1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/TinyPtrVector.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/IR/Argument.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/CFG.h" 41 #include "llvm/IR/CallSite.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DIBuilder.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalObject.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InstrTypes.h" 56 #include "llvm/IR/Instruction.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/Metadata.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/Operator.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/KnownBits.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <climits> 79 #include <cstdint> 80 #include <iterator> 81 #include <map> 82 #include <utility> 83 84 using namespace llvm; 85 using namespace llvm::PatternMatch; 86 87 #define DEBUG_TYPE "local" 88 89 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 90 91 //===----------------------------------------------------------------------===// 92 // Local constant propagation. 93 // 94 95 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 96 /// constant value, convert it into an unconditional branch to the constant 97 /// destination. This is a nontrivial operation because the successors of this 98 /// basic block must have their PHI nodes updated. 99 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 100 /// conditions and indirectbr addresses this might make dead if 101 /// DeleteDeadConditions is true. 102 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 103 const TargetLibraryInfo *TLI) { 104 TerminatorInst *T = BB->getTerminator(); 105 IRBuilder<> Builder(T); 106 107 // Branch - See if we are conditional jumping on constant 108 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 109 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 110 BasicBlock *Dest1 = BI->getSuccessor(0); 111 BasicBlock *Dest2 = BI->getSuccessor(1); 112 113 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 114 // Are we branching on constant? 115 // YES. Change to unconditional branch... 116 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 117 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 118 119 //cerr << "Function: " << T->getParent()->getParent() 120 // << "\nRemoving branch from " << T->getParent() 121 // << "\n\nTo: " << OldDest << endl; 122 123 // Let the basic block know that we are letting go of it. Based on this, 124 // it will adjust it's PHI nodes. 125 OldDest->removePredecessor(BB); 126 127 // Replace the conditional branch with an unconditional one. 128 Builder.CreateBr(Destination); 129 BI->eraseFromParent(); 130 return true; 131 } 132 133 if (Dest2 == Dest1) { // Conditional branch to same location? 134 // This branch matches something like this: 135 // br bool %cond, label %Dest, label %Dest 136 // and changes it into: br label %Dest 137 138 // Let the basic block know that we are letting go of one copy of it. 139 assert(BI->getParent() && "Terminator not inserted in block!"); 140 Dest1->removePredecessor(BI->getParent()); 141 142 // Replace the conditional branch with an unconditional one. 143 Builder.CreateBr(Dest1); 144 Value *Cond = BI->getCondition(); 145 BI->eraseFromParent(); 146 if (DeleteDeadConditions) 147 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 148 return true; 149 } 150 return false; 151 } 152 153 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 154 // If we are switching on a constant, we can convert the switch to an 155 // unconditional branch. 156 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 157 BasicBlock *DefaultDest = SI->getDefaultDest(); 158 BasicBlock *TheOnlyDest = DefaultDest; 159 160 // If the default is unreachable, ignore it when searching for TheOnlyDest. 161 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 162 SI->getNumCases() > 0) { 163 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 164 } 165 166 // Figure out which case it goes to. 167 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 168 // Found case matching a constant operand? 169 if (i->getCaseValue() == CI) { 170 TheOnlyDest = i->getCaseSuccessor(); 171 break; 172 } 173 174 // Check to see if this branch is going to the same place as the default 175 // dest. If so, eliminate it as an explicit compare. 176 if (i->getCaseSuccessor() == DefaultDest) { 177 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 178 unsigned NCases = SI->getNumCases(); 179 // Fold the case metadata into the default if there will be any branches 180 // left, unless the metadata doesn't match the switch. 181 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 182 // Collect branch weights into a vector. 183 SmallVector<uint32_t, 8> Weights; 184 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 185 ++MD_i) { 186 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 187 Weights.push_back(CI->getValue().getZExtValue()); 188 } 189 // Merge weight of this case to the default weight. 190 unsigned idx = i->getCaseIndex(); 191 Weights[0] += Weights[idx+1]; 192 // Remove weight for this case. 193 std::swap(Weights[idx+1], Weights.back()); 194 Weights.pop_back(); 195 SI->setMetadata(LLVMContext::MD_prof, 196 MDBuilder(BB->getContext()). 197 createBranchWeights(Weights)); 198 } 199 // Remove this entry. 200 DefaultDest->removePredecessor(SI->getParent()); 201 i = SI->removeCase(i); 202 e = SI->case_end(); 203 continue; 204 } 205 206 // Otherwise, check to see if the switch only branches to one destination. 207 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 208 // destinations. 209 if (i->getCaseSuccessor() != TheOnlyDest) 210 TheOnlyDest = nullptr; 211 212 // Increment this iterator as we haven't removed the case. 213 ++i; 214 } 215 216 if (CI && !TheOnlyDest) { 217 // Branching on a constant, but not any of the cases, go to the default 218 // successor. 219 TheOnlyDest = SI->getDefaultDest(); 220 } 221 222 // If we found a single destination that we can fold the switch into, do so 223 // now. 224 if (TheOnlyDest) { 225 // Insert the new branch. 226 Builder.CreateBr(TheOnlyDest); 227 BasicBlock *BB = SI->getParent(); 228 229 // Remove entries from PHI nodes which we no longer branch to... 230 for (BasicBlock *Succ : SI->successors()) { 231 // Found case matching a constant operand? 232 if (Succ == TheOnlyDest) 233 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 234 else 235 Succ->removePredecessor(BB); 236 } 237 238 // Delete the old switch. 239 Value *Cond = SI->getCondition(); 240 SI->eraseFromParent(); 241 if (DeleteDeadConditions) 242 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 243 return true; 244 } 245 246 if (SI->getNumCases() == 1) { 247 // Otherwise, we can fold this switch into a conditional branch 248 // instruction if it has only one non-default destination. 249 auto FirstCase = *SI->case_begin(); 250 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 251 FirstCase.getCaseValue(), "cond"); 252 253 // Insert the new branch. 254 BranchInst *NewBr = Builder.CreateCondBr(Cond, 255 FirstCase.getCaseSuccessor(), 256 SI->getDefaultDest()); 257 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 258 if (MD && MD->getNumOperands() == 3) { 259 ConstantInt *SICase = 260 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 261 ConstantInt *SIDef = 262 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 263 assert(SICase && SIDef); 264 // The TrueWeight should be the weight for the single case of SI. 265 NewBr->setMetadata(LLVMContext::MD_prof, 266 MDBuilder(BB->getContext()). 267 createBranchWeights(SICase->getValue().getZExtValue(), 268 SIDef->getValue().getZExtValue())); 269 } 270 271 // Update make.implicit metadata to the newly-created conditional branch. 272 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 273 if (MakeImplicitMD) 274 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 275 276 // Delete the old switch. 277 SI->eraseFromParent(); 278 return true; 279 } 280 return false; 281 } 282 283 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 284 // indirectbr blockaddress(@F, @BB) -> br label @BB 285 if (BlockAddress *BA = 286 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 287 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 288 // Insert the new branch. 289 Builder.CreateBr(TheOnlyDest); 290 291 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 292 if (IBI->getDestination(i) == TheOnlyDest) 293 TheOnlyDest = nullptr; 294 else 295 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 296 } 297 Value *Address = IBI->getAddress(); 298 IBI->eraseFromParent(); 299 if (DeleteDeadConditions) 300 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 301 302 // If we didn't find our destination in the IBI successor list, then we 303 // have undefined behavior. Replace the unconditional branch with an 304 // 'unreachable' instruction. 305 if (TheOnlyDest) { 306 BB->getTerminator()->eraseFromParent(); 307 new UnreachableInst(BB->getContext(), BB); 308 } 309 310 return true; 311 } 312 } 313 314 return false; 315 } 316 317 //===----------------------------------------------------------------------===// 318 // Local dead code elimination. 319 // 320 321 /// isInstructionTriviallyDead - Return true if the result produced by the 322 /// instruction is not used, and the instruction has no side effects. 323 /// 324 bool llvm::isInstructionTriviallyDead(Instruction *I, 325 const TargetLibraryInfo *TLI) { 326 if (!I->use_empty()) 327 return false; 328 return wouldInstructionBeTriviallyDead(I, TLI); 329 } 330 331 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 332 const TargetLibraryInfo *TLI) { 333 if (isa<TerminatorInst>(I)) 334 return false; 335 336 // We don't want the landingpad-like instructions removed by anything this 337 // general. 338 if (I->isEHPad()) 339 return false; 340 341 // We don't want debug info removed by anything this general, unless 342 // debug info is empty. 