1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/TinyPtrVector.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/IR/Argument.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CFG.h"
41 #include "llvm/IR/CallSite.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/ConstantRange.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DIBuilder.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalObject.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/MDBuilder.h"
62 #include "llvm/IR/Metadata.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Utils/ValueMapper.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <climits>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <utility>
84 
85 using namespace llvm;
86 using namespace llvm::PatternMatch;
87 
88 #define DEBUG_TYPE "local"
89 
90 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
91 
92 //===----------------------------------------------------------------------===//
93 //  Local constant propagation.
94 //
95 
96 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
97 /// constant value, convert it into an unconditional branch to the constant
98 /// destination.  This is a nontrivial operation because the successors of this
99 /// basic block must have their PHI nodes updated.
100 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
101 /// conditions and indirectbr addresses this might make dead if
102 /// DeleteDeadConditions is true.
103 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
104                                   const TargetLibraryInfo *TLI,
105                                   DeferredDominance *DDT) {
106   TerminatorInst *T = BB->getTerminator();
107   IRBuilder<> Builder(T);
108 
109   // Branch - See if we are conditional jumping on constant
110   if (auto *BI = dyn_cast<BranchInst>(T)) {
111     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
112     BasicBlock *Dest1 = BI->getSuccessor(0);
113     BasicBlock *Dest2 = BI->getSuccessor(1);
114 
115     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
116       // Are we branching on constant?
117       // YES.  Change to unconditional branch...
118       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
119       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
120 
121       // Let the basic block know that we are letting go of it.  Based on this,
122       // it will adjust it's PHI nodes.
123       OldDest->removePredecessor(BB);
124 
125       // Replace the conditional branch with an unconditional one.
126       Builder.CreateBr(Destination);
127       BI->eraseFromParent();
128       if (DDT)
129         DDT->deleteEdge(BB, OldDest);
130       return true;
131     }
132 
133     if (Dest2 == Dest1) {       // Conditional branch to same location?
134       // This branch matches something like this:
135       //     br bool %cond, label %Dest, label %Dest
136       // and changes it into:  br label %Dest
137 
138       // Let the basic block know that we are letting go of one copy of it.
139       assert(BI->getParent() && "Terminator not inserted in block!");
140       Dest1->removePredecessor(BI->getParent());
141 
142       // Replace the conditional branch with an unconditional one.
143       Builder.CreateBr(Dest1);
144       Value *Cond = BI->getCondition();
145       BI->eraseFromParent();
146       if (DeleteDeadConditions)
147         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
148       return true;
149     }
150     return false;
151   }
152 
153   if (auto *SI = dyn_cast<SwitchInst>(T)) {
154     // If we are switching on a constant, we can convert the switch to an
155     // unconditional branch.
156     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
157     BasicBlock *DefaultDest = SI->getDefaultDest();
158     BasicBlock *TheOnlyDest = DefaultDest;
159 
160     // If the default is unreachable, ignore it when searching for TheOnlyDest.
161     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
162         SI->getNumCases() > 0) {
163       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
164     }
165 
166     // Figure out which case it goes to.
167     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
168       // Found case matching a constant operand?
169       if (i->getCaseValue() == CI) {
170         TheOnlyDest = i->getCaseSuccessor();
171         break;
172       }
173 
174       // Check to see if this branch is going to the same place as the default
175       // dest.  If so, eliminate it as an explicit compare.
176       if (i->getCaseSuccessor() == DefaultDest) {
177         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
178         unsigned NCases = SI->getNumCases();
179         // Fold the case metadata into the default if there will be any branches
180         // left, unless the metadata doesn't match the switch.
181         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
182           // Collect branch weights into a vector.
183           SmallVector<uint32_t, 8> Weights;
184           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
185                ++MD_i) {
186             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
187             Weights.push_back(CI->getValue().getZExtValue());
188           }
189           // Merge weight of this case to the default weight.
190           unsigned idx = i->getCaseIndex();
191           Weights[0] += Weights[idx+1];
192           // Remove weight for this case.
193           std::swap(Weights[idx+1], Weights.back());
194           Weights.pop_back();
195           SI->setMetadata(LLVMContext::MD_prof,
196                           MDBuilder(BB->getContext()).
197                           createBranchWeights(Weights));
198         }
199         // Remove this entry.
200         BasicBlock *ParentBB = SI->getParent();
201         DefaultDest->removePredecessor(ParentBB);
202         i = SI->removeCase(i);
203         e = SI->case_end();
204         if (DDT)
205           DDT->deleteEdge(ParentBB, DefaultDest);
206         continue;
207       }
208 
209       // Otherwise, check to see if the switch only branches to one destination.
210       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
211       // destinations.
212       if (i->getCaseSuccessor() != TheOnlyDest)
213         TheOnlyDest = nullptr;
214 
215       // Increment this iterator as we haven't removed the case.
216       ++i;
217     }
218 
219     if (CI && !TheOnlyDest) {
220       // Branching on a constant, but not any of the cases, go to the default
221       // successor.
222       TheOnlyDest = SI->getDefaultDest();
223     }
224 
225     // If we found a single destination that we can fold the switch into, do so
226     // now.
227     if (TheOnlyDest) {
228       // Insert the new branch.
229       Builder.CreateBr(TheOnlyDest);
230       BasicBlock *BB = SI->getParent();
231       std::vector <DominatorTree::UpdateType> Updates;
232       if (DDT)
233         Updates.reserve(SI->getNumSuccessors() - 1);
234 
235       // Remove entries from PHI nodes which we no longer branch to...
236       for (BasicBlock *Succ : SI->successors()) {
237         // Found case matching a constant operand?
238         if (Succ == TheOnlyDest) {
239           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
240         } else {
241           Succ->removePredecessor(BB);
242           if (DDT)
243             Updates.push_back({DominatorTree::Delete, BB, Succ});
244         }
245       }
246 
247       // Delete the old switch.
248       Value *Cond = SI->getCondition();
249       SI->eraseFromParent();
250       if (DeleteDeadConditions)
251         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
252       if (DDT)
253         DDT->applyUpdates(Updates);
254       return true;
255     }
256 
257     if (SI->getNumCases() == 1) {
258       // Otherwise, we can fold this switch into a conditional branch
259       // instruction if it has only one non-default destination.
260       auto FirstCase = *SI->case_begin();
261       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
262           FirstCase.getCaseValue(), "cond");
263 
264       // Insert the new branch.
265       BranchInst *NewBr = Builder.CreateCondBr(Cond,
266                                                FirstCase.getCaseSuccessor(),
267                                                SI->getDefaultDest());
268       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
269       if (MD && MD->getNumOperands() == 3) {
270         ConstantInt *SICase =
271             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
272         ConstantInt *SIDef =
273             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
274         assert(SICase && SIDef);
275         // The TrueWeight should be the weight for the single case of SI.
276         NewBr->setMetadata(LLVMContext::MD_prof,
277                         MDBuilder(BB->getContext()).
278                         createBranchWeights(SICase->getValue().getZExtValue(),
279                                             SIDef->getValue().getZExtValue()));
280       }
281 
282       // Update make.implicit metadata to the newly-created conditional branch.
283       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
284       if (MakeImplicitMD)
285         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
286 
287       // Delete the old switch.
288       SI->eraseFromParent();
289       return true;
290     }
291     return false;
292   }
293 
294   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
295     // indirectbr blockaddress(@F, @BB) -> br label @BB
296     if (auto *BA =
297           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
298       BasicBlock *TheOnlyDest = BA->getBasicBlock();
299       std::vector <DominatorTree::UpdateType> Updates;
300       if (DDT)
301         Updates.reserve(IBI->getNumDestinations() - 1);
302 
303       // Insert the new branch.
304       Builder.CreateBr(TheOnlyDest);
305 
306       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
307         if (IBI->getDestination(i) == TheOnlyDest) {
308           TheOnlyDest = nullptr;
309         } else {
310           BasicBlock *ParentBB = IBI->getParent();
311           BasicBlock *DestBB = IBI->getDestination(i);
312           DestBB->removePredecessor(ParentBB);
313           if (DDT)
314             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
315         }
316       }
317       Value *Address = IBI->getAddress();
318       IBI->eraseFromParent();
319       if (DeleteDeadConditions)
320         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
321 
322       // If we didn't find our destination in the IBI successor list, then we
323       // have undefined behavior.  Replace the unconditional branch with an
324       // 'unreachable' instruction.
325       if (TheOnlyDest) {
326         BB->getTerminator()->eraseFromParent();
327         new UnreachableInst(BB->getContext(), BB);
328       }
329 
330       if (DDT)
331         DDT->applyUpdates(Updates);
332       return true;
333     }
334   }
335 
336   return false;
337 }
338 
339 //===----------------------------------------------------------------------===//
340 //  Local dead code elimination.
341 //
342 
343 /// isInstructionTriviallyDead - Return true if the result produced by the
344 /// instruction is not used, and the instruction has no side effects.
345 ///
346 bool llvm::isInstructionTriviallyDead(Instruction *I,
347                                       const TargetLibraryInfo *TLI) {
348   if (!I->use_empty())
349     return false;
350   return wouldInstructionBeTriviallyDead(I, TLI);
351 }
352 
353 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
354                                            const TargetLibraryInfo *TLI) {
355   if (isa<TerminatorInst>(I))
356     return false;
357 
358   // We don't want the landingpad-like instructions removed by anything this
359   // general.
360   if (I->isEHPad())
361     return false;
362 
363   // We don't want debug info removed by anything this general, unless
364   // debug info is empty.
365   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
366     if (DDI->getAddress())
367       return false;
368     return true;
369   }
370   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
371     if (DVI->getValue())
372       return false;
373     return true;
374   }
375 
376   if (!I->mayHaveSideEffects())
377     return true;
378 
379   // Special case intrinsics that "may have side effects" but can be deleted
380   // when dead.
381   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
382     // Safe to delete llvm.stacksave if dead.
383     if (II->getIntrinsicID() == Intrinsic::stacksave)
384       return true;
385 
386     // Lifetime intrinsics are dead when their right-hand is undef.
387     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
388         II->getIntrinsicID() == Intrinsic::lifetime_end)
389       return isa<UndefValue>(II->getArgOperand(1));
390 
391     // Assumptions are dead if their condition is trivially true.  Guards on
392     // true are operationally no-ops.  In the future we can consider more
393     // sophisticated tradeoffs for guards considering potential for check
394     // widening, but for now we keep things simple.
