1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/CallSite.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/ValueMapper.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <climits> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <utility> 86 87 using namespace llvm; 88 using namespace llvm::PatternMatch; 89 90 #define DEBUG_TYPE "local" 91 92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 93 94 //===----------------------------------------------------------------------===// 95 // Local constant propagation. 96 // 97 98 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 99 /// constant value, convert it into an unconditional branch to the constant 100 /// destination. This is a nontrivial operation because the successors of this 101 /// basic block must have their PHI nodes updated. 102 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 103 /// conditions and indirectbr addresses this might make dead if 104 /// DeleteDeadConditions is true. 105 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 106 const TargetLibraryInfo *TLI, 107 DomTreeUpdater *DTU) { 108 Instruction *T = BB->getTerminator(); 109 IRBuilder<> Builder(T); 110 111 // Branch - See if we are conditional jumping on constant 112 if (auto *BI = dyn_cast<BranchInst>(T)) { 113 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 114 BasicBlock *Dest1 = BI->getSuccessor(0); 115 BasicBlock *Dest2 = BI->getSuccessor(1); 116 117 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 118 // Are we branching on constant? 119 // YES. Change to unconditional branch... 120 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 121 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 122 123 // Let the basic block know that we are letting go of it. Based on this, 124 // it will adjust it's PHI nodes. 125 OldDest->removePredecessor(BB); 126 127 // Replace the conditional branch with an unconditional one. 128 Builder.CreateBr(Destination); 129 BI->eraseFromParent(); 130 if (DTU) 131 DTU->deleteEdgeRelaxed(BB, OldDest); 132 return true; 133 } 134 135 if (Dest2 == Dest1) { // Conditional branch to same location? 136 // This branch matches something like this: 137 // br bool %cond, label %Dest, label %Dest 138 // and changes it into: br label %Dest 139 140 // Let the basic block know that we are letting go of one copy of it. 141 assert(BI->getParent() && "Terminator not inserted in block!"); 142 Dest1->removePredecessor(BI->getParent()); 143 144 // Replace the conditional branch with an unconditional one. 145 Builder.CreateBr(Dest1); 146 Value *Cond = BI->getCondition(); 147 BI->eraseFromParent(); 148 if (DeleteDeadConditions) 149 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 150 return true; 151 } 152 return false; 153 } 154 155 if (auto *SI = dyn_cast<SwitchInst>(T)) { 156 // If we are switching on a constant, we can convert the switch to an 157 // unconditional branch. 158 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 159 BasicBlock *DefaultDest = SI->getDefaultDest(); 160 BasicBlock *TheOnlyDest = DefaultDest; 161 162 // If the default is unreachable, ignore it when searching for TheOnlyDest. 163 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 164 SI->getNumCases() > 0) { 165 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 166 } 167 168 // Figure out which case it goes to. 169 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 170 // Found case matching a constant operand? 171 if (i->getCaseValue() == CI) { 172 TheOnlyDest = i->getCaseSuccessor(); 173 break; 174 } 175 176 // Check to see if this branch is going to the same place as the default 177 // dest. If so, eliminate it as an explicit compare. 178 if (i->getCaseSuccessor() == DefaultDest) { 179 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 180 unsigned NCases = SI->getNumCases(); 181 // Fold the case metadata into the default if there will be any branches 182 // left, unless the metadata doesn't match the switch. 183 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 184 // Collect branch weights into a vector. 185 SmallVector<uint32_t, 8> Weights; 186 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 187 ++MD_i) { 188 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 189 Weights.push_back(CI->getValue().getZExtValue()); 190 } 191 // Merge weight of this case to the default weight. 192 unsigned idx = i->getCaseIndex(); 193 Weights[0] += Weights[idx+1]; 194 // Remove weight for this case. 195 std::swap(Weights[idx+1], Weights.back()); 196 Weights.pop_back(); 197 SI->setMetadata(LLVMContext::MD_prof, 198 MDBuilder(BB->getContext()). 199 createBranchWeights(Weights)); 200 } 201 // Remove this entry. 202 BasicBlock *ParentBB = SI->getParent(); 203 DefaultDest->removePredecessor(ParentBB); 204 i = SI->removeCase(i); 205 e = SI->case_end(); 206 if (DTU) 207 DTU->deleteEdgeRelaxed(ParentBB, DefaultDest); 208 continue; 209 } 210 211 // Otherwise, check to see if the switch only branches to one destination. 212 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 213 // destinations. 214 if (i->getCaseSuccessor() != TheOnlyDest) 215 TheOnlyDest = nullptr; 216 217 // Increment this iterator as we haven't removed the case. 218 ++i; 219 } 220 221 if (CI && !TheOnlyDest) { 222 // Branching on a constant, but not any of the cases, go to the default 223 // successor. 224 TheOnlyDest = SI->getDefaultDest(); 225 } 226 227 // If we found a single destination that we can fold the switch into, do so 228 // now. 229 if (TheOnlyDest) { 230 // Insert the new branch. 231 Builder.CreateBr(TheOnlyDest); 232 BasicBlock *BB = SI->getParent(); 233 std::vector <DominatorTree::UpdateType> Updates; 234 if (DTU) 235 Updates.reserve(SI->getNumSuccessors() - 1); 236 237 // Remove entries from PHI nodes which we no longer branch to... 238 for (BasicBlock *Succ : successors(SI)) { 239 // Found case matching a constant operand? 240 if (Succ == TheOnlyDest) { 241 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 242 } else { 243 Succ->removePredecessor(BB); 244 if (DTU) 245 Updates.push_back({DominatorTree::Delete, BB, Succ}); 246 } 247 } 248 249 // Delete the old switch. 250 Value *Cond = SI->getCondition(); 251 SI->eraseFromParent(); 252 if (DeleteDeadConditions) 253 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 254 if (DTU) 255 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 256 return true; 257 } 258 259 if (SI->getNumCases() == 1) { 260 // Otherwise, we can fold this switch into a conditional branch 261 // instruction if it has only one non-default destination. 262 auto FirstCase = *SI->case_begin(); 263 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 264 FirstCase.getCaseValue(), "cond"); 265 266 // Insert the new branch. 267 BranchInst *NewBr = Builder.CreateCondBr(Cond, 268 FirstCase.getCaseSuccessor(), 269 SI->getDefaultDest()); 270 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 271 if (MD && MD->getNumOperands() == 3) { 272 ConstantInt *SICase = 273 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 274 ConstantInt *SIDef = 275 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 276 assert(SICase && SIDef); 277 // The TrueWeight should be the weight for the single case of SI. 278 NewBr->setMetadata(LLVMContext::MD_prof, 279 MDBuilder(BB->getContext()). 280 createBranchWeights(SICase->getValue().getZExtValue(), 281 SIDef->getValue().getZExtValue())); 282 } 283 284 // Update make.implicit metadata to the newly-created conditional branch. 285 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 286 if (MakeImplicitMD) 287 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 288 289 // Delete the old switch. 290 SI->eraseFromParent(); 291 return true; 292 } 293 return false; 294 } 295 296 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 297 // indirectbr blockaddress(@F, @BB) -> br label @BB 298 if (auto *BA = 299 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 300 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 301 std::vector <DominatorTree::UpdateType> Updates; 302 if (DTU) 303 Updates.reserve(IBI->getNumDestinations() - 1); 304 305 // Insert the new branch. 306 Builder.CreateBr(TheOnlyDest); 307 308 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 309 if (IBI->getDestination(i) == TheOnlyDest) { 310 TheOnlyDest = nullptr; 311 } else { 312 BasicBlock *ParentBB = IBI->getParent(); 313 BasicBlock *DestBB = IBI->getDestination(i); 314 DestBB->removePredecessor(ParentBB); 315 if (DTU) 316 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 317 } 318 } 319 Value *Address = IBI->getAddress(); 320 IBI->eraseFromParent(); 321 if (DeleteDeadConditions) 322 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 323 324 // If we didn't find our destination in the IBI successor list, then we 325 // have undefined behavior. Replace the unconditional branch with an 326 // 'unreachable' instruction. 327 if (TheOnlyDest) { 328 BB->getTerminator()->eraseFromParent(); 329 new UnreachableInst(BB->getContext(), BB); 330 } 331 332 if (DTU) 333 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 334 return true; 335 } 336 } 337 338 return false; 339 } 340 341 //===----------------------------------------------------------------------===// 342 // Local dead code elimination. 343 // 344 345 /// isInstructionTriviallyDead - Return true if the result produced by the 346 /// instruction is not used, and the instruction has no side effects. 347 /// 348 bool llvm::isInstructionTriviallyDead(Instruction *I, 349 const TargetLibraryInfo *TLI) { 350 if (!I->use_empty()) 351 return false; 352 return wouldInstructionBeTriviallyDead(I, TLI); 353 } 354 355 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 356 const TargetLibraryInfo *TLI) { 357 if (I->isTerminator()) 358 return false; 359 360 // We don't want the landingpad-like instructions removed by anything this 361 // general. 362 if (I->isEHPad()) 363 return false; 364 365 // We don't want debug info removed by anything this general, unless 366 // debug info is empty. 367 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 368 if (DDI->getAddress()) 369 return false; 370 return true; 371 } 372 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 373 if (DVI->getValue()) 374 return false; 375 return true; 376 } 377 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 378 if (DLI->getLabel()) 379 return false; 380 return true; 381 } 382 383 if (!I->mayHaveSideEffects()) 384 return true; 385 386 // Special case intrinsics that "may have side effects" but can be deleted 387 // when dead. 388 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 389 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 390 if (II->getIntrinsicID() == Intrinsic::stacksave || 391 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 392 return true; 393 394 // Lifetime intrinsics are dead when their right-hand is undef. 395 if (II->isLifetimeStartOrEnd()) 396 return isa<UndefValue>(II->getArgOperand(1)); 397 398 // Assumptions are dead if their condition is trivially true. Guards on 399 // true are operationally no-ops. In the future we can consider more 400 // sophisticated tradeoffs for guards considering potential for check 401 // widening, but for now we keep things simple. 402 if (II->getIntrinsicID() == Intrinsic::assume || 403 II->getIntrinsicID() == Intrinsic::experimental_guard) { 404 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 405 return !Cond->isZero(); 406 407 return false; 408 } 409 } 410 411 if (isAllocLikeFn(I, TLI)) 412 return true; 413 414 if (CallInst *CI = isFreeCall(I, TLI)) 415 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 416 return C->isNullValue() || isa<UndefValue>(C); 417 418 if (auto *Call = dyn_cast<CallBase>(I)) 419 if (isMathLibCallNoop(Call, TLI)) 420 return true; 421 422 return false; 423 } 424 425 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 426 /// trivially dead instruction, delete it. If that makes any of its operands 427 /// trivially dead, delete them too, recursively. Return true if any 428 /// instructions were deleted. 429 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 430 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) { 431 Instruction *I = dyn_cast<Instruction>(V); 432 if (!I || !isInstructionTriviallyDead(I, TLI)) 433 return false; 434 435 SmallVector<Instruction*, 16> DeadInsts; 436 DeadInsts.push_back(I); 437 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 438 439 return true; 440 } 441 442 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 443 SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI, 444 MemorySSAUpdater *MSSAU) { 445 // Process the dead instruction list until empty. 446 while (!DeadInsts.empty()) { 447 Instruction &I = *DeadInsts.pop_back_val(); 448 assert(I.use_empty() && "Instructions with uses are not dead."); 449 assert(isInstructionTriviallyDead(&I, TLI) && 450 "Live instruction found in dead worklist!"); 451 452 // Don't lose the debug info while deleting the instructions. 