1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/ConstantRange.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DIBuilder.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalObject.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/PseudoProbe.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 static cl::opt<unsigned> PHICSENumPHISmallSize( 108 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 109 cl::desc( 110 "When the basic block contains not more than this number of PHI nodes, " 111 "perform a (faster!) exhaustive search instead of set-driven one.")); 112 113 // Max recursion depth for collectBitParts used when detecting bswap and 114 // bitreverse idioms. 115 static const unsigned BitPartRecursionMaxDepth = 48; 116 117 //===----------------------------------------------------------------------===// 118 // Local constant propagation. 119 // 120 121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 122 /// constant value, convert it into an unconditional branch to the constant 123 /// destination. This is a nontrivial operation because the successors of this 124 /// basic block must have their PHI nodes updated. 125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 126 /// conditions and indirectbr addresses this might make dead if 127 /// DeleteDeadConditions is true. 128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 129 const TargetLibraryInfo *TLI, 130 DomTreeUpdater *DTU) { 131 Instruction *T = BB->getTerminator(); 132 IRBuilder<> Builder(T); 133 134 // Branch - See if we are conditional jumping on constant 135 if (auto *BI = dyn_cast<BranchInst>(T)) { 136 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 137 138 BasicBlock *Dest1 = BI->getSuccessor(0); 139 BasicBlock *Dest2 = BI->getSuccessor(1); 140 141 if (Dest2 == Dest1) { // Conditional branch to same location? 142 // This branch matches something like this: 143 // br bool %cond, label %Dest, label %Dest 144 // and changes it into: br label %Dest 145 146 // Let the basic block know that we are letting go of one copy of it. 147 assert(BI->getParent() && "Terminator not inserted in block!"); 148 Dest1->removePredecessor(BI->getParent()); 149 150 // Replace the conditional branch with an unconditional one. 151 BranchInst *NewBI = Builder.CreateBr(Dest1); 152 153 // Transfer the metadata to the new branch instruction. 154 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 155 LLVMContext::MD_annotation}); 156 157 Value *Cond = BI->getCondition(); 158 BI->eraseFromParent(); 159 if (DeleteDeadConditions) 160 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 161 return true; 162 } 163 164 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 165 // Are we branching on constant? 166 // YES. Change to unconditional branch... 167 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 168 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 169 170 // Let the basic block know that we are letting go of it. Based on this, 171 // it will adjust it's PHI nodes. 172 OldDest->removePredecessor(BB); 173 174 // Replace the conditional branch with an unconditional one. 175 BranchInst *NewBI = Builder.CreateBr(Destination); 176 177 // Transfer the metadata to the new branch instruction. 178 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 179 LLVMContext::MD_annotation}); 180 181 BI->eraseFromParent(); 182 if (DTU) 183 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 184 return true; 185 } 186 187 return false; 188 } 189 190 if (auto *SI = dyn_cast<SwitchInst>(T)) { 191 // If we are switching on a constant, we can convert the switch to an 192 // unconditional branch. 193 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 194 BasicBlock *DefaultDest = SI->getDefaultDest(); 195 BasicBlock *TheOnlyDest = DefaultDest; 196 197 // If the default is unreachable, ignore it when searching for TheOnlyDest. 198 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 199 SI->getNumCases() > 0) { 200 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 201 } 202 203 bool Changed = false; 204 205 // Figure out which case it goes to. 206 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 207 // Found case matching a constant operand? 208 if (i->getCaseValue() == CI) { 209 TheOnlyDest = i->getCaseSuccessor(); 210 break; 211 } 212 213 // Check to see if this branch is going to the same place as the default 214 // dest. If so, eliminate it as an explicit compare. 215 if (i->getCaseSuccessor() == DefaultDest) { 216 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 217 unsigned NCases = SI->getNumCases(); 218 // Fold the case metadata into the default if there will be any branches 219 // left, unless the metadata doesn't match the switch. 220 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 221 // Collect branch weights into a vector. 222 SmallVector<uint32_t, 8> Weights; 223 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 224 ++MD_i) { 225 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 226 Weights.push_back(CI->getValue().getZExtValue()); 227 } 228 // Merge weight of this case to the default weight. 229 unsigned idx = i->getCaseIndex(); 230 Weights[0] += Weights[idx+1]; 231 // Remove weight for this case. 232 std::swap(Weights[idx+1], Weights.back()); 233 Weights.pop_back(); 234 SI->setMetadata(LLVMContext::MD_prof, 235 MDBuilder(BB->getContext()). 236 createBranchWeights(Weights)); 237 } 238 // Remove this entry. 239 BasicBlock *ParentBB = SI->getParent(); 240 DefaultDest->removePredecessor(ParentBB); 241 i = SI->removeCase(i); 242 e = SI->case_end(); 243 Changed = true; 244 continue; 245 } 246 247 // Otherwise, check to see if the switch only branches to one destination. 248 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 249 // destinations. 250 if (i->getCaseSuccessor() != TheOnlyDest) 251 TheOnlyDest = nullptr; 252 253 // Increment this iterator as we haven't removed the case. 254 ++i; 255 } 256 257 if (CI && !TheOnlyDest) { 258 // Branching on a constant, but not any of the cases, go to the default 259 // successor. 260 TheOnlyDest = SI->getDefaultDest(); 261 } 262 263 // If we found a single destination that we can fold the switch into, do so 264 // now. 265 if (TheOnlyDest) { 266 // Insert the new branch. 267 Builder.CreateBr(TheOnlyDest); 268 BasicBlock *BB = SI->getParent(); 269 270 SmallSet<BasicBlock *, 8> RemovedSuccessors; 271 272 // Remove entries from PHI nodes which we no longer branch to... 273 BasicBlock *SuccToKeep = TheOnlyDest; 274 for (BasicBlock *Succ : successors(SI)) { 275 if (DTU && Succ != TheOnlyDest) 276 RemovedSuccessors.insert(Succ); 277 // Found case matching a constant operand? 278 if (Succ == SuccToKeep) { 279 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 280 } else { 281 Succ->removePredecessor(BB); 282 } 283 } 284 285 // Delete the old switch. 286 Value *Cond = SI->getCondition(); 287 SI->eraseFromParent(); 288 if (DeleteDeadConditions) 289 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 290 if (DTU) { 291 std::vector<DominatorTree::UpdateType> Updates; 292 Updates.reserve(RemovedSuccessors.size()); 293 for (auto *RemovedSuccessor : RemovedSuccessors) 294 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 295 DTU->applyUpdates(Updates); 296 } 297 return true; 298 } 299 300 if (SI->getNumCases() == 1) { 301 // Otherwise, we can fold this switch into a conditional branch 302 // instruction if it has only one non-default destination. 303 auto FirstCase = *SI->case_begin(); 304 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 305 FirstCase.getCaseValue(), "cond"); 306 307 // Insert the new branch. 308 BranchInst *NewBr = Builder.CreateCondBr(Cond, 309 FirstCase.getCaseSuccessor(), 310 SI->getDefaultDest()); 311 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 312 if (MD && MD->getNumOperands() == 3) { 313 ConstantInt *SICase = 314 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 315 ConstantInt *SIDef = 316 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 317 assert(SICase && SIDef); 318 // The TrueWeight should be the weight for the single case of SI. 319 NewBr->setMetadata(LLVMContext::MD_prof, 320 MDBuilder(BB->getContext()). 321 createBranchWeights(SICase->getValue().getZExtValue(), 322 SIDef->getValue().getZExtValue())); 323 } 324 325 // Update make.implicit metadata to the newly-created conditional branch. 326 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 327 if (MakeImplicitMD) 328 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 329 330 // Delete the old switch. 331 SI->eraseFromParent(); 332 return true; 333 } 334 return Changed; 335 } 336 337 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 338 // indirectbr blockaddress(@F, @BB) -> br label @BB 339 if (auto *BA = 340 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 341 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 342 SmallSet<BasicBlock *, 8> RemovedSuccessors; 343 344 // Insert the new branch. 345 Builder.CreateBr(TheOnlyDest); 346 347 BasicBlock *SuccToKeep = TheOnlyDest; 348 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 349 BasicBlock *DestBB = IBI->getDestination(i); 350 if (DTU && DestBB != TheOnlyDest) 351 RemovedSuccessors.insert(DestBB); 352 if (IBI->getDestination(i) == SuccToKeep) { 353 SuccToKeep = nullptr; 354 } else { 355 DestBB->removePredecessor(BB); 356 } 357 } 358 Value *Address = IBI->getAddress(); 359 IBI->eraseFromParent(); 360 if (DeleteDeadConditions) 361 // Delete pointer cast instructions. 362 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 363 364 // Also zap the blockaddress constant if there are no users remaining, 365 // otherwise the destination is still marked as having its address taken. 366 if (BA->use_empty()) 367 BA->destroyConstant(); 368 369 // If we didn't find our destination in the IBI successor list, then we 370 // have undefined behavior. Replace the unconditional branch with an 371 // 'unreachable' instruction. 372 if (SuccToKeep) { 373 BB->getTerminator()->eraseFromParent(); 374 new UnreachableInst(BB->getContext(), BB); 375 } 376 377 if (DTU) { 378 std::vector<DominatorTree::UpdateType> Updates; 379 Updates.reserve(RemovedSuccessors.size()); 380 for (auto *RemovedSuccessor : RemovedSuccessors) 381 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 382 DTU->applyUpdates(Updates); 383 } 384 return true; 385 } 386 } 387 388 return false; 389 } 390 391 //===----------------------------------------------------------------------===// 392 // Local dead code elimination. 393 // 394 395 /// isInstructionTriviallyDead - Return true if the result produced by the 396 /// instruction is not used, and the instruction has no side effects. 397 /// 398 bool llvm::isInstructionTriviallyDead(Instruction *I, 399 const TargetLibraryInfo *TLI) { 400 if (!I->use_empty()) 401 return false; 402 return wouldInstructionBeTriviallyDead(I, TLI); 403 } 404 405 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 406 const TargetLibraryInfo *TLI) { 407 if (I->isTerminator()) 408 return false; 409 410 // We don't want the landingpad-like instructions removed by anything this 411 // general. 412 if (I->isEHPad()) 413 return false; 414 415 // We don't want debug info removed by anything this general, unless 416 // debug info is empty. 417 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 418 if (DDI->getAddress()) 419 return false; 420 return true; 421 } 422 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 423 if (DVI->hasArgList() || DVI->getValue(0)) 424 return false; 425 return true; 426 } 427 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 428 if (DLI->getLabel()) 429 return false; 430 return true; 431 } 432 433 if (!I->willReturn()) 434 return false; 435 436 if (!I->mayHaveSideEffects()) 437 return true; 438 439 // Special case intrinsics that "may have side effects" but can be deleted 440 // when dead. 441 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 442 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 443 if (II->getIntrinsicID() == Intrinsic::stacksave || 444 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 445 return true; 446 447 if (II->isLifetimeStartOrEnd()) { 448 auto *Arg = II->getArgOperand(1); 449 // Lifetime intrinsics are dead when their right-hand is undef. 450 if (isa<UndefValue>(Arg)) 451 return true; 452 // If the right-hand is an alloc, global, or argument and the only uses 453 // are lifetime intrinsics then the intrinsics are dead. 454 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 455 return llvm::all_of(Arg->uses(), [](Use &Use) { 456 if (IntrinsicInst *IntrinsicUse = 457 dyn_cast<IntrinsicInst>(Use.getUser())) 458 return IntrinsicUse->isLifetimeStartOrEnd(); 459 return false; 460 }); 461 return false; 462 } 463 464 // Assumptions are dead if their condition is trivially true. Guards on 465 // true are operationally no-ops. In the future we can consider more 466 // sophisticated tradeoffs for guards considering potential for check 467 // widening, but for now we keep things simple. 468 if ((II->getIntrinsicID() == Intrinsic::assume && 469 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || 470 II->getIntrinsicID() == Intrinsic::experimental_guard) { 471 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 472 return !Cond->isZero(); 473 474 return false; 475 } 476 } 477 478 if (isAllocLikeFn(I, TLI)) 479 return true; 480 481 if (CallInst *CI = isFreeCall(I, TLI)) 482 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 483 return C->isNullValue() || isa<UndefValue>(C); 484 485 if (auto *Call = dyn_cast<CallBase>(I)) 486 if (isMathLibCallNoop(Call, TLI)) 487 return true; 488 489 return false; 490 } 491 492 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 493 /// trivially dead instruction, delete it. If that makes any of its operands 494 /// trivially dead, delete them too, recursively. Return true if any 495 /// instructions were deleted. 496 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 497 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 498 std::function<void(Value *)> AboutToDeleteCallback) { 499 Instruction *I = dyn_cast<Instruction>(V); 500 if (!I || !isInstructionTriviallyDead(I, TLI)) 501 return false; 502 503 SmallVector<WeakTrackingVH, 16> DeadInsts; 504 DeadInsts.push_back(I); 505 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 506 AboutToDeleteCallback); 507 508 return true; 509 } 510 511 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 512 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 513 MemorySSAUpdater *MSSAU, 514 std::function<void(Value *)> AboutToDeleteCallback) { 515 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 516 for (; S != E; ++S) { 517 auto *I = cast<Instruction>(DeadInsts[S]); 518 if (!isInstructionTriviallyDead(I)) { 519 DeadInsts[S] = nullptr; 520 ++Alive; 521 } 522 } 523 if (Alive == E) 524 return false; 525 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 526 AboutToDeleteCallback); 527 return true; 528 } 529 530 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 531 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 532 MemorySSAUpdater *MSSAU, 533 std::function<void(Value *)> AboutToDeleteCallback) { 534 // Process the dead instruction list until empty. 