395     if (II->getIntrinsicID() == Intrinsic::assume ||
396         II->getIntrinsicID() == Intrinsic::experimental_guard) {
397       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
398         return !Cond->isZero();
399 
400       return false;
401     }
402   }
403 
404   if (isAllocLikeFn(I, TLI))
405     return true;
406 
407   if (CallInst *CI = isFreeCall(I, TLI))
408     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
409       return C->isNullValue() || isa<UndefValue>(C);
410 
411   if (CallSite CS = CallSite(I))
412     if (isMathLibCallNoop(CS, TLI))
413       return true;
414 
415   return false;
416 }
417 
418 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
419 /// trivially dead instruction, delete it.  If that makes any of its operands
420 /// trivially dead, delete them too, recursively.  Return true if any
421 /// instructions were deleted.
422 bool
423 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
424                                                  const TargetLibraryInfo *TLI) {
425   Instruction *I = dyn_cast<Instruction>(V);
426   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
427     return false;
428 
429   SmallVector<Instruction*, 16> DeadInsts;
430   DeadInsts.push_back(I);
431 
432   do {
433     I = DeadInsts.pop_back_val();
434     salvageDebugInfo(*I);
435 
436     // Null out all of the instruction's operands to see if any operand becomes
437     // dead as we go.
438     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
439       Value *OpV = I->getOperand(i);
440       I->setOperand(i, nullptr);
441 
442       if (!OpV->use_empty()) continue;
443 
444       // If the operand is an instruction that became dead as we nulled out the
445       // operand, and if it is 'trivially' dead, delete it in a future loop
446       // iteration.
447       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
448         if (isInstructionTriviallyDead(OpI, TLI))
449           DeadInsts.push_back(OpI);
450     }
451 
452     I->eraseFromParent();
453   } while (!DeadInsts.empty());
454 
455   return true;
456 }
457 
458 /// areAllUsesEqual - Check whether the uses of a value are all the same.
459 /// This is similar to Instruction::hasOneUse() except this will also return
460 /// true when there are no uses or multiple uses that all refer to the same
461 /// value.
462 static bool areAllUsesEqual(Instruction *I) {
463   Value::user_iterator UI = I->user_begin();
464   Value::user_iterator UE = I->user_end();
465   if (UI == UE)
466     return true;
467 
468   User *TheUse = *UI;
469   for (++UI; UI != UE; ++UI) {
470     if (*UI != TheUse)
471       return false;
472   }
473   return true;
474 }
475 
476 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
477 /// dead PHI node, due to being a def-use chain of single-use nodes that
478 /// either forms a cycle or is terminated by a trivially dead instruction,
479 /// delete it.  If that makes any of its operands trivially dead, delete them
480 /// too, recursively.  Return true if a change was made.
481 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
482                                         const TargetLibraryInfo *TLI) {
483   SmallPtrSet<Instruction*, 4> Visited;
484   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
485        I = cast<Instruction>(*I->user_begin())) {
486     if (I->use_empty())
487       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
488 
489     // If we find an instruction more than once, we're on a cycle that
490     // won't prove fruitful.
491     if (!Visited.insert(I).second) {
492       // Break the cycle and delete the instruction and its operands.
493       I->replaceAllUsesWith(UndefValue::get(I->getType()));
494       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
495       return true;
496     }
497   }
498   return false;
499 }
500 
501 static bool
502 simplifyAndDCEInstruction(Instruction *I,
503                           SmallSetVector<Instruction *, 16> &WorkList,
504                           const DataLayout &DL,
505                           const TargetLibraryInfo *TLI) {
506   if (isInstructionTriviallyDead(I, TLI)) {
507     salvageDebugInfo(*I);
508 
509     // Null out all of the instruction's operands to see if any operand becomes
510     // dead as we go.
511     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
512       Value *OpV = I->getOperand(i);
513       I->setOperand(i, nullptr);
514 
515       if (!OpV->use_empty() || I == OpV)
516         continue;
517 
518       // If the operand is an instruction that became dead as we nulled out the
519       // operand, and if it is 'trivially' dead, delete it in a future loop
520       // iteration.
521       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
522         if (isInstructionTriviallyDead(OpI, TLI))
523           WorkList.insert(OpI);
524     }
525 
526     I->eraseFromParent();
527 
528     return true;
529   }
530 
531   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
532     // Add the users to the worklist. CAREFUL: an instruction can use itself,
533     // in the case of a phi node.
534     for (User *U : I->users()) {
535       if (U != I) {
536         WorkList.insert(cast<Instruction>(U));
537       }
538     }
539 
540     // Replace the instruction with its simplified value.
541     bool Changed = false;
542     if (!I->use_empty()) {
543       I->replaceAllUsesWith(SimpleV);
544       Changed = true;
545     }
546     if (isInstructionTriviallyDead(I, TLI)) {
547       I->eraseFromParent();
548       Changed = true;
549     }
550     return Changed;
551   }
552   return false;
553 }
554 
555 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
556 /// simplify any instructions in it and recursively delete dead instructions.
557 ///
558 /// This returns true if it changed the code, note that it can delete
559 /// instructions in other blocks as well in this block.
560 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
561                                        const TargetLibraryInfo *TLI) {
562   bool MadeChange = false;
563   const DataLayout &DL = BB->getModule()->getDataLayout();
564 
565 #ifndef NDEBUG
566   // In debug builds, ensure that the terminator of the block is never replaced
567   // or deleted by these simplifications. The idea of simplification is that it
568   // cannot introduce new instructions, and there is no way to replace the
569   // terminator of a block without introducing a new instruction.
570   AssertingVH<Instruction> TerminatorVH(&BB->back());
571 #endif
572 
573   SmallSetVector<Instruction *, 16> WorkList;
574   // Iterate over the original function, only adding insts to the worklist
575   // if they actually need to be revisited. This avoids having to pre-init
576   // the worklist with the entire function's worth of instructions.
577   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
578        BI != E;) {
579     assert(!BI->isTerminator());
580     Instruction *I = &*BI;
581     ++BI;
582 
583     // We're visiting this instruction now, so make sure it's not in the
584     // worklist from an earlier visit.
585     if (!WorkList.count(I))
586       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
587   }
588 
589   while (!WorkList.empty()) {
590     Instruction *I = WorkList.pop_back_val();
591     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
592   }
593   return MadeChange;
594 }
595 
596 //===----------------------------------------------------------------------===//
597 //  Control Flow Graph Restructuring.
598 //
599 
600 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
601 /// method is called when we're about to delete Pred as a predecessor of BB.  If
602 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
603 ///
604 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
605 /// nodes that collapse into identity values.  For example, if we have:
606 ///   x = phi(1, 0, 0, 0)
607 ///   y = and x, z
608 ///
609 /// .. and delete the predecessor corresponding to the '1', this will attempt to
610 /// recursively fold the and to 0.
611 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
612                                         DeferredDominance *DDT) {
613   // This only adjusts blocks with PHI nodes.
614   if (!isa<PHINode>(BB->begin()))
615     return;
616 
617   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
618   // them down.  This will leave us with single entry phi nodes and other phis
619   // that can be removed.
620   BB->removePredecessor(Pred, true);
621 
622   WeakTrackingVH PhiIt = &BB->front();
623   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
624     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
625     Value *OldPhiIt = PhiIt;
626 
627     if (!recursivelySimplifyInstruction(PN))
628       continue;
629 
630     // If recursive simplification ended up deleting the next PHI node we would
631     // iterate to, then our iterator is invalid, restart scanning from the top
632     // of the block.
633     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
634   }
635   if (DDT)
636     DDT->deleteEdge(Pred, BB);
637 }
638 
639 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
640 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
641 /// between them, moving the instructions in the predecessor into DestBB and
642 /// deleting the predecessor block.
643 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT,
644                                        DeferredDominance *DDT) {
645   assert(!(DT && DDT) && "Cannot call with both DT and DDT.");
646 
647   // If BB has single-entry PHI nodes, fold them.
648   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
649     Value *NewVal = PN->getIncomingValue(0);
650     // Replace self referencing PHI with undef, it must be dead.
651     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
652     PN->replaceAllUsesWith(NewVal);
653     PN->eraseFromParent();
654   }
655 
656   BasicBlock *PredBB = DestBB->getSinglePredecessor();
657   assert(PredBB && "Block doesn't have a single predecessor!");
658 
659   bool ReplaceEntryBB = false;
660   if (PredBB == &DestBB->getParent()->getEntryBlock())
661     ReplaceEntryBB = true;
662 
663   // Deferred DT update: Collect all the edges that enter PredBB. These
664   // dominator edges will be redirected to DestBB.
665   std::vector <DominatorTree::UpdateType> Updates;
666   if (DDT && !ReplaceEntryBB) {
667     Updates.reserve(1 +
668                     (2 * std::distance(pred_begin(PredBB), pred_end(PredBB))));
669     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
670     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
671       Updates.push_back({DominatorTree::Delete, *I, PredBB});
672       // This predecessor of PredBB may already have DestBB as a successor.
673       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
674         Updates.push_back({DominatorTree::Insert, *I, DestBB});
675     }
676   }
677 
678   // Zap anything that took the address of DestBB.  Not doing this will give the
679   // address an invalid value.
680   if (DestBB->hasAddressTaken()) {
681     BlockAddress *BA = BlockAddress::get(DestBB);
682     Constant *Replacement =
683       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
684     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
685                                                      BA->getType()));
686     BA->destroyConstant();
687   }
688 
689   // Anything that branched to PredBB now branches to DestBB.
690   PredBB->replaceAllUsesWith(DestBB);
691 
692   // Splice all the instructions from PredBB to DestBB.
693   PredBB->getTerminator()->eraseFromParent();
694   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
695 
696   // If the PredBB is the entry block of the function, move DestBB up to
697   // become the entry block after we erase PredBB.
698   if (ReplaceEntryBB)
699     DestBB->moveAfter(PredBB);
700 
701   if (DT) {
702     // For some irreducible CFG we end up having forward-unreachable blocks
703     // so check if getNode returns a valid node before updating the domtree.