453 salvageDebugInfo(I); 454 455 // Null out all of the instruction's operands to see if any operand becomes 456 // dead as we go. 457 for (Use &OpU : I.operands()) { 458 Value *OpV = OpU.get(); 459 OpU.set(nullptr); 460 461 if (!OpV->use_empty()) 462 continue; 463 464 // If the operand is an instruction that became dead as we nulled out the 465 // operand, and if it is 'trivially' dead, delete it in a future loop 466 // iteration. 467 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 468 if (isInstructionTriviallyDead(OpI, TLI)) 469 DeadInsts.push_back(OpI); 470 } 471 if (MSSAU) 472 MSSAU->removeMemoryAccess(&I); 473 474 I.eraseFromParent(); 475 } 476 } 477 478 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 479 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 480 findDbgUsers(DbgUsers, I); 481 for (auto *DII : DbgUsers) { 482 Value *Undef = UndefValue::get(I->getType()); 483 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 484 ValueAsMetadata::get(Undef))); 485 } 486 return !DbgUsers.empty(); 487 } 488 489 /// areAllUsesEqual - Check whether the uses of a value are all the same. 490 /// This is similar to Instruction::hasOneUse() except this will also return 491 /// true when there are no uses or multiple uses that all refer to the same 492 /// value. 493 static bool areAllUsesEqual(Instruction *I) { 494 Value::user_iterator UI = I->user_begin(); 495 Value::user_iterator UE = I->user_end(); 496 if (UI == UE) 497 return true; 498 499 User *TheUse = *UI; 500 for (++UI; UI != UE; ++UI) { 501 if (*UI != TheUse) 502 return false; 503 } 504 return true; 505 } 506 507 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 508 /// dead PHI node, due to being a def-use chain of single-use nodes that 509 /// either forms a cycle or is terminated by a trivially dead instruction, 510 /// delete it. If that makes any of its operands trivially dead, delete them 511 /// too, recursively. Return true if a change was made. 512 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 513 const TargetLibraryInfo *TLI) { 514 SmallPtrSet<Instruction*, 4> Visited; 515 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 516 I = cast<Instruction>(*I->user_begin())) { 517 if (I->use_empty()) 518 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 519 520 // If we find an instruction more than once, we're on a cycle that 521 // won't prove fruitful. 522 if (!Visited.insert(I).second) { 523 // Break the cycle and delete the instruction and its operands. 524 I->replaceAllUsesWith(UndefValue::get(I->getType())); 525 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 526 return true; 527 } 528 } 529 return false; 530 } 531 532 static bool 533 simplifyAndDCEInstruction(Instruction *I, 534 SmallSetVector<Instruction *, 16> &WorkList, 535 const DataLayout &DL, 536 const TargetLibraryInfo *TLI) { 537 if (isInstructionTriviallyDead(I, TLI)) { 538 salvageDebugInfo(*I); 539 540 // Null out all of the instruction's operands to see if any operand becomes 541 // dead as we go. 542 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 543 Value *OpV = I->getOperand(i); 544 I->setOperand(i, nullptr); 545 546 if (!OpV->use_empty() || I == OpV) 547 continue; 548 549 // If the operand is an instruction that became dead as we nulled out the 550 // operand, and if it is 'trivially' dead, delete it in a future loop 551 // iteration. 552 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 553 if (isInstructionTriviallyDead(OpI, TLI)) 554 WorkList.insert(OpI); 555 } 556 557 I->eraseFromParent(); 558 559 return true; 560 } 561 562 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 563 // Add the users to the worklist. CAREFUL: an instruction can use itself, 564 // in the case of a phi node. 565 for (User *U : I->users()) { 566 if (U != I) { 567 WorkList.insert(cast<Instruction>(U)); 568 } 569 } 570 571 // Replace the instruction with its simplified value. 572 bool Changed = false; 573 if (!I->use_empty()) { 574 I->replaceAllUsesWith(SimpleV); 575 Changed = true; 576 } 577 if (isInstructionTriviallyDead(I, TLI)) { 578 I->eraseFromParent(); 579 Changed = true; 580 } 581 return Changed; 582 } 583 return false; 584 } 585 586 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 587 /// simplify any instructions in it and recursively delete dead instructions. 588 /// 589 /// This returns true if it changed the code, note that it can delete 590 /// instructions in other blocks as well in this block. 591 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 592 const TargetLibraryInfo *TLI) { 593 bool MadeChange = false; 594 const DataLayout &DL = BB->getModule()->getDataLayout(); 595 596 #ifndef NDEBUG 597 // In debug builds, ensure that the terminator of the block is never replaced 598 // or deleted by these simplifications. The idea of simplification is that it 599 // cannot introduce new instructions, and there is no way to replace the 600 // terminator of a block without introducing a new instruction. 601 AssertingVH<Instruction> TerminatorVH(&BB->back()); 602 #endif 603 604 SmallSetVector<Instruction *, 16> WorkList; 605 // Iterate over the original function, only adding insts to the worklist 606 // if they actually need to be revisited. This avoids having to pre-init 607 // the worklist with the entire function's worth of instructions. 608 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 609 BI != E;) { 610 assert(!BI->isTerminator()); 611 Instruction *I = &*BI; 612 ++BI; 613 614 // We're visiting this instruction now, so make sure it's not in the 615 // worklist from an earlier visit. 616 if (!WorkList.count(I)) 617 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 618 } 619 620 while (!WorkList.empty()) { 621 Instruction *I = WorkList.pop_back_val(); 622 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 623 } 624 return MadeChange; 625 } 626 627 //===----------------------------------------------------------------------===// 628 // Control Flow Graph Restructuring. 629 // 630 631 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 632 /// method is called when we're about to delete Pred as a predecessor of BB. If 633 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 634 /// 635 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 636 /// nodes that collapse into identity values. For example, if we have: 637 /// x = phi(1, 0, 0, 0) 638 /// y = and x, z 639 /// 640 /// .. and delete the predecessor corresponding to the '1', this will attempt to 641 /// recursively fold the and to 0. 642 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 643 DomTreeUpdater *DTU) { 644 // This only adjusts blocks with PHI nodes. 645 if (!isa<PHINode>(BB->begin())) 646 return; 647 648 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 649 // them down. This will leave us with single entry phi nodes and other phis 650 // that can be removed. 651 BB->removePredecessor(Pred, true); 652 653 WeakTrackingVH PhiIt = &BB->front(); 654 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 655 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 656 Value *OldPhiIt = PhiIt; 657 658 if (!recursivelySimplifyInstruction(PN)) 659 continue; 660 661 // If recursive simplification ended up deleting the next PHI node we would 662 // iterate to, then our iterator is invalid, restart scanning from the top 663 // of the block. 664 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 665 } 666 if (DTU) 667 DTU->deleteEdgeRelaxed(Pred, BB); 668 } 669 670 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 671 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 672 /// between them, moving the instructions in the predecessor into DestBB and 673 /// deleting the predecessor block. 674 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 675 DomTreeUpdater *DTU) { 676 677 // If BB has single-entry PHI nodes, fold them. 678 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 679 Value *NewVal = PN->getIncomingValue(0); 680 // Replace self referencing PHI with undef, it must be dead. 681 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 682 PN->replaceAllUsesWith(NewVal); 683 PN->eraseFromParent(); 684 } 685 686 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 687 assert(PredBB && "Block doesn't have a single predecessor!"); 688 689 bool ReplaceEntryBB = false; 690 if (PredBB == &DestBB->getParent()->getEntryBlock()) 691 ReplaceEntryBB = true; 692 693 // DTU updates: Collect all the edges that enter 694 // PredBB. These dominator edges will be redirected to DestBB. 695 SmallVector<DominatorTree::UpdateType, 32> Updates; 696 697 if (DTU) { 698 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 699 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 700 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 701 // This predecessor of PredBB may already have DestBB as a successor. 702 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 703 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 704 } 705 } 706 707 // Zap anything that took the address of DestBB. Not doing this will give the 708 // address an invalid value. 709 if (DestBB->hasAddressTaken()) { 710 BlockAddress *BA = BlockAddress::get(DestBB); 711 Constant *Replacement = 712 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 713 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 714 BA->getType())); 715 BA->destroyConstant(); 716 } 717 718 // Anything that branched to PredBB now branches to DestBB. 719 PredBB->replaceAllUsesWith(DestBB); 720 721 // Splice all the instructions from PredBB to DestBB. 722 PredBB->getTerminator()->eraseFromParent(); 723 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 724 new UnreachableInst(PredBB->getContext(), PredBB); 725 726 // If the PredBB is the entry block of the function, move DestBB up to 727 // become the entry block after we erase PredBB. 728 if (ReplaceEntryBB) 729 DestBB->moveAfter(PredBB); 730 731 if (DTU) { 732 assert(PredBB->getInstList().size() == 1 && 733 isa<UnreachableInst>(PredBB->getTerminator()) && 734 "The successor list of PredBB isn't empty before " 735 "applying corresponding DTU updates."); 736 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 737 DTU->deleteBB(PredBB); 738 // Recalculation of DomTree is needed when updating a forward DomTree and 739 // the Entry BB is replaced. 740 if (ReplaceEntryBB && DTU->hasDomTree()) { 741 // The entry block was removed and there is no external interface for 742 // the dominator tree to be notified of this change. In this corner-case 743 // we recalculate the entire tree. 744 DTU->recalculate(*(DestBB->getParent())); 745 } 746 } 747 748 else { 749 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 750 } 751 } 752 753 /// CanMergeValues - Return true if we can choose one of these values to use 754 /// in place of the other. Note that we will always choose the non-undef 755 /// value to keep. 756 static bool CanMergeValues(Value *First, Value *Second) { 757 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 758 } 759 760 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 761 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 762 /// 763 /// Assumption: Succ is the single successor for BB. 764 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 765 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 766 767 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 768 << Succ->getName() << "\n"); 769 // Shortcut, if there is only a single predecessor it must be BB and merging 770 // is always safe 771 if (Succ->getSinglePredecessor()) return true; 772 773 // Make a list of the predecessors of BB 774 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 775 776 // Look at all the phi nodes in Succ, to see if they present a conflict when 777 // merging these blocks 778 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 779 PHINode *PN = cast<PHINode>(I); 780 781 // If the incoming value from BB is again a PHINode in 782 // BB which has the same incoming value for *PI as PN does, we can 783 // merge the phi nodes and then the blocks can still be merged 784 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 785 if (BBPN && BBPN->getParent() == BB) { 786 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 787 BasicBlock *IBB = PN->getIncomingBlock(PI); 788 if (BBPreds.count(IBB) && 789 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 790 PN->getIncomingValue(PI))) { 791 LLVM_DEBUG(dbgs() 792 << "Can't fold, phi node " << PN->getName() << " in " 793 << Succ->getName() << " is conflicting with " 794 << BBPN->getName() << " with regard to common predecessor " 795 << IBB->getName() << "\n"); 796 return false; 797 } 798 } 799 } else { 800 Value* Val = PN->getIncomingValueForBlock(BB); 801 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 802 // See if the incoming value for the common predecessor is equal to the 803 // one for BB, in which case this phi node will not prevent the merging 804 // of the block. 