535 while (!DeadInsts.empty()) { 536 Value *V = DeadInsts.pop_back_val(); 537 Instruction *I = cast_or_null<Instruction>(V); 538 if (!I) 539 continue; 540 assert(isInstructionTriviallyDead(I, TLI) && 541 "Live instruction found in dead worklist!"); 542 assert(I->use_empty() && "Instructions with uses are not dead."); 543 544 // Don't lose the debug info while deleting the instructions. 545 salvageDebugInfo(*I); 546 547 if (AboutToDeleteCallback) 548 AboutToDeleteCallback(I); 549 550 // Null out all of the instruction's operands to see if any operand becomes 551 // dead as we go. 552 for (Use &OpU : I->operands()) { 553 Value *OpV = OpU.get(); 554 OpU.set(nullptr); 555 556 if (!OpV->use_empty()) 557 continue; 558 559 // If the operand is an instruction that became dead as we nulled out the 560 // operand, and if it is 'trivially' dead, delete it in a future loop 561 // iteration. 562 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 563 if (isInstructionTriviallyDead(OpI, TLI)) 564 DeadInsts.push_back(OpI); 565 } 566 if (MSSAU) 567 MSSAU->removeMemoryAccess(I); 568 569 I->eraseFromParent(); 570 } 571 } 572 573 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 574 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 575 findDbgUsers(DbgUsers, I); 576 for (auto *DII : DbgUsers) { 577 Value *Undef = UndefValue::get(I->getType()); 578 DII->replaceVariableLocationOp(I, Undef); 579 } 580 return !DbgUsers.empty(); 581 } 582 583 /// areAllUsesEqual - Check whether the uses of a value are all the same. 584 /// This is similar to Instruction::hasOneUse() except this will also return 585 /// true when there are no uses or multiple uses that all refer to the same 586 /// value. 587 static bool areAllUsesEqual(Instruction *I) { 588 Value::user_iterator UI = I->user_begin(); 589 Value::user_iterator UE = I->user_end(); 590 if (UI == UE) 591 return true; 592 593 User *TheUse = *UI; 594 for (++UI; UI != UE; ++UI) { 595 if (*UI != TheUse) 596 return false; 597 } 598 return true; 599 } 600 601 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 602 /// dead PHI node, due to being a def-use chain of single-use nodes that 603 /// either forms a cycle or is terminated by a trivially dead instruction, 604 /// delete it. If that makes any of its operands trivially dead, delete them 605 /// too, recursively. Return true if a change was made. 606 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 607 const TargetLibraryInfo *TLI, 608 llvm::MemorySSAUpdater *MSSAU) { 609 SmallPtrSet<Instruction*, 4> Visited; 610 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 611 I = cast<Instruction>(*I->user_begin())) { 612 if (I->use_empty()) 613 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 614 615 // If we find an instruction more than once, we're on a cycle that 616 // won't prove fruitful. 617 if (!Visited.insert(I).second) { 618 // Break the cycle and delete the instruction and its operands. 619 I->replaceAllUsesWith(UndefValue::get(I->getType())); 620 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 621 return true; 622 } 623 } 624 return false; 625 } 626 627 static bool 628 simplifyAndDCEInstruction(Instruction *I, 629 SmallSetVector<Instruction *, 16> &WorkList, 630 const DataLayout &DL, 631 const TargetLibraryInfo *TLI) { 632 if (isInstructionTriviallyDead(I, TLI)) { 633 salvageDebugInfo(*I); 634 635 // Null out all of the instruction's operands to see if any operand becomes 636 // dead as we go. 637 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 638 Value *OpV = I->getOperand(i); 639 I->setOperand(i, nullptr); 640 641 if (!OpV->use_empty() || I == OpV) 642 continue; 643 644 // If the operand is an instruction that became dead as we nulled out the 645 // operand, and if it is 'trivially' dead, delete it in a future loop 646 // iteration. 647 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 648 if (isInstructionTriviallyDead(OpI, TLI)) 649 WorkList.insert(OpI); 650 } 651 652 I->eraseFromParent(); 653 654 return true; 655 } 656 657 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 658 // Add the users to the worklist. CAREFUL: an instruction can use itself, 659 // in the case of a phi node. 660 for (User *U : I->users()) { 661 if (U != I) { 662 WorkList.insert(cast<Instruction>(U)); 663 } 664 } 665 666 // Replace the instruction with its simplified value. 667 bool Changed = false; 668 if (!I->use_empty()) { 669 I->replaceAllUsesWith(SimpleV); 670 Changed = true; 671 } 672 if (isInstructionTriviallyDead(I, TLI)) { 673 I->eraseFromParent(); 674 Changed = true; 675 } 676 return Changed; 677 } 678 return false; 679 } 680 681 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 682 /// simplify any instructions in it and recursively delete dead instructions. 683 /// 684 /// This returns true if it changed the code, note that it can delete 685 /// instructions in other blocks as well in this block. 686 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 687 const TargetLibraryInfo *TLI) { 688 bool MadeChange = false; 689 const DataLayout &DL = BB->getModule()->getDataLayout(); 690 691 #ifndef NDEBUG 692 // In debug builds, ensure that the terminator of the block is never replaced 693 // or deleted by these simplifications. The idea of simplification is that it 694 // cannot introduce new instructions, and there is no way to replace the 695 // terminator of a block without introducing a new instruction. 696 AssertingVH<Instruction> TerminatorVH(&BB->back()); 697 #endif 698 699 SmallSetVector<Instruction *, 16> WorkList; 700 // Iterate over the original function, only adding insts to the worklist 701 // if they actually need to be revisited. This avoids having to pre-init 702 // the worklist with the entire function's worth of instructions. 703 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 704 BI != E;) { 705 assert(!BI->isTerminator()); 706 Instruction *I = &*BI; 707 ++BI; 708 709 // We're visiting this instruction now, so make sure it's not in the 710 // worklist from an earlier visit. 711 if (!WorkList.count(I)) 712 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 713 } 714 715 while (!WorkList.empty()) { 716 Instruction *I = WorkList.pop_back_val(); 717 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 718 } 719 return MadeChange; 720 } 721 722 //===----------------------------------------------------------------------===// 723 // Control Flow Graph Restructuring. 724 // 725 726 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 727 DomTreeUpdater *DTU) { 728 729 // If BB has single-entry PHI nodes, fold them. 730 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 731 Value *NewVal = PN->getIncomingValue(0); 732 // Replace self referencing PHI with undef, it must be dead. 733 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 734 PN->replaceAllUsesWith(NewVal); 735 PN->eraseFromParent(); 736 } 737 738 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 739 assert(PredBB && "Block doesn't have a single predecessor!"); 740 741 bool ReplaceEntryBB = PredBB->isEntryBlock(); 742 743 // DTU updates: Collect all the edges that enter 744 // PredBB. These dominator edges will be redirected to DestBB. 745 SmallVector<DominatorTree::UpdateType, 32> Updates; 746 747 if (DTU) { 748 SmallPtrSet<BasicBlock *, 2> PredsOfPredBB(pred_begin(PredBB), 749 pred_end(PredBB)); 750 Updates.reserve(Updates.size() + 2 * PredsOfPredBB.size() + 1); 751 for (BasicBlock *PredOfPredBB : PredsOfPredBB) 752 // This predecessor of PredBB may already have DestBB as a successor. 753 if (PredOfPredBB != PredBB) 754 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 755 for (BasicBlock *PredOfPredBB : PredsOfPredBB) 756 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 757 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 758 } 759 760 // Zap anything that took the address of DestBB. Not doing this will give the 761 // address an invalid value. 762 if (DestBB->hasAddressTaken()) { 763 BlockAddress *BA = BlockAddress::get(DestBB); 764 Constant *Replacement = 765 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 766 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 767 BA->getType())); 768 BA->destroyConstant(); 769 } 770 771 // Anything that branched to PredBB now branches to DestBB. 772 PredBB->replaceAllUsesWith(DestBB); 773 774 // Splice all the instructions from PredBB to DestBB. 775 PredBB->getTerminator()->eraseFromParent(); 776 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 777 new UnreachableInst(PredBB->getContext(), PredBB); 778 779 // If the PredBB is the entry block of the function, move DestBB up to 780 // become the entry block after we erase PredBB. 781 if (ReplaceEntryBB) 782 DestBB->moveAfter(PredBB); 783 784 if (DTU) { 785 assert(PredBB->getInstList().size() == 1 && 786 isa<UnreachableInst>(PredBB->getTerminator()) && 787 "The successor list of PredBB isn't empty before " 788 "applying corresponding DTU updates."); 789 DTU->applyUpdatesPermissive(Updates); 790 DTU->deleteBB(PredBB); 791 // Recalculation of DomTree is needed when updating a forward DomTree and 792 // the Entry BB is replaced. 793 if (ReplaceEntryBB && DTU->hasDomTree()) { 794 // The entry block was removed and there is no external interface for 795 // the dominator tree to be notified of this change. In this corner-case 796 // we recalculate the entire tree. 797 DTU->recalculate(*(DestBB->getParent())); 798 } 799 } 800 801 else { 802 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 803 } 804 } 805 806 /// Return true if we can choose one of these values to use in place of the 807 /// other. Note that we will always choose the non-undef value to keep. 808 static bool CanMergeValues(Value *First, Value *Second) { 809 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 810 } 811 812 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 813 /// branch to Succ, into Succ. 814 /// 815 /// Assumption: Succ is the single successor for BB. 816 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 817 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 818 819 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 820 << Succ->getName() << "\n"); 821 // Shortcut, if there is only a single predecessor it must be BB and merging 822 // is always safe 823 if (Succ->getSinglePredecessor()) return true; 824 825 // Make a list of the predecessors of BB 826 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 827 828 // Look at all the phi nodes in Succ, to see if they present a conflict when 829 // merging these blocks 830 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 831 PHINode *PN = cast<PHINode>(I); 832 833 // If the incoming value from BB is again a PHINode in 834 // BB which has the same incoming value for *PI as PN does, we can 835 // merge the phi nodes and then the blocks can still be merged 836 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 837 if (BBPN && BBPN->getParent() == BB) { 838 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 839 BasicBlock *IBB = PN->getIncomingBlock(PI); 840 if (BBPreds.count(IBB) && 841 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 842 PN->getIncomingValue(PI))) { 843 LLVM_DEBUG(dbgs() 844 << "Can't fold, phi node " << PN->getName() << " in " 845 << Succ->getName() << " is conflicting with " 846 << BBPN->getName() << " with regard to common predecessor " 847 << IBB->getName() << "\n"); 848 return false; 849 } 850 } 851 } else { 852 Value* Val = PN->getIncomingValueForBlock(BB); 853 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 854 // See if the incoming value for the common predecessor is equal to the 855 // one for BB, in which case this phi node will not prevent the merging 856 // of the block. 857 BasicBlock *IBB = PN->getIncomingBlock(PI); 858 if (BBPreds.count(IBB) && 859 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 860 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 861 << " in " << Succ->getName() 862 << " is conflicting with regard to common " 863 << "predecessor " << IBB->getName() << "\n"); 864 return false; 865 } 866 } 867 } 868 } 869 870 return true; 871 } 872 873 using PredBlockVector = SmallVector<BasicBlock *, 16>; 874 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 875 876 /// Determines the value to use as the phi node input for a block. 877 /// 878 /// Select between \p OldVal any value that we know flows from \p BB 879 /// to a particular phi on the basis of which one (if either) is not 880 /// undef. Update IncomingValues based on the selected value. 881 /// 882 /// \param OldVal The value we are considering selecting. 883 /// \param BB The block that the value flows in from. 884 /// \param IncomingValues A map from block-to-value for other phi inputs 885 /// that we have examined. 886 /// 887 /// \returns the selected value. 888 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 889 IncomingValueMap &IncomingValues) { 890 if (!isa<UndefValue>(OldVal)) { 891 assert((!IncomingValues.count(BB) || 892 IncomingValues.find(BB)->second == OldVal) && 893 "Expected OldVal to match incoming value from BB!"); 894 895 IncomingValues.insert(std::make_pair(BB, OldVal)); 896 return OldVal; 897 } 898 899 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 900 if (It != IncomingValues.end()) return It->second; 901 902 return OldVal; 903 } 904 905 /// Create a map from block to value for the operands of a 906 /// given phi. 907 /// 908 /// Create a map from block to value for each non-undef value flowing 909 /// into \p PN. 910 /// 911 /// \param PN The phi we are collecting the map for. 912 /// \param IncomingValues [out] The map from block to value for this phi. 913 static void gatherIncomingValuesToPhi(PHINode *PN, 914 IncomingValueMap &IncomingValues) { 915 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 916 BasicBlock *BB = PN->getIncomingBlock(i); 917 Value *V = PN->getIncomingValue(i); 918 919 if (!isa<UndefValue>(V)) 920 IncomingValues.insert(std::make_pair(BB, V)); 921 } 922 } 923 924 /// Replace the incoming undef values to a phi with the values 925 /// from a block-to-value map. 926 /// 927 /// \param PN The phi we are replacing the undefs in. 928 /// \param IncomingValues A map from block to value. 929 static void replaceUndefValuesInPhi(PHINode *PN, 930 const IncomingValueMap &IncomingValues) { 931 SmallVector<unsigned> TrueUndefOps; 932 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 933 Value *V = PN->getIncomingValue(i); 934 935 if (!isa<UndefValue>(V)) continue; 936 937 BasicBlock *BB = PN->getIncomingBlock(i); 938 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 939 940 // Keep track of undef/poison incoming values. Those must match, so we fix 941 // them up below if needed. 942 // Note: this is conservatively correct, but we could try harder and group 943 // the undef values per incoming basic block. 