704     if (DomTreeNode *DTN = DT->getNode(PredBB)) {
705       BasicBlock *PredBBIDom = DTN->getIDom()->getBlock();
706       DT->changeImmediateDominator(DestBB, PredBBIDom);
707       DT->eraseNode(PredBB);
708     }
709   }
710 
711   if (DDT) {
712     DDT->deleteBB(PredBB); // Deferred deletion of BB.
713     if (ReplaceEntryBB)
714       // The entry block was removed and there is no external interface for the
715       // dominator tree to be notified of this change. In this corner-case we
716       // recalculate the entire tree.
717       DDT->recalculate(*(DestBB->getParent()));
718     else
719       DDT->applyUpdates(Updates);
720   } else {
721     PredBB->eraseFromParent(); // Nuke BB.
722   }
723 }
724 
725 /// CanMergeValues - Return true if we can choose one of these values to use
726 /// in place of the other. Note that we will always choose the non-undef
727 /// value to keep.
728 static bool CanMergeValues(Value *First, Value *Second) {
729   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
730 }
731 
732 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
733 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
734 ///
735 /// Assumption: Succ is the single successor for BB.
736 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
737   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
738 
739   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
740         << Succ->getName() << "\n");
741   // Shortcut, if there is only a single predecessor it must be BB and merging
742   // is always safe
743   if (Succ->getSinglePredecessor()) return true;
744 
745   // Make a list of the predecessors of BB
746   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
747 
748   // Look at all the phi nodes in Succ, to see if they present a conflict when
749   // merging these blocks
750   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
751     PHINode *PN = cast<PHINode>(I);
752 
753     // If the incoming value from BB is again a PHINode in
754     // BB which has the same incoming value for *PI as PN does, we can
755     // merge the phi nodes and then the blocks can still be merged
756     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
757     if (BBPN && BBPN->getParent() == BB) {
758       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
759         BasicBlock *IBB = PN->getIncomingBlock(PI);
760         if (BBPreds.count(IBB) &&
761             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
762                             PN->getIncomingValue(PI))) {
763           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
764                 << Succ->getName() << " is conflicting with "
765                 << BBPN->getName() << " with regard to common predecessor "
766                 << IBB->getName() << "\n");
767           return false;
768         }
769       }
770     } else {
771       Value* Val = PN->getIncomingValueForBlock(BB);
772       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
773         // See if the incoming value for the common predecessor is equal to the
774         // one for BB, in which case this phi node will not prevent the merging
775         // of the block.
776         BasicBlock *IBB = PN->getIncomingBlock(PI);
777         if (BBPreds.count(IBB) &&
778             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
779           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
780                 << Succ->getName() << " is conflicting with regard to common "
781                 << "predecessor " << IBB->getName() << "\n");
782           return false;
783         }
784       }
785     }
786   }
787 
788   return true;
789 }
790 
791 using PredBlockVector = SmallVector<BasicBlock *, 16>;
792 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
793 
794 /// \brief Determines the value to use as the phi node input for a block.
795 ///
796 /// Select between \p OldVal any value that we know flows from \p BB
797 /// to a particular phi on the basis of which one (if either) is not
798 /// undef. Update IncomingValues based on the selected value.
799 ///
800 /// \param OldVal The value we are considering selecting.
801 /// \param BB The block that the value flows in from.
802 /// \param IncomingValues A map from block-to-value for other phi inputs
803 /// that we have examined.
804 ///
805 /// \returns the selected value.
806 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
807                                           IncomingValueMap &IncomingValues) {
808   if (!isa<UndefValue>(OldVal)) {
809     assert((!IncomingValues.count(BB) ||
810             IncomingValues.find(BB)->second == OldVal) &&
811            "Expected OldVal to match incoming value from BB!");
812 
813     IncomingValues.insert(std::make_pair(BB, OldVal));
814     return OldVal;
815   }
816 
817   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
818   if (It != IncomingValues.end()) return It->second;
819 
820   return OldVal;
821 }
822 
823 /// \brief Create a map from block to value for the operands of a
824 /// given phi.
825 ///
826 /// Create a map from block to value for each non-undef value flowing
827 /// into \p PN.
828 ///
829 /// \param PN The phi we are collecting the map for.
830 /// \param IncomingValues [out] The map from block to value for this phi.
831 static void gatherIncomingValuesToPhi(PHINode *PN,
832                                       IncomingValueMap &IncomingValues) {
833   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
834     BasicBlock *BB = PN->getIncomingBlock(i);
835     Value *V = PN->getIncomingValue(i);
836 
837     if (!isa<UndefValue>(V))
838       IncomingValues.insert(std::make_pair(BB, V));
839   }
840 }
841 
842 /// \brief Replace the incoming undef values to a phi with the values
843 /// from a block-to-value map.
844 ///
845 /// \param PN The phi we are replacing the undefs in.
846 /// \param IncomingValues A map from block to value.
847 static void replaceUndefValuesInPhi(PHINode *PN,
848                                     const IncomingValueMap &IncomingValues) {
849   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
850     Value *V = PN->getIncomingValue(i);
851 
852     if (!isa<UndefValue>(V)) continue;
853 
854     BasicBlock *BB = PN->getIncomingBlock(i);
855     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
856     if (It == IncomingValues.end()) continue;
857 
858     PN->setIncomingValue(i, It->second);
859   }
860 }
861 
862 /// \brief Replace a value flowing from a block to a phi with
863 /// potentially multiple instances of that value flowing from the
864 /// block's predecessors to the phi.
865 ///
866 /// \param BB The block with the value flowing into the phi.
867 /// \param BBPreds The predecessors of BB.
868 /// \param PN The phi that we are updating.
869 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
870                                                 const PredBlockVector &BBPreds,
871                                                 PHINode *PN) {
872   Value *OldVal = PN->removeIncomingValue(BB, false);
873   assert(OldVal && "No entry in PHI for Pred BB!");
874 
875   IncomingValueMap IncomingValues;
876 
877   // We are merging two blocks - BB, and the block containing PN - and
878   // as a result we need to redirect edges from the predecessors of BB
879   // to go to the block containing PN, and update PN
880   // accordingly. Since we allow merging blocks in the case where the
881   // predecessor and successor blocks both share some predecessors,
882   // and where some of those common predecessors might have undef
883   // values flowing into PN, we want to rewrite those values to be
884   // consistent with the non-undef values.
885 
886   gatherIncomingValuesToPhi(PN, IncomingValues);
887 
888   // If this incoming value is one of the PHI nodes in BB, the new entries
889   // in the PHI node are the entries from the old PHI.
890   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
891     PHINode *OldValPN = cast<PHINode>(OldVal);
892     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
893       // Note that, since we are merging phi nodes and BB and Succ might
894       // have common predecessors, we could end up with a phi node with
895       // identical incoming branches. This will be cleaned up later (and
896       // will trigger asserts if we try to clean it up now, without also
897       // simplifying the corresponding conditional branch).
898       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
899       Value *PredVal = OldValPN->getIncomingValue(i);
900       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
901                                                     IncomingValues);
902 
903       // And add a new incoming value for this predecessor for the
904       // newly retargeted branch.
905       PN->addIncoming(Selected, PredBB);
906     }
907   } else {
908     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
909       // Update existing incoming values in PN for this
910       // predecessor of BB.
911       BasicBlock *PredBB = BBPreds[i];
912       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
913                                                     IncomingValues);
914 
915       // And add a new incoming value for this predecessor for the
916       // newly retargeted branch.
917       PN->addIncoming(Selected, PredBB);
918     }
919   }
920 
921   replaceUndefValuesInPhi(PN, IncomingValues);
922 }
923 
924 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
925 /// unconditional branch, and contains no instructions other than PHI nodes,
926 /// potential side-effect free intrinsics and the branch.  If possible,
927 /// eliminate BB by rewriting all the predecessors to branch to the successor
928 /// block and return true.  If we can't transform, return false.
929 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
930                                                    DeferredDominance *DDT) {
931   assert(BB != &BB->getParent()->getEntryBlock() &&
932          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
933 
934   // We can't eliminate infinite loops.
935   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
936   if (BB == Succ) return false;
937 
938   // Check to see if merging these blocks would cause conflicts for any of the
939   // phi nodes in BB or Succ. If not, we can safely merge.
940   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
941 
942   // Check for cases where Succ has multiple predecessors and a PHI node in BB
943   // has uses which will not disappear when the PHI nodes are merged.  It is
944   // possible to handle such cases, but difficult: it requires checking whether
945   // BB dominates Succ, which is non-trivial to calculate in the case where
946   // Succ has multiple predecessors.  Also, it requires checking whether
947   // constructing the necessary self-referential PHI node doesn't introduce any
948   // conflicts; this isn't too difficult, but the previous code for doing this
949   // was incorrect.
950   //
951   // Note that if this check finds a live use, BB dominates Succ, so BB is
952   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
953   // folding the branch isn't profitable in that case anyway.
954   if (!Succ->getSinglePredecessor()) {
955     BasicBlock::iterator BBI = BB->begin();
956     while (isa<PHINode>(*BBI)) {
957       for (Use &U : BBI->uses()) {
958         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
959           if (PN->getIncomingBlock(U) != BB)
960             return false;
961         } else {
962           return false;
963         }
964       }
965       ++BBI;
966     }
967   }
968 
969   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
970 
971   std::vector<DominatorTree::UpdateType> Updates;
972   if (DDT) {
973     Updates.reserve(1 + (2 * std::distance(pred_begin(BB), pred_end(BB))));
974     Updates.push_back({DominatorTree::Delete, BB, Succ});
975     // All predecessors of BB will be moved to Succ.
976     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
977       Updates.push_back({DominatorTree::Delete, *I, BB});
978       // This predecessor of BB may already have Succ as a successor.
979       if (llvm::find(successors(*I), Succ) == succ_end(*I))
980         Updates.push_back({DominatorTree::Insert, *I, Succ});
981     }
982   }
983 
984   if (isa<PHINode>(Succ->begin())) {
985     // If there is more than one pred of succ, and there are PHI nodes in
986     // the successor, then we need to add incoming edges for the PHI nodes
987     //
988     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
989 
990     // Loop over all of the PHI nodes in the successor of BB.