805 BasicBlock *IBB = PN->getIncomingBlock(PI); 806 if (BBPreds.count(IBB) && 807 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 808 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 809 << " in " << Succ->getName() 810 << " is conflicting with regard to common " 811 << "predecessor " << IBB->getName() << "\n"); 812 return false; 813 } 814 } 815 } 816 } 817 818 return true; 819 } 820 821 using PredBlockVector = SmallVector<BasicBlock *, 16>; 822 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 823 824 /// Determines the value to use as the phi node input for a block. 825 /// 826 /// Select between \p OldVal any value that we know flows from \p BB 827 /// to a particular phi on the basis of which one (if either) is not 828 /// undef. Update IncomingValues based on the selected value. 829 /// 830 /// \param OldVal The value we are considering selecting. 831 /// \param BB The block that the value flows in from. 832 /// \param IncomingValues A map from block-to-value for other phi inputs 833 /// that we have examined. 834 /// 835 /// \returns the selected value. 836 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 837 IncomingValueMap &IncomingValues) { 838 if (!isa<UndefValue>(OldVal)) { 839 assert((!IncomingValues.count(BB) || 840 IncomingValues.find(BB)->second == OldVal) && 841 "Expected OldVal to match incoming value from BB!"); 842 843 IncomingValues.insert(std::make_pair(BB, OldVal)); 844 return OldVal; 845 } 846 847 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 848 if (It != IncomingValues.end()) return It->second; 849 850 return OldVal; 851 } 852 853 /// Create a map from block to value for the operands of a 854 /// given phi. 855 /// 856 /// Create a map from block to value for each non-undef value flowing 857 /// into \p PN. 858 /// 859 /// \param PN The phi we are collecting the map for. 860 /// \param IncomingValues [out] The map from block to value for this phi. 861 static void gatherIncomingValuesToPhi(PHINode *PN, 862 IncomingValueMap &IncomingValues) { 863 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 864 BasicBlock *BB = PN->getIncomingBlock(i); 865 Value *V = PN->getIncomingValue(i); 866 867 if (!isa<UndefValue>(V)) 868 IncomingValues.insert(std::make_pair(BB, V)); 869 } 870 } 871 872 /// Replace the incoming undef values to a phi with the values 873 /// from a block-to-value map. 874 /// 875 /// \param PN The phi we are replacing the undefs in. 876 /// \param IncomingValues A map from block to value. 877 static void replaceUndefValuesInPhi(PHINode *PN, 878 const IncomingValueMap &IncomingValues) { 879 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 880 Value *V = PN->getIncomingValue(i); 881 882 if (!isa<UndefValue>(V)) continue; 883 884 BasicBlock *BB = PN->getIncomingBlock(i); 885 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 886 if (It == IncomingValues.end()) continue; 887 888 PN->setIncomingValue(i, It->second); 889 } 890 } 891 892 /// Replace a value flowing from a block to a phi with 893 /// potentially multiple instances of that value flowing from the 894 /// block's predecessors to the phi. 895 /// 896 /// \param BB The block with the value flowing into the phi. 897 /// \param BBPreds The predecessors of BB. 898 /// \param PN The phi that we are updating. 899 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 900 const PredBlockVector &BBPreds, 901 PHINode *PN) { 902 Value *OldVal = PN->removeIncomingValue(BB, false); 903 assert(OldVal && "No entry in PHI for Pred BB!"); 904 905 IncomingValueMap IncomingValues; 906 907 // We are merging two blocks - BB, and the block containing PN - and 908 // as a result we need to redirect edges from the predecessors of BB 909 // to go to the block containing PN, and update PN 910 // accordingly. Since we allow merging blocks in the case where the 911 // predecessor and successor blocks both share some predecessors, 912 // and where some of those common predecessors might have undef 913 // values flowing into PN, we want to rewrite those values to be 914 // consistent with the non-undef values. 915 916 gatherIncomingValuesToPhi(PN, IncomingValues); 917 918 // If this incoming value is one of the PHI nodes in BB, the new entries 919 // in the PHI node are the entries from the old PHI. 920 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 921 PHINode *OldValPN = cast<PHINode>(OldVal); 922 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 923 // Note that, since we are merging phi nodes and BB and Succ might 924 // have common predecessors, we could end up with a phi node with 925 // identical incoming branches. This will be cleaned up later (and 926 // will trigger asserts if we try to clean it up now, without also 927 // simplifying the corresponding conditional branch). 928 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 929 Value *PredVal = OldValPN->getIncomingValue(i); 930 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 931 IncomingValues); 932 933 // And add a new incoming value for this predecessor for the 934 // newly retargeted branch. 935 PN->addIncoming(Selected, PredBB); 936 } 937 } else { 938 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 939 // Update existing incoming values in PN for this 940 // predecessor of BB. 941 BasicBlock *PredBB = BBPreds[i]; 942 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 943 IncomingValues); 944 945 // And add a new incoming value for this predecessor for the 946 // newly retargeted branch. 947 PN->addIncoming(Selected, PredBB); 948 } 949 } 950 951 replaceUndefValuesInPhi(PN, IncomingValues); 952 } 953 954 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 955 /// unconditional branch, and contains no instructions other than PHI nodes, 956 /// potential side-effect free intrinsics and the branch. If possible, 957 /// eliminate BB by rewriting all the predecessors to branch to the successor 958 /// block and return true. If we can't transform, return false. 959 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 960 DomTreeUpdater *DTU) { 961 assert(BB != &BB->getParent()->getEntryBlock() && 962 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 963 964 // We can't eliminate infinite loops. 965 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 966 if (BB == Succ) return false; 967 968 // Check to see if merging these blocks would cause conflicts for any of the 969 // phi nodes in BB or Succ. If not, we can safely merge. 970 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 971 972 // Check for cases where Succ has multiple predecessors and a PHI node in BB 973 // has uses which will not disappear when the PHI nodes are merged. It is 974 // possible to handle such cases, but difficult: it requires checking whether 975 // BB dominates Succ, which is non-trivial to calculate in the case where 976 // Succ has multiple predecessors. Also, it requires checking whether 977 // constructing the necessary self-referential PHI node doesn't introduce any 978 // conflicts; this isn't too difficult, but the previous code for doing this 979 // was incorrect. 980 // 981 // Note that if this check finds a live use, BB dominates Succ, so BB is 982 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 983 // folding the branch isn't profitable in that case anyway. 984 if (!Succ->getSinglePredecessor()) { 985 BasicBlock::iterator BBI = BB->begin(); 986 while (isa<PHINode>(*BBI)) { 987 for (Use &U : BBI->uses()) { 988 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 989 if (PN->getIncomingBlock(U) != BB) 990 return false; 991 } else { 992 return false; 993 } 994 } 995 ++BBI; 996 } 997 } 998 999 // We cannot fold the block if it's a branch to an already present callbr 1000 // successor because that creates duplicate successors. 1001 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1002 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 1003 if (Succ == CBI->getDefaultDest()) 1004 return false; 1005 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1006 if (Succ == CBI->getIndirectDest(i)) 1007 return false; 1008 } 1009 } 1010 1011 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1012 1013 SmallVector<DominatorTree::UpdateType, 32> Updates; 1014 if (DTU) { 1015 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1016 // All predecessors of BB will be moved to Succ. 1017 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1018 Updates.push_back({DominatorTree::Delete, *I, BB}); 1019 // This predecessor of BB may already have Succ as a successor. 1020 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 1021 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1022 } 1023 } 1024 1025 if (isa<PHINode>(Succ->begin())) { 1026 // If there is more than one pred of succ, and there are PHI nodes in 1027 // the successor, then we need to add incoming edges for the PHI nodes 1028 // 1029 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1030 1031 // Loop over all of the PHI nodes in the successor of BB. 1032 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1033 PHINode *PN = cast<PHINode>(I); 1034 1035 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1036 } 1037 } 1038 1039 if (Succ->getSinglePredecessor()) { 1040 // BB is the only predecessor of Succ, so Succ will end up with exactly 1041 // the same predecessors BB had. 1042 1043 // Copy over any phi, debug or lifetime instruction. 1044 BB->getTerminator()->eraseFromParent(); 1045 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1046 BB->getInstList()); 1047 } else { 1048 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1049 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1050 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1051 PN->eraseFromParent(); 1052 } 1053 } 1054 1055 // If the unconditional branch we replaced contains llvm.loop metadata, we 1056 // add the metadata to the branch instructions in the predecessors. 1057 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1058 Instruction *TI = BB->getTerminator(); 1059 if (TI) 1060 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1061 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1062 BasicBlock *Pred = *PI; 1063 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1064 } 1065 1066 // Everything that jumped to BB now goes to Succ. 1067 BB->replaceAllUsesWith(Succ); 1068 if (!Succ->hasName()) Succ->takeName(BB); 1069 1070 // Clear the successor list of BB to match updates applying to DTU later. 1071 if (BB->getTerminator()) 1072 BB->getInstList().pop_back(); 1073 new UnreachableInst(BB->getContext(), BB); 1074 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1075 "applying corresponding DTU updates."); 1076 1077 if (DTU) { 1078 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 1079 DTU->deleteBB(BB); 1080 } else { 1081 BB->eraseFromParent(); // Delete the old basic block. 1082 } 1083 return true; 1084 } 1085 1086 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 1087 /// nodes in this block. This doesn't try to be clever about PHI nodes 1088 /// which differ only in the order of the incoming values, but instcombine 1089 /// orders them so it usually won't matter. 1090 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1091 // This implementation doesn't currently consider undef operands 1092 // specially. Theoretically, two phis which are identical except for 1093 // one having an undef where the other doesn't could be collapsed. 1094 1095 struct PHIDenseMapInfo { 1096 static PHINode *getEmptyKey() { 1097 return DenseMapInfo<PHINode *>::getEmptyKey(); 1098 } 1099 1100 static PHINode *getTombstoneKey() { 1101 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1102 } 1103 1104 static unsigned getHashValue(PHINode *PN) { 1105 // Compute a hash value on the operands. Instcombine will likely have 1106 // sorted them, which helps expose duplicates, but we have to check all 1107 // the operands to be safe in case instcombine hasn't run. 1108 return static_cast<unsigned>(hash_combine( 1109 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1110 hash_combine_range(PN->block_begin(), PN->block_end()))); 1111 } 1112 1113 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1114 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1115 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1116 return LHS == RHS; 1117 return LHS->isIdenticalTo(RHS); 1118 } 1119 }; 1120 1121 // Set of unique PHINodes. 1122 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1123 1124 // Examine each PHI. 1125 bool Changed = false; 1126 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1127 auto Inserted = PHISet.insert(PN); 1128 if (!Inserted.second) { 1129 // A duplicate. Replace this PHI with its duplicate. 1130 PN->replaceAllUsesWith(*Inserted.first); 1131 PN->eraseFromParent(); 1132 Changed = true; 1133 1134 // The RAUW can change PHIs that we already visited. Start over from the 1135 // beginning. 