored on the stack, while the dbg.declare can only describe 1535 // the stack slot (and at a lexical-scope granularity). Later 1536 // passes will attempt to elide the stack slot. 1537 if (!AI || isArray(AI) || isStructure(AI)) 1538 continue; 1539 1540 // A volatile load/store means that the alloca can't be elided anyway. 1541 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1542 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1543 return LI->isVolatile(); 1544 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1545 return SI->isVolatile(); 1546 return false; 1547 })) 1548 continue; 1549 1550 SmallVector<const Value *, 8> WorkList; 1551 WorkList.push_back(AI); 1552 while (!WorkList.empty()) { 1553 const Value *V = WorkList.pop_back_val(); 1554 for (auto &AIUse : V->uses()) { 1555 User *U = AIUse.getUser(); 1556 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1557 if (AIUse.getOperandNo() == 1) 1558 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1559 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1560 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1561 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1562 // This is a call by-value or some other instruction that takes a 1563 // pointer to the variable. Insert a *value* intrinsic that describes 1564 // the variable by dereferencing the alloca. 1565 if (!CI->isLifetimeStartOrEnd()) { 1566 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1567 auto *DerefExpr = 1568 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1569 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1570 NewLoc, CI); 1571 } 1572 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1573 if (BI->getType()->isPointerTy()) 1574 WorkList.push_back(BI); 1575 } 1576 } 1577 } 1578 DDI->eraseFromParent(); 1579 Changed = true; 1580 } 1581 1582 if (Changed) 1583 for (BasicBlock &BB : F) 1584 RemoveRedundantDbgInstrs(&BB); 1585 1586 return Changed; 1587 } 1588 1589 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1590 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1591 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1592 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1593 if (InsertedPHIs.size() == 0) 1594 return; 1595 1596 // Map existing PHI nodes to their dbg.values. 1597 ValueToValueMapTy DbgValueMap; 1598 for (auto &I : *BB) { 1599 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1600 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1601 DbgValueMap.insert({Loc, DbgII}); 1602 } 1603 } 1604 if (DbgValueMap.size() == 0) 1605 return; 1606 1607 // Then iterate through the new PHIs and look to see if they use one of the 1608 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1609 // propagate the info through the new PHI. 1610 LLVMContext &C = BB->getContext(); 1611 for (auto PHI : InsertedPHIs) { 1612 BasicBlock *Parent = PHI->getParent(); 1613 // Avoid inserting an intrinsic into an EH block. 1614 if (Parent->getFirstNonPHI()->isEHPad()) 1615 continue; 1616 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1617 for (auto VI : PHI->operand_values()) { 1618 auto V = DbgValueMap.find(VI); 1619 if (V != DbgValueMap.end()) { 1620 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1621 Instruction *NewDbgII = DbgII->clone(); 1622 NewDbgII->setOperand(0, PhiMAV); 1623 auto InsertionPt = Parent->getFirstInsertionPt(); 1624 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1625 NewDbgII->insertBefore(&*InsertionPt); 1626 } 1627 } 1628 } 1629 } 1630 1631 /// Finds all intrinsics declaring local variables as living in the memory that 1632 /// 'V' points to. This may include a mix of dbg.declare and 1633 /// dbg.addr intrinsics. 1634 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1635 // This function is hot. Check whether the value has any metadata to avoid a 1636 // DenseMap lookup. 1637 if (!V->isUsedByMetadata()) 1638 return {}; 1639 auto *L = LocalAsMetadata::getIfExists(V); 1640 if (!L) 1641 return {}; 1642 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1643 if (!MDV) 1644 return {}; 1645 1646 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1647 for (User *U : MDV->users()) { 1648 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1649 if (DII->isAddressOfVariable()) 1650 Declares.push_back(DII); 1651 } 1652 1653 return Declares; 1654 } 1655 1656 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) { 1657 TinyPtrVector<DbgDeclareInst *> DDIs; 1658 for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V)) 1659 if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI)) 1660 DDIs.push_back(DDI); 1661 return DDIs; 1662 } 1663 1664 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1665 // This function is hot. Check whether the value has any metadata to avoid a 1666 // DenseMap lookup. 1667 if (!V->isUsedByMetadata()) 1668 return; 1669 if (auto *L = LocalAsMetadata::getIfExists(V)) 1670 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1671 for (User *U : MDV->users()) 1672 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1673 DbgValues.push_back(DVI); 1674 } 1675 1676 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1677 Value *V) { 1678 // This function is hot. Check whether the value has any metadata to avoid a 1679 // DenseMap lookup. 1680 if (!V->isUsedByMetadata()) 1681 return; 1682 if (auto *L = LocalAsMetadata::getIfExists(V)) 1683 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1684 for (User *U : MDV->users()) 1685 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1686 DbgUsers.push_back(DII); 1687 } 1688 1689 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1690 DIBuilder &Builder, uint8_t DIExprFlags, 1691 int Offset) { 1692 auto DbgAddrs = FindDbgAddrUses(Address); 1693 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1694 DebugLoc Loc = DII->getDebugLoc(); 1695 auto *DIVar = DII->getVariable(); 1696 auto *DIExpr = DII->getExpression(); 1697 assert(DIVar && "Missing variable"); 1698 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1699 // Insert llvm.dbg.declare immediately before DII, and remove old 1700 // llvm.dbg.declare. 1701 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1702 DII->eraseFromParent(); 1703 } 1704 return !DbgAddrs.empty(); 1705 } 1706 1707 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1708 DIBuilder &Builder, int Offset) { 1709 DebugLoc Loc = DVI->getDebugLoc(); 1710 auto *DIVar = DVI->getVariable(); 1711 auto *DIExpr = DVI->getExpression(); 1712 assert(DIVar && "Missing variable"); 1713 1714 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1715 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1716 // it and give up. 1717 if (!DIExpr || DIExpr->getNumElements() < 1 || 1718 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1719 return; 1720 1721 // Insert the offset before the first deref. 1722 // We could just change the offset argument of dbg.value, but it's unsigned... 1723 if (Offset) 1724 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1725 1726 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1727 DVI->eraseFromParent(); 1728 } 1729 1730 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1731 DIBuilder &Builder, int Offset) { 1732 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1733 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1734 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1735 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1736 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1737 } 1738 1739 /// Wrap \p V in a ValueAsMetadata instance. 1740 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1741 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1742 } 1743 1744 /// Where possible to salvage debug information for \p I do so 1745 /// and return True. If not possible mark undef and return False. 