991     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
992       PHINode *PN = cast<PHINode>(I);
993 
994       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
995     }
996   }
997 
998   if (Succ->getSinglePredecessor()) {
999     // BB is the only predecessor of Succ, so Succ will end up with exactly
1000     // the same predecessors BB had.
1001 
1002     // Copy over any phi, debug or lifetime instruction.
1003     BB->getTerminator()->eraseFromParent();
1004     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1005                                BB->getInstList());
1006   } else {
1007     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1008       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1009       assert(PN->use_empty() && "There shouldn't be any uses here!");
1010       PN->eraseFromParent();
1011     }
1012   }
1013 
1014   // If the unconditional branch we replaced contains llvm.loop metadata, we
1015   // add the metadata to the branch instructions in the predecessors.
1016   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1017   Instruction *TI = BB->getTerminator();
1018   if (TI)
1019     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1020       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1021         BasicBlock *Pred = *PI;
1022         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1023       }
1024 
1025   // Everything that jumped to BB now goes to Succ.
1026   BB->replaceAllUsesWith(Succ);
1027   if (!Succ->hasName()) Succ->takeName(BB);
1028 
1029   if (DDT) {
1030     DDT->deleteBB(BB); // Deferred deletion of the old basic block.
1031     DDT->applyUpdates(Updates);
1032   } else {
1033     BB->eraseFromParent(); // Delete the old basic block.
1034   }
1035   return true;
1036 }
1037 
1038 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1039 /// nodes in this block. This doesn't try to be clever about PHI nodes
1040 /// which differ only in the order of the incoming values, but instcombine
1041 /// orders them so it usually won't matter.
1042 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1043   // This implementation doesn't currently consider undef operands
1044   // specially. Theoretically, two phis which are identical except for
1045   // one having an undef where the other doesn't could be collapsed.
1046 
1047   struct PHIDenseMapInfo {
1048     static PHINode *getEmptyKey() {
1049       return DenseMapInfo<PHINode *>::getEmptyKey();
1050     }
1051 
1052     static PHINode *getTombstoneKey() {
1053       return DenseMapInfo<PHINode *>::getTombstoneKey();
1054     }
1055 
1056     static unsigned getHashValue(PHINode *PN) {
1057       // Compute a hash value on the operands. Instcombine will likely have
1058       // sorted them, which helps expose duplicates, but we have to check all
1059       // the operands to be safe in case instcombine hasn't run.
1060       return static_cast<unsigned>(hash_combine(
1061           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1062           hash_combine_range(PN->block_begin(), PN->block_end())));
1063     }
1064 
1065     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1066       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1067           RHS == getEmptyKey() || RHS == getTombstoneKey())
1068         return LHS == RHS;
1069       return LHS->isIdenticalTo(RHS);
1070     }
1071   };
1072 
1073   // Set of unique PHINodes.
1074   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1075 
1076   // Examine each PHI.
1077   bool Changed = false;
1078   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1079     auto Inserted = PHISet.insert(PN);
1080     if (!Inserted.second) {
1081       // A duplicate. Replace this PHI with its duplicate.
1082       PN->replaceAllUsesWith(*Inserted.first);
1083       PN->eraseFromParent();
1084       Changed = true;
1085 
1086       // The RAUW can change PHIs that we already visited. Start over from the
1087       // beginning.
1088       PHISet.clear();
1089       I = BB->begin();
1090     }
1091   }
1092 
1093   return Changed;
1094 }
1095 
1096 /// enforceKnownAlignment - If the specified pointer points to an object that
1097 /// we control, modify the object's alignment to PrefAlign. This isn't
1098 /// often possible though. If alignment is important, a more reliable approach
1099 /// is to simply align all global variables and allocation instructions to
1100 /// their preferred alignment from the beginning.
1101 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1102                                       unsigned PrefAlign,
1103                                       const DataLayout &DL) {
1104   assert(PrefAlign > Align);
1105 
1106   V = V->stripPointerCasts();
1107 
1108   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1109     // TODO: ideally, computeKnownBits ought to have used
1110     // AllocaInst::getAlignment() in its computation already, making
1111     // the below max redundant. But, as it turns out,
1112     // stripPointerCasts recurses through infinite layers of bitcasts,
1113     // while computeKnownBits is not allowed to traverse more than 6
1114     // levels.
1115     Align = std::max(AI->getAlignment(), Align);
1116     if (PrefAlign <= Align)
1117       return Align;
1118 
1119     // If the preferred alignment is greater than the natural stack alignment
1120     // then don't round up. This avoids dynamic stack realignment.
1121     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1122       return Align;
1123     AI->setAlignment(PrefAlign);
1124     return PrefAlign;
1125   }
1126 
1127   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1128     // TODO: as above, this shouldn't be necessary.
1129     Align = std::max(GO->getAlignment(), Align);
1130     if (PrefAlign <= Align)
1131       return Align;
1132 
1133     // If there is a large requested alignment and we can, bump up the alignment
1134     // of the global.  If the memory we set aside for the global may not be the
1135     // memory used by the final program then it is impossible for us to reliably
1136     // enforce the preferred alignment.
1137     if (!GO->canIncreaseAlignment())
1138       return Align;
1139 
1140     GO->setAlignment(PrefAlign);
1141     return PrefAlign;
1142   }
1143 
1144   return Align;
1145 }
1146 
1147 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1148                                           const DataLayout &DL,
1149                                           const Instruction *CxtI,
1150                                           AssumptionCache *AC,
1151                                           const DominatorTree *DT) {
1152   assert(V->getType()->isPointerTy() &&
1153          "getOrEnforceKnownAlignment expects a pointer!");
1154 
1155   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1156   unsigned TrailZ = Known.countMinTrailingZeros();
1157 
1158   // Avoid trouble with ridiculously large TrailZ values, such as
1159   // those computed from a null pointer.
1160   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1161 
1162   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1163 
1164   // LLVM doesn't support alignments larger than this currently.
1165   Align = std::min(Align, +Value::MaximumAlignment);
1166 
1167   if (PrefAlign > Align)
1168     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1169 
1170   // We don't need to make any adjustment.
1171   return Align;
1172 }
1173 
1174 ///===---------------------------------------------------------------------===//
1175 ///  Dbg Intrinsic utilities
1176 ///
1177 
1178 /// See if there is a dbg.value intrinsic for DIVar before I.
1179 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1180                               Instruction *I) {
1181   // Since we can't guarantee that the original dbg.declare instrinsic
1182   // is removed by LowerDbgDeclare(), we need to make sure that we are
1183   // not inserting the same dbg.value intrinsic over and over.
1184   BasicBlock::InstListType::iterator PrevI(I);
1185   if (PrevI != I->getParent()->getInstList().begin()) {
1186     --PrevI;
1187     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1188       if (DVI->getValue() == I->getOperand(0) &&
1189           DVI->getVariable() == DIVar &&
1190           DVI->getExpression() == DIExpr)
1191         return true;
1192   }
1193   return false;
1194 }
1195 
1196 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1197 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1198                              DIExpression *DIExpr,
1199                              PHINode *APN) {
1200   // Since we can't guarantee that the original dbg.declare instrinsic
1201   // is removed by LowerDbgDeclare(), we need to make sure that we are
1202   // not inserting the same dbg.value intrinsic over and over.
1203   SmallVector<DbgValueInst *, 1> DbgValues;
1204   findDbgValues(DbgValues, APN);
1205   for (auto *DVI : DbgValues) {
1206     assert(DVI->getValue() == APN);
1207     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1208       return true;
1209   }
1210   return false;
1211 }
1212 
1213 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1214 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1215 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1216                                            StoreInst *SI, DIBuilder &Builder) {
1217   assert(DII->isAddressOfVariable());
1218   auto *DIVar = DII->getVariable();
1219   assert(DIVar && "Missing variable");
1220   auto *DIExpr = DII->getExpression();
1221   Value *DV = SI->getOperand(0);
1222 
1223   // If an argument is zero extended then use argument directly. The ZExt
1224   // may be zapped by an optimization pass in future.
1225   Argument *ExtendedArg = nullptr;
1226   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1227     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1228   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1229     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1230   if (ExtendedArg) {
1231     // If this DII was already describing only a fragment of a variable, ensure
1232     // that fragment is appropriately narrowed here.
1233     // But if a fragment wasn't used, describe the value as the original
1234     // argument (rather than the zext or sext) so that it remains described even
1235     // if the sext/zext is optimized away. This widens the variable description,
1236     // leaving it up to the consumer to know how the smaller value may be
1237     // represented in a larger register.
1238     if (auto Fragment = DIExpr->getFragmentInfo()) {
1239       unsigned FragmentOffset = Fragment->OffsetInBits;
1240       SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(),
1241                                    DIExpr->elements_end() - 3);
1242       Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1243       Ops.push_back(FragmentOffset);
1244       const DataLayout &DL = DII->getModule()->getDataLayout();
1245       Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
1246       DIExpr = Builder.createExpression(Ops);
1247     }
1248     DV = ExtendedArg;
1249   }
1250   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1251     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1252                                     SI);
1253 }
1254 
1255 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1256 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1257 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1258                                            LoadInst *LI, DIBuilder &Builder) {
1259   auto *DIVar = DII->getVariable();
1260   auto *DIExpr = DII->getExpression();
1261   assert(DIVar && "Missing variable");
1262 
1263   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1264     return;
1265 
1266   // We are now tracking the loaded value instead of the address. In the
1267   // future if multi-location support is added to the IR, it might be
1268   // preferable to keep tracking both the loaded value and the original
1269   // address in case the alloca can not be elided.
1270   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1271       LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1272   DbgValue->insertAfter(LI);
1273 }
1274 
1275 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1276 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1277 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1278                                            PHINode *APN, DIBuilder &Builder) {
1279   auto *DIVar = DII->getVariable();
1280   auto *DIExpr = DII->getExpression();
1281   assert(DIVar && "Missing variable");
1282 
1283   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1284     return;
1285 
1286   BasicBlock *BB = APN->getParent();
1287   auto InsertionPt = BB->getFirstInsertionPt();
1288 
1289   // The block may be a catchswitch block, which does not have a valid
1290   // insertion point.
1291   // FIXME: Insert dbg.value markers in the successors when appropriate.
1292   if (InsertionPt != BB->end())
1293     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1294                                     &*InsertionPt);
1295 }
1296 
1297 /// Determine whether this alloca is either a VLA or an array.