1136 PHISet.clear(); 1137 I = BB->begin(); 1138 } 1139 } 1140 1141 return Changed; 1142 } 1143 1144 /// enforceKnownAlignment - If the specified pointer points to an object that 1145 /// we control, modify the object's alignment to PrefAlign. This isn't 1146 /// often possible though. If alignment is important, a more reliable approach 1147 /// is to simply align all global variables and allocation instructions to 1148 /// their preferred alignment from the beginning. 1149 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 1150 unsigned PrefAlign, 1151 const DataLayout &DL) { 1152 assert(PrefAlign > Align); 1153 1154 V = V->stripPointerCasts(); 1155 1156 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1157 // TODO: ideally, computeKnownBits ought to have used 1158 // AllocaInst::getAlignment() in its computation already, making 1159 // the below max redundant. But, as it turns out, 1160 // stripPointerCasts recurses through infinite layers of bitcasts, 1161 // while computeKnownBits is not allowed to traverse more than 6 1162 // levels. 1163 Align = std::max(AI->getAlignment(), Align); 1164 if (PrefAlign <= Align) 1165 return Align; 1166 1167 // If the preferred alignment is greater than the natural stack alignment 1168 // then don't round up. This avoids dynamic stack realignment. 1169 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1170 return Align; 1171 AI->setAlignment(PrefAlign); 1172 return PrefAlign; 1173 } 1174 1175 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1176 // TODO: as above, this shouldn't be necessary. 1177 Align = std::max(GO->getAlignment(), Align); 1178 if (PrefAlign <= Align) 1179 return Align; 1180 1181 // If there is a large requested alignment and we can, bump up the alignment 1182 // of the global. If the memory we set aside for the global may not be the 1183 // memory used by the final program then it is impossible for us to reliably 1184 // enforce the preferred alignment. 1185 if (!GO->canIncreaseAlignment()) 1186 return Align; 1187 1188 GO->setAlignment(PrefAlign); 1189 return PrefAlign; 1190 } 1191 1192 return Align; 1193 } 1194 1195 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1196 const DataLayout &DL, 1197 const Instruction *CxtI, 1198 AssumptionCache *AC, 1199 const DominatorTree *DT) { 1200 assert(V->getType()->isPointerTy() && 1201 "getOrEnforceKnownAlignment expects a pointer!"); 1202 1203 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1204 unsigned TrailZ = Known.countMinTrailingZeros(); 1205 1206 // Avoid trouble with ridiculously large TrailZ values, such as 1207 // those computed from a null pointer. 1208 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1209 1210 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1211 1212 // LLVM doesn't support alignments larger than this currently. 1213 Align = std::min(Align, +Value::MaximumAlignment); 1214 1215 if (PrefAlign > Align) 1216 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1217 1218 // We don't need to make any adjustment. 1219 return Align; 1220 } 1221 1222 ///===---------------------------------------------------------------------===// 1223 /// Dbg Intrinsic utilities 1224 /// 1225 1226 /// See if there is a dbg.value intrinsic for DIVar before I. 1227 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1228 Instruction *I) { 1229 // Since we can't guarantee that the original dbg.declare instrinsic 1230 // is removed by LowerDbgDeclare(), we need to make sure that we are 1231 // not inserting the same dbg.value intrinsic over and over. 1232 BasicBlock::InstListType::iterator PrevI(I); 1233 if (PrevI != I->getParent()->getInstList().begin()) { 1234 --PrevI; 1235 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1236 if (DVI->getValue() == I->getOperand(0) && 1237 DVI->getVariable() == DIVar && 1238 DVI->getExpression() == DIExpr) 1239 return true; 1240 } 1241 return false; 1242 } 1243 1244 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1245 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1246 DIExpression *DIExpr, 1247 PHINode *APN) { 1248 // Since we can't guarantee that the original dbg.declare instrinsic 1249 // is removed by LowerDbgDeclare(), we need to make sure that we are 1250 // not inserting the same dbg.value intrinsic over and over. 1251 SmallVector<DbgValueInst *, 1> DbgValues; 1252 findDbgValues(DbgValues, APN); 1253 for (auto *DVI : DbgValues) { 1254 assert(DVI->getValue() == APN); 1255 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1256 return true; 1257 } 1258 return false; 1259 } 1260 1261 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1262 /// (or fragment of the variable) described by \p DII. 1263 /// 1264 /// This is primarily intended as a helper for the different 1265 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1266 /// converted describes an alloca'd variable, so we need to use the 1267 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1268 /// identified as covering an n-bit fragment, if the store size of i1 is at 1269 /// least n bits. 1270 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1271 const DataLayout &DL = DII->getModule()->getDataLayout(); 1272 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1273 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1274 return ValueSize >= *FragmentSize; 1275 // We can't always calculate the size of the DI variable (e.g. if it is a 1276 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1277 // intead. 1278 if (DII->isAddressOfVariable()) 1279 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1280 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1281 return ValueSize >= *FragmentSize; 1282 // Could not determine size of variable. Conservatively return false. 1283 return false; 1284 } 1285 1286 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1287 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1288 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1289 StoreInst *SI, DIBuilder &Builder) { 1290 assert(DII->isAddressOfVariable()); 1291 auto *DIVar = DII->getVariable(); 1292 assert(DIVar && "Missing variable"); 1293 auto *DIExpr = DII->getExpression(); 1294 Value *DV = SI->getOperand(0); 1295 1296 if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) { 1297 // FIXME: If storing to a part of the variable described by the dbg.declare, 1298 // then we want to insert a dbg.value for the corresponding fragment. 1299 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1300 << *DII << '\n'); 1301 // For now, when there is a store to parts of the variable (but we do not 1302 // know which part) we insert an dbg.value instrinsic to indicate that we 1303 // know nothing about the variable's content. 1304 DV = UndefValue::get(DV->getType()); 1305 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1306 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1307 SI); 1308 return; 1309 } 1310 1311 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1312 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1313 SI); 1314 } 1315 1316 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1317 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1318 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1319 LoadInst *LI, DIBuilder &Builder) { 1320 auto *DIVar = DII->getVariable(); 1321 auto *DIExpr = DII->getExpression(); 1322 assert(DIVar && "Missing variable"); 1323 1324 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1325 return; 1326 1327 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1328 // FIXME: If only referring to a part of the variable described by the 1329 // dbg.declare, then we want to insert a dbg.value for the corresponding 1330 // fragment. 1331 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1332 << *DII << '\n'); 1333 return; 1334 } 1335 1336 // We are now tracking the loaded value instead of the address. In the 1337 // future if multi-location support is added to the IR, it might be 1338 // preferable to keep tracking both the loaded value and the original 1339 // address in case the alloca can not be elided. 1340 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1341 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); 1342 DbgValue->insertAfter(LI); 1343 } 1344 1345 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1346 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1347 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1348 PHINode *APN, DIBuilder &Builder) { 1349 auto *DIVar = DII->getVariable(); 1350 auto *DIExpr = DII->getExpression(); 1351 assert(DIVar && "Missing variable"); 1352 1353 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1354 return; 1355 1356 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1357 // FIXME: If only referring to a part of the variable described by the 1358 // dbg.declare, then we want to insert a dbg.value for the corresponding 1359 // fragment. 1360 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1361 << *DII << '\n'); 1362 return; 1363 } 1364 1365 BasicBlock *BB = APN->getParent(); 1366 auto InsertionPt = BB->getFirstInsertionPt(); 1367 1368 // The block may be a catchswitch block, which does not have a valid 1369 // insertion point. 1370 // FIXME: Insert dbg.value markers in the successors when appropriate. 1371 if (InsertionPt != BB->end()) 1372 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), 1373 &*InsertionPt); 1374 } 1375 1376 /// Determine whether this alloca is either a VLA or an array. 1377 static bool isArray(AllocaInst *AI) { 1378 return AI->isArrayAllocation() || 1379 AI->getType()->getElementType()->isArrayTy(); 1380 } 1381 1382 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1383 /// of llvm.dbg.value intrinsics. 1384 bool llvm::LowerDbgDeclare(Function &F) { 1385 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1386 SmallVector<DbgDeclareInst *, 4> Dbgs; 1387 for (auto &FI : F) 1388 for (Instruction &BI : FI) 1389 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1390 Dbgs.push_back(DDI); 1391 1392 if (Dbgs.empty()) 1393 return false; 1394 1395 for (auto &I : Dbgs) { 1396 DbgDeclareInst *DDI = I; 1397 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1398 // If this is an alloca for a scalar variable, insert a dbg.value 1399 // at each load and store to the alloca and erase the dbg.declare. 1400 // The dbg.values allow tracking a variable even if it is not 1401 // stored on the stack, while the dbg.declare can only describe 1402 // the stack slot (and at a lexical-scope granularity). Later 1403 // passes will attempt to elide the stack slot. 1404 if (!AI || isArray(AI)) 1405 continue; 1406 1407 // A volatile load/store means that the alloca can't be elided anyway. 1408 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1409 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1410 return LI->isVolatile(); 1411 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1412 return SI->isVolatile(); 1413 return false; 1414 })) 1415 continue; 1416 1417 for (auto &AIUse : AI->uses()) { 1418 User *U = AIUse.getUser(); 1419 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1420 if (AIUse.getOperandNo() == 1) 1421 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1422 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1423 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1424 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1425 // This is a call by-value or some other instruction that takes a 1426 // pointer to the variable. Insert a *value* intrinsic that describes 1427 // the variable by dereferencing the alloca. 1428 auto *DerefExpr = 1429 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1430 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1431 DDI->getDebugLoc(), CI); 1432 } 1433 } 1434 DDI->eraseFromParent(); 1435 } 1436 return true; 1437 } 1438 1439 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1440 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1441 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1442 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1443 if (InsertedPHIs.size() == 0) 1444 return; 1445 1446 // Map existing PHI nodes to their dbg.values. 1447 ValueToValueMapTy DbgValueMap; 1448 for (auto &I : *BB) { 1449 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1450 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1451 DbgValueMap.insert({Loc, DbgII}); 1452 } 1453 } 1454 if (DbgValueMap.size() == 0) 1455 return; 1456 1457 // Then iterate through the new PHIs and look to see if they use one of the 1458 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1459 // propagate the info through the new PHI. 1460 LLVMContext &C = BB->getContext(); 1461 for (auto PHI : InsertedPHIs) { 1462 BasicBlock *Parent = PHI->getParent(); 1463 // Avoid inserting an intrinsic into an EH block. 