1746 void llvm::salvageDebugInfo(Instruction &I) { 1747 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1748 findDbgUsers(DbgUsers, &I); 1749 salvageDebugInfoForDbgValues(I, DbgUsers); 1750 } 1751 1752 void llvm::salvageDebugInfoForDbgValues( 1753 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1754 auto &Ctx = I.getContext(); 1755 bool Salvaged = false; 1756 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1757 1758 for (auto *DII : DbgUsers) { 1759 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1760 // are implicitly pointing out the value as a DWARF memory location 1761 // description. 1762 bool StackValue = isa<DbgValueInst>(DII); 1763 1764 DIExpression *DIExpr = 1765 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1766 1767 // salvageDebugInfoImpl should fail on examining the first element of 1768 // DbgUsers, or none of them. 1769 if (!DIExpr) 1770 break; 1771 1772 DII->setOperand(0, wrapMD(I.getOperand(0))); 1773 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1774 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1775 Salvaged = true; 1776 } 1777 1778 if (Salvaged) 1779 return; 1780 1781 for (auto *DII : DbgUsers) { 1782 Value *Undef = UndefValue::get(I.getType()); 1783 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 1784 ValueAsMetadata::get(Undef))); 1785 } 1786 } 1787 1788 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1789 DIExpression *SrcDIExpr, 1790 bool WithStackValue) { 1791 auto &M = *I.getModule(); 1792 auto &DL = M.getDataLayout(); 1793 1794 // Apply a vector of opcodes to the source DIExpression. 1795 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1796 DIExpression *DIExpr = SrcDIExpr; 1797 if (!Ops.empty()) { 1798 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1799 } 1800 return DIExpr; 1801 }; 1802 1803 // Apply the given offset to the source DIExpression. 1804 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1805 SmallVector<uint64_t, 8> Ops; 1806 DIExpression::appendOffset(Ops, Offset); 1807 return doSalvage(Ops); 1808 }; 1809 1810 // initializer-list helper for applying operators to the source DIExpression. 1811 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1812 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1813 return doSalvage(Ops); 1814 }; 1815 1816 if (auto *CI = dyn_cast<CastInst>(&I)) { 1817 // No-op casts are irrelevant for debug info. 1818 if (CI->isNoopCast(DL)) 1819 return SrcDIExpr; 1820 1821 Type *Type = CI->getType(); 1822 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1823 if (Type->isVectorTy() || 1824 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1825 return nullptr; 1826 1827 Value *FromValue = CI->getOperand(0); 1828 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1829 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1830 1831 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1832 isa<SExtInst>(&I))); 1833 } 1834 1835 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1836 unsigned BitWidth = 1837 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1838 // Rewrite a constant GEP into a DIExpression. 1839 APInt Offset(BitWidth, 0); 1840 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1841 return applyOffset(Offset.getSExtValue()); 1842 } else { 1843 return nullptr; 1844 } 1845 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1846 // Rewrite binary operations with constant integer operands. 1847 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1848 if (!ConstInt || ConstInt->getBitWidth() > 64) 1849 return nullptr; 1850 1851 uint64_t Val = ConstInt->getSExtValue(); 1852 switch (BI->getOpcode()) { 1853 case Instruction::Add: 1854 return applyOffset(Val); 1855 case Instruction::Sub: 1856 return applyOffset(-int64_t(Val)); 1857 case Instruction::Mul: 1858 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1859 case Instruction::SDiv: 1860 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1861 case Instruction::SRem: 1862 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1863 case Instruction::Or: 1864 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1865 case Instruction::And: 1866 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1867 case Instruction::Xor: 1868 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1869 case Instruction::Shl: 1870 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1871 case Instruction::LShr: 1872 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1873 case Instruction::AShr: 1874 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1875 default: 1876 // TODO: Salvage constants from each kind of binop we know about. 1877 return nullptr; 1878 } 1879 // *Not* to do: we should not attempt to salvage load instructions, 1880 // because the validity and lifetime of a dbg.value containing 1881 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1882 } 1883 return nullptr; 1884 } 1885 1886 /// A replacement for a dbg.value expression. 1887 using DbgValReplacement = Optional<DIExpression *>; 1888 1889 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1890 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1891 /// changes are made. 1892 static bool rewriteDebugUsers( 1893 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1894 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1895 // Find debug users of From. 1896 SmallVector<DbgVariableIntrinsic *, 1> Users; 1897 findDbgUsers(Users, &From); 1898 if (Users.empty()) 1899 return false; 1900 1901 // Prevent use-before-def of To. 1902 bool Changed = false; 1903 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1904 if (isa<Instruction>(&To)) { 1905 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1906 1907 for (auto *DII : Users) { 1908 // It's common to see a debug user between From and DomPoint. Move it 1909 // after DomPoint to preserve the variable update without any reordering. 1910 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1911 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1912 DII->moveAfter(&DomPoint); 1913 Changed = true; 1914 1915 // Users which otherwise aren't dominated by the replacement value must 1916 // be salvaged or deleted. 1917 } else if (!DT.dominates(&DomPoint, DII)) { 1918 UndefOrSalvage.insert(DII); 1919 } 1920 } 1921 } 1922 1923 // Update debug users without use-before-def risk. 1924 for (auto *DII : Users) { 1925 if (UndefOrSalvage.count(DII)) 1926 continue; 1927 1928 LLVMContext &Ctx = DII->getContext(); 1929 DbgValReplacement DVR = RewriteExpr(*DII); 1930 if (!DVR) 1931 continue; 1932 1933 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1934 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1935 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1936 Changed = true; 1937 } 1938 1939 if (!UndefOrSalvage.empty()) { 1940 // Try to salvage the remaining debug users. 1941 salvageDebugInfo(From); 1942 Changed = true; 1943 } 1944 1945 return Changed; 1946 } 1947 1948 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1949 /// losslessly preserve the bits and semantics of the value. This predicate is 1950 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1951 /// 1952 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1953 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1954 /// and also does not allow lossless pointer <-> integer conversions. 1955 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1956 Type *ToTy) { 1957 // Trivially compatible types. 1958 if (FromTy == ToTy) 1959 return true; 1960 1961 // Handle compatible pointer <-> integer conversions. 1962 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1963 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1964 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1965 !DL.isNonIntegralPointerType(ToTy); 1966 return SameSize && LosslessConversion; 1967 } 1968 1969 // TODO: This is not exhaustive. 1970 return false; 1971 } 1972 1973 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1974 Instruction &DomPoint, DominatorTree &DT) { 1975 // Exit early if From has no debug users. 1976 if (!From.isUsedByMetadata()) 1977 return false; 1978 1979 assert(&From != &To && "Can't replace something with itself"); 1980 1981 Type *FromTy = From.getType(); 1982 Type *ToTy = To.getType(); 1983 1984 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1985 return DII.getExpression(); 1986 }; 1987 1988 // Handle no-op conversions. 