343 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 344 if (DDI->getAddress()) 345 return false; 346 return true; 347 } 348 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 349 if (DVI->getValue()) 350 return false; 351 return true; 352 } 353 354 if (!I->mayHaveSideEffects()) 355 return true; 356 357 // Special case intrinsics that "may have side effects" but can be deleted 358 // when dead. 359 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 360 // Safe to delete llvm.stacksave if dead. 361 if (II->getIntrinsicID() == Intrinsic::stacksave) 362 return true; 363 364 // Lifetime intrinsics are dead when their right-hand is undef. 365 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 366 II->getIntrinsicID() == Intrinsic::lifetime_end) 367 return isa<UndefValue>(II->getArgOperand(1)); 368 369 // Assumptions are dead if their condition is trivially true. Guards on 370 // true are operationally no-ops. In the future we can consider more 371 // sophisticated tradeoffs for guards considering potential for check 372 // widening, but for now we keep things simple. 373 if (II->getIntrinsicID() == Intrinsic::assume || 374 II->getIntrinsicID() == Intrinsic::experimental_guard) { 375 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 376 return !Cond->isZero(); 377 378 return false; 379 } 380 } 381 382 if (isAllocLikeFn(I, TLI)) 383 return true; 384 385 if (CallInst *CI = isFreeCall(I, TLI)) 386 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 387 return C->isNullValue() || isa<UndefValue>(C); 388 389 if (CallSite CS = CallSite(I)) 390 if (isMathLibCallNoop(CS, TLI)) 391 return true; 392 393 return false; 394 } 395 396 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 397 /// trivially dead instruction, delete it. If that makes any of its operands 398 /// trivially dead, delete them too, recursively. Return true if any 399 /// instructions were deleted. 400 bool 401 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 402 const TargetLibraryInfo *TLI) { 403 Instruction *I = dyn_cast<Instruction>(V); 404 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 405 return false; 406 407 SmallVector<Instruction*, 16> DeadInsts; 408 DeadInsts.push_back(I); 409 410 do { 411 I = DeadInsts.pop_back_val(); 412 413 // Null out all of the instruction's operands to see if any operand becomes 414 // dead as we go. 415 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 416 Value *OpV = I->getOperand(i); 417 I->setOperand(i, nullptr); 418 419 if (!OpV->use_empty()) continue; 420 421 // If the operand is an instruction that became dead as we nulled out the 422 // operand, and if it is 'trivially' dead, delete it in a future loop 423 // iteration. 424 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 425 if (isInstructionTriviallyDead(OpI, TLI)) 426 DeadInsts.push_back(OpI); 427 } 428 429 I->eraseFromParent(); 430 } while (!DeadInsts.empty()); 431 432 return true; 433 } 434 435 /// areAllUsesEqual - Check whether the uses of a value are all the same. 436 /// This is similar to Instruction::hasOneUse() except this will also return 437 /// true when there are no uses or multiple uses that all refer to the same 438 /// value. 439 static bool areAllUsesEqual(Instruction *I) { 440 Value::user_iterator UI = I->user_begin(); 441 Value::user_iterator UE = I->user_end(); 442 if (UI == UE) 443 return true; 444 445 User *TheUse = *UI; 446 for (++UI; UI != UE; ++UI) { 447 if (*UI != TheUse) 448 return false; 449 } 450 return true; 451 } 452 453 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 454 /// dead PHI node, due to being a def-use chain of single-use nodes that 455 /// either forms a cycle or is terminated by a trivially dead instruction, 456 /// delete it. If that makes any of its operands trivially dead, delete them 457 /// too, recursively. Return true if a change was made. 458 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 459 const TargetLibraryInfo *TLI) { 460 SmallPtrSet<Instruction*, 4> Visited; 461 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 462 I = cast<Instruction>(*I->user_begin())) { 463 if (I->use_empty()) 464 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 465 466 // If we find an instruction more than once, we're on a cycle that 467 // won't prove fruitful. 468 if (!Visited.insert(I).second) { 469 // Break the cycle and delete the instruction and its operands. 470 I->replaceAllUsesWith(UndefValue::get(I->getType())); 471 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 472 return true; 473 } 474 } 475 return false; 476 } 477 478 static bool 479 simplifyAndDCEInstruction(Instruction *I, 480 SmallSetVector<Instruction *, 16> &WorkList, 481 const DataLayout &DL, 482 const TargetLibraryInfo *TLI) { 483 if (isInstructionTriviallyDead(I, TLI)) { 484 // Null out all of the instruction's operands to see if any operand becomes 485 // dead as we go. 486 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 487 Value *OpV = I->getOperand(i); 488 I->setOperand(i, nullptr); 489 490 if (!OpV->use_empty() || I == OpV) 491 continue; 492 493 // If the operand is an instruction that became dead as we nulled out the 494 // operand, and if it is 'trivially' dead, delete it in a future loop 495 // iteration. 496 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 497 if (isInstructionTriviallyDead(OpI, TLI)) 498 WorkList.insert(OpI); 499 } 500 501 I->eraseFromParent(); 502 503 return true; 504 } 505 506 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 507 // Add the users to the worklist. CAREFUL: an instruction can use itself, 508 // in the case of a phi node. 509 for (User *U : I->users()) { 510 if (U != I) { 511 WorkList.insert(cast<Instruction>(U)); 512 } 513 } 514 515 // Replace the instruction with its simplified value. 516 bool Changed = false; 517 if (!I->use_empty()) { 518 I->replaceAllUsesWith(SimpleV); 519 Changed = true; 520 } 521 if (isInstructionTriviallyDead(I, TLI)) { 522 I->eraseFromParent(); 523 Changed = true; 524 } 525 return Changed; 526 } 527 return false; 528 } 529 530 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 531 /// simplify any instructions in it and recursively delete dead instructions. 532 /// 533 /// This returns true if it changed the code, note that it can delete 534 /// instructions in other blocks as well in this block. 535 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 536 const TargetLibraryInfo *TLI) { 537 bool MadeChange = false; 538 const DataLayout &DL = BB->getModule()->getDataLayout(); 539 540 #ifndef NDEBUG 541 // In debug builds, ensure that the terminator of the block is never replaced 542 // or deleted by these simplifications. The idea of simplification is that it 543 // cannot introduce new instructions, and there is no way to replace the 544 // terminator of a block without introducing a new instruction. 545 AssertingVH<Instruction> TerminatorVH(&BB->back()); 546 #endif 547 548 SmallSetVector<Instruction *, 16> WorkList; 549 // Iterate over the original function, only adding insts to the worklist 550 // if they actually need to be revisited. This avoids having to pre-init 551 // the worklist with the entire function's worth of instructions. 552 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 553 BI != E;) { 554 assert(!BI->isTerminator()); 555 Instruction *I = &*BI; 556 ++BI; 557 558 // We're visiting this instruction now, so make sure it's not in the 559 // worklist from an earlier visit. 560 if (!WorkList.count(I)) 561 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 562 } 563 564 while (!WorkList.empty()) { 565 Instruction *I = WorkList.pop_back_val(); 566 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 567 } 568 return MadeChange; 569 } 570 571 //===----------------------------------------------------------------------===// 572 // Control Flow Graph Restructuring. 573 // 574 575 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 576 /// method is called when we're about to delete Pred as a predecessor of BB. If 577 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 578 /// 579 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 580 /// nodes that collapse into identity values. For example, if we have: 581 /// x = phi(1, 0, 0, 0) 582 /// y = and x, z 583 /// 584 /// .. and delete the predecessor corresponding to the '1', this will attempt to 585 /// recursively fold the and to 0. 586 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 587 // This only adjusts blocks with PHI nodes. 588 if (!isa<PHINode>(BB->begin())) 589 return; 590 591 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 592 // them down. This will leave us with single entry phi nodes and other phis 593 // that can be removed. 594 BB->removePredecessor(Pred, true); 595 596 WeakTrackingVH PhiIt = &BB->front(); 597 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 598 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 599 Value *OldPhiIt = PhiIt; 600 601 if (!recursivelySimplifyInstruction(PN)) 602 continue; 603 604 // If recursive simplification ended up deleting the next PHI node we would 605 // iterate to, then our iterator is invalid, restart scanning from the top 606 // of the block. 607 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 608 } 609 } 610 611 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 612 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 613 /// between them, moving the instructions in the predecessor into DestBB and 614 /// deleting the predecessor block. 615 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 616 // If BB has single-entry PHI nodes, fold them. 617 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 618 Value *NewVal = PN->getIncomingValue(0); 619 // Replace self referencing PHI with undef, it must be dead. 620 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 621 PN->replaceAllUsesWith(NewVal); 622 PN->eraseFromParent(); 623 } 624 625 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 626 assert(PredBB && "Block doesn't have a single predecessor!"); 627 628 // Zap anything that took the address of DestBB. Not doing this will give the 629 // address an invalid value. 