944 if (It == IncomingValues.end()) { 945 TrueUndefOps.push_back(i); 946 continue; 947 } 948 949 // There is a defined value for this incoming block, so map this undef 950 // incoming value to the defined value. 951 PN->setIncomingValue(i, It->second); 952 } 953 954 // If there are both undef and poison values incoming, then convert those 955 // values to undef. It is invalid to have different values for the same 956 // incoming block. 957 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 958 return isa<PoisonValue>(PN->getIncomingValue(i)); 959 }); 960 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 961 for (unsigned i : TrueUndefOps) 962 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 963 } 964 } 965 966 /// Replace a value flowing from a block to a phi with 967 /// potentially multiple instances of that value flowing from the 968 /// block's predecessors to the phi. 969 /// 970 /// \param BB The block with the value flowing into the phi. 971 /// \param BBPreds The predecessors of BB. 972 /// \param PN The phi that we are updating. 973 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 974 const PredBlockVector &BBPreds, 975 PHINode *PN) { 976 Value *OldVal = PN->removeIncomingValue(BB, false); 977 assert(OldVal && "No entry in PHI for Pred BB!"); 978 979 IncomingValueMap IncomingValues; 980 981 // We are merging two blocks - BB, and the block containing PN - and 982 // as a result we need to redirect edges from the predecessors of BB 983 // to go to the block containing PN, and update PN 984 // accordingly. Since we allow merging blocks in the case where the 985 // predecessor and successor blocks both share some predecessors, 986 // and where some of those common predecessors might have undef 987 // values flowing into PN, we want to rewrite those values to be 988 // consistent with the non-undef values. 989 990 gatherIncomingValuesToPhi(PN, IncomingValues); 991 992 // If this incoming value is one of the PHI nodes in BB, the new entries 993 // in the PHI node are the entries from the old PHI. 994 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 995 PHINode *OldValPN = cast<PHINode>(OldVal); 996 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 997 // Note that, since we are merging phi nodes and BB and Succ might 998 // have common predecessors, we could end up with a phi node with 999 // identical incoming branches. This will be cleaned up later (and 1000 // will trigger asserts if we try to clean it up now, without also 1001 // simplifying the corresponding conditional branch). 1002 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1003 Value *PredVal = OldValPN->getIncomingValue(i); 1004 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 1005 IncomingValues); 1006 1007 // And add a new incoming value for this predecessor for the 1008 // newly retargeted branch. 1009 PN->addIncoming(Selected, PredBB); 1010 } 1011 } else { 1012 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1013 // Update existing incoming values in PN for this 1014 // predecessor of BB. 1015 BasicBlock *PredBB = BBPreds[i]; 1016 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1017 IncomingValues); 1018 1019 // And add a new incoming value for this predecessor for the 1020 // newly retargeted branch. 1021 PN->addIncoming(Selected, PredBB); 1022 } 1023 } 1024 1025 replaceUndefValuesInPhi(PN, IncomingValues); 1026 } 1027 1028 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1029 DomTreeUpdater *DTU) { 1030 assert(BB != &BB->getParent()->getEntryBlock() && 1031 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1032 1033 // We can't eliminate infinite loops. 1034 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1035 if (BB == Succ) return false; 1036 1037 // Check to see if merging these blocks would cause conflicts for any of the 1038 // phi nodes in BB or Succ. If not, we can safely merge. 1039 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1040 1041 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1042 // has uses which will not disappear when the PHI nodes are merged. It is 1043 // possible to handle such cases, but difficult: it requires checking whether 1044 // BB dominates Succ, which is non-trivial to calculate in the case where 1045 // Succ has multiple predecessors. Also, it requires checking whether 1046 // constructing the necessary self-referential PHI node doesn't introduce any 1047 // conflicts; this isn't too difficult, but the previous code for doing this 1048 // was incorrect. 1049 // 1050 // Note that if this check finds a live use, BB dominates Succ, so BB is 1051 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1052 // folding the branch isn't profitable in that case anyway. 1053 if (!Succ->getSinglePredecessor()) { 1054 BasicBlock::iterator BBI = BB->begin(); 1055 while (isa<PHINode>(*BBI)) { 1056 for (Use &U : BBI->uses()) { 1057 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1058 if (PN->getIncomingBlock(U) != BB) 1059 return false; 1060 } else { 1061 return false; 1062 } 1063 } 1064 ++BBI; 1065 } 1066 } 1067 1068 // We cannot fold the block if it's a branch to an already present callbr 1069 // successor because that creates duplicate successors. 1070 for (BasicBlock *PredBB : predecessors(BB)) { 1071 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { 1072 if (Succ == CBI->getDefaultDest()) 1073 return false; 1074 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1075 if (Succ == CBI->getIndirectDest(i)) 1076 return false; 1077 } 1078 } 1079 1080 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1081 1082 SmallVector<DominatorTree::UpdateType, 32> Updates; 1083 if (DTU) { 1084 // All predecessors of BB will be moved to Succ. 1085 SmallPtrSet<BasicBlock *, 8> PredsOfBB(pred_begin(BB), pred_end(BB)); 1086 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); 1087 Updates.reserve(Updates.size() + 2 * PredsOfBB.size() + 1); 1088 for (auto *PredOfBB : PredsOfBB) 1089 // This predecessor of BB may already have Succ as a successor. 1090 if (!PredsOfSucc.contains(PredOfBB)) 1091 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1092 for (auto *PredOfBB : PredsOfBB) 1093 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1094 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1095 } 1096 1097 if (isa<PHINode>(Succ->begin())) { 1098 // If there is more than one pred of succ, and there are PHI nodes in 1099 // the successor, then we need to add incoming edges for the PHI nodes 1100 // 1101 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1102 1103 // Loop over all of the PHI nodes in the successor of BB. 1104 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1105 PHINode *PN = cast<PHINode>(I); 1106 1107 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1108 } 1109 } 1110 1111 if (Succ->getSinglePredecessor()) { 1112 // BB is the only predecessor of Succ, so Succ will end up with exactly 1113 // the same predecessors BB had. 1114 1115 // Copy over any phi, debug or lifetime instruction. 1116 BB->getTerminator()->eraseFromParent(); 1117 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1118 BB->getInstList()); 1119 } else { 1120 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1121 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1122 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1123 PN->eraseFromParent(); 1124 } 1125 } 1126 1127 // If the unconditional branch we replaced contains llvm.loop metadata, we 1128 // add the metadata to the branch instructions in the predecessors. 1129 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1130 Instruction *TI = BB->getTerminator(); 1131 if (TI) 1132 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1133 for (BasicBlock *Pred : predecessors(BB)) 1134 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1135 1136 // For AutoFDO, since BB is going to be removed, we won't be able to sample 1137 // it. To avoid assigning a zero weight for BB, move all its pseudo probes 1138 // into Succ and mark them dangling. This should allow the counts inference a 1139 // chance to get a more reasonable weight for BB. 1140 moveAndDanglePseudoProbes(BB, &*Succ->getFirstInsertionPt()); 1141 1142 // Everything that jumped to BB now goes to Succ. 1143 BB->replaceAllUsesWith(Succ); 1144 if (!Succ->hasName()) Succ->takeName(BB); 1145 1146 // Clear the successor list of BB to match updates applying to DTU later. 1147 if (BB->getTerminator()) 1148 BB->getInstList().pop_back(); 1149 new UnreachableInst(BB->getContext(), BB); 1150 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1151 "applying corresponding DTU updates."); 1152 1153 if (DTU) { 1154 DTU->applyUpdates(Updates); 1155 DTU->deleteBB(BB); 1156 } else { 1157 BB->eraseFromParent(); // Delete the old basic block. 1158 } 1159 return true; 1160 } 1161 1162 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1163 // This implementation doesn't currently consider undef operands 1164 // specially. Theoretically, two phis which are identical except for 1165 // one having an undef where the other doesn't could be collapsed. 1166 1167 bool Changed = false; 1168 1169 // Examine each PHI. 1170 // Note that increment of I must *NOT* be in the iteration_expression, since 1171 // we don't want to immediately advance when we restart from the beginning. 1172 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1173 ++I; 1174 // Is there an identical PHI node in this basic block? 1175 // Note that we only look in the upper square's triangle, 1176 // we already checked that the lower triangle PHI's aren't identical. 1177 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1178 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1179 continue; 1180 // A duplicate. Replace this PHI with the base PHI. 1181 ++NumPHICSEs; 1182 DuplicatePN->replaceAllUsesWith(PN); 1183 DuplicatePN->eraseFromParent(); 1184 Changed = true; 1185 1186 // The RAUW can change PHIs that we already visited. 1187 I = BB->begin(); 1188 break; // Start over from the beginning. 1189 } 1190 } 1191 return Changed; 1192 } 1193 1194 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1195 // This implementation doesn't currently consider undef operands 1196 // specially. Theoretically, two phis which are identical except for 1197 // one having an undef where the other doesn't could be collapsed. 1198 1199 struct PHIDenseMapInfo { 1200 static PHINode *getEmptyKey() { 1201 return DenseMapInfo<PHINode *>::getEmptyKey(); 1202 } 1203 1204 static PHINode *getTombstoneKey() { 1205 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1206 } 1207 1208 static bool isSentinel(PHINode *PN) { 1209 return PN == getEmptyKey() || PN == getTombstoneKey(); 1210 } 1211 1212 // WARNING: this logic must be kept in sync with 1213 // Instruction::isIdenticalToWhenDefined()! 1214 static unsigned getHashValueImpl(PHINode *PN) { 1215 // Compute a hash value on the operands. Instcombine will likely have 1216 // sorted them, which helps expose duplicates, but we have to check all 1217 // the operands to be safe in case instcombine hasn't run. 1218 return static_cast<unsigned>(hash_combine( 1219 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1220 hash_combine_range(PN->block_begin(), PN->block_end()))); 1221 } 1222 1223 static unsigned getHashValue(PHINode *PN) { 1224 #ifndef NDEBUG 1225 // If -phicse-debug-hash was specified, return a constant -- this 1226 // will force all hashing to collide, so we'll exhaustively search 1227 // the table for a match, and the assertion in isEqual will fire if 1228 // there's a bug causing equal keys to hash differently. 1229 if (PHICSEDebugHash) 1230 return 0; 1231 #endif 1232 return getHashValueImpl(PN); 1233 } 1234 1235 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1236 if (isSentinel(LHS) || isSentinel(RHS)) 1237 return LHS == RHS; 1238 return LHS->isIdenticalTo(RHS); 1239 } 1240 1241 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1242 // These comparisons are nontrivial, so assert that equality implies 1243 // hash equality (DenseMap demands this as an invariant). 1244 bool Result = isEqualImpl(LHS, RHS); 1245 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1246 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1247 return Result; 1248 } 1249 }; 1250 1251 // Set of unique PHINodes. 1252 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1253 PHISet.reserve(4 * PHICSENumPHISmallSize); 1254 1255 // Examine each PHI. 1256 bool Changed = false; 1257 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1258 auto Inserted = PHISet.insert(PN); 1259 if (!Inserted.second) { 1260 // A duplicate. Replace this PHI with its duplicate. 1261 ++NumPHICSEs; 1262 PN->replaceAllUsesWith(*Inserted.first); 1263 PN->eraseFromParent(); 1264 Changed = true; 1265 1266 // The RAUW can change PHIs that we already visited. Start over from the 1267 // beginning. 1268 PHISet.clear(); 1269 I = BB->begin(); 1270 } 1271 } 1272 1273 return Changed; 1274 } 1275 1276 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1277 if ( 1278 #ifndef NDEBUG 1279 !PHICSEDebugHash && 1280 #endif 1281 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1282 return EliminateDuplicatePHINodesNaiveImpl(BB); 1283 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1284 } 1285 1286 /// If the specified pointer points to an object that we control, try to modify 1287 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1288 /// the value after the operation, which may be lower than PrefAlign. 1289 /// 1290 /// Increating value alignment isn't often possible though. If alignment is 1291 /// important, a more reliable approach is to simply align all global variables 1292 /// and allocation instructions to their preferred alignment from the beginning. 1293 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1294 const DataLayout &DL) { 1295 V = V->stripPointerCasts(); 1296 1297 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1298 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1299 // than the current alignment, as the known bits calculation should have 1300 // already taken it into account. However, this is not always the case, 1301 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1302 // doesn't. 1303 Align CurrentAlign = AI->getAlign(); 1304 if (PrefAlign <= CurrentAlign) 1305 return CurrentAlign; 1306 1307 // If the preferred alignment is greater than the natural stack alignment 1308 // then don't round up. This avoids dynamic stack realignment. 1309 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1310 return CurrentAlign; 1311 AI->setAlignment(PrefAlign); 1312 return PrefAlign; 1313 } 1314 1315 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1316 // TODO: as above, this shouldn't be necessary. 1317 Align CurrentAlign = GO->getPointerAlignment(DL); 1318 if (PrefAlign <= CurrentAlign) 1319 return CurrentAlign; 1320 1321 // If there is a large requested alignment and we can, bump up the alignment 1322 // of the global. If the memory we set aside for the global may not be the 1323 // memory used by the final program then it is impossible for us to reliably 1324 // enforce the preferred alignment. 