1989 Module &M = *From.getModule(); 1990 const DataLayout &DL = M.getDataLayout(); 1991 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1992 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1993 1994 // Handle integer-to-integer widening and narrowing. 1995 // FIXME: Use DW_OP_convert when it's available everywhere. 1996 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1997 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1998 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1999 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2000 2001 // When the width of the result grows, assume that a debugger will only 2002 // access the low `FromBits` bits when inspecting the source variable. 2003 if (FromBits < ToBits) 2004 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2005 2006 // The width of the result has shrunk. Use sign/zero extension to describe 2007 // the source variable's high bits. 2008 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2009 DILocalVariable *Var = DII.getVariable(); 2010 2011 // Without knowing signedness, sign/zero extension isn't possible. 2012 auto Signedness = Var->getSignedness(); 2013 if (!Signedness) 2014 return None; 2015 2016 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2017 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2018 Signed); 2019 }; 2020 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2021 } 2022 2023 // TODO: Floating-point conversions, vectors. 2024 return false; 2025 } 2026 2027 std::pair<unsigned, unsigned> 2028 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2029 unsigned NumDeadInst = 0; 2030 unsigned NumDeadDbgInst = 0; 2031 // Delete the instructions backwards, as it has a reduced likelihood of 2032 // having to update as many def-use and use-def chains. 2033 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2034 while (EndInst != &BB->front()) { 2035 // Delete the next to last instruction. 2036 Instruction *Inst = &*--EndInst->getIterator(); 2037 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2038 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2039 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2040 EndInst = Inst; 2041 continue; 2042 } 2043 if (isa<DbgInfoIntrinsic>(Inst)) 2044 ++NumDeadDbgInst; 2045 else 2046 ++NumDeadInst; 2047 Inst->eraseFromParent(); 2048 } 2049 return {NumDeadInst, NumDeadDbgInst}; 2050 } 2051 2052 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2053 bool PreserveLCSSA, DomTreeUpdater *DTU, 2054 MemorySSAUpdater *MSSAU) { 2055 BasicBlock *BB = I->getParent(); 2056 2057 if (MSSAU) 2058 MSSAU->changeToUnreachable(I); 2059 2060 SmallSetVector<BasicBlock *, 8> UniqueSuccessors; 2061 2062 // Loop over all of the successors, removing BB's entry from any PHI 2063 // nodes. 2064 for (BasicBlock *Successor : successors(BB)) { 2065 Successor->removePredecessor(BB, PreserveLCSSA); 2066 if (DTU) 2067 UniqueSuccessors.insert(Successor); 2068 } 2069 // Insert a call to llvm.trap right before this. This turns the undefined 2070 // behavior into a hard fail instead of falling through into random code. 2071 if (UseLLVMTrap) { 2072 Function *TrapFn = 2073 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2074 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2075 CallTrap->setDebugLoc(I->getDebugLoc()); 2076 } 2077 auto *UI = new UnreachableInst(I->getContext(), I); 2078 UI->setDebugLoc(I->getDebugLoc()); 2079 2080 // All instructions after this are dead. 2081 unsigned NumInstrsRemoved = 0; 2082 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2083 while (BBI != BBE) { 2084 if (!BBI->use_empty()) 2085 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2086 BB->getInstList().erase(BBI++); 2087 ++NumInstrsRemoved; 2088 } 2089 if (DTU) { 2090 SmallVector<DominatorTree::UpdateType, 8> Updates; 2091 Updates.reserve(UniqueSuccessors.size()); 2092 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2093 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2094 DTU->applyUpdates(Updates); 2095 } 2096 return NumInstrsRemoved; 2097 } 2098 2099 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2100 SmallVector<Value *, 8> Args(II->args()); 2101 SmallVector<OperandBundleDef, 1> OpBundles; 2102 II->getOperandBundlesAsDefs(OpBundles); 2103 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2104 II->getCalledOperand(), Args, OpBundles); 2105 NewCall->setCallingConv(II->getCallingConv()); 2106 NewCall->setAttributes(II->getAttributes()); 2107 NewCall->setDebugLoc(II->getDebugLoc()); 2108 NewCall->copyMetadata(*II); 2109 2110 // If the invoke had profile metadata, try converting them for CallInst. 2111 uint64_t TotalWeight; 2112 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2113 // Set the total weight if it fits into i32, otherwise reset. 2114 MDBuilder MDB(NewCall->getContext()); 2115 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2116 ? nullptr 2117 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2118 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2119 } 2120 2121 return NewCall; 2122 } 2123 2124 /// changeToCall - Convert the specified invoke into a normal call. 2125 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2126 CallInst *NewCall = createCallMatchingInvoke(II); 2127 NewCall->takeName(II); 2128 NewCall->insertBefore(II); 2129 II->replaceAllUsesWith(NewCall); 2130 2131 // Follow the call by a branch to the normal destination. 2132 BasicBlock *NormalDestBB = II->getNormalDest(); 2133 BranchInst::Create(NormalDestBB, II); 2134 2135 // Update PHI nodes in the unwind destination 2136 BasicBlock *BB = II->getParent(); 2137 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2138 UnwindDestBB->removePredecessor(BB); 2139 II->eraseFromParent(); 2140 if (DTU) 2141 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2142 } 2143 2144 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2145 BasicBlock *UnwindEdge, 2146 DomTreeUpdater *DTU) { 2147 BasicBlock *BB = CI->getParent(); 2148 2149 // Convert this function call into an invoke instruction. First, split the 2150 // basic block. 2151 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2152 CI->getName() + ".noexc"); 2153 2154 // Delete the unconditional branch inserted by SplitBlock 2155 BB->getInstList().pop_back(); 2156 2157 // Create the new invoke instruction. 2158 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2159 SmallVector<OperandBundleDef, 1> OpBundles; 2160 2161 CI->getOperandBundlesAsDefs(OpBundles); 2162 2163 // Note: we're round tripping operand bundles through memory here, and that 2164 // can potentially be avoided with a cleverer API design that we do not have 2165 // as of this time. 2166 2167 InvokeInst *II = 2168 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2169 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2170 II->setDebugLoc(CI->getDebugLoc()); 2171 II->setCallingConv(CI->getCallingConv()); 2172 II->setAttributes(CI->getAttributes()); 2173 2174 if (DTU) 2175 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2176 2177 // Make sure that anything using the call now uses the invoke! This also 2178 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2179 CI->replaceAllUsesWith(II); 2180 2181 // Delete the original call 2182 Split->getInstList().pop_front(); 2183 return Split; 2184 } 2185 2186 static bool markAliveBlocks(Function &F, 2187 SmallPtrSetImpl<BasicBlock *> &Reachable, 2188 DomTreeUpdater *DTU = nullptr) { 2189 SmallVector<BasicBlock*, 128> Worklist; 2190 BasicBlock *BB = &F.front(); 2191 Worklist.push_back(BB); 2192 Reachable.insert(BB); 2193 bool Changed = false; 2194 do { 2195 BB = Worklist.pop_back_val(); 2196 2197 // Do a quick scan of the basic block, turning any obviously unreachable 2198 // instructions into LLVM unreachable insts. The instruction combining pass 2199 // canonicalizes unreachable insts into stores to null or undef. 2200 for (Instruction &I : *BB) { 2201 if (auto *CI = dyn_cast<CallInst>(&I)) { 2202 Value *Callee = CI->getCalledOperand(); 2203 // Handle intrinsic calls. 