630 if (DestBB->hasAddressTaken()) { 631 BlockAddress *BA = BlockAddress::get(DestBB); 632 Constant *Replacement = 633 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 634 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 635 BA->getType())); 636 BA->destroyConstant(); 637 } 638 639 // Anything that branched to PredBB now branches to DestBB. 640 PredBB->replaceAllUsesWith(DestBB); 641 642 // Splice all the instructions from PredBB to DestBB. 643 PredBB->getTerminator()->eraseFromParent(); 644 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 645 646 // If the PredBB is the entry block of the function, move DestBB up to 647 // become the entry block after we erase PredBB. 648 if (PredBB == &DestBB->getParent()->getEntryBlock()) 649 DestBB->moveAfter(PredBB); 650 651 if (DT) { 652 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 653 DT->changeImmediateDominator(DestBB, PredBBIDom); 654 DT->eraseNode(PredBB); 655 } 656 // Nuke BB. 657 PredBB->eraseFromParent(); 658 } 659 660 /// CanMergeValues - Return true if we can choose one of these values to use 661 /// in place of the other. Note that we will always choose the non-undef 662 /// value to keep. 663 static bool CanMergeValues(Value *First, Value *Second) { 664 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 665 } 666 667 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 668 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 669 /// 670 /// Assumption: Succ is the single successor for BB. 671 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 672 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 673 674 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 675 << Succ->getName() << "\n"); 676 // Shortcut, if there is only a single predecessor it must be BB and merging 677 // is always safe 678 if (Succ->getSinglePredecessor()) return true; 679 680 // Make a list of the predecessors of BB 681 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 682 683 // Look at all the phi nodes in Succ, to see if they present a conflict when 684 // merging these blocks 685 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 686 PHINode *PN = cast<PHINode>(I); 687 688 // If the incoming value from BB is again a PHINode in 689 // BB which has the same incoming value for *PI as PN does, we can 690 // merge the phi nodes and then the blocks can still be merged 691 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 692 if (BBPN && BBPN->getParent() == BB) { 693 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 694 BasicBlock *IBB = PN->getIncomingBlock(PI); 695 if (BBPreds.count(IBB) && 696 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 697 PN->getIncomingValue(PI))) { 698 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 699 << Succ->getName() << " is conflicting with " 700 << BBPN->getName() << " with regard to common predecessor " 701 << IBB->getName() << "\n"); 702 return false; 703 } 704 } 705 } else { 706 Value* Val = PN->getIncomingValueForBlock(BB); 707 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 708 // See if the incoming value for the common predecessor is equal to the 709 // one for BB, in which case this phi node will not prevent the merging 710 // of the block. 711 BasicBlock *IBB = PN->getIncomingBlock(PI); 712 if (BBPreds.count(IBB) && 713 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 714 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 715 << Succ->getName() << " is conflicting with regard to common " 716 << "predecessor " << IBB->getName() << "\n"); 717 return false; 718 } 719 } 720 } 721 } 722 723 return true; 724 } 725 726 using PredBlockVector = SmallVector<BasicBlock *, 16>; 727 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 728 729 /// \brief Determines the value to use as the phi node input for a block. 730 /// 731 /// Select between \p OldVal any value that we know flows from \p BB 732 /// to a particular phi on the basis of which one (if either) is not 733 /// undef. Update IncomingValues based on the selected value. 734 /// 735 /// \param OldVal The value we are considering selecting. 736 /// \param BB The block that the value flows in from. 737 /// \param IncomingValues A map from block-to-value for other phi inputs 738 /// that we have examined. 739 /// 740 /// \returns the selected value. 741 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 742 IncomingValueMap &IncomingValues) { 743 if (!isa<UndefValue>(OldVal)) { 744 assert((!IncomingValues.count(BB) || 745 IncomingValues.find(BB)->second == OldVal) && 746 "Expected OldVal to match incoming value from BB!"); 747 748 IncomingValues.insert(std::make_pair(BB, OldVal)); 749 return OldVal; 750 } 751 752 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 753 if (It != IncomingValues.end()) return It->second; 754 755 return OldVal; 756 } 757 758 /// \brief Create a map from block to value for the operands of a 759 /// given phi. 760 /// 761 /// Create a map from block to value for each non-undef value flowing 762 /// into \p PN. 763 /// 764 /// \param PN The phi we are collecting the map for. 765 /// \param IncomingValues [out] The map from block to value for this phi. 766 static void gatherIncomingValuesToPhi(PHINode *PN, 767 IncomingValueMap &IncomingValues) { 768 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 769 BasicBlock *BB = PN->getIncomingBlock(i); 770 Value *V = PN->getIncomingValue(i); 771 772 if (!isa<UndefValue>(V)) 773 IncomingValues.insert(std::make_pair(BB, V)); 774 } 775 } 776 777 /// \brief Replace the incoming undef values to a phi with the values 778 /// from a block-to-value map. 779 /// 780 /// \param PN The phi we are replacing the undefs in. 781 /// \param IncomingValues A map from block to value. 782 static void replaceUndefValuesInPhi(PHINode *PN, 783 const IncomingValueMap &IncomingValues) { 784 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 785 Value *V = PN->getIncomingValue(i); 786 787 if (!isa<UndefValue>(V)) continue; 788 789 BasicBlock *BB = PN->getIncomingBlock(i); 790 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 791 if (It == IncomingValues.end()) continue; 792 793 PN->setIncomingValue(i, It->second); 794 } 795 } 796 797 /// \brief Replace a value flowing from a block to a phi with 798 /// potentially multiple instances of that value flowing from the 799 /// block's predecessors to the phi. 800 /// 801 /// \param BB The block with the value flowing into the phi. 802 /// \param BBPreds The predecessors of BB. 803 /// \param PN The phi that we are updating. 804 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 805 const PredBlockVector &BBPreds, 806 PHINode *PN) { 807 Value *OldVal = PN->removeIncomingValue(BB, false); 808 assert(OldVal && "No entry in PHI for Pred BB!"); 809 810 IncomingValueMap IncomingValues; 811 812 // We are merging two blocks - BB, and the block containing PN - and 813 // as a result we need to redirect edges from the predecessors of BB 814 // to go to the block containing PN, and update PN 815 // accordingly. Since we allow merging blocks in the case where the 816 // predecessor and successor blocks both share some predecessors, 817 // and where some of those common predecessors might have undef 818 // values flowing into PN, we want to rewrite those values to be 819 // consistent with the non-undef values. 820 821 gatherIncomingValuesToPhi(PN, IncomingValues); 822 823 // If this incoming value is one of the PHI nodes in BB, the new entries 824 // in the PHI node are the entries from the old PHI. 825 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 826 PHINode *OldValPN = cast<PHINode>(OldVal); 827 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 828 // Note that, since we are merging phi nodes and BB and Succ might 829 // have common predecessors, we could end up with a phi node with 830 // identical incoming branches. This will be cleaned up later (and 831 // will trigger asserts if we try to clean it up now, without also 832 // simplifying the corresponding conditional branch). 833 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 834 Value *PredVal = OldValPN->getIncomingValue(i); 835 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 836 IncomingValues); 837 838 // And add a new incoming value for this predecessor for the 839 // newly retargeted branch. 840 PN->addIncoming(Selected, PredBB); 841 } 842 } else { 843 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 844 // Update existing incoming values in PN for this 845 // predecessor of BB. 846 BasicBlock *PredBB = BBPreds[i]; 847 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 848 IncomingValues); 849 850 // And add a new incoming value for this predecessor for the 851 // newly retargeted branch. 852 PN->addIncoming(Selected, PredBB); 853 } 854 } 855 856 replaceUndefValuesInPhi(PN, IncomingValues); 857 } 858 859 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 860 /// unconditional branch, and contains no instructions other than PHI nodes, 861 /// potential side-effect free intrinsics and the branch. If possible, 862 /// eliminate BB by rewriting all the predecessors to branch to the successor 863 /// block and return true. If we can't transform, return false. 864 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 865 assert(BB != &BB->getParent()->getEntryBlock() && 866 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 867 868 // We can't eliminate infinite loops. 869 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 870 if (BB == Succ) return false; 871 872 // Check to see if merging these blocks would cause conflicts for any of the 873 // phi nodes in BB or Succ. If not, we can safely merge. 874 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 875 876 // Check for cases where Succ has multiple predecessors and a PHI node in BB 877 // has uses which will not disappear when the PHI nodes are merged. It is 878 // possible to handle such cases, but difficult: it requires checking whether 879 // BB dominates Succ, which is non-trivial to calculate in the case where 880 // Succ has multiple predecessors. Also, it requires checking whether 881 // constructing the necessary self-referential PHI node doesn't introduce any 882 // conflicts; this isn't too difficult, but the previous code for doing this 883 // was incorrect. 