1464 if (Parent->getFirstNonPHI()->isEHPad()) 1465 continue; 1466 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1467 for (auto VI : PHI->operand_values()) { 1468 auto V = DbgValueMap.find(VI); 1469 if (V != DbgValueMap.end()) { 1470 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1471 Instruction *NewDbgII = DbgII->clone(); 1472 NewDbgII->setOperand(0, PhiMAV); 1473 auto InsertionPt = Parent->getFirstInsertionPt(); 1474 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1475 NewDbgII->insertBefore(&*InsertionPt); 1476 } 1477 } 1478 } 1479 } 1480 1481 /// Finds all intrinsics declaring local variables as living in the memory that 1482 /// 'V' points to. This may include a mix of dbg.declare and 1483 /// dbg.addr intrinsics. 1484 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1485 // This function is hot. Check whether the value has any metadata to avoid a 1486 // DenseMap lookup. 1487 if (!V->isUsedByMetadata()) 1488 return {}; 1489 auto *L = LocalAsMetadata::getIfExists(V); 1490 if (!L) 1491 return {}; 1492 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1493 if (!MDV) 1494 return {}; 1495 1496 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1497 for (User *U : MDV->users()) { 1498 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1499 if (DII->isAddressOfVariable()) 1500 Declares.push_back(DII); 1501 } 1502 1503 return Declares; 1504 } 1505 1506 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1507 // This function is hot. Check whether the value has any metadata to avoid a 1508 // DenseMap lookup. 1509 if (!V->isUsedByMetadata()) 1510 return; 1511 if (auto *L = LocalAsMetadata::getIfExists(V)) 1512 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1513 for (User *U : MDV->users()) 1514 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1515 DbgValues.push_back(DVI); 1516 } 1517 1518 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1519 Value *V) { 1520 // This function is hot. Check whether the value has any metadata to avoid a 1521 // DenseMap lookup. 1522 if (!V->isUsedByMetadata()) 1523 return; 1524 if (auto *L = LocalAsMetadata::getIfExists(V)) 1525 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1526 for (User *U : MDV->users()) 1527 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1528 DbgUsers.push_back(DII); 1529 } 1530 1531 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1532 Instruction *InsertBefore, DIBuilder &Builder, 1533 bool DerefBefore, int Offset, bool DerefAfter) { 1534 auto DbgAddrs = FindDbgAddrUses(Address); 1535 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1536 DebugLoc Loc = DII->getDebugLoc(); 1537 auto *DIVar = DII->getVariable(); 1538 auto *DIExpr = DII->getExpression(); 1539 assert(DIVar && "Missing variable"); 1540 DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter); 1541 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old 1542 // llvm.dbg.declare. 1543 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1544 if (DII == InsertBefore) 1545 InsertBefore = InsertBefore->getNextNode(); 1546 DII->eraseFromParent(); 1547 } 1548 return !DbgAddrs.empty(); 1549 } 1550 1551 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1552 DIBuilder &Builder, bool DerefBefore, 1553 int Offset, bool DerefAfter) { 1554 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1555 DerefBefore, Offset, DerefAfter); 1556 } 1557 1558 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1559 DIBuilder &Builder, int Offset) { 1560 DebugLoc Loc = DVI->getDebugLoc(); 1561 auto *DIVar = DVI->getVariable(); 1562 auto *DIExpr = DVI->getExpression(); 1563 assert(DIVar && "Missing variable"); 1564 1565 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1566 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1567 // it and give up. 1568 if (!DIExpr || DIExpr->getNumElements() < 1 || 1569 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1570 return; 1571 1572 // Insert the offset immediately after the first deref. 1573 // We could just change the offset argument of dbg.value, but it's unsigned... 1574 if (Offset) { 1575 SmallVector<uint64_t, 4> Ops; 1576 Ops.push_back(dwarf::DW_OP_deref); 1577 DIExpression::appendOffset(Ops, Offset); 1578 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1579 DIExpr = Builder.createExpression(Ops); 1580 } 1581 1582 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1583 DVI->eraseFromParent(); 1584 } 1585 1586 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1587 DIBuilder &Builder, int Offset) { 1588 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1589 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1590 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1591 Use &U = *UI++; 1592 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1593 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1594 } 1595 } 1596 1597 /// Wrap \p V in a ValueAsMetadata instance. 1598 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1599 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1600 } 1601 1602 bool llvm::salvageDebugInfo(Instruction &I) { 1603 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1604 findDbgUsers(DbgUsers, &I); 1605 if (DbgUsers.empty()) 1606 return false; 1607 1608 return salvageDebugInfoForDbgValues(I, DbgUsers); 1609 } 1610 1611 bool llvm::salvageDebugInfoForDbgValues( 1612 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1613 auto &Ctx = I.getContext(); 1614 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1615 1616 for (auto *DII : DbgUsers) { 1617 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1618 // are implicitly pointing out the value as a DWARF memory location 1619 // description. 1620 bool StackValue = isa<DbgValueInst>(DII); 1621 1622 DIExpression *DIExpr = 1623 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1624 1625 // salvageDebugInfoImpl should fail on examining the first element of 1626 // DbgUsers, or none of them. 1627 if (!DIExpr) 1628 return false; 1629 1630 DII->setOperand(0, wrapMD(I.getOperand(0))); 1631 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1632 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1633 } 1634 1635 return true; 1636 } 1637 1638 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1639 DIExpression *SrcDIExpr, 1640 bool WithStackValue) { 1641 auto &M = *I.getModule(); 1642 auto &DL = M.getDataLayout(); 1643 1644 // Apply a vector of opcodes to the source DIExpression. 1645 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1646 DIExpression *DIExpr = SrcDIExpr; 1647 if (!Ops.empty()) { 1648 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1649 } 1650 return DIExpr; 1651 }; 1652 1653 // Apply the given offset to the source DIExpression. 1654 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1655 SmallVector<uint64_t, 8> Ops; 1656 DIExpression::appendOffset(Ops, Offset); 1657 return doSalvage(Ops); 1658 }; 1659 1660 // initializer-list helper for applying operators to the source DIExpression. 1661 auto applyOps = 1662 [&](std::initializer_list<uint64_t> Opcodes) -> DIExpression * { 1663 SmallVector<uint64_t, 8> Ops(Opcodes); 1664 return doSalvage(Ops); 1665 }; 1666 1667 if (auto *CI = dyn_cast<CastInst>(&I)) { 1668 if (!CI->isNoopCast(DL)) 1669 return nullptr; 1670 1671 // No-op casts are irrelevant for debug info. 1672 return SrcDIExpr; 1673 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1674 unsigned BitWidth = 1675 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1676 // Rewrite a constant GEP into a DIExpression. 1677 APInt Offset(BitWidth, 0); 1678 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1679 return applyOffset(Offset.getSExtValue()); 1680 } else { 1681 return nullptr; 1682 } 1683 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1684 // Rewrite binary operations with constant integer operands. 1685 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1686 if (!ConstInt || ConstInt->getBitWidth() > 64) 1687 return nullptr; 1688 1689 uint64_t Val = ConstInt->getSExtValue(); 1690 switch (BI->getOpcode()) { 1691 case Instruction::Add: 1692 return applyOffset(Val); 1693 case Instruction::Sub: 1694 return applyOffset(-int64_t(Val)); 1695 case Instruction::Mul: 1696 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1697 case Instruction::SDiv: 1698 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1699 case Instruction::SRem: 1700 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1701 case Instruction::Or: 1702 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1703 case Instruction::And: 1704 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1705 case Instruction::Xor: 1706 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1707 case Instruction::Shl: 1708 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1709 case Instruction::LShr: 1710 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1711 case Instruction::AShr: 1712 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1713 default: 1714 // TODO: Salvage constants from each kind of binop we know about. 1715 return nullptr; 1716 } 1717 // *Not* to do: we should not attempt to salvage load instructions, 1718 // because the validity and lifetime of a dbg.value containing 1719 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1720 } 1721 return nullptr; 1722 } 1723 1724 /// A replacement for a dbg.value expression. 1725 using DbgValReplacement = Optional<DIExpression *>; 1726 1727 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1728 /// possibly moving/deleting users to prevent use-before-def. Returns true if 1729 /// changes are made. 1730 static bool rewriteDebugUsers( 1731 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1732 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1733 // Find debug users of From. 1734 SmallVector<DbgVariableIntrinsic *, 1> Users; 1735 findDbgUsers(Users, &From); 1736 if (Users.empty()) 1737 return false; 1738 1739 // Prevent use-before-def of To. 1740 bool Changed = false; 1741 SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage; 1742 if (isa<Instruction>(&To)) { 1743 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1744 1745 for (auto *DII : Users) { 1746 // It's common to see a debug user between From and DomPoint. Move it 1747 // after DomPoint to preserve the variable update without any reordering. 1748 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1749 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1750 DII->moveAfter(&DomPoint); 1751 Changed = true; 1752 1753 // Users which otherwise aren't dominated by the replacement value must 1754 // be salvaged or deleted. 1755 } else if (!DT.dominates(&DomPoint, DII)) { 1756 DeleteOrSalvage.insert(DII); 1757 } 1758 } 1759 } 1760 1761 // Update debug users without use-before-def risk. 1762 for (auto *DII : Users) { 1763 if (DeleteOrSalvage.count(DII)) 1764 continue; 1765 1766 LLVMContext &Ctx = DII->getContext(); 1767 DbgValReplacement DVR = RewriteExpr(*DII); 1768 if (!DVR) 1769 continue; 1770 1771 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1772 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1773 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1774 Changed = true; 1775 } 1776 1777 if (!DeleteOrSalvage.empty()) { 1778 // Try to salvage the remaining debug users. 1779 Changed |= salvageDebugInfo(From); 1780 1781 // Delete the debug users which weren't salvaged. 1782 for (auto *DII : DeleteOrSalvage) { 1783 if (DII->getVariableLocation() == &From) { 1784 LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII << '\n'); 1785 DII->eraseFromParent(); 1786 Changed = true; 1787 } 1788 } 1789 } 1790 1791 return Changed; 1792 } 1793 1794 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1795 /// losslessly preserve the bits and semantics of the value. This predicate is 1796 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1797 /// 1798 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1799 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1800 /// and also does not allow lossless pointer <-> integer conversions. 1801 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1802 Type *ToTy) { 1803 // Trivially compatible types. 1804 if (FromTy == ToTy) 1805 return true; 1806 1807 // Handle compatible pointer <-> integer conversions. 1808 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1809 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1810 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1811 !DL.isNonIntegralPointerType(ToTy); 1812 return SameSize && LosslessConversion; 1813 } 1814 1815 // TODO: This is not exhaustive. 1816 return false; 1817 } 1818 1819 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1820 Instruction &DomPoint, DominatorTree &DT) { 1821 // Exit early if From has no debug users. 1822 if (!From.isUsedByMetadata()) 1823 return false; 1824 1825 assert(&From != &To && "Can't replace something with itself"); 1826 1827 Type *FromTy = From.getType(); 1828 Type *ToTy = To.getType(); 1829 1830 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1831 return DII.getExpression(); 1832 }; 1833 1834 // Handle no-op conversions. 