2204 if (Function *F = dyn_cast<Function>(Callee)) { 2205 auto IntrinsicID = F->getIntrinsicID(); 2206 // Assumptions that are known to be false are equivalent to 2207 // unreachable. Also, if the condition is undefined, then we make the 2208 // choice most beneficial to the optimizer, and choose that to also be 2209 // unreachable. 2210 if (IntrinsicID == Intrinsic::assume) { 2211 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2212 // Don't insert a call to llvm.trap right before the unreachable. 2213 changeToUnreachable(CI, false, false, DTU); 2214 Changed = true; 2215 break; 2216 } 2217 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2218 // A call to the guard intrinsic bails out of the current 2219 // compilation unit if the predicate passed to it is false. If the 2220 // predicate is a constant false, then we know the guard will bail 2221 // out of the current compile unconditionally, so all code following 2222 // it is dead. 2223 // 2224 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2225 // guards to treat `undef` as `false` since a guard on `undef` can 2226 // still be useful for widening. 2227 if (match(CI->getArgOperand(0), m_Zero())) 2228 if (!isa<UnreachableInst>(CI->getNextNode())) { 2229 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2230 false, DTU); 2231 Changed = true; 2232 break; 2233 } 2234 } 2235 } else if ((isa<ConstantPointerNull>(Callee) && 2236 !NullPointerIsDefined(CI->getFunction())) || 2237 isa<UndefValue>(Callee)) { 2238 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2239 Changed = true; 2240 break; 2241 } 2242 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2243 // If we found a call to a no-return function, insert an unreachable 2244 // instruction after it. Make sure there isn't *already* one there 2245 // though. 2246 if (!isa<UnreachableInst>(CI->getNextNode())) { 2247 // Don't insert a call to llvm.trap right before the unreachable. 2248 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2249 Changed = true; 2250 } 2251 break; 2252 } 2253 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2254 // Store to undef and store to null are undefined and used to signal 2255 // that they should be changed to unreachable by passes that can't 2256 // modify the CFG. 2257 2258 // Don't touch volatile stores. 2259 if (SI->isVolatile()) continue; 2260 2261 Value *Ptr = SI->getOperand(1); 2262 2263 if (isa<UndefValue>(Ptr) || 2264 (isa<ConstantPointerNull>(Ptr) && 2265 !NullPointerIsDefined(SI->getFunction(), 2266 SI->getPointerAddressSpace()))) { 2267 changeToUnreachable(SI, true, false, DTU); 2268 Changed = true; 2269 break; 2270 } 2271 } 2272 } 2273 2274 Instruction *Terminator = BB->getTerminator(); 2275 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2276 // Turn invokes that call 'nounwind' functions into ordinary calls. 2277 Value *Callee = II->getCalledOperand(); 2278 if ((isa<ConstantPointerNull>(Callee) && 2279 !NullPointerIsDefined(BB->getParent())) || 2280 isa<UndefValue>(Callee)) { 2281 changeToUnreachable(II, true, false, DTU); 2282 Changed = true; 2283 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2284 if (II->use_empty() && II->onlyReadsMemory()) { 2285 // jump to the normal destination branch. 2286 BasicBlock *NormalDestBB = II->getNormalDest(); 2287 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2288 BranchInst::Create(NormalDestBB, II); 2289 UnwindDestBB->removePredecessor(II->getParent()); 2290 II->eraseFromParent(); 2291 if (DTU) 2292 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2293 } else 2294 changeToCall(II, DTU); 2295 Changed = true; 2296 } 2297 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2298 // Remove catchpads which cannot be reached. 2299 struct CatchPadDenseMapInfo { 2300 static CatchPadInst *getEmptyKey() { 2301 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2302 } 2303 2304 static CatchPadInst *getTombstoneKey() { 2305 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2306 } 2307 2308 static unsigned getHashValue(CatchPadInst *CatchPad) { 2309 return static_cast<unsigned>(hash_combine_range( 2310 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2311 } 2312 2313 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2314 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2315 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2316 return LHS == RHS; 2317 return LHS->isIdenticalTo(RHS); 2318 } 2319 }; 2320 2321 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 2322 // Set of unique CatchPads. 2323 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2324 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2325 HandlerSet; 2326 detail::DenseSetEmpty Empty; 2327 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2328 E = CatchSwitch->handler_end(); 2329 I != E; ++I) { 2330 BasicBlock *HandlerBB = *I; 2331 ++NumPerSuccessorCases[HandlerBB]; 2332 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2333 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2334 --NumPerSuccessorCases[HandlerBB]; 2335 CatchSwitch->removeHandler(I); 2336 --I; 2337 --E; 2338 Changed = true; 2339 } 2340 } 2341 std::vector<DominatorTree::UpdateType> Updates; 2342 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2343 if (I.second == 0) 2344 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2345 if (DTU) 2346 DTU->applyUpdates(Updates); 2347 } 2348 2349 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2350 for (BasicBlock *Successor : successors(BB)) 2351 if (Reachable.insert(Successor).second) 2352 Worklist.push_back(Successor); 2353 } while (!Worklist.empty()); 2354 return Changed; 2355 } 2356 2357 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2358 Instruction *TI = BB->getTerminator(); 2359 2360 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2361 changeToCall(II, DTU); 2362 return; 2363 } 2364 2365 Instruction *NewTI; 2366 BasicBlock *UnwindDest; 2367 2368 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2369 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2370 UnwindDest = CRI->getUnwindDest(); 2371 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2372 auto *NewCatchSwitch = CatchSwitchInst::Create( 2373 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2374 CatchSwitch->getName(), CatchSwitch); 2375 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2376 NewCatchSwitch->addHandler(PadBB); 2377 2378 NewTI = NewCatchSwitch; 2379 UnwindDest = CatchSwitch->getUnwindDest(); 2380 } else { 2381 llvm_unreachable("Could not find unwind successor"); 2382 } 2383 2384 NewTI->takeName(TI); 2385 NewTI->setDebugLoc(TI->getDebugLoc()); 2386 UnwindDest->removePredecessor(BB); 2387 TI->replaceAllUsesWith(NewTI); 2388 TI->eraseFromParent(); 2389 if (DTU) 2390 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2391 } 2392 2393 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2394 /// if they are in a dead cycle. Return true if a change was made, false 2395 /// otherwise. 2396 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2397 MemorySSAUpdater *MSSAU) { 2398 SmallPtrSet<BasicBlock *, 16> Reachable; 2399 bool Changed = markAliveBlocks(F, Reachable, DTU); 2400 2401 // If there are unreachable blocks in the CFG... 2402 if (Reachable.size() == F.size()) 2403 return Changed; 2404 2405 assert(Reachable.size() < F.size()); 2406 2407 // Are there any blocks left to actually delete? 2408 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2409 for (BasicBlock &BB : F) { 2410 // Skip reachable basic blocks 2411 if (Reachable.count(&BB)) 2412 continue; 2413 // Skip already-deleted blocks 2414 if (DTU && DTU->isBBPendingDeletion(&BB)) 2415 continue; 2416 BlocksToRemove.insert(&BB); 2417 } 2418 2419 if (BlocksToRemove.empty()) 2420 return Changed; 2421 2422 Changed = true; 2423 NumRemoved += BlocksToRemove.size(); 2424 2425 if (MSSAU) 2426 MSSAU->removeBlocks(BlocksToRemove); 2427 2428 // Loop over all of the basic blocks that are up for removal, dropping all of 2429 // their internal references. Update DTU if available. 