1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <utility>
86 
87 using namespace llvm;
88 using namespace llvm::PatternMatch;
89 
90 #define DEBUG_TYPE "local"
91 
92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
93 
94 //===----------------------------------------------------------------------===//
95 //  Local constant propagation.
96 //
97 
98 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
99 /// constant value, convert it into an unconditional branch to the constant
100 /// destination.  This is a nontrivial operation because the successors of this
101 /// basic block must have their PHI nodes updated.
102 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
103 /// conditions and indirectbr addresses this might make dead if
104 /// DeleteDeadConditions is true.
105 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
106                                   const TargetLibraryInfo *TLI,
107                                   DomTreeUpdater *DTU) {
108   Instruction *T = BB->getTerminator();
109   IRBuilder<> Builder(T);
110 
111   // Branch - See if we are conditional jumping on constant
112   if (auto *BI = dyn_cast<BranchInst>(T)) {
113     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
114     BasicBlock *Dest1 = BI->getSuccessor(0);
115     BasicBlock *Dest2 = BI->getSuccessor(1);
116 
117     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
118       // Are we branching on constant?
119       // YES.  Change to unconditional branch...
120       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
121       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
122 
123       // Let the basic block know that we are letting go of it.  Based on this,
124       // it will adjust it's PHI nodes.
125       OldDest->removePredecessor(BB);
126 
127       // Replace the conditional branch with an unconditional one.
128       Builder.CreateBr(Destination);
129       BI->eraseFromParent();
130       if (DTU)
131         DTU->deleteEdgeRelaxed(BB, OldDest);
132       return true;
133     }
134 
135     if (Dest2 == Dest1) {       // Conditional branch to same location?
136       // This branch matches something like this:
137       //     br bool %cond, label %Dest, label %Dest
138       // and changes it into:  br label %Dest
139 
140       // Let the basic block know that we are letting go of one copy of it.
141       assert(BI->getParent() && "Terminator not inserted in block!");
142       Dest1->removePredecessor(BI->getParent());
143 
144       // Replace the conditional branch with an unconditional one.
145       Builder.CreateBr(Dest1);
146       Value *Cond = BI->getCondition();
147       BI->eraseFromParent();
148       if (DeleteDeadConditions)
149         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
150       return true;
151     }
152     return false;
153   }
154 
155   if (auto *SI = dyn_cast<SwitchInst>(T)) {
156     // If we are switching on a constant, we can convert the switch to an
157     // unconditional branch.
158     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
159     BasicBlock *DefaultDest = SI->getDefaultDest();
160     BasicBlock *TheOnlyDest = DefaultDest;
161 
162     // If the default is unreachable, ignore it when searching for TheOnlyDest.
163     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
164         SI->getNumCases() > 0) {
165       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
166     }
167 
168     // Figure out which case it goes to.
169     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
170       // Found case matching a constant operand?
171       if (i->getCaseValue() == CI) {
172         TheOnlyDest = i->getCaseSuccessor();
173         break;
174       }
175 
176       // Check to see if this branch is going to the same place as the default
177       // dest.  If so, eliminate it as an explicit compare.
178       if (i->getCaseSuccessor() == DefaultDest) {
179         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
180         unsigned NCases = SI->getNumCases();
181         // Fold the case metadata into the default if there will be any branches
182         // left, unless the metadata doesn't match the switch.
183         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
184           // Collect branch weights into a vector.
185           SmallVector<uint32_t, 8> Weights;
186           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
187                ++MD_i) {
188             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
189             Weights.push_back(CI->getValue().getZExtValue());
190           }
191           // Merge weight of this case to the default weight.
192           unsigned idx = i->getCaseIndex();
193           Weights[0] += Weights[idx+1];
194           // Remove weight for this case.
195           std::swap(Weights[idx+1], Weights.back());
196           Weights.pop_back();
197           SI->setMetadata(LLVMContext::MD_prof,
198                           MDBuilder(BB->getContext()).
199                           createBranchWeights(Weights));
200         }
201         // Remove this entry.
202         BasicBlock *ParentBB = SI->getParent();
203         DefaultDest->removePredecessor(ParentBB);
204         i = SI->removeCase(i);
205         e = SI->case_end();
206         if (DTU)
207           DTU->deleteEdgeRelaxed(ParentBB, DefaultDest);
208         continue;
209       }
210 
211       // Otherwise, check to see if the switch only branches to one destination.
212       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
213       // destinations.