1835 Module &M = *From.getModule(); 1836 const DataLayout &DL = M.getDataLayout(); 1837 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1838 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1839 1840 // Handle integer-to-integer widening and narrowing. 1841 // FIXME: Use DW_OP_convert when it's available everywhere. 1842 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1843 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1844 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1845 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1846 1847 // When the width of the result grows, assume that a debugger will only 1848 // access the low `FromBits` bits when inspecting the source variable. 1849 if (FromBits < ToBits) 1850 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1851 1852 // The width of the result has shrunk. Use sign/zero extension to describe 1853 // the source variable's high bits. 1854 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1855 DILocalVariable *Var = DII.getVariable(); 1856 1857 // Without knowing signedness, sign/zero extension isn't possible. 1858 auto Signedness = Var->getSignedness(); 1859 if (!Signedness) 1860 return None; 1861 1862 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1863 1864 if (!Signed) { 1865 // In the unsigned case, assume that a debugger will initialize the 1866 // high bits to 0 and do a no-op conversion. 1867 return Identity(DII); 1868 } else { 1869 // In the signed case, the high bits are given by sign extension, i.e: 1870 // (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1) 1871 // Calculate the high bits and OR them together with the low bits. 1872 SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu, 1873 (ToBits - 1), dwarf::DW_OP_shr, 1874 dwarf::DW_OP_lit0, dwarf::DW_OP_not, 1875 dwarf::DW_OP_mul, dwarf::DW_OP_or}); 1876 return DIExpression::appendToStack(DII.getExpression(), Ops); 1877 } 1878 }; 1879 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1880 } 1881 1882 // TODO: Floating-point conversions, vectors. 1883 return false; 1884 } 1885 1886 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1887 unsigned NumDeadInst = 0; 1888 // Delete the instructions backwards, as it has a reduced likelihood of 1889 // having to update as many def-use and use-def chains. 1890 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1891 while (EndInst != &BB->front()) { 1892 // Delete the next to last instruction. 1893 Instruction *Inst = &*--EndInst->getIterator(); 1894 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1895 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1896 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1897 EndInst = Inst; 1898 continue; 1899 } 1900 if (!isa<DbgInfoIntrinsic>(Inst)) 1901 ++NumDeadInst; 1902 Inst->eraseFromParent(); 1903 } 1904 return NumDeadInst; 1905 } 1906 1907 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1908 bool PreserveLCSSA, DomTreeUpdater *DTU) { 1909 BasicBlock *BB = I->getParent(); 1910 std::vector <DominatorTree::UpdateType> Updates; 1911 1912 // Loop over all of the successors, removing BB's entry from any PHI 1913 // nodes. 1914 if (DTU) 1915 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1916 for (BasicBlock *Successor : successors(BB)) { 1917 Successor->removePredecessor(BB, PreserveLCSSA); 1918 if (DTU) 1919 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1920 } 1921 // Insert a call to llvm.trap right before this. This turns the undefined 1922 // behavior into a hard fail instead of falling through into random code. 1923 if (UseLLVMTrap) { 1924 Function *TrapFn = 1925 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1926 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1927 CallTrap->setDebugLoc(I->getDebugLoc()); 1928 } 1929 auto *UI = new UnreachableInst(I->getContext(), I); 1930 UI->setDebugLoc(I->getDebugLoc()); 1931 1932 // All instructions after this are dead. 1933 unsigned NumInstrsRemoved = 0; 1934 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1935 while (BBI != BBE) { 1936 if (!BBI->use_empty()) 1937 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1938 BB->getInstList().erase(BBI++); 1939 ++NumInstrsRemoved; 1940 } 1941 if (DTU) 1942 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 1943 return NumInstrsRemoved; 1944 } 1945 1946 /// changeToCall - Convert the specified invoke into a normal call. 1947 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) { 1948 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1949 SmallVector<OperandBundleDef, 1> OpBundles; 1950 II->getOperandBundlesAsDefs(OpBundles); 1951 CallInst *NewCall = CallInst::Create( 1952 II->getFunctionType(), II->getCalledValue(), Args, OpBundles, "", II); 1953 NewCall->takeName(II); 1954 NewCall->setCallingConv(II->getCallingConv()); 1955 NewCall->setAttributes(II->getAttributes()); 1956 NewCall->setDebugLoc(II->getDebugLoc()); 1957 NewCall->copyMetadata(*II); 1958 II->replaceAllUsesWith(NewCall); 1959 1960 // Follow the call by a branch to the normal destination. 1961 BasicBlock *NormalDestBB = II->getNormalDest(); 1962 BranchInst::Create(NormalDestBB, II); 1963 1964 // Update PHI nodes in the unwind destination 1965 BasicBlock *BB = II->getParent(); 1966 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1967 UnwindDestBB->removePredecessor(BB); 1968 II->eraseFromParent(); 1969 if (DTU) 1970 DTU->deleteEdgeRelaxed(BB, UnwindDestBB); 1971 } 1972 1973 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1974 BasicBlock *UnwindEdge) { 1975 BasicBlock *BB = CI->getParent(); 1976 1977 // Convert this function call into an invoke instruction. First, split the 1978 // basic block. 1979 BasicBlock *Split = 1980 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1981 1982 // Delete the unconditional branch inserted by splitBasicBlock 1983 BB->getInstList().pop_back(); 1984 1985 // Create the new invoke instruction. 1986 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1987 SmallVector<OperandBundleDef, 1> OpBundles; 1988 1989 CI->getOperandBundlesAsDefs(OpBundles); 1990 1991 // Note: we're round tripping operand bundles through memory here, and that 1992 // can potentially be avoided with a cleverer API design that we do not have 1993 // as of this time. 1994 1995 InvokeInst *II = 1996 InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split, 1997 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 1998 II->setDebugLoc(CI->getDebugLoc()); 1999 II->setCallingConv(CI->getCallingConv()); 2000 II->setAttributes(CI->getAttributes()); 2001 2002 // Make sure that anything using the call now uses the invoke! This also 2003 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2004 CI->replaceAllUsesWith(II); 2005 2006 // Delete the original call 2007 Split->getInstList().pop_front(); 2008 return Split; 2009 } 2010 2011 static bool markAliveBlocks(Function &F, 2012 SmallPtrSetImpl<BasicBlock *> &Reachable, 2013 DomTreeUpdater *DTU = nullptr) { 2014 SmallVector<BasicBlock*, 128> Worklist; 2015 BasicBlock *BB = &F.front(); 2016 Worklist.push_back(BB); 2017 Reachable.insert(BB); 2018 bool Changed = false; 2019 do { 2020 BB = Worklist.pop_back_val(); 2021 2022 // Do a quick scan of the basic block, turning any obviously unreachable 2023 // instructions into LLVM unreachable insts. The instruction combining pass 2024 // canonicalizes unreachable insts into stores to null or undef. 2025 for (Instruction &I : *BB) { 2026 if (auto *CI = dyn_cast<CallInst>(&I)) { 2027 Value *Callee = CI->getCalledValue(); 2028 // Handle intrinsic calls. 2029 if (Function *F = dyn_cast<Function>(Callee)) { 2030 auto IntrinsicID = F->getIntrinsicID(); 2031 // Assumptions that are known to be false are equivalent to 2032 // unreachable. Also, if the condition is undefined, then we make the 2033 // choice most beneficial to the optimizer, and choose that to also be 2034 // unreachable. 2035 if (IntrinsicID == Intrinsic::assume) { 2036 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2037 // Don't insert a call to llvm.trap right before the unreachable. 2038 changeToUnreachable(CI, false, false, DTU); 2039 Changed = true; 2040 break; 2041 } 2042 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2043 // A call to the guard intrinsic bails out of the current 2044 // compilation unit if the predicate passed to it is false. If the 2045 // predicate is a constant false, then we know the guard will bail 2046 // out of the current compile unconditionally, so all code following 2047 // it is dead. 2048 // 2049 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2050 // guards to treat `undef` as `false` since a guard on `undef` can 2051 // still be useful for widening. 2052 if (match(CI->getArgOperand(0), m_Zero())) 2053 if (!isa<UnreachableInst>(CI->getNextNode())) { 2054 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2055 false, DTU); 2056 Changed = true; 2057 break; 2058 } 2059 } 2060 } else if ((isa<ConstantPointerNull>(Callee) && 2061 !NullPointerIsDefined(CI->getFunction())) || 2062 isa<UndefValue>(Callee)) { 2063 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2064 Changed = true; 2065 break; 2066 } 2067 if (CI->doesNotReturn()) { 2068 // If we found a call to a no-return function, insert an unreachable 2069 // instruction after it. Make sure there isn't *already* one there 2070 // though. 2071 if (!isa<UnreachableInst>(CI->getNextNode())) { 2072 // Don't insert a call to llvm.trap right before the unreachable. 2073 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2074 Changed = true; 2075 } 2076 break; 2077 } 2078 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2079 // Store to undef and store to null are undefined and used to signal 2080 // that they should be changed to unreachable by passes that can't 2081 // modify the CFG. 2082 2083 // Don't touch volatile stores. 2084 if (SI->isVolatile()) continue; 2085 2086 Value *Ptr = SI->getOperand(1); 2087 2088 if (isa<UndefValue>(Ptr) || 2089 (isa<ConstantPointerNull>(Ptr) && 2090 !NullPointerIsDefined(SI->getFunction(), 2091 SI->getPointerAddressSpace()))) { 2092 changeToUnreachable(SI, true, false, DTU); 2093 Changed = true; 2094 break; 2095 } 2096 } 2097 } 2098 2099 Instruction *Terminator = BB->getTerminator(); 2100 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2101 // Turn invokes that call 'nounwind' functions into ordinary calls. 2102 Value *Callee = II->getCalledValue(); 2103 if ((isa<ConstantPointerNull>(Callee) && 2104 !NullPointerIsDefined(BB->getParent())) || 2105 isa<UndefValue>(Callee)) { 2106 changeToUnreachable(II, true, false, DTU); 2107 Changed = true; 2108 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2109 if (II->use_empty() && II->onlyReadsMemory()) { 2110 // jump to the normal destination branch. 2111 BasicBlock *NormalDestBB = II->getNormalDest(); 2112 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2113 BranchInst::Create(NormalDestBB, II); 2114 UnwindDestBB->removePredecessor(II->getParent()); 2115 II->eraseFromParent(); 2116 if (DTU) 2117 DTU->deleteEdgeRelaxed(BB, UnwindDestBB); 2118 } else 2119 changeToCall(II, DTU); 2120 Changed = true; 2121 } 2122 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2123 // Remove catchpads which cannot be reached. 2124 struct CatchPadDenseMapInfo { 2125 static CatchPadInst *getEmptyKey() { 2126 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2127 } 2128 2129 static CatchPadInst *getTombstoneKey() { 2130 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2131 } 2132 2133 static unsigned getHashValue(CatchPadInst *CatchPad) { 2134 return static_cast<unsigned>(hash_combine_range( 2135 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2136 } 2137 2138 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2139 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2140 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2141 return LHS == RHS; 2142 return LHS->isIdenticalTo(RHS); 2143 } 2144 }; 2145 2146 // Set of unique CatchPads. 