1298 static bool isArray(AllocaInst *AI) {
1299   return AI->isArrayAllocation() ||
1300     AI->getType()->getElementType()->isArrayTy();
1301 }
1302 
1303 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1304 /// of llvm.dbg.value intrinsics.
1305 bool llvm::LowerDbgDeclare(Function &F) {
1306   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1307   SmallVector<DbgDeclareInst *, 4> Dbgs;
1308   for (auto &FI : F)
1309     for (Instruction &BI : FI)
1310       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1311         Dbgs.push_back(DDI);
1312 
1313   if (Dbgs.empty())
1314     return false;
1315 
1316   for (auto &I : Dbgs) {
1317     DbgDeclareInst *DDI = I;
1318     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1319     // If this is an alloca for a scalar variable, insert a dbg.value
1320     // at each load and store to the alloca and erase the dbg.declare.
1321     // The dbg.values allow tracking a variable even if it is not
1322     // stored on the stack, while the dbg.declare can only describe
1323     // the stack slot (and at a lexical-scope granularity). Later
1324     // passes will attempt to elide the stack slot.
1325     if (AI && !isArray(AI)) {
1326       for (auto &AIUse : AI->uses()) {
1327         User *U = AIUse.getUser();
1328         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1329           if (AIUse.getOperandNo() == 1)
1330             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1331         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1332           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1333         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1334           // This is a call by-value or some other instruction that
1335           // takes a pointer to the variable. Insert a *value*
1336           // intrinsic that describes the alloca.
1337           DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(),
1338                                       DDI->getExpression(), DDI->getDebugLoc(),
1339                                       CI);
1340         }
1341       }
1342       DDI->eraseFromParent();
1343     }
1344   }
1345   return true;
1346 }
1347 
1348 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1349 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1350                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1351   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1352   if (InsertedPHIs.size() == 0)
1353     return;
1354 
1355   // Map existing PHI nodes to their dbg.values.
1356   ValueToValueMapTy DbgValueMap;
1357   for (auto &I : *BB) {
1358     if (auto DbgII = dyn_cast<DbgInfoIntrinsic>(&I)) {
1359       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1360         DbgValueMap.insert({Loc, DbgII});
1361     }
1362   }
1363   if (DbgValueMap.size() == 0)
1364     return;
1365 
1366   // Then iterate through the new PHIs and look to see if they use one of the
1367   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1368   // propagate the info through the new PHI.
1369   LLVMContext &C = BB->getContext();
1370   for (auto PHI : InsertedPHIs) {
1371     BasicBlock *Parent = PHI->getParent();
1372     // Avoid inserting an intrinsic into an EH block.
1373     if (Parent->getFirstNonPHI()->isEHPad())
1374       continue;
1375     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1376     for (auto VI : PHI->operand_values()) {
1377       auto V = DbgValueMap.find(VI);
1378       if (V != DbgValueMap.end()) {
1379         auto *DbgII = cast<DbgInfoIntrinsic>(V->second);
1380         Instruction *NewDbgII = DbgII->clone();
1381         NewDbgII->setOperand(0, PhiMAV);
1382         auto InsertionPt = Parent->getFirstInsertionPt();
1383         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1384         NewDbgII->insertBefore(&*InsertionPt);
1385       }
1386     }
1387   }
1388 }
1389 
1390 /// Finds all intrinsics declaring local variables as living in the memory that
1391 /// 'V' points to. This may include a mix of dbg.declare and
1392 /// dbg.addr intrinsics.
1393 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1394   auto *L = LocalAsMetadata::getIfExists(V);
1395   if (!L)
1396     return {};
1397   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1398   if (!MDV)
1399     return {};
1400 
1401   TinyPtrVector<DbgInfoIntrinsic *> Declares;
1402   for (User *U : MDV->users()) {
1403     if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U))
1404       if (DII->isAddressOfVariable())
1405         Declares.push_back(DII);
1406   }
1407 
1408   return Declares;
1409 }
1410 
1411 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1412   if (auto *L = LocalAsMetadata::getIfExists(V))
1413     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1414       for (User *U : MDV->users())
1415         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1416           DbgValues.push_back(DVI);
1417 }
1418 
1419 void llvm::findDbgUsers(SmallVectorImpl<DbgInfoIntrinsic *> &DbgUsers,
1420                         Value *V) {
1421   if (auto *L = LocalAsMetadata::getIfExists(V))
1422     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1423       for (User *U : MDV->users())
1424         if (DbgInfoIntrinsic *DII = dyn_cast<DbgInfoIntrinsic>(U))
1425           DbgUsers.push_back(DII);
1426 }
1427 
1428 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1429                              Instruction *InsertBefore, DIBuilder &Builder,
1430                              bool DerefBefore, int Offset, bool DerefAfter) {
1431   auto DbgAddrs = FindDbgAddrUses(Address);
1432   for (DbgInfoIntrinsic *DII : DbgAddrs) {
1433     DebugLoc Loc = DII->getDebugLoc();
1434     auto *DIVar = DII->getVariable();
1435     auto *DIExpr = DII->getExpression();
1436     assert(DIVar && "Missing variable");
1437     DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1438     // Insert llvm.dbg.declare immediately after InsertBefore, and remove old
1439     // llvm.dbg.declare.
1440     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1441     if (DII == InsertBefore)
1442       InsertBefore = &*std::next(InsertBefore->getIterator());
1443     DII->eraseFromParent();
1444   }
1445   return !DbgAddrs.empty();
1446 }
1447 
1448 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1449                                       DIBuilder &Builder, bool DerefBefore,
1450                                       int Offset, bool DerefAfter) {
1451   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1452                            DerefBefore, Offset, DerefAfter);
1453 }
1454 
1455 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1456                                         DIBuilder &Builder, int Offset) {
1457   DebugLoc Loc = DVI->getDebugLoc();
1458   auto *DIVar = DVI->getVariable();
1459   auto *DIExpr = DVI->getExpression();
1460   assert(DIVar && "Missing variable");
1461 
1462   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1463   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1464   // it and give up.
1465   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1466       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1467     return;
1468 
1469   // Insert the offset immediately after the first deref.
1470   // We could just change the offset argument of dbg.value, but it's unsigned...
1471   if (Offset) {
1472     SmallVector<uint64_t, 4> Ops;
1473     Ops.push_back(dwarf::DW_OP_deref);
1474     DIExpression::appendOffset(Ops, Offset);
1475     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1476     DIExpr = Builder.createExpression(Ops);
1477   }
1478 
1479   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1480   DVI->eraseFromParent();
1481 }
1482 
1483 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1484                                     DIBuilder &Builder, int Offset) {
1485   if (auto *L = LocalAsMetadata::getIfExists(AI))
1486     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1487       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1488         Use &U = *UI++;
1489         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1490           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1491       }
1492 }
1493 
1494 void llvm::salvageDebugInfo(Instruction &I) {
1495   // This function is hot. An early check to determine whether the instruction
1496   // has any metadata to save allows it to return earlier on average.
1497   if (!I.isUsedByMetadata())
1498     return;
1499 
1500   SmallVector<DbgInfoIntrinsic *, 1> DbgUsers;
1501   findDbgUsers(DbgUsers, &I);
1502   if (DbgUsers.empty())
1503     return;
1504 
1505   auto &M = *I.getModule();
1506   auto &DL = M.getDataLayout();
1507 
1508   auto wrapMD = [&](Value *V) {
1509     return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V));
1510   };
1511 
1512   auto doSalvage = [&](DbgInfoIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) {
1513     auto *DIExpr = DII->getExpression();
1514     DIExpr = DIExpression::doPrepend(DIExpr, Ops,
1515                                      DIExpression::WithStackValue);
1516     DII->setOperand(0, wrapMD(I.getOperand(0)));
1517     DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
1518     DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1519   };
1520 
1521   auto applyOffset = [&](DbgInfoIntrinsic *DII, uint64_t Offset) {
1522     SmallVector<uint64_t, 8> Ops;
1523     DIExpression::appendOffset(Ops, Offset);
1524     doSalvage(DII, Ops);
1525   };
1526 
1527   auto applyOps = [&](DbgInfoIntrinsic *DII,
1528                       std::initializer_list<uint64_t> Opcodes) {
1529     SmallVector<uint64_t, 8> Ops(Opcodes);
1530     doSalvage(DII, Ops);
1531   };
1532 
1533   if (auto *CI = dyn_cast<CastInst>(&I)) {
1534     if (!CI->isNoopCast(DL))
1535       return;
1536 
1537     // No-op casts are irrelevant for debug info.
1538     MetadataAsValue *CastSrc = wrapMD(I.getOperand(0));
1539     for (auto *DII : DbgUsers) {
1540       DII->setOperand(0, CastSrc);
1541       DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1542     }
1543   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1544     unsigned BitWidth =
1545         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1546     // Rewrite a constant GEP into a DIExpression.  Since we are performing
1547     // arithmetic to compute the variable's *value* in the DIExpression, we
1548     // need to mark the expression with a DW_OP_stack_value.
1549     APInt Offset(BitWidth, 0);
1550     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset))
1551       for (auto *DII : DbgUsers)
1552         applyOffset(DII, Offset.getSExtValue());
1553   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1554     // Rewrite binary operations with constant integer operands.
1555     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1556     if (!ConstInt || ConstInt->getBitWidth() > 64)
1557       return;
1558 
1559     uint64_t Val = ConstInt->getSExtValue();
1560     for (auto *DII : DbgUsers) {
1561       switch (BI->getOpcode()) {
1562       case Instruction::Add:
1563         applyOffset(DII, Val);
1564         break;
1565       case Instruction::Sub:
1566         applyOffset(DII, -int64_t(Val));
1567         break;
1568       case Instruction::Mul:
1569         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1570         break;
1571       case Instruction::SDiv:
1572         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1573         break;
1574       case Instruction::SRem:
1575         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1576         break;
1577       case Instruction::Or:
1578         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1579         break;
1580       case Instruction::And:
1581         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1582         break;
1583       case Instruction::Xor:
1584         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1585         break;
1586       case Instruction::Shl:
1587         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1588         break;
1589       case Instruction::LShr:
1590         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1591         break;
1592       case Instruction::AShr:
1593         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1594         break;
1595       default:
1596         // TODO: Salvage constants from each kind of binop we know about.