884 // 885 // Note that if this check finds a live use, BB dominates Succ, so BB is 886 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 887 // folding the branch isn't profitable in that case anyway. 888 if (!Succ->getSinglePredecessor()) { 889 BasicBlock::iterator BBI = BB->begin(); 890 while (isa<PHINode>(*BBI)) { 891 for (Use &U : BBI->uses()) { 892 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 893 if (PN->getIncomingBlock(U) != BB) 894 return false; 895 } else { 896 return false; 897 } 898 } 899 ++BBI; 900 } 901 } 902 903 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 904 905 if (isa<PHINode>(Succ->begin())) { 906 // If there is more than one pred of succ, and there are PHI nodes in 907 // the successor, then we need to add incoming edges for the PHI nodes 908 // 909 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 910 911 // Loop over all of the PHI nodes in the successor of BB. 912 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 913 PHINode *PN = cast<PHINode>(I); 914 915 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 916 } 917 } 918 919 if (Succ->getSinglePredecessor()) { 920 // BB is the only predecessor of Succ, so Succ will end up with exactly 921 // the same predecessors BB had. 922 923 // Copy over any phi, debug or lifetime instruction. 924 BB->getTerminator()->eraseFromParent(); 925 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 926 BB->getInstList()); 927 } else { 928 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 929 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 930 assert(PN->use_empty() && "There shouldn't be any uses here!"); 931 PN->eraseFromParent(); 932 } 933 } 934 935 // If the unconditional branch we replaced contains llvm.loop metadata, we 936 // add the metadata to the branch instructions in the predecessors. 937 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 938 Instruction *TI = BB->getTerminator(); 939 if (TI) 940 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 941 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 942 BasicBlock *Pred = *PI; 943 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 944 } 945 946 // Everything that jumped to BB now goes to Succ. 947 BB->replaceAllUsesWith(Succ); 948 if (!Succ->hasName()) Succ->takeName(BB); 949 BB->eraseFromParent(); // Delete the old basic block. 950 return true; 951 } 952 953 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 954 /// nodes in this block. This doesn't try to be clever about PHI nodes 955 /// which differ only in the order of the incoming values, but instcombine 956 /// orders them so it usually won't matter. 957 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 958 // This implementation doesn't currently consider undef operands 959 // specially. Theoretically, two phis which are identical except for 960 // one having an undef where the other doesn't could be collapsed. 961 962 struct PHIDenseMapInfo { 963 static PHINode *getEmptyKey() { 964 return DenseMapInfo<PHINode *>::getEmptyKey(); 965 } 966 967 static PHINode *getTombstoneKey() { 968 return DenseMapInfo<PHINode *>::getTombstoneKey(); 969 } 970 971 static unsigned getHashValue(PHINode *PN) { 972 // Compute a hash value on the operands. Instcombine will likely have 973 // sorted them, which helps expose duplicates, but we have to check all 974 // the operands to be safe in case instcombine hasn't run. 975 return static_cast<unsigned>(hash_combine( 976 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 977 hash_combine_range(PN->block_begin(), PN->block_end()))); 978 } 979 980 static bool isEqual(PHINode *LHS, PHINode *RHS) { 981 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 982 RHS == getEmptyKey() || RHS == getTombstoneKey()) 983 return LHS == RHS; 984 return LHS->isIdenticalTo(RHS); 985 } 986 }; 987 988 // Set of unique PHINodes. 989 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 990 991 // Examine each PHI. 992 bool Changed = false; 993 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 994 auto Inserted = PHISet.insert(PN); 995 if (!Inserted.second) { 996 // A duplicate. Replace this PHI with its duplicate. 997 PN->replaceAllUsesWith(*Inserted.first); 998 PN->eraseFromParent(); 999 Changed = true; 1000 1001 // The RAUW can change PHIs that we already visited. Start over from the 1002 // beginning. 1003 PHISet.clear(); 1004 I = BB->begin(); 1005 } 1006 } 1007 1008 return Changed; 1009 } 1010 1011 /// enforceKnownAlignment - If the specified pointer points to an object that 1012 /// we control, modify the object's alignment to PrefAlign. This isn't 1013 /// often possible though. If alignment is important, a more reliable approach 1014 /// is to simply align all global variables and allocation instructions to 1015 /// their preferred alignment from the beginning. 1016 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 1017 unsigned PrefAlign, 1018 const DataLayout &DL) { 1019 assert(PrefAlign > Align); 1020 1021 V = V->stripPointerCasts(); 1022 1023 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1024 // TODO: ideally, computeKnownBits ought to have used 1025 // AllocaInst::getAlignment() in its computation already, making 1026 // the below max redundant. But, as it turns out, 1027 // stripPointerCasts recurses through infinite layers of bitcasts, 1028 // while computeKnownBits is not allowed to traverse more than 6 1029 // levels. 1030 Align = std::max(AI->getAlignment(), Align); 1031 if (PrefAlign <= Align) 1032 return Align; 1033 1034 // If the preferred alignment is greater than the natural stack alignment 1035 // then don't round up. This avoids dynamic stack realignment. 1036 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1037 return Align; 1038 AI->setAlignment(PrefAlign); 1039 return PrefAlign; 1040 } 1041 1042 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1043 // TODO: as above, this shouldn't be necessary. 1044 Align = std::max(GO->getAlignment(), Align); 1045 if (PrefAlign <= Align) 1046 return Align; 1047 1048 // If there is a large requested alignment and we can, bump up the alignment 1049 // of the global. If the memory we set aside for the global may not be the 1050 // memory used by the final program then it is impossible for us to reliably 1051 // enforce the preferred alignment. 1052 if (!GO->canIncreaseAlignment()) 1053 return Align; 1054 1055 GO->setAlignment(PrefAlign); 1056 return PrefAlign; 1057 } 1058 1059 return Align; 1060 } 1061 1062 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1063 const DataLayout &DL, 1064 const Instruction *CxtI, 1065 AssumptionCache *AC, 1066 const DominatorTree *DT) { 1067 assert(V->getType()->isPointerTy() && 1068 "getOrEnforceKnownAlignment expects a pointer!"); 1069 1070 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1071 unsigned TrailZ = Known.countMinTrailingZeros(); 1072 1073 // Avoid trouble with ridiculously large TrailZ values, such as 1074 // those computed from a null pointer. 1075 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1076 1077 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1078 1079 // LLVM doesn't support alignments larger than this currently. 1080 Align = std::min(Align, +Value::MaximumAlignment); 1081 1082 if (PrefAlign > Align) 1083 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1084 1085 // We don't need to make any adjustment. 1086 return Align; 1087 } 1088 1089 ///===---------------------------------------------------------------------===// 1090 /// Dbg Intrinsic utilities 1091 /// 1092 1093 /// See if there is a dbg.value intrinsic for DIVar before I. 1094 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1095 Instruction *I) { 1096 // Since we can't guarantee that the original dbg.declare instrinsic 1097 // is removed by LowerDbgDeclare(), we need to make sure that we are 1098 // not inserting the same dbg.value intrinsic over and over. 1099 BasicBlock::InstListType::iterator PrevI(I); 1100 if (PrevI != I->getParent()->getInstList().begin()) { 1101 --PrevI; 1102 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1103 if (DVI->getValue() == I->getOperand(0) && 1104 DVI->getVariable() == DIVar && 1105 DVI->getExpression() == DIExpr) 1106 return true; 1107 } 1108 return false; 1109 } 1110 1111 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1112 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1113 DIExpression *DIExpr, 1114 PHINode *APN) { 1115 // Since we can't guarantee that the original dbg.declare instrinsic 1116 // is removed by LowerDbgDeclare(), we need to make sure that we are 1117 // not inserting the same dbg.value intrinsic over and over. 1118 SmallVector<DbgValueInst *, 1> DbgValues; 1119 findDbgValues(DbgValues, APN); 1120 for (auto *DVI : DbgValues) { 1121 assert(DVI->getValue() == APN); 1122 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1123 return true; 1124 } 1125 return false; 1126 } 1127 1128 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1129 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1130 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1131 StoreInst *SI, DIBuilder &Builder) { 1132 assert(DII->isAddressOfVariable()); 1133 auto *DIVar = DII->getVariable(); 1134 assert(DIVar && "Missing variable"); 1135 auto *DIExpr = DII->getExpression(); 1136 Value *DV = SI->getOperand(0); 1137 1138 // If an argument is zero extended then use argument directly. The ZExt 1139 // may be zapped by an optimization pass in future. 1140 Argument *ExtendedArg = nullptr; 1141 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1142 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1143 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1144 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1145 if (ExtendedArg) { 1146 // If this DII was already describing only a fragment of a variable, ensure 1147 // that fragment is appropriately narrowed here. 1148 // But if a fragment wasn't used, describe the value as the original 1149 // argument (rather than the zext or sext) so that it remains described even 1150 // if the sext/zext is optimized away. This widens the variable description, 1151 // leaving it up to the consumer to know how the smaller value may be 1152 // represented in a larger register. 