2430 std::vector<DominatorTree::UpdateType> Updates; 2431 for (auto *BB : BlocksToRemove) { 2432 SmallSetVector<BasicBlock *, 8> UniqueSuccessors; 2433 for (BasicBlock *Successor : successors(BB)) { 2434 // Only remove references to BB in reachable successors of BB. 2435 if (Reachable.count(Successor)) 2436 Successor->removePredecessor(BB); 2437 if (DTU) 2438 UniqueSuccessors.insert(Successor); 2439 } 2440 BB->dropAllReferences(); 2441 if (DTU) { 2442 Instruction *TI = BB->getTerminator(); 2443 assert(TI && "Basic block should have a terminator"); 2444 // Terminators like invoke can have users. We have to replace their users, 2445 // before removing them. 2446 if (!TI->use_empty()) 2447 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2448 TI->eraseFromParent(); 2449 new UnreachableInst(BB->getContext(), BB); 2450 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2451 "applying corresponding DTU updates."); 2452 Updates.reserve(Updates.size() + UniqueSuccessors.size()); 2453 for (auto *UniqueSuccessor : UniqueSuccessors) 2454 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2455 } 2456 } 2457 2458 if (DTU) { 2459 DTU->applyUpdates(Updates); 2460 for (auto *BB : BlocksToRemove) 2461 DTU->deleteBB(BB); 2462 } else { 2463 for (auto *BB : BlocksToRemove) 2464 BB->eraseFromParent(); 2465 } 2466 2467 return Changed; 2468 } 2469 2470 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2471 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2472 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2473 K->dropUnknownNonDebugMetadata(KnownIDs); 2474 K->getAllMetadataOtherThanDebugLoc(Metadata); 2475 for (const auto &MD : Metadata) { 2476 unsigned Kind = MD.first; 2477 MDNode *JMD = J->getMetadata(Kind); 2478 MDNode *KMD = MD.second; 2479 2480 switch (Kind) { 2481 default: 2482 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2483 break; 2484 case LLVMContext::MD_dbg: 2485 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2486 case LLVMContext::MD_tbaa: 2487 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2488 break; 2489 case LLVMContext::MD_alias_scope: 2490 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2491 break; 2492 case LLVMContext::MD_noalias: 2493 case LLVMContext::MD_mem_parallel_loop_access: 2494 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2495 break; 2496 case LLVMContext::MD_access_group: 2497 K->setMetadata(LLVMContext::MD_access_group, 2498 intersectAccessGroups(K, J)); 2499 break; 2500 case LLVMContext::MD_range: 2501 2502 // If K does move, use most generic range. Otherwise keep the range of 2503 // K. 2504 if (DoesKMove) 2505 // FIXME: If K does move, we should drop the range info and nonnull. 2506 // Currently this function is used with DoesKMove in passes 2507 // doing hoisting/sinking and the current behavior of using the 2508 // most generic range is correct in those cases. 2509 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2510 break; 2511 case LLVMContext::MD_fpmath: 2512 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2513 break; 2514 case LLVMContext::MD_invariant_load: 2515 // Only set the !invariant.load if it is present in both instructions. 2516 K->setMetadata(Kind, JMD); 2517 break; 2518 case LLVMContext::MD_nonnull: 2519 // If K does move, keep nonull if it is present in both instructions. 2520 if (DoesKMove) 2521 K->setMetadata(Kind, JMD); 2522 break; 2523 case LLVMContext::MD_invariant_group: 2524 // Preserve !invariant.group in K. 2525 break; 2526 case LLVMContext::MD_align: 2527 K->setMetadata(Kind, 2528 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2529 break; 2530 case LLVMContext::MD_dereferenceable: 2531 case LLVMContext::MD_dereferenceable_or_null: 2532 K->setMetadata(Kind, 2533 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2534 break; 2535 case LLVMContext::MD_preserve_access_index: 2536 // Preserve !preserve.access.index in K. 2537 break; 2538 } 2539 } 2540 // Set !invariant.group from J if J has it. If both instructions have it 2541 // then we will just pick it from J - even when they are different. 2542 // Also make sure that K is load or store - f.e. combining bitcast with load 2543 // could produce bitcast with invariant.group metadata, which is invalid. 2544 // FIXME: we should try to preserve both invariant.group md if they are 2545 // different, but right now instruction can only have one invariant.group. 2546 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2547 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2548 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2549 } 2550 2551 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2552 bool KDominatesJ) { 2553 unsigned KnownIDs[] = { 2554 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2555 LLVMContext::MD_noalias, LLVMContext::MD_range, 2556 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2557 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2558 LLVMContext::MD_dereferenceable, 2559 LLVMContext::MD_dereferenceable_or_null, 2560 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2561 combineMetadata(K, J, KnownIDs, KDominatesJ); 2562 } 2563 2564 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2565 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2566 Source.getAllMetadata(MD); 2567 MDBuilder MDB(Dest.getContext()); 2568 Type *NewType = Dest.getType(); 2569 const DataLayout &DL = Source.getModule()->getDataLayout(); 2570 for (const auto &MDPair : MD) { 2571 unsigned ID = MDPair.first; 2572 MDNode *N = MDPair.second; 2573 // Note, essentially every kind of metadata should be preserved here! This 2574 // routine is supposed to clone a load instruction changing *only its type*. 2575 // The only metadata it makes sense to drop is metadata which is invalidated 2576 // when the pointer type changes. This should essentially never be the case 2577 // in LLVM, but we explicitly switch over only known metadata to be 2578 // conservatively correct. If you are adding metadata to LLVM which pertains 2579 // to loads, you almost certainly want to add it here. 2580 switch (ID) { 2581 case LLVMContext::MD_dbg: 2582 case LLVMContext::MD_tbaa: 2583 case LLVMContext::MD_prof: 2584 case LLVMContext::MD_fpmath: 2585 case LLVMContext::MD_tbaa_struct: 2586 case LLVMContext::MD_invariant_load: 2587 case LLVMContext::MD_alias_scope: 2588 case LLVMContext::MD_noalias: 2589 case LLVMContext::MD_nontemporal: 2590 case LLVMContext::MD_mem_parallel_loop_access: 2591 case LLVMContext::MD_access_group: 2592 // All of these directly apply. 2593 Dest.setMetadata(ID, N); 2594 break; 2595 2596 case LLVMContext::MD_nonnull: 2597 copyNonnullMetadata(Source, N, Dest); 2598 break; 2599 2600 case LLVMContext::MD_align: 2601 case LLVMContext::MD_dereferenceable: 2602 case LLVMContext::MD_dereferenceable_or_null: 2603 // These only directly apply if the new type is also a pointer. 2604 if (NewType->isPointerTy()) 2605 Dest.setMetadata(ID, N); 2606 break; 2607 2608 case LLVMContext::MD_range: 2609 copyRangeMetadata(DL, Source, N, Dest); 2610 break; 2611 } 2612 } 2613 } 2614 2615 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2616 auto *ReplInst = dyn_cast<Instruction>(Repl); 2617 if (!ReplInst) 2618 return; 2619 2620 // Patch the replacement so that it is not more restrictive than the value 2621 // being replaced. 2622 // Note that if 'I' is a load being replaced by some operation, 2623 // for example, by an arithmetic operation, then andIRFlags() 2624 // would just erase all math flags from the original arithmetic 2625 // operation, which is clearly not wanted and not needed. 2626 if (!isa<LoadInst>(I)) 2627 ReplInst->andIRFlags(I); 2628 2629 // FIXME: If both the original and replacement value are part of the 2630 // same control-flow region (meaning that the execution of one 2631 // guarantees the execution of the other), then we can combine the 2632 // noalias scopes here and do better than the general conservative 2633 // answer used in combineMetadata(). 2634 2635 // In general, GVN unifies expressions over different control-flow 2636 // regions, and so we need a conservative combination of the noalias 2637 // scopes. 