2147 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2148 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2149 HandlerSet; 2150 detail::DenseSetEmpty Empty; 2151 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2152 E = CatchSwitch->handler_end(); 2153 I != E; ++I) { 2154 BasicBlock *HandlerBB = *I; 2155 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2156 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2157 CatchSwitch->removeHandler(I); 2158 --I; 2159 --E; 2160 Changed = true; 2161 } 2162 } 2163 } 2164 2165 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2166 for (BasicBlock *Successor : successors(BB)) 2167 if (Reachable.insert(Successor).second) 2168 Worklist.push_back(Successor); 2169 } while (!Worklist.empty()); 2170 return Changed; 2171 } 2172 2173 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2174 Instruction *TI = BB->getTerminator(); 2175 2176 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2177 changeToCall(II, DTU); 2178 return; 2179 } 2180 2181 Instruction *NewTI; 2182 BasicBlock *UnwindDest; 2183 2184 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2185 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2186 UnwindDest = CRI->getUnwindDest(); 2187 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2188 auto *NewCatchSwitch = CatchSwitchInst::Create( 2189 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2190 CatchSwitch->getName(), CatchSwitch); 2191 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2192 NewCatchSwitch->addHandler(PadBB); 2193 2194 NewTI = NewCatchSwitch; 2195 UnwindDest = CatchSwitch->getUnwindDest(); 2196 } else { 2197 llvm_unreachable("Could not find unwind successor"); 2198 } 2199 2200 NewTI->takeName(TI); 2201 NewTI->setDebugLoc(TI->getDebugLoc()); 2202 UnwindDest->removePredecessor(BB); 2203 TI->replaceAllUsesWith(NewTI); 2204 TI->eraseFromParent(); 2205 if (DTU) 2206 DTU->deleteEdgeRelaxed(BB, UnwindDest); 2207 } 2208 2209 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2210 /// if they are in a dead cycle. Return true if a change was made, false 2211 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 2212 /// after modifying the CFG. 2213 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI, 2214 DomTreeUpdater *DTU, 2215 MemorySSAUpdater *MSSAU) { 2216 SmallPtrSet<BasicBlock*, 16> Reachable; 2217 bool Changed = markAliveBlocks(F, Reachable, DTU); 2218 2219 // If there are unreachable blocks in the CFG... 2220 if (Reachable.size() == F.size()) 2221 return Changed; 2222 2223 assert(Reachable.size() < F.size()); 2224 NumRemoved += F.size()-Reachable.size(); 2225 2226 SmallPtrSet<BasicBlock *, 16> DeadBlockSet; 2227 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) { 2228 auto *BB = &*I; 2229 if (Reachable.count(BB)) 2230 continue; 2231 DeadBlockSet.insert(BB); 2232 } 2233 2234 if (MSSAU) 2235 MSSAU->removeBlocks(DeadBlockSet); 2236 2237 // Loop over all of the basic blocks that are not reachable, dropping all of 2238 // their internal references. Update DTU and LVI if available. 2239 std::vector<DominatorTree::UpdateType> Updates; 2240 for (auto *BB : DeadBlockSet) { 2241 for (BasicBlock *Successor : successors(BB)) { 2242 if (!DeadBlockSet.count(Successor)) 2243 Successor->removePredecessor(BB); 2244 if (DTU) 2245 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2246 } 2247 if (LVI) 2248 LVI->eraseBlock(BB); 2249 BB->dropAllReferences(); 2250 } 2251 for (Function::iterator I = ++F.begin(); I != F.end();) { 2252 auto *BB = &*I; 2253 if (Reachable.count(BB)) { 2254 ++I; 2255 continue; 2256 } 2257 if (DTU) { 2258 // Remove the terminator of BB to clear the successor list of BB. 2259 if (BB->getTerminator()) 2260 BB->getInstList().pop_back(); 2261 new UnreachableInst(BB->getContext(), BB); 2262 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2263 "applying corresponding DTU updates."); 2264 ++I; 2265 } else { 2266 I = F.getBasicBlockList().erase(I); 2267 } 2268 } 2269 2270 if (DTU) { 2271 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 2272 bool Deleted = false; 2273 for (auto *BB : DeadBlockSet) { 2274 if (DTU->isBBPendingDeletion(BB)) 2275 --NumRemoved; 2276 else 2277 Deleted = true; 2278 DTU->deleteBB(BB); 2279 } 2280 if (!Deleted) 2281 return false; 2282 } 2283 return true; 2284 } 2285 2286 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2287 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2288 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2289 K->dropUnknownNonDebugMetadata(KnownIDs); 2290 K->getAllMetadataOtherThanDebugLoc(Metadata); 2291 for (const auto &MD : Metadata) { 2292 unsigned Kind = MD.first; 2293 MDNode *JMD = J->getMetadata(Kind); 2294 MDNode *KMD = MD.second; 2295 2296 switch (Kind) { 2297 default: 2298 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2299 break; 2300 case LLVMContext::MD_dbg: 2301 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2302 case LLVMContext::MD_tbaa: 2303 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2304 break; 2305 case LLVMContext::MD_alias_scope: 2306 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2307 break; 2308 case LLVMContext::MD_noalias: 2309 case LLVMContext::MD_mem_parallel_loop_access: 2310 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2311 break; 2312 case LLVMContext::MD_access_group: 2313 K->setMetadata(LLVMContext::MD_access_group, 2314 intersectAccessGroups(K, J)); 2315 break; 2316 case LLVMContext::MD_range: 2317 2318 // If K does move, use most generic range. Otherwise keep the range of 2319 // K. 2320 if (DoesKMove) 2321 // FIXME: If K does move, we should drop the range info and nonnull. 2322 // Currently this function is used with DoesKMove in passes 2323 // doing hoisting/sinking and the current behavior of using the 2324 // most generic range is correct in those cases. 2325 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2326 break; 2327 case LLVMContext::MD_fpmath: 2328 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2329 break; 2330 case LLVMContext::MD_invariant_load: 2331 // Only set the !invariant.load if it is present in both instructions. 2332 K->setMetadata(Kind, JMD); 2333 break; 2334 case LLVMContext::MD_nonnull: 2335 // If K does move, keep nonull if it is present in both instructions. 2336 if (DoesKMove) 2337 K->setMetadata(Kind, JMD); 2338 break; 2339 case LLVMContext::MD_invariant_group: 2340 // Preserve !invariant.group in K. 2341 break; 2342 case LLVMContext::MD_align: 2343 K->setMetadata(Kind, 2344 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2345 break; 2346 case LLVMContext::MD_dereferenceable: 2347 case LLVMContext::MD_dereferenceable_or_null: 2348 K->setMetadata(Kind, 2349 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2350 break; 2351 } 2352 } 2353 // Set !invariant.group from J if J has it. If both instructions have it 2354 // then we will just pick it from J - even when they are different. 2355 // Also make sure that K is load or store - f.e. combining bitcast with load 2356 // could produce bitcast with invariant.group metadata, which is invalid. 2357 // FIXME: we should try to preserve both invariant.group md if they are 2358 // different, but right now instruction can only have one invariant.group. 2359 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2360 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2361 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2362 } 2363 2364 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2365 bool KDominatesJ) { 2366 unsigned KnownIDs[] = { 2367 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2368 LLVMContext::MD_noalias, LLVMContext::MD_range, 2369 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2370 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2371 LLVMContext::MD_dereferenceable, 2372 LLVMContext::MD_dereferenceable_or_null, 2373 LLVMContext::MD_access_group}; 2374 combineMetadata(K, J, KnownIDs, KDominatesJ); 2375 } 2376 2377 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2378 auto *ReplInst = dyn_cast<Instruction>(Repl); 2379 if (!ReplInst) 2380 return; 2381 2382 // Patch the replacement so that it is not more restrictive than the value 2383 // being replaced. 2384 // Note that if 'I' is a load being replaced by some operation, 2385 // for example, by an arithmetic operation, then andIRFlags() 2386 // would just erase all math flags from the original arithmetic 2387 // operation, which is clearly not wanted and not needed. 2388 if (!isa<LoadInst>(I)) 2389 ReplInst->andIRFlags(I); 2390 2391 // FIXME: If both the original and replacement value are part of the 2392 // same control-flow region (meaning that the execution of one 2393 // guarantees the execution of the other), then we can combine the 2394 // noalias scopes here and do better than the general conservative 2395 // answer used in combineMetadata(). 2396 2397 // In general, GVN unifies expressions over different control-flow 2398 // regions, and so we need a conservative combination of the noalias 2399 // scopes. 2400 static const unsigned KnownIDs[] = { 2401 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2402 LLVMContext::MD_noalias, LLVMContext::MD_range, 2403 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2404 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2405 LLVMContext::MD_access_group}; 2406 combineMetadata(ReplInst, I, KnownIDs, false); 2407 } 2408 2409 template <typename RootType, typename DominatesFn> 2410 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2411 const RootType &Root, 2412 const DominatesFn &Dominates) { 2413 assert(From->getType() == To->getType()); 2414 2415 unsigned Count = 0; 2416 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2417 UI != UE;) { 2418 Use &U = *UI++; 2419 if (!Dominates(Root, U)) 2420 continue; 2421 U.set(To); 2422 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2423 << "' as " << *To << " in " << *U << "\n"); 2424 ++Count; 2425 } 2426 return Count; 2427 } 2428 2429 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2430 assert(From->getType() == To->getType()); 2431 auto *BB = From->getParent(); 2432 unsigned Count = 0; 2433 2434 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2435 UI != UE;) { 2436 Use &U = *UI++; 2437 auto *I = cast<Instruction>(U.getUser()); 2438 if (I->getParent() == BB) 2439 continue; 2440 U.set(To); 2441 ++Count; 2442 } 2443 return Count; 2444 } 2445 2446 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2447 DominatorTree &DT, 2448 const BasicBlockEdge &Root) { 2449 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2450 return DT.dominates(Root, U); 2451 }; 2452 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2453 } 2454 2455 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2456 DominatorTree &DT, 2457 const BasicBlock *BB) { 2458 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2459 auto *I = cast<Instruction>(U.getUser())->getParent(); 2460 return DT.properlyDominates(BB, I); 2461 }; 2462 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2463 } 2464 2465 bool llvm::callsGCLeafFunction(const CallBase *Call, 2466 const TargetLibraryInfo &TLI) { 2467 // Check if the function is specifically marked as a gc leaf function. 2468 if (Call->hasFnAttr("gc-leaf-function")) 2469 return true; 2470 if (const Function *F = Call->getCalledFunction()) { 2471 if (F->hasFnAttribute("gc-leaf-function")) 2472 return true; 2473 2474 if (auto IID = F->getIntrinsicID()) 2475 // Most LLVM intrinsics do not take safepoints. 2476 return IID != Intrinsic::experimental_gc_statepoint && 2477 IID != Intrinsic::experimental_deoptimize; 2478 } 2479 2480 // Lib calls can be materialized by some passes, and won't be 2481 // marked as 'gc-leaf-function.' All available Libcalls are 2482 // GC-leaf. 2483 LibFunc LF; 2484 if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) { 2485 return TLI.has(LF); 2486 } 2487 2488 return false; 2489 } 2490 2491 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2492 LoadInst &NewLI) { 2493 auto *NewTy = NewLI.getType(); 2494 2495 // This only directly applies if the new type is also a pointer. 2496 if (NewTy->isPointerTy()) { 2497 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2498 return; 2499 } 2500 2501 // The only other translation we can do is to integral loads with !range 2502 // metadata. 2503 if (!NewTy->isIntegerTy()) 2504 return; 2505 2506 MDBuilder MDB(NewLI.getContext()); 2507 const Value *Ptr = OldLI.getPointerOperand(); 2508 auto *ITy = cast<IntegerType>(NewTy); 2509 auto *NullInt = ConstantExpr::getPtrToInt( 2510 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2511 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2512 NewLI.setMetadata(LLVMContext::MD_range, 2513 MDB.createRange(NonNullInt, NullInt)); 2514 } 2515 2516 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2517 MDNode *N, LoadInst &NewLI) { 2518 auto *NewTy = NewLI.getType(); 2519 2520 // Give up unless it is converted to a pointer where there is a single very 2521 // valuable mapping we can do reliably. 2522 // FIXME: It would be nice to propagate this in more ways, but the type 2523 // conversions make it hard. 2524 if (!NewTy->isPointerTy()) 2525 return; 2526 2527 unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy); 2528 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2529 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2530 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2531 } 2532 } 2533 2534 void llvm::dropDebugUsers(Instruction &I) { 2535 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2536 findDbgUsers(DbgUsers, &I); 2537 for (auto *DII : DbgUsers) 2538 DII->eraseFromParent(); 2539 } 2540 2541 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2542 BasicBlock *BB) { 2543 // Since we are moving the instructions out of its basic block, we do not 2544 // retain their original debug locations (DILocations) and debug intrinsic 2545 // instructions. 