1153 if (auto Fragment = DIExpr->getFragmentInfo()) { 1154 unsigned FragmentOffset = Fragment->OffsetInBits; 1155 SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(), 1156 DIExpr->elements_end() - 3); 1157 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1158 Ops.push_back(FragmentOffset); 1159 const DataLayout &DL = DII->getModule()->getDataLayout(); 1160 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1161 DIExpr = Builder.createExpression(Ops); 1162 } 1163 DV = ExtendedArg; 1164 } 1165 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1166 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1167 SI); 1168 } 1169 1170 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1171 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1172 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1173 LoadInst *LI, DIBuilder &Builder) { 1174 auto *DIVar = DII->getVariable(); 1175 auto *DIExpr = DII->getExpression(); 1176 assert(DIVar && "Missing variable"); 1177 1178 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1179 return; 1180 1181 // We are now tracking the loaded value instead of the address. In the 1182 // future if multi-location support is added to the IR, it might be 1183 // preferable to keep tracking both the loaded value and the original 1184 // address in case the alloca can not be elided. 1185 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1186 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); 1187 DbgValue->insertAfter(LI); 1188 } 1189 1190 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1191 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1192 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1193 PHINode *APN, DIBuilder &Builder) { 1194 auto *DIVar = DII->getVariable(); 1195 auto *DIExpr = DII->getExpression(); 1196 assert(DIVar && "Missing variable"); 1197 1198 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1199 return; 1200 1201 BasicBlock *BB = APN->getParent(); 1202 auto InsertionPt = BB->getFirstInsertionPt(); 1203 1204 // The block may be a catchswitch block, which does not have a valid 1205 // insertion point. 1206 // FIXME: Insert dbg.value markers in the successors when appropriate. 1207 if (InsertionPt != BB->end()) 1208 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), 1209 &*InsertionPt); 1210 } 1211 1212 /// Determine whether this alloca is either a VLA or an array. 1213 static bool isArray(AllocaInst *AI) { 1214 return AI->isArrayAllocation() || 1215 AI->getType()->getElementType()->isArrayTy(); 1216 } 1217 1218 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1219 /// of llvm.dbg.value intrinsics. 1220 bool llvm::LowerDbgDeclare(Function &F) { 1221 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1222 SmallVector<DbgDeclareInst *, 4> Dbgs; 1223 for (auto &FI : F) 1224 for (Instruction &BI : FI) 1225 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1226 Dbgs.push_back(DDI); 1227 1228 if (Dbgs.empty()) 1229 return false; 1230 1231 for (auto &I : Dbgs) { 1232 DbgDeclareInst *DDI = I; 1233 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1234 // If this is an alloca for a scalar variable, insert a dbg.value 1235 // at each load and store to the alloca and erase the dbg.declare. 1236 // The dbg.values allow tracking a variable even if it is not 1237 // stored on the stack, while the dbg.declare can only describe 1238 // the stack slot (and at a lexical-scope granularity). Later 1239 // passes will attempt to elide the stack slot. 1240 if (AI && !isArray(AI)) { 1241 for (auto &AIUse : AI->uses()) { 1242 User *U = AIUse.getUser(); 1243 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1244 if (AIUse.getOperandNo() == 1) 1245 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1246 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1247 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1248 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1249 // This is a call by-value or some other instruction that 1250 // takes a pointer to the variable. Insert a *value* 1251 // intrinsic that describes the alloca. 1252 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), 1253 DDI->getExpression(), DDI->getDebugLoc(), 1254 CI); 1255 } 1256 } 1257 DDI->eraseFromParent(); 1258 } 1259 } 1260 return true; 1261 } 1262 1263 /// Finds all intrinsics declaring local variables as living in the memory that 1264 /// 'V' points to. This may include a mix of dbg.declare and 1265 /// dbg.addr intrinsics. 1266 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1267 auto *L = LocalAsMetadata::getIfExists(V); 1268 if (!L) 1269 return {}; 1270 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1271 if (!MDV) 1272 return {}; 1273 1274 TinyPtrVector<DbgInfoIntrinsic *> Declares; 1275 for (User *U : MDV->users()) { 1276 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U)) 1277 if (DII->isAddressOfVariable()) 1278 Declares.push_back(DII); 1279 } 1280 1281 return Declares; 1282 } 1283 1284 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1285 if (auto *L = LocalAsMetadata::getIfExists(V)) 1286 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1287 for (User *U : MDV->users()) 1288 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1289 DbgValues.push_back(DVI); 1290 } 1291 1292 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1293 Instruction *InsertBefore, DIBuilder &Builder, 1294 bool Deref, int Offset) { 1295 auto DbgAddrs = FindDbgAddrUses(Address); 1296 for (DbgInfoIntrinsic *DII : DbgAddrs) { 1297 DebugLoc Loc = DII->getDebugLoc(); 1298 auto *DIVar = DII->getVariable(); 1299 auto *DIExpr = DII->getExpression(); 1300 assert(DIVar && "Missing variable"); 1301 DIExpr = DIExpression::prepend(DIExpr, Deref, Offset); 1302 // Insert llvm.dbg.declare immediately after InsertBefore, and remove old 1303 // llvm.dbg.declare. 1304 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1305 if (DII == InsertBefore) 1306 InsertBefore = &*std::next(InsertBefore->getIterator()); 1307 DII->eraseFromParent(); 1308 } 1309 return !DbgAddrs.empty(); 1310 } 1311 1312 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1313 DIBuilder &Builder, bool Deref, int Offset) { 1314 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1315 Deref, Offset); 1316 } 1317 1318 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1319 DIBuilder &Builder, int Offset) { 1320 DebugLoc Loc = DVI->getDebugLoc(); 1321 auto *DIVar = DVI->getVariable(); 1322 auto *DIExpr = DVI->getExpression(); 1323 assert(DIVar && "Missing variable"); 1324 1325 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1326 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1327 // it and give up. 1328 if (!DIExpr || DIExpr->getNumElements() < 1 || 1329 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1330 return; 1331 1332 // Insert the offset immediately after the first deref. 1333 // We could just change the offset argument of dbg.value, but it's unsigned... 1334 if (Offset) { 1335 SmallVector<uint64_t, 4> Ops; 1336 Ops.push_back(dwarf::DW_OP_deref); 1337 DIExpression::appendOffset(Ops, Offset); 1338 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1339 DIExpr = Builder.createExpression(Ops); 1340 } 1341 1342 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1343 DVI->eraseFromParent(); 1344 } 1345 1346 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1347 DIBuilder &Builder, int Offset) { 1348 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1349 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1350 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1351 Use &U = *UI++; 1352 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1353 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1354 } 1355 } 1356 1357 void llvm::salvageDebugInfo(Instruction &I) { 1358 SmallVector<DbgValueInst *, 1> DbgValues; 1359 auto &M = *I.getModule(); 1360 1361 auto MDWrap = [&](Value *V) { 1362 return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V)); 1363 }; 1364 1365 if (isa<BitCastInst>(&I)) { 1366 findDbgValues(DbgValues, &I); 1367 for (auto *DVI : DbgValues) { 1368 // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value 1369 // to use the cast's source. 1370 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1371 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1372 } 1373 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1374 findDbgValues(DbgValues, &I); 1375 for (auto *DVI : DbgValues) { 1376 unsigned BitWidth = 1377 M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace()); 1378 APInt Offset(BitWidth, 0); 1379 // Rewrite a constant GEP into a DIExpression. Since we are performing 1380 // arithmetic to compute the variable's *value* in the DIExpression, we 1381 // need to mark the expression with a DW_OP_stack_value. 1382 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1383 auto *DIExpr = DVI->getExpression(); 1384 DIBuilder DIB(M, /*AllowUnresolved*/ false); 1385 // GEP offsets are i32 and thus always fit into an int64_t. 1386 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, 1387 Offset.getSExtValue(), 1388 DIExpression::WithStackValue); 1389 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1390 DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1391 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1392 } 1393 } 1394 } else if (isa<LoadInst>(&I)) { 1395 findDbgValues(DbgValues, &I); 1396 for (auto *DVI : DbgValues) { 1397 // Rewrite the load into DW_OP_deref. 1398 auto *DIExpr = DVI->getExpression(); 1399 DIBuilder DIB(M, /*AllowUnresolved*/ false); 1400 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref); 1401 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1402 DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1403 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1404 } 1405 } 1406 } 1407 1408 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1409 unsigned NumDeadInst = 0; 1410 // Delete the instructions backwards, as it has a reduced likelihood of 1411 // having to update as many def-use and use-def chains. 