2638 static const unsigned KnownIDs[] = { 2639 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2640 LLVMContext::MD_noalias, LLVMContext::MD_range, 2641 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2642 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2643 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2644 combineMetadata(ReplInst, I, KnownIDs, false); 2645 } 2646 2647 template <typename RootType, typename DominatesFn> 2648 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2649 const RootType &Root, 2650 const DominatesFn &Dominates) { 2651 assert(From->getType() == To->getType()); 2652 2653 unsigned Count = 0; 2654 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2655 UI != UE;) { 2656 Use &U = *UI++; 2657 if (!Dominates(Root, U)) 2658 continue; 2659 U.set(To); 2660 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2661 << "' as " << *To << " in " << *U << "\n"); 2662 ++Count; 2663 } 2664 return Count; 2665 } 2666 2667 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2668 assert(From->getType() == To->getType()); 2669 auto *BB = From->getParent(); 2670 unsigned Count = 0; 2671 2672 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2673 UI != UE;) { 2674 Use &U = *UI++; 2675 auto *I = cast<Instruction>(U.getUser()); 2676 if (I->getParent() == BB) 2677 continue; 2678 U.set(To); 2679 ++Count; 2680 } 2681 return Count; 2682 } 2683 2684 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2685 DominatorTree &DT, 2686 const BasicBlockEdge &Root) { 2687 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2688 return DT.dominates(Root, U); 2689 }; 2690 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2691 } 2692 2693 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2694 DominatorTree &DT, 2695 const BasicBlock *BB) { 2696 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2697 auto *I = cast<Instruction>(U.getUser())->getParent(); 2698 return DT.properlyDominates(BB, I); 2699 }; 2700 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2701 } 2702 2703 bool llvm::callsGCLeafFunction(const CallBase *Call, 2704 const TargetLibraryInfo &TLI) { 2705 // Check if the function is specifically marked as a gc leaf function. 2706 if (Call->hasFnAttr("gc-leaf-function")) 2707 return true; 2708 if (const Function *F = Call->getCalledFunction()) { 2709 if (F->hasFnAttribute("gc-leaf-function")) 2710 return true; 2711 2712 if (auto IID = F->getIntrinsicID()) { 2713 // Most LLVM intrinsics do not take safepoints. 2714 return IID != Intrinsic::experimental_gc_statepoint && 2715 IID != Intrinsic::experimental_deoptimize && 2716 IID != Intrinsic::memcpy_element_unordered_atomic && 2717 IID != Intrinsic::memmove_element_unordered_atomic; 2718 } 2719 } 2720 2721 // Lib calls can be materialized by some passes, and won't be 2722 // marked as 'gc-leaf-function.' All available Libcalls are 2723 // GC-leaf. 2724 LibFunc LF; 2725 if (TLI.getLibFunc(*Call, LF)) { 2726 return TLI.has(LF); 2727 } 2728 2729 return false; 2730 } 2731 2732 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2733 LoadInst &NewLI) { 2734 auto *NewTy = NewLI.getType(); 2735 2736 // This only directly applies if the new type is also a pointer. 2737 if (NewTy->isPointerTy()) { 2738 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2739 return; 2740 } 2741 2742 // The only other translation we can do is to integral loads with !range 2743 // metadata. 2744 if (!NewTy->isIntegerTy()) 2745 return; 2746 2747 MDBuilder MDB(NewLI.getContext()); 2748 const Value *Ptr = OldLI.getPointerOperand(); 2749 auto *ITy = cast<IntegerType>(NewTy); 2750 auto *NullInt = ConstantExpr::getPtrToInt( 2751 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2752 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2753 NewLI.setMetadata(LLVMContext::MD_range, 2754 MDB.createRange(NonNullInt, NullInt)); 2755 } 2756 2757 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2758 MDNode *N, LoadInst &NewLI) { 2759 auto *NewTy = NewLI.getType(); 2760 2761 // Give up unless it is converted to a pointer where there is a single very 2762 // valuable mapping we can do reliably. 2763 // FIXME: It would be nice to propagate this in more ways, but the type 2764 // conversions make it hard. 2765 if (!NewTy->isPointerTy()) 2766 return; 2767 2768 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2769 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2770 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2771 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2772 } 2773 } 2774 2775 void llvm::dropDebugUsers(Instruction &I) { 2776 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2777 findDbgUsers(DbgUsers, &I); 2778 for (auto *DII : DbgUsers) 2779 DII->eraseFromParent(); 2780 } 2781 2782 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2783 BasicBlock *BB) { 2784 // Since we are moving the instructions out of its basic block, we do not 2785 // retain their original debug locations (DILocations) and debug intrinsic 2786 // instructions. 2787 // 2788 // Doing so would degrade the debugging experience and adversely affect the 2789 // accuracy of profiling information. 2790 // 2791 // Currently, when hoisting the instructions, we take the following actions: 2792 // - Remove their debug intrinsic instructions. 2793 // - Set their debug locations to the values from the insertion point. 2794 // 2795 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2796 // need to be deleted, is because there will not be any instructions with a 2797 // DILocation in either branch left after performing the transformation. We 2798 // can only insert a dbg.value after the two branches are joined again. 2799 // 2800 // See PR38762, PR39243 for more details. 2801 // 2802 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2803 // encode predicated DIExpressions that yield different results on different 2804 // code paths. 2805 2806 // A hoisted conditional probe should be treated as dangling so that it will 2807 // not be over-counted when the samples collected on the non-conditional path 2808 // are counted towards the conditional path. We leave it for the counts 2809 // inference algorithm to figure out a proper count for a danglng probe. 2810 moveAndDanglePseudoProbes(BB, InsertPt); 2811 2812 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2813 Instruction *I = &*II; 2814 I->dropUnknownNonDebugMetadata(); 2815 if (I->isUsedByMetadata()) 2816 dropDebugUsers(*I); 2817 if (isa<DbgInfoIntrinsic>(I)) { 2818 // Remove DbgInfo Intrinsics. 2819 II = I->eraseFromParent(); 2820 continue; 2821 } 2822 I->setDebugLoc(InsertPt->getDebugLoc()); 2823 ++II; 2824 } 2825 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2826 BB->begin(), 2827 BB->getTerminator()->getIterator()); 2828 } 2829 2830 namespace { 2831 2832 /// A potential constituent of a bitreverse or bswap expression. See 2833 /// collectBitParts for a fuller explanation. 2834 struct BitPart { 2835 BitPart(Value *P, unsigned BW) : Provider(P) { 2836 Provenance.resize(BW); 2837 } 2838 2839 /// The Value that this is a bitreverse/bswap of. 2840 Value *Provider; 2841 2842 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2843 /// in Provider becomes bit B in the result of this expression. 2844 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2845 2846 enum { Unset = -1 }; 2847 }; 2848 2849 } // end anonymous namespace 2850 2851 /// Analyze the specified subexpression and see if it is capable of providing 2852 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2853 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2854 /// the output of the expression came from a corresponding bit in some other 2855 /// value. This function is recursive, and the end result is a mapping of 2856 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2857 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2858 /// 2859 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2860 /// that the expression deposits the low byte of %X into the high byte of the 2861 /// result and that all other bits are zero. This expression is accepted and a 2862 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2863 /// [0-7]. 