2546 // 2547 // Doing so would degrade the debugging experience and adversely affect the 2548 // accuracy of profiling information. 2549 // 2550 // Currently, when hoisting the instructions, we take the following actions: 2551 // - Remove their debug intrinsic instructions. 2552 // - Set their debug locations to the values from the insertion point. 2553 // 2554 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2555 // need to be deleted, is because there will not be any instructions with a 2556 // DILocation in either branch left after performing the transformation. We 2557 // can only insert a dbg.value after the two branches are joined again. 2558 // 2559 // See PR38762, PR39243 for more details. 2560 // 2561 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2562 // encode predicated DIExpressions that yield different results on different 2563 // code paths. 2564 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2565 Instruction *I = &*II; 2566 I->dropUnknownNonDebugMetadata(); 2567 if (I->isUsedByMetadata()) 2568 dropDebugUsers(*I); 2569 if (isa<DbgInfoIntrinsic>(I)) { 2570 // Remove DbgInfo Intrinsics. 2571 II = I->eraseFromParent(); 2572 continue; 2573 } 2574 I->setDebugLoc(InsertPt->getDebugLoc()); 2575 ++II; 2576 } 2577 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2578 BB->begin(), 2579 BB->getTerminator()->getIterator()); 2580 } 2581 2582 namespace { 2583 2584 /// A potential constituent of a bitreverse or bswap expression. See 2585 /// collectBitParts for a fuller explanation. 2586 struct BitPart { 2587 BitPart(Value *P, unsigned BW) : Provider(P) { 2588 Provenance.resize(BW); 2589 } 2590 2591 /// The Value that this is a bitreverse/bswap of. 2592 Value *Provider; 2593 2594 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2595 /// in Provider becomes bit B in the result of this expression. 2596 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2597 2598 enum { Unset = -1 }; 2599 }; 2600 2601 } // end anonymous namespace 2602 2603 /// Analyze the specified subexpression and see if it is capable of providing 2604 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2605 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2606 /// the output of the expression came from a corresponding bit in some other 2607 /// value. This function is recursive, and the end result is a mapping of 2608 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2609 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2610 /// 2611 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2612 /// that the expression deposits the low byte of %X into the high byte of the 2613 /// result and that all other bits are zero. This expression is accepted and a 2614 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2615 /// [0-7]. 2616 /// 2617 /// To avoid revisiting values, the BitPart results are memoized into the 2618 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2619 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2620 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2621 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2622 /// type instead to provide the same functionality. 2623 /// 2624 /// Because we pass around references into \c BPS, we must use a container that 2625 /// does not invalidate internal references (std::map instead of DenseMap). 2626 static const Optional<BitPart> & 2627 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2628 std::map<Value *, Optional<BitPart>> &BPS) { 2629 auto I = BPS.find(V); 2630 if (I != BPS.end()) 2631 return I->second; 2632 2633 auto &Result = BPS[V] = None; 2634 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2635 2636 if (Instruction *I = dyn_cast<Instruction>(V)) { 2637 // If this is an or instruction, it may be an inner node of the bswap. 2638 if (I->getOpcode() == Instruction::Or) { 2639 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2640 MatchBitReversals, BPS); 2641 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2642 MatchBitReversals, BPS); 2643 if (!A || !B) 2644 return Result; 2645 2646 // Try and merge the two together. 2647 if (!A->Provider || A->Provider != B->Provider) 2648 return Result; 2649 2650 Result = BitPart(A->Provider, BitWidth); 2651 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2652 if (A->Provenance[i] != BitPart::Unset && 2653 B->Provenance[i] != BitPart::Unset && 2654 A->Provenance[i] != B->Provenance[i]) 2655 return Result = None; 2656 2657 if (A->Provenance[i] == BitPart::Unset) 2658 Result->Provenance[i] = B->Provenance[i]; 2659 else 2660 Result->Provenance[i] = A->Provenance[i]; 2661 } 2662 2663 return Result; 2664 } 2665 2666 // If this is a logical shift by a constant, recurse then shift the result. 2667 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2668 unsigned BitShift = 2669 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2670 // Ensure the shift amount is defined. 2671 if (BitShift > BitWidth) 2672 return Result; 2673 2674 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2675 MatchBitReversals, BPS); 2676 if (!Res) 2677 return Result; 2678 Result = Res; 2679 2680 // Perform the "shift" on BitProvenance. 2681 auto &P = Result->Provenance; 2682 if (I->getOpcode() == Instruction::Shl) { 2683 P.erase(std::prev(P.end(), BitShift), P.end()); 2684 P.insert(P.begin(), BitShift, BitPart::Unset); 2685 } else { 2686 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2687 P.insert(P.end(), BitShift, BitPart::Unset); 2688 } 2689 2690 return Result; 2691 } 2692 2693 // If this is a logical 'and' with a mask that clears bits, recurse then 2694 // unset the appropriate bits. 2695 if (I->getOpcode() == Instruction::And && 2696 isa<ConstantInt>(I->getOperand(1))) { 2697 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2698 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2699 2700 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2701 // early exit. 2702 unsigned NumMaskedBits = AndMask.countPopulation(); 2703 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2704 return Result; 2705 2706 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2707 MatchBitReversals, BPS); 2708 if (!Res) 2709 return Result; 2710 Result = Res; 2711 2712 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2713 // If the AndMask is zero for this bit, clear the bit. 2714 if ((AndMask & Bit) == 0) 2715 Result->Provenance[i] = BitPart::Unset; 2716 return Result; 2717 } 2718 2719 // If this is a zext instruction zero extend the result. 2720 if (I->getOpcode() == Instruction::ZExt) { 2721 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2722 MatchBitReversals, BPS); 2723 if (!Res) 2724 return Result; 2725 2726 Result = BitPart(Res->Provider, BitWidth); 2727 auto NarrowBitWidth = 2728 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2729 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2730 Result->Provenance[i] = Res->Provenance[i]; 2731 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2732 Result->Provenance[i] = BitPart::Unset; 2733 return Result; 2734 } 2735 } 2736 2737 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2738 // the input value to the bswap/bitreverse. 2739 Result = BitPart(V, BitWidth); 2740 for (unsigned i = 0; i < BitWidth; ++i) 2741 Result->Provenance[i] = i; 2742 return Result; 2743 } 2744 2745 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2746 unsigned BitWidth) { 2747 if (From % 8 != To % 8) 2748 return false; 2749 // Convert from bit indices to byte indices and check for a byte reversal. 2750 From >>= 3; 2751 To >>= 3; 2752 BitWidth >>= 3; 2753 return From == BitWidth - To - 1; 2754 } 2755 2756 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2757 unsigned BitWidth) { 2758 return From == BitWidth - To - 1; 2759 } 2760 2761 bool llvm::recognizeBSwapOrBitReverseIdiom( 2762 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2763 SmallVectorImpl<Instruction *> &InsertedInsts) { 2764 if (Operator::getOpcode(I) != Instruction::Or) 2765 return false; 2766 if (!MatchBSwaps && !MatchBitReversals) 2767 return false; 2768 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2769 if (!ITy || ITy->getBitWidth() > 128) 2770 return false; // Can't do vectors or integers > 128 bits. 2771 unsigned BW = ITy->getBitWidth(); 2772 2773 unsigned DemandedBW = BW; 2774 IntegerType *DemandedTy = ITy; 2775 if (I->hasOneUse()) { 2776 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2777 DemandedTy = cast<IntegerType>(Trunc->getType()); 2778 DemandedBW = DemandedTy->getBitWidth(); 2779 } 2780 } 2781 2782 // Try to find all the pieces corresponding to the bswap. 2783 std::map<Value *, Optional<BitPart>> BPS; 2784 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2785 if (!Res) 2786 return false; 2787 auto &BitProvenance = Res->Provenance; 2788 2789 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2790 // only byteswap values with an even number of bytes. 2791 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2792 for (unsigned i = 0; i < DemandedBW; ++i) { 2793 OKForBSwap &= 2794 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2795 OKForBitReverse &= 2796 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2797 } 2798 2799 Intrinsic::ID Intrin; 2800 if (OKForBSwap && MatchBSwaps) 2801 Intrin = Intrinsic::bswap; 2802 else if (OKForBitReverse && MatchBitReversals) 2803 Intrin = Intrinsic::bitreverse; 2804 else 2805 return false; 2806 2807 if (ITy != DemandedTy) { 2808 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2809 Value *Provider = Res->Provider; 2810 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2811 // We may need to truncate the provider. 2812 if (DemandedTy != ProviderTy) { 2813 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2814 "trunc", I); 2815 InsertedInsts.push_back(Trunc); 2816 Provider = Trunc; 2817 } 2818 auto *CI = CallInst::Create(F, Provider, "rev", I); 2819 InsertedInsts.push_back(CI); 2820 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2821 InsertedInsts.push_back(ExtInst); 2822 return true; 2823 } 2824 2825 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2826 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2827 return true; 2828 } 2829 2830 // CodeGen has special handling for some string functions that may replace 2831 // them with target-specific intrinsics. Since that'd skip our interceptors 2832 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2833 // we mark affected calls as NoBuiltin, which will disable optimization 2834 // in CodeGen. 2835 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2836 CallInst *CI, const TargetLibraryInfo *TLI) { 2837 Function *F = CI->getCalledFunction(); 2838 LibFunc Func; 2839 if (F && !F->hasLocalLinkage() && F->hasName() && 2840 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2841 !F->doesNotAccessMemory()) 2842 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2843 } 2844 2845 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2846 // We can't have a PHI with a metadata type. 2847 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2848 return false; 2849 2850 // Early exit. 2851 if (!isa<Constant>(I->getOperand(OpIdx))) 2852 return true; 2853 2854 switch (I->getOpcode()) { 2855 default: 2856 return true; 2857 case Instruction::Call: 2858 case Instruction::Invoke: 2859 // Can't handle inline asm. Skip it. 2860 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2861 return false; 2862 // Many arithmetic intrinsics have no issue taking a 2863 // variable, however it's hard to distingish these from 2864 // specials such as @llvm.frameaddress that require a constant. 2865 if (isa<IntrinsicInst>(I)) 2866 return false; 2867 2868 // Constant bundle operands may need to retain their constant-ness for 2869 // correctness. 2870 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2871 return false; 2872 return true; 2873 case Instruction::ShuffleVector: 2874 // Shufflevector masks are constant. 2875 return OpIdx != 2; 2876 case Instruction::Switch: 2877 case Instruction::ExtractValue: 2878 // All operands apart from the first are constant. 2879 return OpIdx == 0; 2880 case Instruction::InsertValue: 2881 // All operands apart from the first and the second are constant. 2882 return OpIdx < 2; 2883 case Instruction::Alloca: 2884 // Static allocas (constant size in the entry block) are handled by 2885 // prologue/epilogue insertion so they're free anyway. We definitely don't 2886 // want to make them non-constant. 2887 return !cast<AllocaInst>(I)->isStaticAlloca(); 2888 case Instruction::GetElementPtr: 2889 if (OpIdx == 0) 2890 return true; 2891 gep_type_iterator It = gep_type_begin(I); 2892 for (auto E = std::next(It, OpIdx); It != E; ++It) 2893 if (It.isStruct()) 2894 return false; 2895 return true; 2896 } 2897 } 2898