1412 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1413 while (EndInst != &BB->front()) { 1414 // Delete the next to last instruction. 1415 Instruction *Inst = &*--EndInst->getIterator(); 1416 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1417 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1418 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1419 EndInst = Inst; 1420 continue; 1421 } 1422 if (!isa<DbgInfoIntrinsic>(Inst)) 1423 ++NumDeadInst; 1424 Inst->eraseFromParent(); 1425 } 1426 return NumDeadInst; 1427 } 1428 1429 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1430 bool PreserveLCSSA) { 1431 BasicBlock *BB = I->getParent(); 1432 // Loop over all of the successors, removing BB's entry from any PHI 1433 // nodes. 1434 for (BasicBlock *Successor : successors(BB)) 1435 Successor->removePredecessor(BB, PreserveLCSSA); 1436 1437 // Insert a call to llvm.trap right before this. This turns the undefined 1438 // behavior into a hard fail instead of falling through into random code. 1439 if (UseLLVMTrap) { 1440 Function *TrapFn = 1441 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1442 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1443 CallTrap->setDebugLoc(I->getDebugLoc()); 1444 } 1445 new UnreachableInst(I->getContext(), I); 1446 1447 // All instructions after this are dead. 1448 unsigned NumInstrsRemoved = 0; 1449 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1450 while (BBI != BBE) { 1451 if (!BBI->use_empty()) 1452 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1453 BB->getInstList().erase(BBI++); 1454 ++NumInstrsRemoved; 1455 } 1456 return NumInstrsRemoved; 1457 } 1458 1459 /// changeToCall - Convert the specified invoke into a normal call. 1460 static void changeToCall(InvokeInst *II) { 1461 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1462 SmallVector<OperandBundleDef, 1> OpBundles; 1463 II->getOperandBundlesAsDefs(OpBundles); 1464 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1465 "", II); 1466 NewCall->takeName(II); 1467 NewCall->setCallingConv(II->getCallingConv()); 1468 NewCall->setAttributes(II->getAttributes()); 1469 NewCall->setDebugLoc(II->getDebugLoc()); 1470 II->replaceAllUsesWith(NewCall); 1471 1472 // Follow the call by a branch to the normal destination. 1473 BranchInst::Create(II->getNormalDest(), II); 1474 1475 // Update PHI nodes in the unwind destination 1476 II->getUnwindDest()->removePredecessor(II->getParent()); 1477 II->eraseFromParent(); 1478 } 1479 1480 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1481 BasicBlock *UnwindEdge) { 1482 BasicBlock *BB = CI->getParent(); 1483 1484 // Convert this function call into an invoke instruction. First, split the 1485 // basic block. 1486 BasicBlock *Split = 1487 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1488 1489 // Delete the unconditional branch inserted by splitBasicBlock 1490 BB->getInstList().pop_back(); 1491 1492 // Create the new invoke instruction. 1493 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1494 SmallVector<OperandBundleDef, 1> OpBundles; 1495 1496 CI->getOperandBundlesAsDefs(OpBundles); 1497 1498 // Note: we're round tripping operand bundles through memory here, and that 1499 // can potentially be avoided with a cleverer API design that we do not have 1500 // as of this time. 1501 1502 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1503 InvokeArgs, OpBundles, CI->getName(), BB); 1504 II->setDebugLoc(CI->getDebugLoc()); 1505 II->setCallingConv(CI->getCallingConv()); 1506 II->setAttributes(CI->getAttributes()); 1507 1508 // Make sure that anything using the call now uses the invoke! This also 1509 // updates the CallGraph if present, because it uses a WeakTrackingVH. 1510 CI->replaceAllUsesWith(II); 1511 1512 // Delete the original call 1513 Split->getInstList().pop_front(); 1514 return Split; 1515 } 1516 1517 static bool markAliveBlocks(Function &F, 1518 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1519 SmallVector<BasicBlock*, 128> Worklist; 1520 BasicBlock *BB = &F.front(); 1521 Worklist.push_back(BB); 1522 Reachable.insert(BB); 1523 bool Changed = false; 1524 do { 1525 BB = Worklist.pop_back_val(); 1526 1527 // Do a quick scan of the basic block, turning any obviously unreachable 1528 // instructions into LLVM unreachable insts. The instruction combining pass 1529 // canonicalizes unreachable insts into stores to null or undef. 1530 for (Instruction &I : *BB) { 1531 // Assumptions that are known to be false are equivalent to unreachable. 1532 // Also, if the condition is undefined, then we make the choice most 1533 // beneficial to the optimizer, and choose that to also be unreachable. 1534 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1535 if (II->getIntrinsicID() == Intrinsic::assume) { 1536 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 1537 // Don't insert a call to llvm.trap right before the unreachable. 1538 changeToUnreachable(II, false); 1539 Changed = true; 1540 break; 1541 } 1542 } 1543 1544 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1545 // A call to the guard intrinsic bails out of the current compilation 1546 // unit if the predicate passed to it is false. If the predicate is a 1547 // constant false, then we know the guard will bail out of the current 1548 // compile unconditionally, so all code following it is dead. 1549 // 1550 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1551 // guards to treat `undef` as `false` since a guard on `undef` can 1552 // still be useful for widening. 1553 if (match(II->getArgOperand(0), m_Zero())) 1554 if (!isa<UnreachableInst>(II->getNextNode())) { 1555 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false); 1556 Changed = true; 1557 break; 1558 } 1559 } 1560 } 1561 1562 if (auto *CI = dyn_cast<CallInst>(&I)) { 1563 Value *Callee = CI->getCalledValue(); 1564 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1565 changeToUnreachable(CI, /*UseLLVMTrap=*/false); 1566 Changed = true; 1567 break; 1568 } 1569 if (CI->doesNotReturn()) { 1570 // If we found a call to a no-return function, insert an unreachable 1571 // instruction after it. Make sure there isn't *already* one there 1572 // though. 1573 if (!isa<UnreachableInst>(CI->getNextNode())) { 1574 // Don't insert a call to llvm.trap right before the unreachable. 1575 changeToUnreachable(CI->getNextNode(), false); 1576 Changed = true; 1577 } 1578 break; 1579 } 1580 } 1581 1582 // Store to undef and store to null are undefined and used to signal that 1583 // they should be changed to unreachable by passes that can't modify the 1584 // CFG. 1585 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1586 // Don't touch volatile stores. 1587 if (SI->isVolatile()) continue; 1588 1589 Value *Ptr = SI->getOperand(1); 1590 1591 if (isa<UndefValue>(Ptr) || 1592 (isa<ConstantPointerNull>(Ptr) && 1593 SI->getPointerAddressSpace() == 0)) { 1594 changeToUnreachable(SI, true); 1595 Changed = true; 1596 break; 1597 } 1598 } 1599 } 1600 1601 TerminatorInst *Terminator = BB->getTerminator(); 1602 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1603 // Turn invokes that call 'nounwind' functions into ordinary calls. 1604 Value *Callee = II->getCalledValue(); 1605 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1606 changeToUnreachable(II, true); 1607 Changed = true; 1608 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1609 if (II->use_empty() && II->onlyReadsMemory()) { 1610 // jump to the normal destination branch. 1611 BranchInst::Create(II->getNormalDest(), II); 1612 II->getUnwindDest()->removePredecessor(II->getParent()); 1613 II->eraseFromParent(); 1614 } else 1615 changeToCall(II); 1616 Changed = true; 1617 } 1618 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1619 // Remove catchpads which cannot be reached. 1620 struct CatchPadDenseMapInfo { 1621 static CatchPadInst *getEmptyKey() { 1622 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1623 } 1624 1625 static CatchPadInst *getTombstoneKey() { 1626 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1627 } 1628 1629 static unsigned getHashValue(CatchPadInst *CatchPad) { 1630 return static_cast<unsigned>(hash_combine_range( 1631 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1632 } 1633 1634 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1635 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1636 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1637 return LHS == RHS; 1638 return LHS->isIdenticalTo(RHS); 1639 } 1640 }; 1641 1642 // Set of unique CatchPads. 1643 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1644 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1645 HandlerSet; 1646 detail::DenseSetEmpty Empty; 1647 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1648 E = CatchSwitch->handler_end(); 1649 I != E; ++I) { 1650 BasicBlock *HandlerBB = *I; 1651 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1652 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1653 CatchSwitch->removeHandler(I); 1654 --I; 1655 --E; 1656 Changed = true; 1657 } 1658 } 1659 } 1660 1661 Changed |= ConstantFoldTerminator(BB, true); 1662 for (BasicBlock *Successor : successors(BB)) 1663 if (Reachable.insert(Successor).second) 1664 Worklist.push_back(Successor); 1665 } while (!Worklist.empty()); 1666 return Changed; 1667 } 1668 1669 void llvm::removeUnwindEdge(BasicBlock *BB) { 1670 TerminatorInst *TI = BB->getTerminator(); 1671 1672 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1673 changeToCall(II); 1674 return; 1675 } 1676 1677 TerminatorInst *NewTI; 1678 BasicBlock *UnwindDest; 1679 1680 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1681 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1682 UnwindDest = CRI->getUnwindDest(); 1683 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1684 auto *NewCatchSwitch = CatchSwitchInst::Create( 1685 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1686 CatchSwitch->getName(), CatchSwitch); 1687 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1688 NewCatchSwitch->addHandler(PadBB); 1689 1690 NewTI = NewCatchSwitch; 1691 UnwindDest = CatchSwitch->getUnwindDest(); 1692 } else { 1693 llvm_unreachable("Could not find unwind successor"); 1694 } 1695 1696 NewTI->takeName(TI); 1697 NewTI->setDebugLoc(TI->getDebugLoc()); 1698 UnwindDest->removePredecessor(BB); 1699 TI->replaceAllUsesWith(NewTI); 1700 TI->eraseFromParent(); 1701 } 1702 1703 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 1704 /// if they are in a dead cycle. Return true if a change was made, false 1705 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 1706 /// after modifying the CFG. 1707 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) { 1708 SmallPtrSet<BasicBlock*, 16> Reachable; 1709 bool Changed = markAliveBlocks(F, Reachable); 1710 1711 // If there are unreachable blocks in the CFG... 1712 if (Reachable.size() == F.size()) 1713 return Changed; 1714 1715 assert(Reachable.size() < F.size()); 1716 NumRemoved += F.size()-Reachable.size(); 1717 1718 // Loop over all of the basic blocks that are not reachable, dropping all of 1719 // their internal references... 