2864 /// 2865 /// For vector types, all analysis is performed at the per-element level. No 2866 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2867 /// constant masks must be splatted across all elements. 2868 /// 2869 /// To avoid revisiting values, the BitPart results are memoized into the 2870 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2871 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2872 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2873 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2874 /// type instead to provide the same functionality. 2875 /// 2876 /// Because we pass around references into \c BPS, we must use a container that 2877 /// does not invalidate internal references (std::map instead of DenseMap). 2878 static const Optional<BitPart> & 2879 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2880 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2881 auto I = BPS.find(V); 2882 if (I != BPS.end()) 2883 return I->second; 2884 2885 auto &Result = BPS[V] = None; 2886 auto BitWidth = V->getType()->getScalarSizeInBits(); 2887 2888 // Can't do integer/elements > 128 bits. 2889 if (BitWidth > 128) 2890 return Result; 2891 2892 // Prevent stack overflow by limiting the recursion depth 2893 if (Depth == BitPartRecursionMaxDepth) { 2894 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2895 return Result; 2896 } 2897 2898 if (auto *I = dyn_cast<Instruction>(V)) { 2899 Value *X, *Y; 2900 const APInt *C; 2901 2902 // If this is an or instruction, it may be an inner node of the bswap. 2903 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2904 const auto &A = 2905 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2906 const auto &B = 2907 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2908 if (!A || !B) 2909 return Result; 2910 2911 // Try and merge the two together. 2912 if (!A->Provider || A->Provider != B->Provider) 2913 return Result; 2914 2915 Result = BitPart(A->Provider, BitWidth); 2916 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2917 if (A->Provenance[BitIdx] != BitPart::Unset && 2918 B->Provenance[BitIdx] != BitPart::Unset && 2919 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2920 return Result = None; 2921 2922 if (A->Provenance[BitIdx] == BitPart::Unset) 2923 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2924 else 2925 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2926 } 2927 2928 return Result; 2929 } 2930 2931 // If this is a logical shift by a constant, recurse then shift the result. 2932 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2933 const APInt &BitShift = *C; 2934 2935 // Ensure the shift amount is defined. 2936 if (BitShift.uge(BitWidth)) 2937 return Result; 2938 2939 const auto &Res = 2940 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2941 if (!Res) 2942 return Result; 2943 Result = Res; 2944 2945 // Perform the "shift" on BitProvenance. 2946 auto &P = Result->Provenance; 2947 if (I->getOpcode() == Instruction::Shl) { 2948 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2949 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2950 } else { 2951 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2952 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2953 } 2954 2955 return Result; 2956 } 2957 2958 // If this is a logical 'and' with a mask that clears bits, recurse then 2959 // unset the appropriate bits. 2960 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 2961 const APInt &AndMask = *C; 2962 2963 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2964 // early exit. 2965 unsigned NumMaskedBits = AndMask.countPopulation(); 2966 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 2967 return Result; 2968 2969 const auto &Res = 2970 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2971 if (!Res) 2972 return Result; 2973 Result = Res; 2974 2975 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2976 // If the AndMask is zero for this bit, clear the bit. 2977 if (AndMask[BitIdx] == 0) 2978 Result->Provenance[BitIdx] = BitPart::Unset; 2979 return Result; 2980 } 2981 2982 // If this is a zext instruction zero extend the result. 2983 if (match(V, m_ZExt(m_Value(X)))) { 2984 const auto &Res = 2985 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2986 if (!Res) 2987 return Result; 2988 2989 Result = BitPart(Res->Provider, BitWidth); 2990 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 2991 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 2992 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 2993 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 2994 Result->Provenance[BitIdx] = BitPart::Unset; 2995 return Result; 2996 } 2997 2998 // If this is a truncate instruction, extract the lower bits. 2999 if (match(V, m_Trunc(m_Value(X)))) { 3000 const auto &Res = 3001 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3002 if (!Res) 3003 return Result; 3004 3005 Result = BitPart(Res->Provider, BitWidth); 3006 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3007 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3008 return Result; 3009 } 3010 3011 // BITREVERSE - most likely due to us previous matching a partial 3012 // bitreverse. 3013 if (match(V, m_BitReverse(m_Value(X)))) { 3014 const auto &Res = 3015 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3016 if (!Res) 3017 return Result; 3018 3019 Result = BitPart(Res->Provider, BitWidth); 3020 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3021 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3022 return Result; 3023 } 3024 3025 // BSWAP - most likely due to us previous matching a partial bswap. 3026 if (match(V, m_BSwap(m_Value(X)))) { 3027 const auto &Res = 3028 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3029 if (!Res) 3030 return Result; 3031 3032 unsigned ByteWidth = BitWidth / 8; 3033 Result = BitPart(Res->Provider, BitWidth); 3034 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3035 unsigned ByteBitOfs = ByteIdx * 8; 3036 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3037 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3038 Res->Provenance[ByteBitOfs + BitIdx]; 3039 } 3040 return Result; 3041 } 3042 3043 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3044 // amount (modulo). 3045 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3046 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3047 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3048 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3049 // We can treat fshr as a fshl by flipping the modulo amount. 3050 unsigned ModAmt = C->urem(BitWidth); 3051 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3052 ModAmt = BitWidth - ModAmt; 3053 3054 const auto &LHS = 3055 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3056 const auto &RHS = 3057 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3058 3059 // Check we have both sources and they are from the same provider. 3060 if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider) 3061 return Result; 3062 3063 unsigned StartBitRHS = BitWidth - ModAmt; 3064 Result = BitPart(LHS->Provider, BitWidth); 3065 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3066 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3067 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3068 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3069 return Result; 3070 } 3071 } 3072 3073 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 3074 // the input value to the bswap/bitreverse. 3075 Result = BitPart(V, BitWidth); 3076 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3077 Result->Provenance[BitIdx] = BitIdx; 3078 return Result; 3079 } 3080 3081 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3082 unsigned BitWidth) { 3083 if (From % 8 != To % 8) 3084 return false; 3085 // Convert from bit indices to byte indices and check for a byte reversal. 