1597         continue;
1598       }
1599     }
1600   } else if (isa<LoadInst>(&I)) {
1601     MetadataAsValue *AddrMD = wrapMD(I.getOperand(0));
1602     for (auto *DII : DbgUsers) {
1603       // Rewrite the load into DW_OP_deref.
1604       auto *DIExpr = DII->getExpression();
1605       DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
1606       DII->setOperand(0, AddrMD);
1607       DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
1608       DEBUG(dbgs() << "SALVAGE:  " << *DII << '\n');
1609     }
1610   }
1611 }
1612 
1613 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1614   unsigned NumDeadInst = 0;
1615   // Delete the instructions backwards, as it has a reduced likelihood of
1616   // having to update as many def-use and use-def chains.
1617   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1618   while (EndInst != &BB->front()) {
1619     // Delete the next to last instruction.
1620     Instruction *Inst = &*--EndInst->getIterator();
1621     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1622       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1623     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1624       EndInst = Inst;
1625       continue;
1626     }
1627     if (!isa<DbgInfoIntrinsic>(Inst))
1628       ++NumDeadInst;
1629     Inst->eraseFromParent();
1630   }
1631   return NumDeadInst;
1632 }
1633 
1634 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1635                                    bool PreserveLCSSA, DeferredDominance *DDT) {
1636   BasicBlock *BB = I->getParent();
1637   std::vector <DominatorTree::UpdateType> Updates;
1638 
1639   // Loop over all of the successors, removing BB's entry from any PHI
1640   // nodes.
1641   if (DDT)
1642     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1643   for (BasicBlock *Successor : successors(BB)) {
1644     Successor->removePredecessor(BB, PreserveLCSSA);
1645     if (DDT)
1646       Updates.push_back({DominatorTree::Delete, BB, Successor});
1647   }
1648   // Insert a call to llvm.trap right before this.  This turns the undefined
1649   // behavior into a hard fail instead of falling through into random code.
1650   if (UseLLVMTrap) {
1651     Function *TrapFn =
1652       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1653     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1654     CallTrap->setDebugLoc(I->getDebugLoc());
1655   }
1656   new UnreachableInst(I->getContext(), I);
1657 
1658   // All instructions after this are dead.
1659   unsigned NumInstrsRemoved = 0;
1660   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1661   while (BBI != BBE) {
1662     if (!BBI->use_empty())
1663       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1664     BB->getInstList().erase(BBI++);
1665     ++NumInstrsRemoved;
1666   }
1667   if (DDT)
1668     DDT->applyUpdates(Updates);
1669   return NumInstrsRemoved;
1670 }
1671 
1672 /// changeToCall - Convert the specified invoke into a normal call.
1673 static void changeToCall(InvokeInst *II, DeferredDominance *DDT = nullptr) {
1674   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1675   SmallVector<OperandBundleDef, 1> OpBundles;
1676   II->getOperandBundlesAsDefs(OpBundles);
1677   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1678                                        "", II);
1679   NewCall->takeName(II);
1680   NewCall->setCallingConv(II->getCallingConv());
1681   NewCall->setAttributes(II->getAttributes());
1682   NewCall->setDebugLoc(II->getDebugLoc());
1683   II->replaceAllUsesWith(NewCall);
1684 
1685   // Follow the call by a branch to the normal destination.
1686   BasicBlock *NormalDestBB = II->getNormalDest();
1687   BranchInst::Create(NormalDestBB, II);
1688 
1689   // Update PHI nodes in the unwind destination
1690   BasicBlock *BB = II->getParent();
1691   BasicBlock *UnwindDestBB = II->getUnwindDest();
1692   UnwindDestBB->removePredecessor(BB);
1693   II->eraseFromParent();
1694   if (DDT)
1695     DDT->deleteEdge(BB, UnwindDestBB);
1696 }
1697 
1698 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1699                                                    BasicBlock *UnwindEdge) {
1700   BasicBlock *BB = CI->getParent();
1701 
1702   // Convert this function call into an invoke instruction.  First, split the
1703   // basic block.
1704   BasicBlock *Split =
1705       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1706 
1707   // Delete the unconditional branch inserted by splitBasicBlock
1708   BB->getInstList().pop_back();
1709 
1710   // Create the new invoke instruction.
1711   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1712   SmallVector<OperandBundleDef, 1> OpBundles;
1713 
1714   CI->getOperandBundlesAsDefs(OpBundles);
1715 
1716   // Note: we're round tripping operand bundles through memory here, and that
1717   // can potentially be avoided with a cleverer API design that we do not have
1718   // as of this time.
1719 
1720   InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
1721                                       InvokeArgs, OpBundles, CI->getName(), BB);
1722   II->setDebugLoc(CI->getDebugLoc());
1723   II->setCallingConv(CI->getCallingConv());
1724   II->setAttributes(CI->getAttributes());
1725 
1726   // Make sure that anything using the call now uses the invoke!  This also
1727   // updates the CallGraph if present, because it uses a WeakTrackingVH.
1728   CI->replaceAllUsesWith(II);
1729 
1730   // Delete the original call
1731   Split->getInstList().pop_front();
1732   return Split;
1733 }
1734 
1735 static bool markAliveBlocks(Function &F,
1736                             SmallPtrSetImpl<BasicBlock*> &Reachable,
1737                             DeferredDominance *DDT = nullptr) {
1738   SmallVector<BasicBlock*, 128> Worklist;
1739   BasicBlock *BB = &F.front();
1740   Worklist.push_back(BB);
1741   Reachable.insert(BB);
1742   bool Changed = false;
1743   do {
1744     BB = Worklist.pop_back_val();
1745 
1746     // Do a quick scan of the basic block, turning any obviously unreachable
1747     // instructions into LLVM unreachable insts.  The instruction combining pass
1748     // canonicalizes unreachable insts into stores to null or undef.
1749     for (Instruction &I : *BB) {
1750       // Assumptions that are known to be false are equivalent to unreachable.
1751       // Also, if the condition is undefined, then we make the choice most
1752       // beneficial to the optimizer, and choose that to also be unreachable.
1753       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1754         if (II->getIntrinsicID() == Intrinsic::assume) {
1755           if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
1756             // Don't insert a call to llvm.trap right before the unreachable.
1757             changeToUnreachable(II, false, false, DDT);
1758             Changed = true;
1759             break;
1760           }
1761         }
1762 
1763         if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
1764           // A call to the guard intrinsic bails out of the current compilation
1765           // unit if the predicate passed to it is false.  If the predicate is a
1766           // constant false, then we know the guard will bail out of the current
1767           // compile unconditionally, so all code following it is dead.
1768           //
1769           // Note: unlike in llvm.assume, it is not "obviously profitable" for
1770           // guards to treat `undef` as `false` since a guard on `undef` can
1771           // still be useful for widening.
1772           if (match(II->getArgOperand(0), m_Zero()))
1773             if (!isa<UnreachableInst>(II->getNextNode())) {
1774               changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/false,
1775                                   false, DDT);
1776               Changed = true;
1777               break;
1778             }
1779         }
1780       }
1781 
1782       if (auto *CI = dyn_cast<CallInst>(&I)) {
1783         Value *Callee = CI->getCalledValue();
1784         if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1785           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DDT);
1786           Changed = true;
1787           break;
1788         }
1789         if (CI->doesNotReturn()) {
1790           // If we found a call to a no-return function, insert an unreachable
1791           // instruction after it.  Make sure there isn't *already* one there
1792           // though.
1793           if (!isa<UnreachableInst>(CI->getNextNode())) {
1794             // Don't insert a call to llvm.trap right before the unreachable.
1795             changeToUnreachable(CI->getNextNode(), false, false, DDT);
1796             Changed = true;
1797           }
1798           break;
1799         }
1800       }
1801 
1802       // Store to undef and store to null are undefined and used to signal that
1803       // they should be changed to unreachable by passes that can't modify the
1804       // CFG.
1805       if (auto *SI = dyn_cast<StoreInst>(&I)) {
1806         // Don't touch volatile stores.
1807         if (SI->isVolatile()) continue;
1808 
1809         Value *Ptr = SI->getOperand(1);
1810 
1811         if (isa<UndefValue>(Ptr) ||
1812             (isa<ConstantPointerNull>(Ptr) &&
1813              SI->getPointerAddressSpace() == 0)) {
1814           changeToUnreachable(SI, true, false, DDT);
1815           Changed = true;
1816           break;
1817         }
1818       }
1819     }
1820 
1821     TerminatorInst *Terminator = BB->getTerminator();
1822     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
1823       // Turn invokes that call 'nounwind' functions into ordinary calls.
1824       Value *Callee = II->getCalledValue();
1825       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1826         changeToUnreachable(II, true, false, DDT);
1827         Changed = true;
1828       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1829         if (II->use_empty() && II->onlyReadsMemory()) {
1830           // jump to the normal destination branch.
1831           BasicBlock *NormalDestBB = II->getNormalDest();
1832           BasicBlock *UnwindDestBB = II->getUnwindDest();
1833           BranchInst::Create(NormalDestBB, II);
1834           UnwindDestBB->removePredecessor(II->getParent());
1835           II->eraseFromParent();
1836           if (DDT)
1837             DDT->deleteEdge(BB, UnwindDestBB);
1838         } else
1839           changeToCall(II, DDT);
1840         Changed = true;
1841       }
1842     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
1843       // Remove catchpads which cannot be reached.
1844       struct CatchPadDenseMapInfo {
1845         static CatchPadInst *getEmptyKey() {
1846           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
1847         }
1848 
1849         static CatchPadInst *getTombstoneKey() {
1850           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
1851         }
1852 
1853         static unsigned getHashValue(CatchPadInst *CatchPad) {
1854           return static_cast<unsigned>(hash_combine_range(
1855               CatchPad->value_op_begin(), CatchPad->value_op_end()));
1856         }
1857 
1858         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
1859           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1860               RHS == getEmptyKey() || RHS == getTombstoneKey())
1861             return LHS == RHS;
1862           return LHS->isIdenticalTo(RHS);
1863         }
1864       };
1865 
1866       // Set of unique CatchPads.