1720 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1721 if (Reachable.count(&*BB)) 1722 continue; 1723 1724 for (BasicBlock *Successor : successors(&*BB)) 1725 if (Reachable.count(Successor)) 1726 Successor->removePredecessor(&*BB); 1727 if (LVI) 1728 LVI->eraseBlock(&*BB); 1729 BB->dropAllReferences(); 1730 } 1731 1732 for (Function::iterator I = ++F.begin(); I != F.end();) 1733 if (!Reachable.count(&*I)) 1734 I = F.getBasicBlockList().erase(I); 1735 else 1736 ++I; 1737 1738 return true; 1739 } 1740 1741 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1742 ArrayRef<unsigned> KnownIDs) { 1743 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1744 K->dropUnknownNonDebugMetadata(KnownIDs); 1745 K->getAllMetadataOtherThanDebugLoc(Metadata); 1746 for (const auto &MD : Metadata) { 1747 unsigned Kind = MD.first; 1748 MDNode *JMD = J->getMetadata(Kind); 1749 MDNode *KMD = MD.second; 1750 1751 switch (Kind) { 1752 default: 1753 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1754 break; 1755 case LLVMContext::MD_dbg: 1756 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1757 case LLVMContext::MD_tbaa: 1758 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1759 break; 1760 case LLVMContext::MD_alias_scope: 1761 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1762 break; 1763 case LLVMContext::MD_noalias: 1764 case LLVMContext::MD_mem_parallel_loop_access: 1765 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1766 break; 1767 case LLVMContext::MD_range: 1768 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1769 break; 1770 case LLVMContext::MD_fpmath: 1771 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1772 break; 1773 case LLVMContext::MD_invariant_load: 1774 // Only set the !invariant.load if it is present in both instructions. 1775 K->setMetadata(Kind, JMD); 1776 break; 1777 case LLVMContext::MD_nonnull: 1778 // Only set the !nonnull if it is present in both instructions. 1779 K->setMetadata(Kind, JMD); 1780 break; 1781 case LLVMContext::MD_invariant_group: 1782 // Preserve !invariant.group in K. 1783 break; 1784 case LLVMContext::MD_align: 1785 K->setMetadata(Kind, 1786 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1787 break; 1788 case LLVMContext::MD_dereferenceable: 1789 case LLVMContext::MD_dereferenceable_or_null: 1790 K->setMetadata(Kind, 1791 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1792 break; 1793 } 1794 } 1795 // Set !invariant.group from J if J has it. If both instructions have it 1796 // then we will just pick it from J - even when they are different. 1797 // Also make sure that K is load or store - f.e. combining bitcast with load 1798 // could produce bitcast with invariant.group metadata, which is invalid. 1799 // FIXME: we should try to preserve both invariant.group md if they are 1800 // different, but right now instruction can only have one invariant.group. 1801 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1802 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1803 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1804 } 1805 1806 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 1807 unsigned KnownIDs[] = { 1808 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1809 LLVMContext::MD_noalias, LLVMContext::MD_range, 1810 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 1811 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 1812 LLVMContext::MD_dereferenceable, 1813 LLVMContext::MD_dereferenceable_or_null}; 1814 combineMetadata(K, J, KnownIDs); 1815 } 1816 1817 template <typename RootType, typename DominatesFn> 1818 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 1819 const RootType &Root, 1820 const DominatesFn &Dominates) { 1821 assert(From->getType() == To->getType()); 1822 1823 unsigned Count = 0; 1824 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1825 UI != UE;) { 1826 Use &U = *UI++; 1827 if (!Dominates(Root, U)) 1828 continue; 1829 U.set(To); 1830 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1831 << *To << " in " << *U << "\n"); 1832 ++Count; 1833 } 1834 return Count; 1835 } 1836 1837 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 1838 assert(From->getType() == To->getType()); 1839 auto *BB = From->getParent(); 1840 unsigned Count = 0; 1841 1842 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1843 UI != UE;) { 1844 Use &U = *UI++; 1845 auto *I = cast<Instruction>(U.getUser()); 1846 if (I->getParent() == BB) 1847 continue; 1848 U.set(To); 1849 ++Count; 1850 } 1851 return Count; 1852 } 1853 1854 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1855 DominatorTree &DT, 1856 const BasicBlockEdge &Root) { 1857 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 1858 return DT.dominates(Root, U); 1859 }; 1860 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 1861 } 1862 1863 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1864 DominatorTree &DT, 1865 const BasicBlock *BB) { 1866 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 1867 auto *I = cast<Instruction>(U.getUser())->getParent(); 1868 return DT.properlyDominates(BB, I); 1869 }; 1870 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 1871 } 1872 1873 bool llvm::callsGCLeafFunction(ImmutableCallSite CS, 1874 const TargetLibraryInfo &TLI) { 1875 // Check if the function is specifically marked as a gc leaf function. 1876 if (CS.hasFnAttr("gc-leaf-function")) 1877 return true; 1878 if (const Function *F = CS.getCalledFunction()) { 1879 if (F->hasFnAttribute("gc-leaf-function")) 1880 return true; 1881 1882 if (auto IID = F->getIntrinsicID()) 1883 // Most LLVM intrinsics do not take safepoints. 1884 return IID != Intrinsic::experimental_gc_statepoint && 1885 IID != Intrinsic::experimental_deoptimize; 1886 } 1887 1888 // Lib calls can be materialized by some passes, and won't be 1889 // marked as 'gc-leaf-function.' All available Libcalls are 1890 // GC-leaf. 1891 LibFunc LF; 1892 if (TLI.getLibFunc(CS, LF)) { 1893 return TLI.has(LF); 1894 } 1895 1896 return false; 1897 } 1898 1899 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 1900 LoadInst &NewLI) { 1901 auto *NewTy = NewLI.getType(); 1902 1903 // This only directly applies if the new type is also a pointer. 1904 if (NewTy->isPointerTy()) { 1905 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 1906 return; 1907 } 1908 1909 // The only other translation we can do is to integral loads with !range 1910 // metadata. 1911 if (!NewTy->isIntegerTy()) 1912 return; 1913 1914 MDBuilder MDB(NewLI.getContext()); 1915 const Value *Ptr = OldLI.getPointerOperand(); 1916 auto *ITy = cast<IntegerType>(NewTy); 1917 auto *NullInt = ConstantExpr::getPtrToInt( 1918 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 1919 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 1920 NewLI.setMetadata(LLVMContext::MD_range, 1921 MDB.createRange(NonNullInt, NullInt)); 1922 } 1923 1924 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 1925 MDNode *N, LoadInst &NewLI) { 1926 auto *NewTy = NewLI.getType(); 1927 1928 // Give up unless it is converted to a pointer where there is a single very 1929 // valuable mapping we can do reliably. 1930 // FIXME: It would be nice to propagate this in more ways, but the type 1931 // conversions make it hard. 1932 if (!NewTy->isPointerTy()) 1933 return; 1934 1935 unsigned BitWidth = DL.getTypeSizeInBits(NewTy); 1936 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 1937 MDNode *NN = MDNode::get(OldLI.getContext(), None); 1938 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 1939 } 1940 } 1941 1942 namespace { 1943 1944 /// A potential constituent of a bitreverse or bswap expression. See 1945 /// collectBitParts for a fuller explanation. 1946 struct BitPart { 1947 BitPart(Value *P, unsigned BW) : Provider(P) { 1948 Provenance.resize(BW); 1949 } 1950 1951 /// The Value that this is a bitreverse/bswap of. 1952 Value *Provider; 1953 1954 /// The "provenance" of each bit. Provenance[A] = B means that bit A 1955 /// in Provider becomes bit B in the result of this expression. 1956 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 1957 1958 enum { Unset = -1 }; 1959 }; 1960 1961 } // end anonymous namespace 1962 1963 /// Analyze the specified subexpression and see if it is capable of providing 1964 /// pieces of a bswap or bitreverse. The subexpression provides a potential 1965 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 1966 /// the output of the expression came from a corresponding bit in some other 1967 /// value. This function is recursive, and the end result is a mapping of 1968 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 1969 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 1970 /// 1971 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 1972 /// that the expression deposits the low byte of %X into the high byte of the 1973 /// result and that all other bits are zero. This expression is accepted and a 1974 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 1975 /// [0-7]. 