3086 From >>= 3; 3087 To >>= 3; 3088 BitWidth >>= 3; 3089 return From == BitWidth - To - 1; 3090 } 3091 3092 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3093 unsigned BitWidth) { 3094 return From == BitWidth - To - 1; 3095 } 3096 3097 bool llvm::recognizeBSwapOrBitReverseIdiom( 3098 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3099 SmallVectorImpl<Instruction *> &InsertedInsts) { 3100 if (Operator::getOpcode(I) != Instruction::Or) 3101 return false; 3102 if (!MatchBSwaps && !MatchBitReversals) 3103 return false; 3104 Type *ITy = I->getType(); 3105 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3106 return false; // Can't do integer/elements > 128 bits. 3107 3108 Type *DemandedTy = ITy; 3109 if (I->hasOneUse()) 3110 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3111 DemandedTy = Trunc->getType(); 3112 3113 // Try to find all the pieces corresponding to the bswap. 3114 std::map<Value *, Optional<BitPart>> BPS; 3115 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 3116 if (!Res) 3117 return false; 3118 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3119 assert(all_of(BitProvenance, 3120 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3121 "Illegal bit provenance index"); 3122 3123 // If the upper bits are zero, then attempt to perform as a truncated op. 3124 if (BitProvenance.back() == BitPart::Unset) { 3125 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3126 BitProvenance = BitProvenance.drop_back(); 3127 if (BitProvenance.empty()) 3128 return false; // TODO - handle null value? 3129 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3130 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3131 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3132 } 3133 3134 // Check BitProvenance hasn't found a source larger than the result type. 3135 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3136 if (DemandedBW > ITy->getScalarSizeInBits()) 3137 return false; 3138 3139 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3140 // only byteswap values with an even number of bytes. 3141 APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); 3142 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3143 bool OKForBitReverse = MatchBitReversals; 3144 for (unsigned BitIdx = 0; 3145 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3146 if (BitProvenance[BitIdx] == BitPart::Unset) { 3147 DemandedMask.clearBit(BitIdx); 3148 continue; 3149 } 3150 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3151 DemandedBW); 3152 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3153 BitIdx, DemandedBW); 3154 } 3155 3156 Intrinsic::ID Intrin; 3157 if (OKForBSwap) 3158 Intrin = Intrinsic::bswap; 3159 else if (OKForBitReverse) 3160 Intrin = Intrinsic::bitreverse; 3161 else 3162 return false; 3163 3164 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3165 Value *Provider = Res->Provider; 3166 3167 // We may need to truncate the provider. 3168 if (DemandedTy != Provider->getType()) { 3169 auto *Trunc = 3170 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3171 InsertedInsts.push_back(Trunc); 3172 Provider = Trunc; 3173 } 3174 3175 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3176 InsertedInsts.push_back(Result); 3177 3178 if (!DemandedMask.isAllOnesValue()) { 3179 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3180 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3181 InsertedInsts.push_back(Result); 3182 } 3183 3184 // We may need to zeroextend back to the result type. 3185 if (ITy != Result->getType()) { 3186 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3187 InsertedInsts.push_back(ExtInst); 3188 } 3189 3190 return true; 3191 } 3192 3193 // CodeGen has special handling for some string functions that may replace 3194 // them with target-specific intrinsics. Since that'd skip our interceptors 3195 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3196 // we mark affected calls as NoBuiltin, which will disable optimization 3197 // in CodeGen. 3198 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3199 CallInst *CI, const TargetLibraryInfo *TLI) { 3200 Function *F = CI->getCalledFunction(); 3201 LibFunc Func; 3202 if (F && !F->hasLocalLinkage() && F->hasName() && 3203 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3204 !F->doesNotAccessMemory()) 3205 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3206 } 3207 3208 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3209 // We can't have a PHI with a metadata type. 3210 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3211 return false; 3212 3213 // Early exit. 3214 if (!isa<Constant>(I->getOperand(OpIdx))) 3215 return true; 3216 3217 switch (I->getOpcode()) { 3218 default: 3219 return true; 3220 case Instruction::Call: 3221 case Instruction::Invoke: { 3222 const auto &CB = cast<CallBase>(*I); 3223 3224 // Can't handle inline asm. Skip it. 3225 if (CB.isInlineAsm()) 3226 return false; 3227 3228 // Constant bundle operands may need to retain their constant-ness for 3229 // correctness. 3230 if (CB.isBundleOperand(OpIdx)) 3231 return false; 3232 3233 if (OpIdx < CB.getNumArgOperands()) { 3234 // Some variadic intrinsics require constants in the variadic arguments, 3235 // which currently aren't markable as immarg. 3236 if (isa<IntrinsicInst>(CB) && 3237 OpIdx >= CB.getFunctionType()->getNumParams()) { 3238 // This is known to be OK for stackmap. 3239 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3240 } 3241 3242 // gcroot is a special case, since it requires a constant argument which 3243 // isn't also required to be a simple ConstantInt. 3244 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3245 return false; 3246 3247 // Some intrinsic operands are required to be immediates. 3248 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3249 } 3250 3251 // It is never allowed to replace the call argument to an intrinsic, but it 3252 // may be possible for a call. 3253 return !isa<IntrinsicInst>(CB); 3254 } 3255 case Instruction::ShuffleVector: 3256 // Shufflevector masks are constant. 3257 return OpIdx != 2; 3258 case Instruction::Switch: 3259 case Instruction::ExtractValue: 3260 // All operands apart from the first are constant. 3261 return OpIdx == 0; 3262 case Instruction::InsertValue: 3263 // All operands apart from the first and the second are constant. 3264 return OpIdx < 2; 3265 case Instruction::Alloca: 3266 // Static allocas (constant size in the entry block) are handled by 3267 // prologue/epilogue insertion so they're free anyway. We definitely don't 3268 // want to make them non-constant. 3269 return !cast<AllocaInst>(I)->isStaticAlloca(); 3270 case Instruction::GetElementPtr: 3271 if (OpIdx == 0) 3272 return true; 3273 gep_type_iterator It = gep_type_begin(I); 3274 for (auto E = std::next(It, OpIdx); It != E; ++It) 3275 if (It.isStruct()) 3276 return false; 3277 return true; 3278 } 3279 } 3280 3281 Value *llvm::invertCondition(Value *Condition) { 3282 // First: Check if it's a constant 3283 if (Constant *C = dyn_cast<Constant>(Condition)) 3284 return ConstantExpr::getNot(C); 3285 3286 // Second: If the condition is already inverted, return the original value 3287 Value *NotCondition; 3288 if (match(Condition, m_Not(m_Value(NotCondition)))) 3289 return NotCondition; 3290 3291 BasicBlock *Parent = nullptr; 3292 Instruction *Inst = dyn_cast<Instruction>(Condition); 3293 if (Inst) 3294 Parent = Inst->getParent(); 3295 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3296 Parent = &Arg->getParent()->getEntryBlock(); 3297 assert(Parent && "Unsupported condition to invert"); 3298 3299 // Third: Check all the users for an invert 3300 for (User *U : Condition->users()) 3301 if (Instruction *I = dyn_cast<Instruction>(U)) 3302 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3303 return I; 3304 3305 // Last option: Create a new instruction 3306 auto *Inverted = 3307 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3308 if (Inst && !isa<PHINode>(Inst)) 3309 Inverted->insertAfter(Inst); 3310 else 3311 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3312 return Inverted; 3313 } 3314