1325 if (!GO->canIncreaseAlignment()) 1326 return CurrentAlign; 1327 1328 GO->setAlignment(PrefAlign); 1329 return PrefAlign; 1330 } 1331 1332 return Align(1); 1333 } 1334 1335 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1336 const DataLayout &DL, 1337 const Instruction *CxtI, 1338 AssumptionCache *AC, 1339 const DominatorTree *DT) { 1340 assert(V->getType()->isPointerTy() && 1341 "getOrEnforceKnownAlignment expects a pointer!"); 1342 1343 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1344 unsigned TrailZ = Known.countMinTrailingZeros(); 1345 1346 // Avoid trouble with ridiculously large TrailZ values, such as 1347 // those computed from a null pointer. 1348 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1349 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1350 1351 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1352 1353 if (PrefAlign && *PrefAlign > Alignment) 1354 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1355 1356 // We don't need to make any adjustment. 1357 return Alignment; 1358 } 1359 1360 ///===---------------------------------------------------------------------===// 1361 /// Dbg Intrinsic utilities 1362 /// 1363 1364 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1365 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1366 DIExpression *DIExpr, 1367 PHINode *APN) { 1368 // Since we can't guarantee that the original dbg.declare instrinsic 1369 // is removed by LowerDbgDeclare(), we need to make sure that we are 1370 // not inserting the same dbg.value intrinsic over and over. 1371 SmallVector<DbgValueInst *, 1> DbgValues; 1372 findDbgValues(DbgValues, APN); 1373 for (auto *DVI : DbgValues) { 1374 assert(is_contained(DVI->getValues(), APN)); 1375 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1376 return true; 1377 } 1378 return false; 1379 } 1380 1381 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1382 /// (or fragment of the variable) described by \p DII. 1383 /// 1384 /// This is primarily intended as a helper for the different 1385 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1386 /// converted describes an alloca'd variable, so we need to use the 1387 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1388 /// identified as covering an n-bit fragment, if the store size of i1 is at 1389 /// least n bits. 1390 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1391 const DataLayout &DL = DII->getModule()->getDataLayout(); 1392 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1393 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1394 assert(!ValueSize.isScalable() && 1395 "Fragments don't work on scalable types."); 1396 return ValueSize.getFixedSize() >= *FragmentSize; 1397 } 1398 // We can't always calculate the size of the DI variable (e.g. if it is a 1399 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1400 // intead. 1401 if (DII->isAddressOfVariable()) { 1402 // DII should have exactly 1 location when it is an address. 1403 assert(DII->getNumVariableLocationOps() == 1 && 1404 "address of variable must have exactly 1 location operand."); 1405 if (auto *AI = 1406 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1407 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1408 assert(ValueSize.isScalable() == FragmentSize->isScalable() && 1409 "Both sizes should agree on the scalable flag."); 1410 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1411 } 1412 } 1413 } 1414 // Could not determine size of variable. Conservatively return false. 1415 return false; 1416 } 1417 1418 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1419 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1420 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1421 /// case this DebugLoc leaks into any adjacent instructions. 1422 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1423 // Original dbg.declare must have a location. 1424 const DebugLoc &DeclareLoc = DII->getDebugLoc(); 1425 MDNode *Scope = DeclareLoc.getScope(); 1426 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1427 // Produce an unknown location with the correct scope / inlinedAt fields. 1428 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1429 } 1430 1431 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1432 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1433 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1434 StoreInst *SI, DIBuilder &Builder) { 1435 assert(DII->isAddressOfVariable()); 1436 auto *DIVar = DII->getVariable(); 1437 assert(DIVar && "Missing variable"); 1438 auto *DIExpr = DII->getExpression(); 1439 Value *DV = SI->getValueOperand(); 1440 1441 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1442 1443 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1444 // FIXME: If storing to a part of the variable described by the dbg.declare, 1445 // then we want to insert a dbg.value for the corresponding fragment. 1446 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1447 << *DII << '\n'); 1448 // For now, when there is a store to parts of the variable (but we do not 1449 // know which part) we insert an dbg.value instrinsic to indicate that we 1450 // know nothing about the variable's content. 1451 DV = UndefValue::get(DV->getType()); 1452 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1453 return; 1454 } 1455 1456 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1457 } 1458 1459 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1460 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1461 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1462 LoadInst *LI, DIBuilder &Builder) { 1463 auto *DIVar = DII->getVariable(); 1464 auto *DIExpr = DII->getExpression(); 1465 assert(DIVar && "Missing variable"); 1466 1467 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1468 // FIXME: If only referring to a part of the variable described by the 1469 // dbg.declare, then we want to insert a dbg.value for the corresponding 1470 // fragment. 1471 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1472 << *DII << '\n'); 1473 return; 1474 } 1475 1476 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1477 1478 // We are now tracking the loaded value instead of the address. In the 1479 // future if multi-location support is added to the IR, it might be 1480 // preferable to keep tracking both the loaded value and the original 1481 // address in case the alloca can not be elided. 1482 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1483 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1484 DbgValue->insertAfter(LI); 1485 } 1486 1487 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1488 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1489 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1490 PHINode *APN, DIBuilder &Builder) { 1491 auto *DIVar = DII->getVariable(); 1492 auto *DIExpr = DII->getExpression(); 1493 assert(DIVar && "Missing variable"); 1494 1495 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1496 return; 1497 1498 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1499 // FIXME: If only referring to a part of the variable described by the 1500 // dbg.declare, then we want to insert a dbg.value for the corresponding 1501 // fragment. 1502 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1503 << *DII << '\n'); 1504 return; 1505 } 1506 1507 BasicBlock *BB = APN->getParent(); 1508 auto InsertionPt = BB->getFirstInsertionPt(); 1509 1510 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1511 1512 // The block may be a catchswitch block, which does not have a valid 1513 // insertion point. 1514 // FIXME: Insert dbg.value markers in the successors when appropriate. 1515 if (InsertionPt != BB->end()) 1516 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1517 } 1518 1519 /// Determine whether this alloca is either a VLA or an array. 1520 static bool isArray(AllocaInst *AI) { 1521 return AI->isArrayAllocation() || 1522 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1523 } 1524 1525 /// Determine whether this alloca is a structure. 1526 static bool isStructure(AllocaInst *AI) { 1527 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1528 } 1529 1530 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1531 /// of llvm.dbg.value intrinsics. 1532 bool llvm::LowerDbgDeclare(Function &F) { 1533 bool Changed = false; 1534 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1535 SmallVector<DbgDeclareInst *, 4> Dbgs; 1536 for (auto &FI : F) 1537 for (Instruction &BI : FI) 1538 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1539 Dbgs.push_back(DDI); 1540 1541 if (Dbgs.empty()) 1542 return Changed; 1543 1544 for (auto &I : Dbgs) { 1545 DbgDeclareInst *DDI = I; 1546 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1547 // If this is an alloca for a scalar variable, insert a dbg.value 1548 // at each load and store to the alloca and erase the dbg.declare. 1549 // The dbg.values allow tracking a variable even if it is not 1550 // stored on the stack, while the dbg.declare can only describe 1551 // the stack slot (and at a lexical-scope granularity). Later 1552 // passes will attempt to elide the stack slot. 1553 if (!AI || isArray(AI) || isStructure(AI)) 1554 continue; 1555 1556 // A volatile load/store means that the alloca can't be elided anyway. 1557 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1558 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1559 return LI->isVolatile(); 1560 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1561 return SI->isVolatile(); 1562 return false; 1563 })) 1564 continue; 1565 1566 SmallVector<const Value *, 8> WorkList; 1567 WorkList.push_back(AI); 1568 while (!WorkList.empty()) { 1569 const Value *V = WorkList.pop_back_val(); 1570 for (auto &AIUse : V->uses()) { 1571 User *U = AIUse.getUser(); 1572 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1573 if (AIUse.getOperandNo() == 1) 1574 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1575 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1576 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1577 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1578 // This is a call by-value or some other instruction that takes a 1579 // pointer to the variable. Insert a *value* intrinsic that describes 1580 // the variable by dereferencing the alloca. 1581 if (!CI->isLifetimeStartOrEnd()) { 1582 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1583 auto *DerefExpr = 1584 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1585 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1586 NewLoc, CI); 1587 } 1588 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1589 if (BI->getType()->isPointerTy()) 1590 WorkList.push_back(BI); 1591 } 1592 } 1593 } 1594 DDI->eraseFromParent(); 1595 Changed = true; 1596 } 1597 1598 if (Changed) 1599 for (BasicBlock &BB : F) 1600 RemoveRedundantDbgInstrs(&BB); 1601 1602 return Changed; 1603 } 1604 1605 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1606 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1607 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1608 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1609 if (InsertedPHIs.size() == 0) 1610 return; 1611 1612 // Map existing PHI nodes to their dbg.values. 1613 ValueToValueMapTy DbgValueMap; 1614 for (auto &I : *BB) { 1615 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1616 for (Value *V : DbgII->location_ops()) 1617 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 1618 DbgValueMap.insert({Loc, DbgII}); 1619 } 1620 } 1621 if (DbgValueMap.size() == 0) 1622 return; 1623 1624 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 1625 // so that if a dbg.value is being rewritten to use more than one of the 1626 // inserted PHIs in the same destination BB, we can update the same dbg.value 1627 // with all the new PHIs instead of creating one copy for each. 1628 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 1629 DbgVariableIntrinsic *> 1630 NewDbgValueMap; 1631 // Then iterate through the new PHIs and look to see if they use one of the 1632 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 1633 // propagate the info through the new PHI. If we use more than one new PHI in 1634 // a single destination BB with the same old dbg.value, merge the updates so 1635 // that we get a single new dbg.value with all the new PHIs. 1636 for (auto PHI : InsertedPHIs) { 1637 BasicBlock *Parent = PHI->getParent(); 1638 // Avoid inserting an intrinsic into an EH block. 1639 if (Parent->getFirstNonPHI()->isEHPad()) 1640 continue; 1641 for (auto VI : PHI->operand_values()) { 1642 auto V = DbgValueMap.find(VI); 1643 if (V != DbgValueMap.end()) { 1644 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1645 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 1646 if (NewDI == NewDbgValueMap.end()) { 1647 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 1648 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 1649 } 1650 DbgVariableIntrinsic *NewDbgII = NewDI->second; 1651 // If PHI contains VI as an operand more than once, we may 1652 // replaced it in NewDbgII; confirm that it is present. 1653 if (is_contained(NewDbgII->location_ops(), VI)) 1654 NewDbgII->replaceVariableLocationOp(VI, PHI); 1655 } 1656 } 1657 } 1658 // Insert thew new dbg.values into their destination blocks. 1659 for (auto DI : NewDbgValueMap) { 1660 BasicBlock *Parent = DI.first.first; 1661 auto *NewDbgII = DI.second; 1662 auto InsertionPt = Parent->getFirstInsertionPt(); 1663 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1664 NewDbgII->insertBefore(&*InsertionPt); 1665 } 1666 } 1667 1668 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1669 DIBuilder &Builder, uint8_t DIExprFlags, 1670 int Offset) { 1671 auto DbgAddrs = FindDbgAddrUses(Address); 1672 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1673 const DebugLoc &Loc = DII->getDebugLoc(); 1674 auto *DIVar = DII->getVariable(); 1675 auto *DIExpr = DII->getExpression(); 1676 assert(DIVar && "Missing variable"); 1677 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1678 // Insert llvm.dbg.declare immediately before DII, and remove old 1679 // llvm.dbg.declare. 1680 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1681 DII->eraseFromParent(); 1682 } 1683 return !DbgAddrs.empty(); 1684 } 1685 1686 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1687 DIBuilder &Builder, int Offset) { 1688 const DebugLoc &Loc = DVI->getDebugLoc(); 1689 auto *DIVar = DVI->getVariable(); 1690 auto *DIExpr = DVI->getExpression(); 1691 assert(DIVar && "Missing variable"); 1692 1693 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1694 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1695 // it and give up. 1696 if (!DIExpr || DIExpr->getNumElements() < 1 || 1697 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1698 return; 1699 1700 // Insert the offset before the first deref. 