1976 /// 1977 /// To avoid revisiting values, the BitPart results are memoized into the 1978 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 1979 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 1980 /// store BitParts objects, not pointers. As we need the concept of a nullptr 1981 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 1982 /// type instead to provide the same functionality. 1983 /// 1984 /// Because we pass around references into \c BPS, we must use a container that 1985 /// does not invalidate internal references (std::map instead of DenseMap). 1986 static const Optional<BitPart> & 1987 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 1988 std::map<Value *, Optional<BitPart>> &BPS) { 1989 auto I = BPS.find(V); 1990 if (I != BPS.end()) 1991 return I->second; 1992 1993 auto &Result = BPS[V] = None; 1994 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1995 1996 if (Instruction *I = dyn_cast<Instruction>(V)) { 1997 // If this is an or instruction, it may be an inner node of the bswap. 1998 if (I->getOpcode() == Instruction::Or) { 1999 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2000 MatchBitReversals, BPS); 2001 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2002 MatchBitReversals, BPS); 2003 if (!A || !B) 2004 return Result; 2005 2006 // Try and merge the two together. 2007 if (!A->Provider || A->Provider != B->Provider) 2008 return Result; 2009 2010 Result = BitPart(A->Provider, BitWidth); 2011 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2012 if (A->Provenance[i] != BitPart::Unset && 2013 B->Provenance[i] != BitPart::Unset && 2014 A->Provenance[i] != B->Provenance[i]) 2015 return Result = None; 2016 2017 if (A->Provenance[i] == BitPart::Unset) 2018 Result->Provenance[i] = B->Provenance[i]; 2019 else 2020 Result->Provenance[i] = A->Provenance[i]; 2021 } 2022 2023 return Result; 2024 } 2025 2026 // If this is a logical shift by a constant, recurse then shift the result. 2027 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2028 unsigned BitShift = 2029 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2030 // Ensure the shift amount is defined. 2031 if (BitShift > BitWidth) 2032 return Result; 2033 2034 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2035 MatchBitReversals, BPS); 2036 if (!Res) 2037 return Result; 2038 Result = Res; 2039 2040 // Perform the "shift" on BitProvenance. 2041 auto &P = Result->Provenance; 2042 if (I->getOpcode() == Instruction::Shl) { 2043 P.erase(std::prev(P.end(), BitShift), P.end()); 2044 P.insert(P.begin(), BitShift, BitPart::Unset); 2045 } else { 2046 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2047 P.insert(P.end(), BitShift, BitPart::Unset); 2048 } 2049 2050 return Result; 2051 } 2052 2053 // If this is a logical 'and' with a mask that clears bits, recurse then 2054 // unset the appropriate bits. 2055 if (I->getOpcode() == Instruction::And && 2056 isa<ConstantInt>(I->getOperand(1))) { 2057 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2058 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2059 2060 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2061 // early exit. 2062 unsigned NumMaskedBits = AndMask.countPopulation(); 2063 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2064 return Result; 2065 2066 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2067 MatchBitReversals, BPS); 2068 if (!Res) 2069 return Result; 2070 Result = Res; 2071 2072 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2073 // If the AndMask is zero for this bit, clear the bit. 2074 if ((AndMask & Bit) == 0) 2075 Result->Provenance[i] = BitPart::Unset; 2076 return Result; 2077 } 2078 2079 // If this is a zext instruction zero extend the result. 2080 if (I->getOpcode() == Instruction::ZExt) { 2081 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2082 MatchBitReversals, BPS); 2083 if (!Res) 2084 return Result; 2085 2086 Result = BitPart(Res->Provider, BitWidth); 2087 auto NarrowBitWidth = 2088 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2089 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2090 Result->Provenance[i] = Res->Provenance[i]; 2091 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2092 Result->Provenance[i] = BitPart::Unset; 2093 return Result; 2094 } 2095 } 2096 2097 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2098 // the input value to the bswap/bitreverse. 2099 Result = BitPart(V, BitWidth); 2100 for (unsigned i = 0; i < BitWidth; ++i) 2101 Result->Provenance[i] = i; 2102 return Result; 2103 } 2104 2105 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2106 unsigned BitWidth) { 2107 if (From % 8 != To % 8) 2108 return false; 2109 // Convert from bit indices to byte indices and check for a byte reversal. 2110 From >>= 3; 2111 To >>= 3; 2112 BitWidth >>= 3; 2113 return From == BitWidth - To - 1; 2114 } 2115 2116 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2117 unsigned BitWidth) { 2118 return From == BitWidth - To - 1; 2119 } 2120 2121 /// Given an OR instruction, check to see if this is a bitreverse 2122 /// idiom. If so, insert the new intrinsic and return true. 2123 bool llvm::recognizeBSwapOrBitReverseIdiom( 2124 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2125 SmallVectorImpl<Instruction *> &InsertedInsts) { 2126 if (Operator::getOpcode(I) != Instruction::Or) 2127 return false; 2128 if (!MatchBSwaps && !MatchBitReversals) 2129 return false; 2130 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2131 if (!ITy || ITy->getBitWidth() > 128) 2132 return false; // Can't do vectors or integers > 128 bits. 2133 unsigned BW = ITy->getBitWidth(); 2134 2135 unsigned DemandedBW = BW; 2136 IntegerType *DemandedTy = ITy; 2137 if (I->hasOneUse()) { 2138 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2139 DemandedTy = cast<IntegerType>(Trunc->getType()); 2140 DemandedBW = DemandedTy->getBitWidth(); 2141 } 2142 } 2143 2144 // Try to find all the pieces corresponding to the bswap. 2145 std::map<Value *, Optional<BitPart>> BPS; 2146 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2147 if (!Res) 2148 return false; 2149 auto &BitProvenance = Res->Provenance; 2150 2151 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2152 // only byteswap values with an even number of bytes. 2153 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2154 for (unsigned i = 0; i < DemandedBW; ++i) { 2155 OKForBSwap &= 2156 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2157 OKForBitReverse &= 2158 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2159 } 2160 2161 Intrinsic::ID Intrin; 2162 if (OKForBSwap && MatchBSwaps) 2163 Intrin = Intrinsic::bswap; 2164 else if (OKForBitReverse && MatchBitReversals) 2165 Intrin = Intrinsic::bitreverse; 2166 else 2167 return false; 2168 2169 if (ITy != DemandedTy) { 2170 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2171 Value *Provider = Res->Provider; 2172 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2173 // We may need to truncate the provider. 2174 if (DemandedTy != ProviderTy) { 2175 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2176 "trunc", I); 2177 InsertedInsts.push_back(Trunc); 2178 Provider = Trunc; 2179 } 2180 auto *CI = CallInst::Create(F, Provider, "rev", I); 2181 InsertedInsts.push_back(CI); 2182 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2183 InsertedInsts.push_back(ExtInst); 2184 return true; 2185 } 2186 2187 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2188 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2189 return true; 2190 } 2191 2192 // CodeGen has special handling for some string functions that may replace 2193 // them with target-specific intrinsics. Since that'd skip our interceptors 2194 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2195 // we mark affected calls as NoBuiltin, which will disable optimization 2196 // in CodeGen. 2197 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2198 CallInst *CI, const TargetLibraryInfo *TLI) { 2199 Function *F = CI->getCalledFunction(); 2200 LibFunc Func; 2201 if (F && !F->hasLocalLinkage() && F->hasName() && 2202 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2203 !F->doesNotAccessMemory()) 2204 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2205 } 2206 2207 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2208 // We can't have a PHI with a metadata type. 2209 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2210 return false; 2211 2212 // Early exit. 2213 if (!isa<Constant>(I->getOperand(OpIdx))) 2214 return true; 2215 2216 switch (I->getOpcode()) { 2217 default: 2218 return true; 2219 case Instruction::Call: 2220 case Instruction::Invoke: 2221 // Can't handle inline asm. Skip it. 2222 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2223 return false; 2224 // Many arithmetic intrinsics have no issue taking a 2225 // variable, however it's hard to distingish these from 2226 // specials such as @llvm.frameaddress that require a constant. 2227 if (isa<IntrinsicInst>(I)) 2228 return false; 2229 2230 // Constant bundle operands may need to retain their constant-ness for 2231 // correctness. 2232 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2233 return false; 2234 return true; 2235 case Instruction::ShuffleVector: 2236 // Shufflevector masks are constant. 2237 return OpIdx != 2; 2238 case Instruction::Switch: 2239 case Instruction::ExtractValue: 2240 // All operands apart from the first are constant. 2241 return OpIdx == 0; 2242 case Instruction::InsertValue: 2243 // All operands apart from the first and the second are constant. 2244 return OpIdx < 2; 2245 case Instruction::Alloca: 2246 // Static allocas (constant size in the entry block) are handled by 2247 // prologue/epilogue insertion so they're free anyway. We definitely don't 2248 // want to make them non-constant. 2249 return !dyn_cast<AllocaInst>(I)->isStaticAlloca(); 2250 case Instruction::GetElementPtr: 2251 if (OpIdx == 0) 2252 return true; 2253 gep_type_iterator It = gep_type_begin(I); 2254 for (auto E = std::next(It, OpIdx); It != E; ++It) 2255 if (It.isStruct()) 2256 return false; 2257 return true; 2258 } 2259 } 2260