1867       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
1868                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
1869           HandlerSet;
1870       detail::DenseSetEmpty Empty;
1871       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
1872                                              E = CatchSwitch->handler_end();
1873            I != E; ++I) {
1874         BasicBlock *HandlerBB = *I;
1875         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
1876         if (!HandlerSet.insert({CatchPad, Empty}).second) {
1877           CatchSwitch->removeHandler(I);
1878           --I;
1879           --E;
1880           Changed = true;
1881         }
1882       }
1883     }
1884 
1885     Changed |= ConstantFoldTerminator(BB, true, nullptr, DDT);
1886     for (BasicBlock *Successor : successors(BB))
1887       if (Reachable.insert(Successor).second)
1888         Worklist.push_back(Successor);
1889   } while (!Worklist.empty());
1890   return Changed;
1891 }
1892 
1893 void llvm::removeUnwindEdge(BasicBlock *BB, DeferredDominance *DDT) {
1894   TerminatorInst *TI = BB->getTerminator();
1895 
1896   if (auto *II = dyn_cast<InvokeInst>(TI)) {
1897     changeToCall(II, DDT);
1898     return;
1899   }
1900 
1901   TerminatorInst *NewTI;
1902   BasicBlock *UnwindDest;
1903 
1904   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
1905     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
1906     UnwindDest = CRI->getUnwindDest();
1907   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
1908     auto *NewCatchSwitch = CatchSwitchInst::Create(
1909         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
1910         CatchSwitch->getName(), CatchSwitch);
1911     for (BasicBlock *PadBB : CatchSwitch->handlers())
1912       NewCatchSwitch->addHandler(PadBB);
1913 
1914     NewTI = NewCatchSwitch;
1915     UnwindDest = CatchSwitch->getUnwindDest();
1916   } else {
1917     llvm_unreachable("Could not find unwind successor");
1918   }
1919 
1920   NewTI->takeName(TI);
1921   NewTI->setDebugLoc(TI->getDebugLoc());
1922   UnwindDest->removePredecessor(BB);
1923   TI->replaceAllUsesWith(NewTI);
1924   TI->eraseFromParent();
1925   if (DDT)
1926     DDT->deleteEdge(BB, UnwindDest);
1927 }
1928 
1929 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
1930 /// if they are in a dead cycle.  Return true if a change was made, false
1931 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
1932 /// after modifying the CFG.
1933 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
1934                                    DeferredDominance *DDT) {
1935   SmallPtrSet<BasicBlock*, 16> Reachable;
1936   bool Changed = markAliveBlocks(F, Reachable, DDT);
1937 
1938   // If there are unreachable blocks in the CFG...
1939   if (Reachable.size() == F.size())
1940     return Changed;
1941 
1942   assert(Reachable.size() < F.size());
1943   NumRemoved += F.size()-Reachable.size();
1944 
1945   // Loop over all of the basic blocks that are not reachable, dropping all of
1946   // their internal references. Update DDT and LVI if available.
1947   std::vector <DominatorTree::UpdateType> Updates;
1948   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
1949     auto *BB = &*I;
1950     if (Reachable.count(BB))
1951       continue;
1952     for (BasicBlock *Successor : successors(BB)) {
1953       if (Reachable.count(Successor))
1954         Successor->removePredecessor(BB);
1955       if (DDT)
1956         Updates.push_back({DominatorTree::Delete, BB, Successor});
1957     }
1958     if (LVI)
1959       LVI->eraseBlock(BB);
1960     BB->dropAllReferences();
1961   }
1962 
1963   for (Function::iterator I = ++F.begin(); I != F.end();) {
1964     auto *BB = &*I;
1965     if (Reachable.count(BB)) {
1966       ++I;
1967       continue;
1968     }
1969     if (DDT) {
1970       DDT->deleteBB(BB); // deferred deletion of BB.
1971       ++I;
1972     } else {
1973       I = F.getBasicBlockList().erase(I);
1974     }
1975   }
1976 
1977   if (DDT)
1978     DDT->applyUpdates(Updates);
1979   return true;
1980 }
1981 
1982 void llvm::combineMetadata(Instruction *K, const Instruction *J,
1983                            ArrayRef<unsigned> KnownIDs) {
1984   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
1985   K->dropUnknownNonDebugMetadata(KnownIDs);
1986   K->getAllMetadataOtherThanDebugLoc(Metadata);
1987   for (const auto &MD : Metadata) {
1988     unsigned Kind = MD.first;
1989     MDNode *JMD = J->getMetadata(Kind);
1990     MDNode *KMD = MD.second;
1991 
1992     switch (Kind) {
1993       default:
1994         K->setMetadata(Kind, nullptr); // Remove unknown metadata
1995         break;
1996       case LLVMContext::MD_dbg:
1997         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1998       case LLVMContext::MD_tbaa:
1999         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2000         break;
2001       case LLVMContext::MD_alias_scope:
2002         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2003         break;
2004       case LLVMContext::MD_noalias:
2005       case LLVMContext::MD_mem_parallel_loop_access:
2006         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2007         break;
2008       case LLVMContext::MD_range:
2009         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2010         break;
2011       case LLVMContext::MD_fpmath:
2012         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2013         break;
2014       case LLVMContext::MD_invariant_load:
2015         // Only set the !invariant.load if it is present in both instructions.
2016         K->setMetadata(Kind, JMD);
2017         break;
2018       case LLVMContext::MD_nonnull:
2019         // Only set the !nonnull if it is present in both instructions.
2020         K->setMetadata(Kind, JMD);
2021         break;
2022       case LLVMContext::MD_invariant_group:
2023         // Preserve !invariant.group in K.
2024         break;
2025       case LLVMContext::MD_align:
2026         K->setMetadata(Kind,
2027           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2028         break;
2029       case LLVMContext::MD_dereferenceable:
2030       case LLVMContext::MD_dereferenceable_or_null:
2031         K->setMetadata(Kind,
2032           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2033         break;
2034     }
2035   }
2036   // Set !invariant.group from J if J has it. If both instructions have it
2037   // then we will just pick it from J - even when they are different.
2038   // Also make sure that K is load or store - f.e. combining bitcast with load
2039   // could produce bitcast with invariant.group metadata, which is invalid.
2040   // FIXME: we should try to preserve both invariant.group md if they are
2041   // different, but right now instruction can only have one invariant.group.
2042   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2043     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2044       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2045 }
2046 
2047 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
2048   unsigned KnownIDs[] = {
2049       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2050       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2051       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2052       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2053       LLVMContext::MD_dereferenceable,
2054       LLVMContext::MD_dereferenceable_or_null};
2055   combineMetadata(K, J, KnownIDs);
2056 }
2057 
2058 template <typename RootType, typename DominatesFn>
2059 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2060                                          const RootType &Root,
2061                                          const DominatesFn &Dominates) {
2062   assert(From->getType() == To->getType());
2063 
2064   unsigned Count = 0;
2065   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2066        UI != UE;) {
2067     Use &U = *UI++;
2068     if (!Dominates(Root, U))
2069       continue;
2070     U.set(To);
2071     DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
2072                  << *To << " in " << *U << "\n");
2073     ++Count;
2074   }
2075   return Count;
2076 }
2077 
2078 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2079    assert(From->getType() == To->getType());
2080    auto *BB = From->getParent();
2081    unsigned Count = 0;
2082 
2083   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2084        UI != UE;) {
2085     Use &U = *UI++;
2086     auto *I = cast<Instruction>(U.getUser());
2087     if (I->getParent() == BB)
2088       continue;
2089     U.set(To);
2090     ++Count;
2091   }
2092   return Count;
2093 }
2094 
2095 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2096                                         DominatorTree &DT,
2097                                         const BasicBlockEdge &Root) {
2098   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2099     return DT.dominates(Root, U);
2100   };
2101   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2102 }
2103 
2104 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2105                                         DominatorTree &DT,
2106                                         const BasicBlock *BB) {
2107   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2108     auto *I = cast<Instruction>(U.getUser())->getParent();
2109     return DT.properlyDominates(BB, I);
2110   };
2111   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2112 }
2113 
2114 bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
2115                                const TargetLibraryInfo &TLI) {
2116   // Check if the function is specifically marked as a gc leaf function.
2117   if (CS.hasFnAttr("gc-leaf-function"))
2118     return true;
2119   if (const Function *F = CS.getCalledFunction()) {
2120     if (F->hasFnAttribute("gc-leaf-function"))
2121       return true;
2122 
2123     if (auto IID = F->getIntrinsicID())
2124       // Most LLVM intrinsics do not take safepoints.
2125       return IID != Intrinsic::experimental_gc_statepoint &&
2126              IID != Intrinsic::experimental_deoptimize;
2127   }
2128 
2129   // Lib calls can be materialized by some passes, and won't be
2130   // marked as 'gc-leaf-function.' All available Libcalls are
2131   // GC-leaf.
2132   LibFunc LF;
2133   if (TLI.getLibFunc(CS, LF)) {
2134     return TLI.has(LF);
2135   }
2136 
2137   return false;
2138 }
2139 
2140 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2141                                LoadInst &NewLI) {
2142   auto *NewTy = NewLI.getType();
2143 
2144   // This only directly applies if the new type is also a pointer.
2145   if (NewTy->isPointerTy()) {
2146     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2147     return;
2148   }
2149 
2150   // The only other translation we can do is to integral loads with !range
2151   // metadata.
2152   if (!NewTy->isIntegerTy())
2153     return;
2154 
2155   MDBuilder MDB(NewLI.getContext());
2156   const Value *Ptr = OldLI.getPointerOperand();
2157   auto *ITy = cast<IntegerType>(NewTy);
2158   auto *NullInt = ConstantExpr::getPtrToInt(
2159       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2160   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2161   NewLI.setMetadata(LLVMContext::MD_range,
2162                     MDB.createRange(NonNullInt, NullInt));
2163 }
2164 
2165 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2166                              MDNode *N, LoadInst &NewLI) {
2167   auto *NewTy = NewLI.getType();
2168 
2169   // Give up unless it is converted to a pointer where there is a single very
2170   // valuable mapping we can do reliably.
2171   // FIXME: It would be nice to propagate this in more ways, but the type
2172   // conversions make it hard.