1701 // We could just change the offset argument of dbg.value, but it's unsigned... 1702 if (Offset) 1703 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1704 1705 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1706 DVI->eraseFromParent(); 1707 } 1708 1709 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1710 DIBuilder &Builder, int Offset) { 1711 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1712 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1713 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1714 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1715 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1716 } 1717 1718 /// Where possible to salvage debug information for \p I do so 1719 /// and return True. If not possible mark undef and return False. 1720 void llvm::salvageDebugInfo(Instruction &I) { 1721 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1722 findDbgUsers(DbgUsers, &I); 1723 salvageDebugInfoForDbgValues(I, DbgUsers); 1724 } 1725 1726 void llvm::salvageDebugInfoForDbgValues( 1727 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1728 bool Salvaged = false; 1729 1730 for (auto *DII : DbgUsers) { 1731 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1732 // are implicitly pointing out the value as a DWARF memory location 1733 // description. 1734 bool StackValue = isa<DbgValueInst>(DII); 1735 auto DIILocation = DII->location_ops(); 1736 assert( 1737 is_contained(DIILocation, &I) && 1738 "DbgVariableIntrinsic must use salvaged instruction as its location"); 1739 unsigned LocNo = std::distance(DIILocation.begin(), find(DIILocation, &I)); 1740 1741 DIExpression *DIExpr = 1742 salvageDebugInfoImpl(I, DII->getExpression(), StackValue, LocNo); 1743 1744 // salvageDebugInfoImpl should fail on examining the first element of 1745 // DbgUsers, or none of them. 1746 if (!DIExpr) 1747 break; 1748 1749 DII->replaceVariableLocationOp(&I, I.getOperand(0)); 1750 DII->setExpression(DIExpr); 1751 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1752 Salvaged = true; 1753 } 1754 1755 if (Salvaged) 1756 return; 1757 1758 for (auto *DII : DbgUsers) { 1759 Value *Undef = UndefValue::get(I.getType()); 1760 DII->replaceVariableLocationOp(&I, Undef); 1761 } 1762 } 1763 1764 bool getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 1765 SmallVectorImpl<uint64_t> &Opcodes) { 1766 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 1767 // Rewrite a constant GEP into a DIExpression. 1768 APInt ConstantOffset(BitWidth, 0); 1769 if (!GEP->accumulateConstantOffset(DL, ConstantOffset)) 1770 return false; 1771 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 1772 return true; 1773 } 1774 1775 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 1776 switch (Opcode) { 1777 case Instruction::Add: 1778 return dwarf::DW_OP_plus; 1779 case Instruction::Sub: 1780 return dwarf::DW_OP_minus; 1781 case Instruction::Mul: 1782 return dwarf::DW_OP_mul; 1783 case Instruction::SDiv: 1784 return dwarf::DW_OP_div; 1785 case Instruction::SRem: 1786 return dwarf::DW_OP_mod; 1787 case Instruction::Or: 1788 return dwarf::DW_OP_or; 1789 case Instruction::And: 1790 return dwarf::DW_OP_and; 1791 case Instruction::Xor: 1792 return dwarf::DW_OP_xor; 1793 case Instruction::Shl: 1794 return dwarf::DW_OP_shl; 1795 case Instruction::LShr: 1796 return dwarf::DW_OP_shr; 1797 case Instruction::AShr: 1798 return dwarf::DW_OP_shra; 1799 default: 1800 // TODO: Salvage from each kind of binop we know about. 1801 return 0; 1802 } 1803 } 1804 1805 bool getSalvageOpsForBinOp(BinaryOperator *BI, 1806 SmallVectorImpl<uint64_t> &Opcodes) { 1807 // Rewrite binary operations with constant integer operands. 1808 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 1809 if (!ConstInt || ConstInt->getBitWidth() > 64) 1810 return false; 1811 uint64_t Val = ConstInt->getSExtValue(); 1812 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 1813 // Add or Sub Instructions with a constant operand can potentially be 1814 // simplified. 1815 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 1816 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 1817 DIExpression::appendOffset(Opcodes, Offset); 1818 return true; 1819 } 1820 // Add constant int operand to expression stack. 1821 Opcodes.append({dwarf::DW_OP_constu, Val}); 1822 1823 // Add salvaged binary operator to expression stack, if it has a valid 1824 // representation in a DIExpression. 1825 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 1826 if (!DwarfBinOp) 1827 return false; 1828 Opcodes.push_back(DwarfBinOp); 1829 1830 return true; 1831 } 1832 1833 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1834 DIExpression *SrcDIExpr, 1835 bool WithStackValue, unsigned LocNo) { 1836 auto &M = *I.getModule(); 1837 auto &DL = M.getDataLayout(); 1838 1839 // Apply a vector of opcodes to the source DIExpression. 1840 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1841 DIExpression *DIExpr = SrcDIExpr; 1842 if (!Ops.empty()) { 1843 DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, LocNo, WithStackValue); 1844 } 1845 return DIExpr; 1846 }; 1847 1848 // initializer-list helper for applying operators to the source DIExpression. 1849 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1850 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1851 return doSalvage(Ops); 1852 }; 1853 1854 if (auto *CI = dyn_cast<CastInst>(&I)) { 1855 // No-op casts are irrelevant for debug info. 1856 if (CI->isNoopCast(DL)) 1857 return SrcDIExpr; 1858 1859 Type *Type = CI->getType(); 1860 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1861 if (Type->isVectorTy() || 1862 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1863 return nullptr; 1864 1865 Value *FromValue = CI->getOperand(0); 1866 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1867 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1868 1869 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1870 isa<SExtInst>(&I))); 1871 } 1872 1873 SmallVector<uint64_t, 8> Ops; 1874 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1875 if (getSalvageOpsForGEP(GEP, DL, Ops)) 1876 return doSalvage(Ops); 1877 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1878 if (getSalvageOpsForBinOp(BI, Ops)) 1879 return doSalvage(Ops); 1880 } 1881 // *Not* to do: we should not attempt to salvage load instructions, 1882 // because the validity and lifetime of a dbg.value containing 1883 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1884 return nullptr; 1885 } 1886 1887 /// A replacement for a dbg.value expression. 1888 using DbgValReplacement = Optional<DIExpression *>; 1889 1890 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1891 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1892 /// changes are made. 1893 static bool rewriteDebugUsers( 1894 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1895 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1896 // Find debug users of From. 1897 SmallVector<DbgVariableIntrinsic *, 1> Users; 1898 findDbgUsers(Users, &From); 1899 if (Users.empty()) 1900 return false; 1901 1902 // Prevent use-before-def of To. 1903 bool Changed = false; 1904 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1905 if (isa<Instruction>(&To)) { 1906 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1907 1908 for (auto *DII : Users) { 1909 // It's common to see a debug user between From and DomPoint. Move it 1910 // after DomPoint to preserve the variable update without any reordering. 1911 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1912 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1913 DII->moveAfter(&DomPoint); 1914 Changed = true; 1915 1916 // Users which otherwise aren't dominated by the replacement value must 1917 // be salvaged or deleted. 1918 } else if (!DT.dominates(&DomPoint, DII)) { 1919 UndefOrSalvage.insert(DII); 1920 } 1921 } 1922 } 1923 1924 // Update debug users without use-before-def risk. 1925 for (auto *DII : Users) { 1926 if (UndefOrSalvage.count(DII)) 1927 continue; 1928 1929 DbgValReplacement DVR = RewriteExpr(*DII); 1930 if (!DVR) 1931 continue; 1932 1933 DII->replaceVariableLocationOp(&From, &To); 1934 DII->setExpression(*DVR); 1935 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1936 Changed = true; 1937 } 1938 1939 if (!UndefOrSalvage.empty()) { 1940 // Try to salvage the remaining debug users. 1941 salvageDebugInfo(From); 1942 Changed = true; 1943 } 1944 1945 return Changed; 1946 } 1947 1948 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1949 /// losslessly preserve the bits and semantics of the value. This predicate is 1950 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1951 /// 1952 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1953 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1954 /// and also does not allow lossless pointer <-> integer conversions. 1955 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1956 Type *ToTy) { 1957 // Trivially compatible types. 1958 if (FromTy == ToTy) 1959 return true; 1960 1961 // Handle compatible pointer <-> integer conversions. 1962 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1963 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1964 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1965 !DL.isNonIntegralPointerType(ToTy); 1966 return SameSize && LosslessConversion; 1967 } 1968 1969 // TODO: This is not exhaustive. 1970 return false; 1971 } 1972 1973 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1974 Instruction &DomPoint, DominatorTree &DT) { 1975 // Exit early if From has no debug users. 1976 if (!From.isUsedByMetadata()) 1977 return false; 1978 1979 assert(&From != &To && "Can't replace something with itself"); 1980 1981 Type *FromTy = From.getType(); 1982 Type *ToTy = To.getType(); 1983 1984 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1985 return DII.getExpression(); 1986 }; 1987 1988 // Handle no-op conversions. 1989 Module &M = *From.getModule(); 1990 const DataLayout &DL = M.getDataLayout(); 1991 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1992 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1993 1994 // Handle integer-to-integer widening and narrowing. 1995 // FIXME: Use DW_OP_convert when it's available everywhere. 1996 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1997 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1998 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1999 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2000 2001 // When the width of the result grows, assume that a debugger will only 2002 // access the low `FromBits` bits when inspecting the source variable. 2003 if (FromBits < ToBits) 2004 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2005 2006 // The width of the result has shrunk. Use sign/zero extension to describe 2007 // the source variable's high bits. 2008 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2009 DILocalVariable *Var = DII.getVariable(); 2010 2011 // Without knowing signedness, sign/zero extension isn't possible. 2012 auto Signedness = Var->getSignedness(); 2013 if (!Signedness) 2014 return None; 2015 2016 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2017 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2018 Signed); 2019 }; 2020 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2021 } 2022 2023 // TODO: Floating-point conversions, vectors. 2024 return false; 2025 } 2026 2027 std::pair<unsigned, unsigned> 2028 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2029 unsigned NumDeadInst = 0; 2030 unsigned NumDeadDbgInst = 0; 2031 // Delete the instructions backwards, as it has a reduced likelihood of 2032 // having to update as many def-use and use-def chains. 2033 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2034 while (EndInst != &BB->front()) { 2035 // Delete the next to last instruction. 2036 Instruction *Inst = &*--EndInst->getIterator(); 2037 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2038 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2039 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2040 EndInst = Inst; 2041 continue; 2042 } 2043 if (isa<DbgInfoIntrinsic>(Inst)) 2044 ++NumDeadDbgInst; 2045 else 2046 ++NumDeadInst; 2047 Inst->eraseFromParent(); 2048 } 2049 return {NumDeadInst, NumDeadDbgInst}; 2050 } 2051 2052 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2053 bool PreserveLCSSA, DomTreeUpdater *DTU, 2054 MemorySSAUpdater *MSSAU) { 2055 BasicBlock *BB = I->getParent(); 2056 2057 if (MSSAU) 2058 MSSAU->changeToUnreachable(I); 2059 2060 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2061 2062 // Loop over all of the successors, removing BB's entry from any PHI 2063 // nodes. 2064 for (BasicBlock *Successor : successors(BB)) { 2065 Successor->removePredecessor(BB, PreserveLCSSA); 2066 if (DTU) 2067 UniqueSuccessors.insert(Successor); 2068 } 2069 // Insert a call to llvm.trap right before this. This turns the undefined 2070 // behavior into a hard fail instead of falling through into random code. 2071 if (UseLLVMTrap) { 2072 Function *TrapFn = 2073 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2074 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2075 CallTrap->setDebugLoc(I->getDebugLoc()); 2076 } 2077 auto *UI = new UnreachableInst(I->getContext(), I); 2078 UI->setDebugLoc(I->getDebugLoc()); 2079 2080 // All instructions after this are dead. 2081 unsigned NumInstrsRemoved = 0; 2082 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2083 while (BBI != BBE) { 2084 if (!BBI->use_empty()) 2085 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2086 BB->getInstList().erase(BBI++); 2087 ++NumInstrsRemoved; 2088 } 2089 if (DTU) { 2090 SmallVector<DominatorTree::UpdateType, 8> Updates; 2091 Updates.reserve(UniqueSuccessors.size()); 2092 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2093 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2094 DTU->applyUpdates(Updates); 2095 } 2096 return NumInstrsRemoved; 2097 } 2098 2099 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2100 SmallVector<Value *, 8> Args(II->args()); 2101 SmallVector<OperandBundleDef, 1> OpBundles; 2102 II->getOperandBundlesAsDefs(OpBundles); 2103 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2104 II->getCalledOperand(), Args, OpBundles); 2105 NewCall->setCallingConv(II->getCallingConv()); 2106 NewCall->setAttributes(II->getAttributes()); 2107 NewCall->setDebugLoc(II->getDebugLoc()); 2108 NewCall->copyMetadata(*II); 2109 2110 // If the invoke had profile metadata, try converting them for CallInst. 2111 uint64_t TotalWeight; 2112 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2113 // Set the total weight if it fits into i32, otherwise reset. 