214       if (i->getCaseSuccessor() != TheOnlyDest)
215         TheOnlyDest = nullptr;
216 
217       // Increment this iterator as we haven't removed the case.
218       ++i;
219     }
220 
221     if (CI && !TheOnlyDest) {
222       // Branching on a constant, but not any of the cases, go to the default
223       // successor.
224       TheOnlyDest = SI->getDefaultDest();
225     }
226 
227     // If we found a single destination that we can fold the switch into, do so
228     // now.
229     if (TheOnlyDest) {
230       // Insert the new branch.
231       Builder.CreateBr(TheOnlyDest);
232       BasicBlock *BB = SI->getParent();
233       std::vector <DominatorTree::UpdateType> Updates;
234       if (DTU)
235         Updates.reserve(SI->getNumSuccessors() - 1);
236 
237       // Remove entries from PHI nodes which we no longer branch to...
238       for (BasicBlock *Succ : successors(SI)) {
239         // Found case matching a constant operand?
240         if (Succ == TheOnlyDest) {
241           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
242         } else {
243           Succ->removePredecessor(BB);
244           if (DTU)
245             Updates.push_back({DominatorTree::Delete, BB, Succ});
246         }
247       }
248 
249       // Delete the old switch.
250       Value *Cond = SI->getCondition();
251       SI->eraseFromParent();
252       if (DeleteDeadConditions)
253         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
254       if (DTU)
255         DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
256       return true;
257     }
258 
259     if (SI->getNumCases() == 1) {
260       // Otherwise, we can fold this switch into a conditional branch
261       // instruction if it has only one non-default destination.
262       auto FirstCase = *SI->case_begin();
263       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
264           FirstCase.getCaseValue(), "cond");
265 
266       // Insert the new branch.
267       BranchInst *NewBr = Builder.CreateCondBr(Cond,
268                                                FirstCase.getCaseSuccessor(),
269                                                SI->getDefaultDest());
270       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
271       if (MD && MD->getNumOperands() == 3) {
272         ConstantInt *SICase =
273             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
274         ConstantInt *SIDef =
275             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
276         assert(SICase && SIDef);
277         // The TrueWeight should be the weight for the single case of SI.
278         NewBr->setMetadata(LLVMContext::MD_prof,
279                         MDBuilder(BB->getContext()).
280                         createBranchWeights(SICase->getValue().getZExtValue(),
281                                             SIDef->getValue().getZExtValue()));
282       }
283 
284       // Update make.implicit metadata to the newly-created conditional branch.
285       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
286       if (MakeImplicitMD)
287         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
288 
289       // Delete the old switch.
290       SI->eraseFromParent();
291       return true;
292     }
293     return false;
294   }
295 
296   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
297     // indirectbr blockaddress(@F, @BB) -> br label @BB
298     if (auto *BA =
299           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
300       BasicBlock *TheOnlyDest = BA->getBasicBlock();
301       std::vector <DominatorTree::UpdateType> Updates;
302       if (DTU)
303         Updates.reserve(IBI->getNumDestinations() - 1);
304 
305       // Insert the new branch.
306       Builder.CreateBr(TheOnlyDest);
307 
308       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
309         if (IBI->getDestination(i) == TheOnlyDest) {
310           TheOnlyDest = nullptr;
311         } else {
312           BasicBlock *ParentBB = IBI->getParent();
313           BasicBlock *DestBB = IBI->getDestination(i);
314           DestBB->removePredecessor(ParentBB);
315           if (DTU)
316             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
317         }
318       }
319       Value *Address = IBI->getAddress();
320       IBI->eraseFromParent();
321       if (DeleteDeadConditions)
322         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
323 
324       // If we didn't find our destination in the IBI successor list, then we
325       // have undefined behavior.  Replace the unconditional branch with an
326       // 'unreachable' instruction.
327       if (TheOnlyDest) {
328         BB->getTerminator()->eraseFromParent();
329         new UnreachableInst(BB->getContext(), BB);
330       }
331 
332       if (DTU)
333         DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
334       return true;
335     }
336   }
337 
338   return false;
339 }
340 
341 //===----------------------------------------------------------------------===//
342 //  Local dead code elimination.
343 //
344 
345 /// isInstructionTriviallyDead - Return true if the result produced by the
346 /// instruction is not used, and the instruction has no side effects.