2173   if (!NewTy->isPointerTy())
2174     return;
2175 
2176   unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2177   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2178     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2179     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2180   }
2181 }
2182 
2183 namespace {
2184 
2185 /// A potential constituent of a bitreverse or bswap expression. See
2186 /// collectBitParts for a fuller explanation.
2187 struct BitPart {
2188   BitPart(Value *P, unsigned BW) : Provider(P) {
2189     Provenance.resize(BW);
2190   }
2191 
2192   /// The Value that this is a bitreverse/bswap of.
2193   Value *Provider;
2194 
2195   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2196   /// in Provider becomes bit B in the result of this expression.
2197   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2198 
2199   enum { Unset = -1 };
2200 };
2201 
2202 } // end anonymous namespace
2203 
2204 /// Analyze the specified subexpression and see if it is capable of providing
2205 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2206 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2207 /// the output of the expression came from a corresponding bit in some other
2208 /// value. This function is recursive, and the end result is a mapping of
2209 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2210 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2211 ///
2212 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2213 /// that the expression deposits the low byte of %X into the high byte of the
2214 /// result and that all other bits are zero. This expression is accepted and a
2215 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2216 /// [0-7].
2217 ///
2218 /// To avoid revisiting values, the BitPart results are memoized into the
2219 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2220 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2221 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2222 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2223 /// type instead to provide the same functionality.
2224 ///
2225 /// Because we pass around references into \c BPS, we must use a container that
2226 /// does not invalidate internal references (std::map instead of DenseMap).
2227 static const Optional<BitPart> &
2228 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2229                 std::map<Value *, Optional<BitPart>> &BPS) {
2230   auto I = BPS.find(V);
2231   if (I != BPS.end())
2232     return I->second;
2233 
2234   auto &Result = BPS[V] = None;
2235   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2236 
2237   if (Instruction *I = dyn_cast<Instruction>(V)) {
2238     // If this is an or instruction, it may be an inner node of the bswap.
2239     if (I->getOpcode() == Instruction::Or) {
2240       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2241                                 MatchBitReversals, BPS);
2242       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2243                                 MatchBitReversals, BPS);
2244       if (!A || !B)
2245         return Result;
2246 
2247       // Try and merge the two together.
2248       if (!A->Provider || A->Provider != B->Provider)
2249         return Result;
2250 
2251       Result = BitPart(A->Provider, BitWidth);
2252       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2253         if (A->Provenance[i] != BitPart::Unset &&
2254             B->Provenance[i] != BitPart::Unset &&
2255             A->Provenance[i] != B->Provenance[i])
2256           return Result = None;
2257 
2258         if (A->Provenance[i] == BitPart::Unset)
2259           Result->Provenance[i] = B->Provenance[i];
2260         else
2261           Result->Provenance[i] = A->Provenance[i];
2262       }
2263 
2264       return Result;
2265     }
2266 
2267     // If this is a logical shift by a constant, recurse then shift the result.
2268     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2269       unsigned BitShift =
2270           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2271       // Ensure the shift amount is defined.
2272       if (BitShift > BitWidth)
2273         return Result;
2274 
2275       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2276                                   MatchBitReversals, BPS);
2277       if (!Res)
2278         return Result;
2279       Result = Res;
2280 
2281       // Perform the "shift" on BitProvenance.
2282       auto &P = Result->Provenance;
2283       if (I->getOpcode() == Instruction::Shl) {
2284         P.erase(std::prev(P.end(), BitShift), P.end());
2285         P.insert(P.begin(), BitShift, BitPart::Unset);
2286       } else {
2287         P.erase(P.begin(), std::next(P.begin(), BitShift));
2288         P.insert(P.end(), BitShift, BitPart::Unset);
2289       }
2290 
2291       return Result;
2292     }
2293 
2294     // If this is a logical 'and' with a mask that clears bits, recurse then
2295     // unset the appropriate bits.
2296     if (I->getOpcode() == Instruction::And &&
2297         isa<ConstantInt>(I->getOperand(1))) {
2298       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2299       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2300 
2301       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2302       // early exit.
2303       unsigned NumMaskedBits = AndMask.countPopulation();
2304       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2305         return Result;
2306 
2307       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2308                                   MatchBitReversals, BPS);
2309       if (!Res)
2310         return Result;
2311       Result = Res;
2312 
2313       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2314         // If the AndMask is zero for this bit, clear the bit.
2315         if ((AndMask & Bit) == 0)
2316           Result->Provenance[i] = BitPart::Unset;
2317       return Result;
2318     }
2319 
2320     // If this is a zext instruction zero extend the result.
2321     if (I->getOpcode() == Instruction::ZExt) {
2322       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2323                                   MatchBitReversals, BPS);
2324       if (!Res)
2325         return Result;
2326 
2327       Result = BitPart(Res->Provider, BitWidth);
2328       auto NarrowBitWidth =
2329           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2330       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2331         Result->Provenance[i] = Res->Provenance[i];
2332       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2333         Result->Provenance[i] = BitPart::Unset;
2334       return Result;
2335     }
2336   }
2337 
2338   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2339   // the input value to the bswap/bitreverse.
2340   Result = BitPart(V, BitWidth);
2341   for (unsigned i = 0; i < BitWidth; ++i)
2342     Result->Provenance[i] = i;
2343   return Result;
2344 }
2345 
2346 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2347                                           unsigned BitWidth) {
2348   if (From % 8 != To % 8)
2349     return false;
2350   // Convert from bit indices to byte indices and check for a byte reversal.
2351   From >>= 3;
2352   To >>= 3;
2353   BitWidth >>= 3;
2354   return From == BitWidth - To - 1;
2355 }
2356 
2357 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2358                                                unsigned BitWidth) {
2359   return From == BitWidth - To - 1;
2360 }
2361 
2362 bool llvm::recognizeBSwapOrBitReverseIdiom(
2363     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2364     SmallVectorImpl<Instruction *> &InsertedInsts) {
2365   if (Operator::getOpcode(I) != Instruction::Or)
2366     return false;
2367   if (!MatchBSwaps && !MatchBitReversals)
2368     return false;
2369   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2370   if (!ITy || ITy->getBitWidth() > 128)
2371     return false;   // Can't do vectors or integers > 128 bits.
2372   unsigned BW = ITy->getBitWidth();
2373 
2374   unsigned DemandedBW = BW;
2375   IntegerType *DemandedTy = ITy;
2376   if (I->hasOneUse()) {
2377     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2378       DemandedTy = cast<IntegerType>(Trunc->getType());
2379       DemandedBW = DemandedTy->getBitWidth();
2380     }
2381   }
2382 
2383   // Try to find all the pieces corresponding to the bswap.
2384   std::map<Value *, Optional<BitPart>> BPS;
2385   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2386   if (!Res)
2387     return false;
2388   auto &BitProvenance = Res->Provenance;
2389 
2390   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2391   // only byteswap values with an even number of bytes.
2392   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2393   for (unsigned i = 0; i < DemandedBW; ++i) {
2394     OKForBSwap &=
2395         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2396     OKForBitReverse &=
2397         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2398   }
2399 
2400   Intrinsic::ID Intrin;
2401   if (OKForBSwap && MatchBSwaps)
2402     Intrin = Intrinsic::bswap;
2403   else if (OKForBitReverse && MatchBitReversals)
2404     Intrin = Intrinsic::bitreverse;
2405   else
2406     return false;
2407 
2408   if (ITy != DemandedTy) {
2409     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2410     Value *Provider = Res->Provider;
2411     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2412     // We may need to truncate the provider.
2413     if (DemandedTy != ProviderTy) {
2414       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2415                                      "trunc", I);
2416       InsertedInsts.push_back(Trunc);
2417       Provider = Trunc;
2418     }
2419     auto *CI = CallInst::Create(F, Provider, "rev", I);
2420     InsertedInsts.push_back(CI);
2421     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2422     InsertedInsts.push_back(ExtInst);
2423     return true;
2424   }
2425 
2426   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2427   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2428   return true;
2429 }
2430 
2431 // CodeGen has special handling for some string functions that may replace
2432 // them with target-specific intrinsics.  Since that'd skip our interceptors
2433 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2434 // we mark affected calls as NoBuiltin, which will disable optimization
2435 // in CodeGen.
2436 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2437     CallInst *CI, const TargetLibraryInfo *TLI) {
2438   Function *F = CI->getCalledFunction();
2439   LibFunc Func;
2440   if (F && !F->hasLocalLinkage() && F->hasName() &&
2441       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2442       !F->doesNotAccessMemory())
2443     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2444 }
2445 
2446 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2447   // We can't have a PHI with a metadata type.
2448   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2449     return false;
2450 
2451   // Early exit.
2452   if (!isa<Constant>(I->getOperand(OpIdx)))
2453     return true;
2454 
2455   switch (I->getOpcode()) {
2456   default:
2457     return true;
2458   case Instruction::Call:
2459   case Instruction::Invoke:
2460     // Can't handle inline asm. Skip it.
2461     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2462       return false;
2463     // Many arithmetic intrinsics have no issue taking a
2464     // variable, however it's hard to distingish these from
2465     // specials such as @llvm.frameaddress that require a constant.
2466     if (isa<IntrinsicInst>(I))
2467       return false;
2468 
2469     // Constant bundle operands may need to retain their constant-ness for
2470     // correctness.
2471     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2472       return false;
2473     return true;
2474   case Instruction::ShuffleVector:
2475     // Shufflevector masks are constant.
2476     return OpIdx != 2;
2477   case Instruction::Switch:
2478   case Instruction::ExtractValue:
2479     // All operands apart from the first are constant.
2480     return OpIdx == 0;
2481   case Instruction::InsertValue:
2482     // All operands apart from the first and the second are constant.
2483     return OpIdx < 2;
2484   case Instruction::Alloca:
2485     // Static allocas (constant size in the entry block) are handled by
2486     // prologue/epilogue insertion so they're free anyway. We definitely don't
2487     // want to make them non-constant.
2488     return !dyn_cast<AllocaInst>(I)->isStaticAlloca();
2489   case Instruction::GetElementPtr:
2490     if (OpIdx == 0)
2491       return true;
2492     gep_type_iterator It = gep_type_begin(I);
2493     for (auto E = std::next(It, OpIdx); It != E; ++It)
2494       if (It.isStruct())
2495         return false;
2496     return true;
2497   }
2498 }
2499