2114 MDBuilder MDB(NewCall->getContext()); 2115 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2116 ? nullptr 2117 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2118 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2119 } 2120 2121 return NewCall; 2122 } 2123 2124 /// changeToCall - Convert the specified invoke into a normal call. 2125 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2126 CallInst *NewCall = createCallMatchingInvoke(II); 2127 NewCall->takeName(II); 2128 NewCall->insertBefore(II); 2129 II->replaceAllUsesWith(NewCall); 2130 2131 // Follow the call by a branch to the normal destination. 2132 BasicBlock *NormalDestBB = II->getNormalDest(); 2133 BranchInst::Create(NormalDestBB, II); 2134 2135 // Update PHI nodes in the unwind destination 2136 BasicBlock *BB = II->getParent(); 2137 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2138 UnwindDestBB->removePredecessor(BB); 2139 II->eraseFromParent(); 2140 if (DTU) 2141 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2142 } 2143 2144 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2145 BasicBlock *UnwindEdge, 2146 DomTreeUpdater *DTU) { 2147 BasicBlock *BB = CI->getParent(); 2148 2149 // Convert this function call into an invoke instruction. First, split the 2150 // basic block. 2151 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2152 CI->getName() + ".noexc"); 2153 2154 // Delete the unconditional branch inserted by SplitBlock 2155 BB->getInstList().pop_back(); 2156 2157 // Create the new invoke instruction. 2158 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2159 SmallVector<OperandBundleDef, 1> OpBundles; 2160 2161 CI->getOperandBundlesAsDefs(OpBundles); 2162 2163 // Note: we're round tripping operand bundles through memory here, and that 2164 // can potentially be avoided with a cleverer API design that we do not have 2165 // as of this time. 2166 2167 InvokeInst *II = 2168 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2169 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2170 II->setDebugLoc(CI->getDebugLoc()); 2171 II->setCallingConv(CI->getCallingConv()); 2172 II->setAttributes(CI->getAttributes()); 2173 2174 if (DTU) 2175 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2176 2177 // Make sure that anything using the call now uses the invoke! This also 2178 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2179 CI->replaceAllUsesWith(II); 2180 2181 // Delete the original call 2182 Split->getInstList().pop_front(); 2183 return Split; 2184 } 2185 2186 static bool markAliveBlocks(Function &F, 2187 SmallPtrSetImpl<BasicBlock *> &Reachable, 2188 DomTreeUpdater *DTU = nullptr) { 2189 SmallVector<BasicBlock*, 128> Worklist; 2190 BasicBlock *BB = &F.front(); 2191 Worklist.push_back(BB); 2192 Reachable.insert(BB); 2193 bool Changed = false; 2194 do { 2195 BB = Worklist.pop_back_val(); 2196 2197 // Do a quick scan of the basic block, turning any obviously unreachable 2198 // instructions into LLVM unreachable insts. The instruction combining pass 2199 // canonicalizes unreachable insts into stores to null or undef. 2200 for (Instruction &I : *BB) { 2201 if (auto *CI = dyn_cast<CallInst>(&I)) { 2202 Value *Callee = CI->getCalledOperand(); 2203 // Handle intrinsic calls. 2204 if (Function *F = dyn_cast<Function>(Callee)) { 2205 auto IntrinsicID = F->getIntrinsicID(); 2206 // Assumptions that are known to be false are equivalent to 2207 // unreachable. Also, if the condition is undefined, then we make the 2208 // choice most beneficial to the optimizer, and choose that to also be 2209 // unreachable. 2210 if (IntrinsicID == Intrinsic::assume) { 2211 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2212 // Don't insert a call to llvm.trap right before the unreachable. 2213 changeToUnreachable(CI, false, false, DTU); 2214 Changed = true; 2215 break; 2216 } 2217 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2218 // A call to the guard intrinsic bails out of the current 2219 // compilation unit if the predicate passed to it is false. If the 2220 // predicate is a constant false, then we know the guard will bail 2221 // out of the current compile unconditionally, so all code following 2222 // it is dead. 2223 // 2224 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2225 // guards to treat `undef` as `false` since a guard on `undef` can 2226 // still be useful for widening. 2227 if (match(CI->getArgOperand(0), m_Zero())) 2228 if (!isa<UnreachableInst>(CI->getNextNode())) { 2229 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2230 false, DTU); 2231 Changed = true; 2232 break; 2233 } 2234 } 2235 } else if ((isa<ConstantPointerNull>(Callee) && 2236 !NullPointerIsDefined(CI->getFunction())) || 2237 isa<UndefValue>(Callee)) { 2238 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2239 Changed = true; 2240 break; 2241 } 2242 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2243 // If we found a call to a no-return function, insert an unreachable 2244 // instruction after it. Make sure there isn't *already* one there 2245 // though. 2246 if (!isa<UnreachableInst>(CI->getNextNode())) { 2247 // Don't insert a call to llvm.trap right before the unreachable. 2248 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2249 Changed = true; 2250 } 2251 break; 2252 } 2253 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2254 // Store to undef and store to null are undefined and used to signal 2255 // that they should be changed to unreachable by passes that can't 2256 // modify the CFG. 2257 2258 // Don't touch volatile stores. 2259 if (SI->isVolatile()) continue; 2260 2261 Value *Ptr = SI->getOperand(1); 2262 2263 if (isa<UndefValue>(Ptr) || 2264 (isa<ConstantPointerNull>(Ptr) && 2265 !NullPointerIsDefined(SI->getFunction(), 2266 SI->getPointerAddressSpace()))) { 2267 changeToUnreachable(SI, true, false, DTU); 2268 Changed = true; 2269 break; 2270 } 2271 } 2272 } 2273 2274 Instruction *Terminator = BB->getTerminator(); 2275 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2276 // Turn invokes that call 'nounwind' functions into ordinary calls. 2277 Value *Callee = II->getCalledOperand(); 2278 if ((isa<ConstantPointerNull>(Callee) && 2279 !NullPointerIsDefined(BB->getParent())) || 2280 isa<UndefValue>(Callee)) { 2281 changeToUnreachable(II, true, false, DTU); 2282 Changed = true; 2283 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2284 if (II->use_empty() && II->onlyReadsMemory()) { 2285 // jump to the normal destination branch. 2286 BasicBlock *NormalDestBB = II->getNormalDest(); 2287 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2288 BranchInst::Create(NormalDestBB, II); 2289 UnwindDestBB->removePredecessor(II->getParent()); 2290 II->eraseFromParent(); 2291 if (DTU) 2292 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2293 } else 2294 changeToCall(II, DTU); 2295 Changed = true; 2296 } 2297 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2298 // Remove catchpads which cannot be reached. 2299 struct CatchPadDenseMapInfo { 2300 static CatchPadInst *getEmptyKey() { 2301 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2302 } 2303 2304 static CatchPadInst *getTombstoneKey() { 2305 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2306 } 2307 2308 static unsigned getHashValue(CatchPadInst *CatchPad) { 2309 return static_cast<unsigned>(hash_combine_range( 2310 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2311 } 2312 2313 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2314 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2315 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2316 return LHS == RHS; 2317 return LHS->isIdenticalTo(RHS); 2318 } 2319 }; 2320 2321 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 2322 // Set of unique CatchPads. 2323 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2324 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2325 HandlerSet; 2326 detail::DenseSetEmpty Empty; 2327 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2328 E = CatchSwitch->handler_end(); 2329 I != E; ++I) { 2330 BasicBlock *HandlerBB = *I; 2331 if (DTU) 2332 ++NumPerSuccessorCases[HandlerBB]; 2333 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2334 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2335 if (DTU) 2336 --NumPerSuccessorCases[HandlerBB]; 2337 CatchSwitch->removeHandler(I); 2338 --I; 2339 --E; 2340 Changed = true; 2341 } 2342 } 2343 if (DTU) { 2344 std::vector<DominatorTree::UpdateType> Updates; 2345 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2346 if (I.second == 0) 2347 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2348 DTU->applyUpdates(Updates); 2349 } 2350 } 2351 2352 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2353 for (BasicBlock *Successor : successors(BB)) 2354 if (Reachable.insert(Successor).second) 2355 Worklist.push_back(Successor); 2356 } while (!Worklist.empty()); 2357 return Changed; 2358 } 2359 2360 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2361 Instruction *TI = BB->getTerminator(); 2362 2363 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2364 changeToCall(II, DTU); 2365 return; 2366 } 2367 2368 Instruction *NewTI; 2369 BasicBlock *UnwindDest; 2370 2371 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2372 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2373 UnwindDest = CRI->getUnwindDest(); 2374 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2375 auto *NewCatchSwitch = CatchSwitchInst::Create( 2376 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2377 CatchSwitch->getName(), CatchSwitch); 2378 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2379 NewCatchSwitch->addHandler(PadBB); 2380 2381 NewTI = NewCatchSwitch; 2382 UnwindDest = CatchSwitch->getUnwindDest(); 2383 } else { 2384 llvm_unreachable("Could not find unwind successor"); 2385 } 2386 2387 NewTI->takeName(TI); 2388 NewTI->setDebugLoc(TI->getDebugLoc()); 2389 UnwindDest->removePredecessor(BB); 2390 TI->replaceAllUsesWith(NewTI); 2391 TI->eraseFromParent(); 2392 if (DTU) 2393 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2394 } 2395 2396 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2397 /// if they are in a dead cycle. Return true if a change was made, false 2398 /// otherwise. 2399 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2400 MemorySSAUpdater *MSSAU) { 2401 SmallPtrSet<BasicBlock *, 16> Reachable; 2402 bool Changed = markAliveBlocks(F, Reachable, DTU); 2403 2404 // If there are unreachable blocks in the CFG... 2405 if (Reachable.size() == F.size()) 2406 return Changed; 2407 2408 assert(Reachable.size() < F.size()); 2409 2410 // Are there any blocks left to actually delete? 2411 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2412 for (BasicBlock &BB : F) { 2413 // Skip reachable basic blocks 2414 if (Reachable.count(&BB)) 2415 continue; 2416 // Skip already-deleted blocks 2417 if (DTU && DTU->isBBPendingDeletion(&BB)) 2418 continue; 2419 BlocksToRemove.insert(&BB); 2420 } 2421 2422 if (BlocksToRemove.empty()) 2423 return Changed; 2424 2425 Changed = true; 2426 NumRemoved += BlocksToRemove.size(); 2427 2428 if (MSSAU) 2429 MSSAU->removeBlocks(BlocksToRemove); 2430 2431 // Loop over all of the basic blocks that are up for removal, dropping all of 2432 // their internal references. Update DTU if available. 2433 std::vector<DominatorTree::UpdateType> Updates; 2434 for (auto *BB : BlocksToRemove) { 2435 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2436 for (BasicBlock *Successor : successors(BB)) { 2437 // Only remove references to BB in reachable successors of BB. 2438 if (Reachable.count(Successor)) 2439 Successor->removePredecessor(BB); 2440 if (DTU) 2441 UniqueSuccessors.insert(Successor); 2442 } 2443 BB->dropAllReferences(); 2444 if (DTU) { 2445 Instruction *TI = BB->getTerminator(); 2446 assert(TI && "Basic block should have a terminator"); 2447 // Terminators like invoke can have users. We have to replace their users, 2448 // before removing them. 2449 if (!TI->use_empty()) 2450 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2451 TI->eraseFromParent(); 2452 new UnreachableInst(BB->getContext(), BB); 2453 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2454 "applying corresponding DTU updates."); 2455 Updates.reserve(Updates.size() + UniqueSuccessors.size()); 2456 for (auto *UniqueSuccessor : UniqueSuccessors) 2457 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2458 } 2459 } 2460 2461 if (DTU) { 2462 DTU->applyUpdates(Updates); 2463 for (auto *BB : BlocksToRemove) 2464 DTU->deleteBB(BB); 2465 } else { 2466 for (auto *BB : BlocksToRemove) 2467 BB->eraseFromParent(); 2468 } 2469 2470 return Changed; 2471 } 2472 2473 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2474 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2475 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2476 K->dropUnknownNonDebugMetadata(KnownIDs); 2477 K->getAllMetadataOtherThanDebugLoc(Metadata); 2478 for (const auto &MD : Metadata) { 2479 unsigned Kind = MD.first; 2480 MDNode *JMD = J->getMetadata(Kind); 2481 MDNode *KMD = MD.second; 2482 2483 switch (Kind) { 2484 default: 2485 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2486 break; 2487 case LLVMContext::MD_dbg: 2488 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2489 case LLVMContext::MD_tbaa: 2490 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2491 break; 2492 case LLVMContext::MD_alias_scope: 2493 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2494 break; 2495 case LLVMContext::MD_noalias: 2496 case LLVMContext::MD_mem_parallel_loop_access: 2497 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2498 break; 2499 case LLVMContext::MD_access_group: 2500 K->setMetadata(LLVMContext::MD_access_group, 2501 intersectAccessGroups(K, J)); 2502 break; 2503 case LLVMContext::MD_range: 2504 2505 // If K does move, use most generic range. Otherwise keep the range of 2506 // K. 2507 if (DoesKMove) 2508 // FIXME: If K does move, we should drop the range info and nonnull. 2509 // Currently this function is used with DoesKMove in passes 2510 // doing hoisting/sinking and the current behavior of using the 2511 // most generic range is correct in those cases. 2512 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2513 break; 2514 case LLVMContext::MD_fpmath: 2515 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2516 break; 2517 case LLVMContext::MD_invariant_load: 2518 // Only set the !invariant.load if it is present in both instructions. 2519 K->setMetadata(Kind, JMD); 2520 break; 2521 case LLVMContext::MD_nonnull: 2522 // If K does move, keep nonull if it is present in both instructions. 2523 if (DoesKMove) 2524 K->setMetadata(Kind, JMD); 2525 break; 2526 case LLVMContext::MD_invariant_group: 2527 // Preserve !invariant.group in K. 2528 break; 2529 case LLVMContext::MD_align: 2530 K->setMetadata(Kind, 2531 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2532 break; 2533 case LLVMContext::MD_dereferenceable: 2534 case LLVMContext::MD_dereferenceable_or_null: 2535 K->setMetadata(Kind, 2536 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2537 break; 2538 case LLVMContext::MD_preserve_access_index: 2539 // Preserve !preserve.access.index in K. 2540 break; 2541 } 2542 } 2543 // Set !invariant.group from J if J has it. If both instructions have it 2544 // then we will just pick it from J - even when they are different. 