347 ///
348 bool llvm::isInstructionTriviallyDead(Instruction *I,
349                                       const TargetLibraryInfo *TLI) {
350   if (!I->use_empty())
351     return false;
352   return wouldInstructionBeTriviallyDead(I, TLI);
353 }
354 
355 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
356                                            const TargetLibraryInfo *TLI) {
357   if (I->isTerminator())
358     return false;
359 
360   // We don't want the landingpad-like instructions removed by anything this
361   // general.
362   if (I->isEHPad())
363     return false;
364 
365   // We don't want debug info removed by anything this general, unless
366   // debug info is empty.
367   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
368     if (DDI->getAddress())
369       return false;
370     return true;
371   }
372   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
373     if (DVI->getValue())
374       return false;
375     return true;
376   }
377   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
378     if (DLI->getLabel())
379       return false;
380     return true;
381   }
382 
383   if (!I->mayHaveSideEffects())
384     return true;
385 
386   // Special case intrinsics that "may have side effects" but can be deleted
387   // when dead.
388   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
389     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
390     if (II->getIntrinsicID() == Intrinsic::stacksave ||
391         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
392       return true;
393 
394     // Lifetime intrinsics are dead when their right-hand is undef.
395     if (II->isLifetimeStartOrEnd())
396       return isa<UndefValue>(II->getArgOperand(1));
397 
398     // Assumptions are dead if their condition is trivially true.  Guards on
399     // true are operationally no-ops.  In the future we can consider more
400     // sophisticated tradeoffs for guards considering potential for check
401     // widening, but for now we keep things simple.
402     if (II->getIntrinsicID() == Intrinsic::assume ||
403         II->getIntrinsicID() == Intrinsic::experimental_guard) {
404       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
405         return !Cond->isZero();
406 
407       return false;
408     }
409   }
410 
411   if (isAllocLikeFn(I, TLI))
412     return true;
413 
414   if (CallInst *CI = isFreeCall(I, TLI))
415     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
416       return C->isNullValue() || isa<UndefValue>(C);
417 
418   if (auto *Call = dyn_cast<CallBase>(I))
419     if (isMathLibCallNoop(Call, TLI))
420       return true;
421 
422   return false;
423 }
424 
425 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
426 /// trivially dead instruction, delete it.  If that makes any of its operands
427 /// trivially dead, delete them too, recursively.  Return true if any
428 /// instructions were deleted.
429 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
430     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
431   Instruction *I = dyn_cast<Instruction>(V);
432   if (!I || !isInstructionTriviallyDead(I, TLI))
433     return false;
434 
435   SmallVector<Instruction*, 16> DeadInsts;
436   DeadInsts.push_back(I);
437   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
438 
439   return true;
440 }
441 
442 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
443     SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI,
444     MemorySSAUpdater *MSSAU) {
445   // Process the dead instruction list until empty.
446   while (!DeadInsts.empty()) {
447     Instruction &I = *DeadInsts.pop_back_val();
448     assert(I.use_empty() && "Instructions with uses are not dead.");
449     assert(isInstructionTriviallyDead(&I, TLI) &&
450            "Live instruction found in dead worklist!");
451 
452     // Don't lose the debug info while deleting the instructions.
453     salvageDebugInfo(I);
454 
455     // Null out all of the instruction's operands to see if any operand becomes
456     // dead as we go.
457     for (Use &OpU : I.operands()) {
458       Value *OpV = OpU.get();
459       OpU.set(nullptr);
460 
461       if (!OpV->use_empty())
462         continue;
463 
464       // If the operand is an instruction that became dead as we nulled out the
465       // operand, and if it is 'trivially' dead, delete it in a future loop
466       // iteration.
467       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
468         if (isInstructionTriviallyDead(OpI, TLI))
469           DeadInsts.push_back(OpI);
470     }
471     if (MSSAU)
472       MSSAU->removeMemoryAccess(&I);
473 
474     I.eraseFromParent();
475   }
476 }
477 
478 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
479   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
480   findDbgUsers(DbgUsers, I);
481   for (auto *DII : DbgUsers) {
482     Value *Undef = UndefValue::get(I->getType());
483     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
484                                             ValueAsMetadata::get(Undef)));
485   }
486   return !DbgUsers.empty();
487 }
488 
489 /// areAllUsesEqual - Check whether the uses of a value are all the same.
490 /// This is similar to Instruction::hasOneUse() except this will also return
491 /// true when there are no uses or multiple uses that all refer to the same
492 /// value.