2545 // Also make sure that K is load or store - f.e. combining bitcast with load 2546 // could produce bitcast with invariant.group metadata, which is invalid. 2547 // FIXME: we should try to preserve both invariant.group md if they are 2548 // different, but right now instruction can only have one invariant.group. 2549 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2550 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2551 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2552 } 2553 2554 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2555 bool KDominatesJ) { 2556 unsigned KnownIDs[] = { 2557 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2558 LLVMContext::MD_noalias, LLVMContext::MD_range, 2559 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2560 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2561 LLVMContext::MD_dereferenceable, 2562 LLVMContext::MD_dereferenceable_or_null, 2563 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2564 combineMetadata(K, J, KnownIDs, KDominatesJ); 2565 } 2566 2567 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2568 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2569 Source.getAllMetadata(MD); 2570 MDBuilder MDB(Dest.getContext()); 2571 Type *NewType = Dest.getType(); 2572 const DataLayout &DL = Source.getModule()->getDataLayout(); 2573 for (const auto &MDPair : MD) { 2574 unsigned ID = MDPair.first; 2575 MDNode *N = MDPair.second; 2576 // Note, essentially every kind of metadata should be preserved here! This 2577 // routine is supposed to clone a load instruction changing *only its type*. 2578 // The only metadata it makes sense to drop is metadata which is invalidated 2579 // when the pointer type changes. This should essentially never be the case 2580 // in LLVM, but we explicitly switch over only known metadata to be 2581 // conservatively correct. If you are adding metadata to LLVM which pertains 2582 // to loads, you almost certainly want to add it here. 2583 switch (ID) { 2584 case LLVMContext::MD_dbg: 2585 case LLVMContext::MD_tbaa: 2586 case LLVMContext::MD_prof: 2587 case LLVMContext::MD_fpmath: 2588 case LLVMContext::MD_tbaa_struct: 2589 case LLVMContext::MD_invariant_load: 2590 case LLVMContext::MD_alias_scope: 2591 case LLVMContext::MD_noalias: 2592 case LLVMContext::MD_nontemporal: 2593 case LLVMContext::MD_mem_parallel_loop_access: 2594 case LLVMContext::MD_access_group: 2595 // All of these directly apply. 2596 Dest.setMetadata(ID, N); 2597 break; 2598 2599 case LLVMContext::MD_nonnull: 2600 copyNonnullMetadata(Source, N, Dest); 2601 break; 2602 2603 case LLVMContext::MD_align: 2604 case LLVMContext::MD_dereferenceable: 2605 case LLVMContext::MD_dereferenceable_or_null: 2606 // These only directly apply if the new type is also a pointer. 2607 if (NewType->isPointerTy()) 2608 Dest.setMetadata(ID, N); 2609 break; 2610 2611 case LLVMContext::MD_range: 2612 copyRangeMetadata(DL, Source, N, Dest); 2613 break; 2614 } 2615 } 2616 } 2617 2618 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2619 auto *ReplInst = dyn_cast<Instruction>(Repl); 2620 if (!ReplInst) 2621 return; 2622 2623 // Patch the replacement so that it is not more restrictive than the value 2624 // being replaced. 2625 // Note that if 'I' is a load being replaced by some operation, 2626 // for example, by an arithmetic operation, then andIRFlags() 2627 // would just erase all math flags from the original arithmetic 2628 // operation, which is clearly not wanted and not needed. 2629 if (!isa<LoadInst>(I)) 2630 ReplInst->andIRFlags(I); 2631 2632 // FIXME: If both the original and replacement value are part of the 2633 // same control-flow region (meaning that the execution of one 2634 // guarantees the execution of the other), then we can combine the 2635 // noalias scopes here and do better than the general conservative 2636 // answer used in combineMetadata(). 2637 2638 // In general, GVN unifies expressions over different control-flow 2639 // regions, and so we need a conservative combination of the noalias 2640 // scopes. 2641 static const unsigned KnownIDs[] = { 2642 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2643 LLVMContext::MD_noalias, LLVMContext::MD_range, 2644 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2645 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2646 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2647 combineMetadata(ReplInst, I, KnownIDs, false); 2648 } 2649 2650 template <typename RootType, typename DominatesFn> 2651 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2652 const RootType &Root, 2653 const DominatesFn &Dominates) { 2654 assert(From->getType() == To->getType()); 2655 2656 unsigned Count = 0; 2657 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2658 UI != UE;) { 2659 Use &U = *UI++; 2660 if (!Dominates(Root, U)) 2661 continue; 2662 U.set(To); 2663 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2664 << "' as " << *To << " in " << *U << "\n"); 2665 ++Count; 2666 } 2667 return Count; 2668 } 2669 2670 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2671 assert(From->getType() == To->getType()); 2672 auto *BB = From->getParent(); 2673 unsigned Count = 0; 2674 2675 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2676 UI != UE;) { 2677 Use &U = *UI++; 2678 auto *I = cast<Instruction>(U.getUser()); 2679 if (I->getParent() == BB) 2680 continue; 2681 U.set(To); 2682 ++Count; 2683 } 2684 return Count; 2685 } 2686 2687 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2688 DominatorTree &DT, 2689 const BasicBlockEdge &Root) { 2690 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2691 return DT.dominates(Root, U); 2692 }; 2693 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2694 } 2695 2696 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2697 DominatorTree &DT, 2698 const BasicBlock *BB) { 2699 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 2700 return DT.dominates(BB, U); 2701 }; 2702 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 2703 } 2704 2705 bool llvm::callsGCLeafFunction(const CallBase *Call, 2706 const TargetLibraryInfo &TLI) { 2707 // Check if the function is specifically marked as a gc leaf function. 2708 if (Call->hasFnAttr("gc-leaf-function")) 2709 return true; 2710 if (const Function *F = Call->getCalledFunction()) { 2711 if (F->hasFnAttribute("gc-leaf-function")) 2712 return true; 2713 2714 if (auto IID = F->getIntrinsicID()) { 2715 // Most LLVM intrinsics do not take safepoints. 2716 return IID != Intrinsic::experimental_gc_statepoint && 2717 IID != Intrinsic::experimental_deoptimize && 2718 IID != Intrinsic::memcpy_element_unordered_atomic && 2719 IID != Intrinsic::memmove_element_unordered_atomic; 2720 } 2721 } 2722 2723 // Lib calls can be materialized by some passes, and won't be 2724 // marked as 'gc-leaf-function.' All available Libcalls are 2725 // GC-leaf. 2726 LibFunc LF; 2727 if (TLI.getLibFunc(*Call, LF)) { 2728 return TLI.has(LF); 2729 } 2730 2731 return false; 2732 } 2733 2734 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2735 LoadInst &NewLI) { 2736 auto *NewTy = NewLI.getType(); 2737 2738 // This only directly applies if the new type is also a pointer. 2739 if (NewTy->isPointerTy()) { 2740 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2741 return; 2742 } 2743 2744 // The only other translation we can do is to integral loads with !range 2745 // metadata. 2746 if (!NewTy->isIntegerTy()) 2747 return; 2748 2749 MDBuilder MDB(NewLI.getContext()); 2750 const Value *Ptr = OldLI.getPointerOperand(); 2751 auto *ITy = cast<IntegerType>(NewTy); 2752 auto *NullInt = ConstantExpr::getPtrToInt( 2753 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2754 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2755 NewLI.setMetadata(LLVMContext::MD_range, 2756 MDB.createRange(NonNullInt, NullInt)); 2757 } 2758 2759 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2760 MDNode *N, LoadInst &NewLI) { 2761 auto *NewTy = NewLI.getType(); 2762 2763 // Give up unless it is converted to a pointer where there is a single very 2764 // valuable mapping we can do reliably. 2765 // FIXME: It would be nice to propagate this in more ways, but the type 2766 // conversions make it hard. 2767 if (!NewTy->isPointerTy()) 2768 return; 2769 2770 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2771 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2772 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2773 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2774 } 2775 } 2776 2777 void llvm::dropDebugUsers(Instruction &I) { 2778 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2779 findDbgUsers(DbgUsers, &I); 2780 for (auto *DII : DbgUsers) 2781 DII->eraseFromParent(); 2782 } 2783 2784 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2785 BasicBlock *BB) { 2786 // Since we are moving the instructions out of its basic block, we do not 2787 // retain their original debug locations (DILocations) and debug intrinsic 2788 // instructions. 2789 // 2790 // Doing so would degrade the debugging experience and adversely affect the 2791 // accuracy of profiling information. 2792 // 2793 // Currently, when hoisting the instructions, we take the following actions: 2794 // - Remove their debug intrinsic instructions. 2795 // - Set their debug locations to the values from the insertion point. 2796 // 2797 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2798 // need to be deleted, is because there will not be any instructions with a 2799 // DILocation in either branch left after performing the transformation. We 2800 // can only insert a dbg.value after the two branches are joined again. 2801 // 2802 // See PR38762, PR39243 for more details. 2803 // 2804 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2805 // encode predicated DIExpressions that yield different results on different 2806 // code paths. 2807 2808 // A hoisted conditional probe should be treated as dangling so that it will 2809 // not be over-counted when the samples collected on the non-conditional path 2810 // are counted towards the conditional path. We leave it for the counts 2811 // inference algorithm to figure out a proper count for a danglng probe. 2812 moveAndDanglePseudoProbes(BB, InsertPt); 2813 2814 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2815 Instruction *I = &*II; 2816 I->dropUnknownNonDebugMetadata(); 2817 if (I->isUsedByMetadata()) 2818 dropDebugUsers(*I); 2819 if (isa<DbgInfoIntrinsic>(I)) { 2820 // Remove DbgInfo Intrinsics. 2821 II = I->eraseFromParent(); 2822 continue; 2823 } 2824 I->setDebugLoc(InsertPt->getDebugLoc()); 2825 ++II; 2826 } 2827 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2828 BB->begin(), 2829 BB->getTerminator()->getIterator()); 2830 } 2831 2832 namespace { 2833 2834 /// A potential constituent of a bitreverse or bswap expression. See 2835 /// collectBitParts for a fuller explanation. 2836 struct BitPart { 2837 BitPart(Value *P, unsigned BW) : Provider(P) { 2838 Provenance.resize(BW); 2839 } 2840 2841 /// The Value that this is a bitreverse/bswap of. 2842 Value *Provider; 2843 2844 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2845 /// in Provider becomes bit B in the result of this expression. 2846 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2847 2848 enum { Unset = -1 }; 2849 }; 2850 2851 } // end anonymous namespace 2852 2853 /// Analyze the specified subexpression and see if it is capable of providing 2854 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2855 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2856 /// the output of the expression came from a corresponding bit in some other 2857 /// value. This function is recursive, and the end result is a mapping of 2858 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2859 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2860 /// 2861 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2862 /// that the expression deposits the low byte of %X into the high byte of the 2863 /// result and that all other bits are zero. This expression is accepted and a 2864 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2865 /// [0-7]. 2866 /// 2867 /// For vector types, all analysis is performed at the per-element level. No 2868 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2869 /// constant masks must be splatted across all elements. 2870 /// 2871 /// To avoid revisiting values, the BitPart results are memoized into the 2872 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2873 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2874 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2875 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2876 /// type instead to provide the same functionality. 2877 /// 2878 /// Because we pass around references into \c BPS, we must use a container that 2879 /// does not invalidate internal references (std::map instead of DenseMap). 2880 static const Optional<BitPart> & 2881 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2882 std::map<Value *, Optional<BitPart>> &BPS, int Depth, 2883 bool &FoundRoot) { 2884 auto I = BPS.find(V); 2885 if (I != BPS.end()) 2886 return I->second; 2887 2888 auto &Result = BPS[V] = None; 2889 auto BitWidth = V->getType()->getScalarSizeInBits(); 2890 2891 // Can't do integer/elements > 128 bits. 2892 if (BitWidth > 128) 2893 return Result; 2894 2895 // Prevent stack overflow by limiting the recursion depth 2896 if (Depth == BitPartRecursionMaxDepth) { 2897 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2898 return Result; 2899 } 2900 2901 if (auto *I = dyn_cast<Instruction>(V)) { 2902 Value *X, *Y; 2903 const APInt *C; 2904 2905 // If this is an or instruction, it may be an inner node of the bswap. 2906 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2907 // Check we have both sources and they are from the same provider. 2908 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2909 Depth + 1, FoundRoot); 2910 if (!A || !A->Provider) 2911 return Result; 2912 2913 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 2914 Depth + 1, FoundRoot); 2915 if (!B || A->Provider != B->Provider) 2916 return Result; 2917 2918 // Try and merge the two together. 2919 Result = BitPart(A->Provider, BitWidth); 2920 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2921 if (A->Provenance[BitIdx] != BitPart::Unset && 2922 B->Provenance[BitIdx] != BitPart::Unset && 2923 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2924 return Result = None; 2925 2926 if (A->Provenance[BitIdx] == BitPart::Unset) 2927 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2928 else 2929 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2930 } 2931 2932 return Result; 2933 } 2934 2935 // If this is a logical shift by a constant, recurse then shift the result. 2936 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2937 const APInt &BitShift = *C; 2938 2939 // Ensure the shift amount is defined. 2940 if (BitShift.uge(BitWidth)) 2941 return Result; 2942 2943 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 2944 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 2945 return Result; 2946 2947 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2948 Depth + 1, FoundRoot); 2949 if (!Res) 2950 return Result; 2951 Result = Res; 2952 2953 // Perform the "shift" on BitProvenance. 2954 auto &P = Result->Provenance; 2955 if (I->getOpcode() == Instruction::Shl) { 2956 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2957 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2958 } else { 2959 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2960 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2961 } 2962 2963 return Result; 2964 } 2965 2966 // If this is a logical 'and' with a mask that clears bits, recurse then 2967 // unset the appropriate bits. 2968 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 2969 const APInt &AndMask = *C; 2970 2971 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2972 // early exit. 2973 unsigned NumMaskedBits = AndMask.countPopulation(); 2974 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 2975 return Result; 2976 2977 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2978 Depth + 1, FoundRoot); 2979 if (!Res) 2980 return Result; 2981 Result = Res; 2982 2983 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2984 // If the AndMask is zero for this bit, clear the bit. 2985 if (AndMask[BitIdx] == 0) 2986 Result->Provenance[BitIdx] = BitPart::Unset; 2987 return Result; 2988 } 2989 2990 // If this is a zext instruction zero extend the result. 2991 if (match(V, m_ZExt(m_Value(X)))) { 2992 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2993 Depth + 1, FoundRoot); 2994 if (!Res) 2995 return Result; 2996 2997 Result = BitPart(Res->Provider, BitWidth); 2998 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 2999 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3000 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3001 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3002 Result->Provenance[BitIdx] = BitPart::Unset; 3003 return Result; 3004 } 3005 3006 // If this is a truncate instruction, extract the lower bits. 3007 if (match(V, m_Trunc(m_Value(X)))) { 3008 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3009 Depth + 1, FoundRoot); 3010 if (!Res) 3011 return Result; 3012 3013 Result = BitPart(Res->Provider, BitWidth); 3014 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3015 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3016 return Result; 3017 } 3018 3019 // BITREVERSE - most likely due to us previous matching a partial 3020 // bitreverse. 3021 if (match(V, m_BitReverse(m_Value(X)))) { 3022 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3023 Depth + 1, FoundRoot); 3024 if (!Res) 3025 return Result; 3026 3027 Result = BitPart(Res->Provider, BitWidth); 3028 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3029 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3030 return Result; 3031 } 3032 3033 // BSWAP - most likely due to us previous matching a partial bswap. 3034 if (match(V, m_BSwap(m_Value(X)))) { 3035 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3036 Depth + 1, FoundRoot); 3037 if (!Res) 3038 return Result; 3039 3040 unsigned ByteWidth = BitWidth / 8; 3041 Result = BitPart(Res->Provider, BitWidth); 3042 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3043 unsigned ByteBitOfs = ByteIdx * 8; 3044 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3045 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3046 Res->Provenance[ByteBitOfs + BitIdx]; 3047 } 3048 return Result; 3049 } 3050 3051 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3052 // amount (modulo). 3053 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3054 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3055 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3056 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3057 // We can treat fshr as a fshl by flipping the modulo amount. 3058 unsigned ModAmt = C->urem(BitWidth); 3059 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3060 ModAmt = BitWidth - ModAmt; 3061 3062 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3063 if (!MatchBitReversals && (ModAmt % 8) != 0) 3064 return Result; 3065 3066 // Check we have both sources and they are from the same provider. 3067 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3068 Depth + 1, FoundRoot); 3069 if (!LHS || !LHS->Provider) 3070 return Result; 3071 3072 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3073 Depth + 1, FoundRoot); 3074 if (!RHS || LHS->Provider != RHS->Provider) 3075 return Result; 3076 3077 unsigned StartBitRHS = BitWidth - ModAmt; 3078 Result = BitPart(LHS->Provider, BitWidth); 3079 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3080 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3081 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3082 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3083 return Result; 3084 } 3085 } 3086 3087 // If we've already found a root input value then we're never going to merge 3088 // these back together. 3089 if (FoundRoot) 3090 return Result; 3091 3092 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 3093 // be the root input value to the bswap/bitreverse. 3094 FoundRoot = true; 3095 Result = BitPart(V, BitWidth); 3096 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3097 Result->Provenance[BitIdx] = BitIdx; 3098 return Result; 3099 } 3100 3101 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3102 unsigned BitWidth) { 3103 if (From % 8 != To % 8) 3104 return false; 3105 // Convert from bit indices to byte indices and check for a byte reversal. 3106 From >>= 3; 3107 To >>= 3; 3108 BitWidth >>= 3; 3109 return From == BitWidth - To - 1; 3110 } 3111 3112 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3113 unsigned BitWidth) { 3114 return From == BitWidth - To - 1; 3115 } 3116 3117 bool llvm::recognizeBSwapOrBitReverseIdiom( 3118 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3119 SmallVectorImpl<Instruction *> &InsertedInsts) { 3120 if (!match(I, m_Or(m_Value(), m_Value())) && 3121 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 3122 !match(I, m_FShr(m_Value(), m_Value(), m_Value()))) 3123 return false; 3124 if (!MatchBSwaps && !MatchBitReversals) 3125 return false; 3126 Type *ITy = I->getType(); 3127 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3128 return false; // Can't do integer/elements > 128 bits. 3129 3130 Type *DemandedTy = ITy; 3131 if (I->hasOneUse()) 3132 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3133 DemandedTy = Trunc->getType(); 3134 3135 // Try to find all the pieces corresponding to the bswap. 3136 bool FoundRoot = false; 3137 std::map<Value *, Optional<BitPart>> BPS; 3138 const auto &Res = 3139 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 3140 if (!Res) 3141 return false; 3142 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3143 assert(all_of(BitProvenance, 3144 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3145 "Illegal bit provenance index"); 3146 3147 // If the upper bits are zero, then attempt to perform as a truncated op. 3148 if (BitProvenance.back() == BitPart::Unset) { 3149 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3150 BitProvenance = BitProvenance.drop_back(); 3151 if (BitProvenance.empty()) 3152 return false; // TODO - handle null value? 3153 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3154 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3155 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3156 } 3157 3158 // Check BitProvenance hasn't found a source larger than the result type. 3159 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3160 if (DemandedBW > ITy->getScalarSizeInBits()) 3161 return false; 3162 3163 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3164 // only byteswap values with an even number of bytes. 3165 APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); 3166 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3167 bool OKForBitReverse = MatchBitReversals; 3168 for (unsigned BitIdx = 0; 3169 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3170 if (BitProvenance[BitIdx] == BitPart::Unset) { 3171 DemandedMask.clearBit(BitIdx); 3172 continue; 3173 } 3174 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3175 DemandedBW); 3176 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3177 BitIdx, DemandedBW); 3178 } 3179 3180 Intrinsic::ID Intrin; 3181 if (OKForBSwap) 3182 Intrin = Intrinsic::bswap; 3183 else if (OKForBitReverse) 3184 Intrin = Intrinsic::bitreverse; 3185 else 3186 return false; 3187 3188 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3189 Value *Provider = Res->Provider; 3190 3191 // We may need to truncate the provider. 3192 if (DemandedTy != Provider->getType()) { 3193 auto *Trunc = 3194 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3195 InsertedInsts.push_back(Trunc); 3196 Provider = Trunc; 3197 } 3198 3199 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3200 InsertedInsts.push_back(Result); 3201 3202 if (!DemandedMask.isAllOnesValue()) { 3203 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3204 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3205 InsertedInsts.push_back(Result); 3206 } 3207 3208 // We may need to zeroextend back to the result type. 3209 if (ITy != Result->getType()) { 3210 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3211 InsertedInsts.push_back(ExtInst); 3212 } 3213 3214 return true; 3215 } 3216 3217 // CodeGen has special handling for some string functions that may replace 3218 // them with target-specific intrinsics. Since that'd skip our interceptors 3219 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3220 // we mark affected calls as NoBuiltin, which will disable optimization 3221 // in CodeGen. 3222 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3223 CallInst *CI, const TargetLibraryInfo *TLI) { 3224 Function *F = CI->getCalledFunction(); 3225 LibFunc Func; 3226 if (F && !F->hasLocalLinkage() && F->hasName() && 3227 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3228 !F->doesNotAccessMemory()) 3229 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3230 } 3231 3232 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3233 // We can't have a PHI with a metadata type. 3234 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3235 return false; 3236 3237 // Early exit. 3238 if (!isa<Constant>(I->getOperand(OpIdx))) 3239 return true; 3240 3241 switch (I->getOpcode()) { 3242 default: 3243 return true; 3244 case Instruction::Call: 3245 case Instruction::Invoke: { 3246 const auto &CB = cast<CallBase>(*I); 3247 3248 // Can't handle inline asm. Skip it. 3249 if (CB.isInlineAsm()) 3250 return false; 3251 3252 // Constant bundle operands may need to retain their constant-ness for 3253 // correctness. 3254 if (CB.isBundleOperand(OpIdx)) 3255 return false; 3256 3257 if (OpIdx < CB.getNumArgOperands()) { 3258 // Some variadic intrinsics require constants in the variadic arguments, 3259 // which currently aren't markable as immarg. 3260 if (isa<IntrinsicInst>(CB) && 3261 OpIdx >= CB.getFunctionType()->getNumParams()) { 3262 // This is known to be OK for stackmap. 3263 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3264 } 3265 3266 // gcroot is a special case, since it requires a constant argument which 3267 // isn't also required to be a simple ConstantInt. 3268 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3269 return false; 3270 3271 // Some intrinsic operands are required to be immediates. 3272 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3273 } 3274 3275 // It is never allowed to replace the call argument to an intrinsic, but it 3276 // may be possible for a call. 3277 return !isa<IntrinsicInst>(CB); 3278 } 3279 case Instruction::ShuffleVector: 3280 // Shufflevector masks are constant. 3281 return OpIdx != 2; 3282 case Instruction::Switch: 3283 case Instruction::ExtractValue: 3284 // All operands apart from the first are constant. 3285 return OpIdx == 0; 3286 case Instruction::InsertValue: 3287 // All operands apart from the first and the second are constant. 3288 return OpIdx < 2; 3289 case Instruction::Alloca: 3290 // Static allocas (constant size in the entry block) are handled by 3291 // prologue/epilogue insertion so they're free anyway. We definitely don't 3292 // want to make them non-constant. 3293 return !cast<AllocaInst>(I)->isStaticAlloca(); 3294 case Instruction::GetElementPtr: 3295 if (OpIdx == 0) 3296 return true; 3297 gep_type_iterator It = gep_type_begin(I); 3298 for (auto E = std::next(It, OpIdx); It != E; ++It) 3299 if (It.isStruct()) 3300 return false; 3301 return true; 3302 } 3303 } 3304 3305 Value *llvm::invertCondition(Value *Condition) { 3306 // First: Check if it's a constant 3307 if (Constant *C = dyn_cast<Constant>(Condition)) 3308 return ConstantExpr::getNot(C); 3309 3310 // Second: If the condition is already inverted, return the original value 3311 Value *NotCondition; 3312 if (match(Condition, m_Not(m_Value(NotCondition)))) 3313 return NotCondition; 3314 3315 BasicBlock *Parent = nullptr; 3316 Instruction *Inst = dyn_cast<Instruction>(Condition); 3317 if (Inst) 3318 Parent = Inst->getParent(); 3319 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3320 Parent = &Arg->getParent()->getEntryBlock(); 3321 assert(Parent && "Unsupported condition to invert"); 3322 3323 // Third: Check all the users for an invert 3324 for (User *U : Condition->users()) 3325 if (Instruction *I = dyn_cast<Instruction>(U)) 3326 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3327 return I; 3328 3329 // Last option: Create a new instruction 3330 auto *Inverted = 3331 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3332 if (Inst && !isa<PHINode>(Inst)) 3333 Inverted->insertAfter(Inst); 3334 else 3335 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3336 return Inverted; 3337 } 3338 3339 bool llvm::inferAttributesFromOthers(Function &F) { 3340 // Note: We explicitly check for attributes rather than using cover functions 3341 // because some of the cover functions include the logic being implemented. 3342 3343 bool Changed = false; 3344 // readnone + not convergent implies nosync 3345 if (!F.hasFnAttribute(Attribute::NoSync) && 3346 F.doesNotAccessMemory() && !F.isConvergent()) { 3347 F.setNoSync(); 3348 Changed = true; 3349 } 3350 3351 // readonly implies nofree 3352 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 3353 F.setDoesNotFreeMemory(); 3354 Changed = true; 3355 } 3356 3357 // willreturn implies mustprogress 3358 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 3359 F.setMustProgress(); 3360 Changed = true; 3361 } 3362 3363 // TODO: There are a bunch of cases of restrictive memory effects we 3364 // can infer by inspecting arguments of argmemonly-ish functions. 3365 3366 return Changed; 3367 } 3368