493 static bool areAllUsesEqual(Instruction *I) {
494   Value::user_iterator UI = I->user_begin();
495   Value::user_iterator UE = I->user_end();
496   if (UI == UE)
497     return true;
498 
499   User *TheUse = *UI;
500   for (++UI; UI != UE; ++UI) {
501     if (*UI != TheUse)
502       return false;
503   }
504   return true;
505 }
506 
507 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
508 /// dead PHI node, due to being a def-use chain of single-use nodes that
509 /// either forms a cycle or is terminated by a trivially dead instruction,
510 /// delete it.  If that makes any of its operands trivially dead, delete them
511 /// too, recursively.  Return true if a change was made.
512 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
513                                         const TargetLibraryInfo *TLI) {
514   SmallPtrSet<Instruction*, 4> Visited;
515   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
516        I = cast<Instruction>(*I->user_begin())) {
517     if (I->use_empty())
518       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
519 
520     // If we find an instruction more than once, we're on a cycle that
521     // won't prove fruitful.
522     if (!Visited.insert(I).second) {
523       // Break the cycle and delete the instruction and its operands.
524       I->replaceAllUsesWith(UndefValue::get(I->getType()));
525       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
526       return true;
527     }
528   }
529   return false;
530 }
531 
532 static bool
533 simplifyAndDCEInstruction(Instruction *I,
534                           SmallSetVector<Instruction *, 16> &WorkList,
535                           const DataLayout &DL,
536                           const TargetLibraryInfo *TLI) {
537   if (isInstructionTriviallyDead(I, TLI)) {
538     salvageDebugInfo(*I);
539 
540     // Null out all of the instruction's operands to see if any operand becomes
541     // dead as we go.
542     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
543       Value *OpV = I->getOperand(i);
544       I->setOperand(i, nullptr);
545 
546       if (!OpV->use_empty() || I == OpV)
547         continue;
548 
549       // If the operand is an instruction that became dead as we nulled out the
550       // operand, and if it is 'trivially' dead, delete it in a future loop
551       // iteration.
552       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
553         if (isInstructionTriviallyDead(OpI, TLI))
554           WorkList.insert(OpI);
555     }
556 
557     I->eraseFromParent();
558 
559     return true;
560   }
561 
562   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
563     // Add the users to the worklist. CAREFUL: an instruction can use itself,
564     // in the case of a phi node.
565     for (User *U : I->users()) {
566       if (U != I) {
567         WorkList.insert(cast<Instruction>(U));
568       }
569     }
570 
571     // Replace the instruction with its simplified value.
572     bool Changed = false;
573     if (!I->use_empty()) {
574       I->replaceAllUsesWith(SimpleV);
575       Changed = true;
576     }
577     if (isInstructionTriviallyDead(I, TLI)) {
578       I->eraseFromParent();
579       Changed = true;
580     }
581     return Changed;
582   }
583   return false;
584 }
585 
586 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
587 /// simplify any instructions in it and recursively delete dead instructions.
588 ///
589 /// This returns true if it changed the code, note that it can delete
590 /// instructions in other blocks as well in this block.
591 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
592                                        const TargetLibraryInfo *TLI) {
593   bool MadeChange = false;
594   const DataLayout &DL = BB->getModule()->getDataLayout();
595 
596 #ifndef NDEBUG
597   // In debug builds, ensure that the terminator of the block is never replaced
598   // or deleted by these simplifications. The idea of simplification is that it
599   // cannot introduce new instructions, and there is no way to replace the
600   // terminator of a block without introducing a new instruction.
601   AssertingVH<Instruction> TerminatorVH(&BB->back());
602 #endif
603 
604   SmallSetVector<Instruction *, 16> WorkList;
605   // Iterate over the original function, only adding insts to the worklist
606   // if they actually need to be revisited. This avoids having to pre-init
607   // the worklist with the entire function's worth of instructions.
608   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
609        BI != E;) {
610     assert(!BI->isTerminator());
611     Instruction *I = &*BI;
612     ++BI;
613 
614     // We're visiting this instruction now, so make sure it's not in the
615     // worklist from an earlier visit.
616     if (!WorkList.count(I))
617       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
618   }
619 
620   while (!WorkList.empty()) {
621     Instruction *I = WorkList.pop_back_val();
622     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
623   }
624   return MadeChange;
625 }
626 
627 //===----------------------------------------------------------------------===//
628 //  Control Flow Graph Restructuring.
629 //
630 
631 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
632 /// method is called when we're about to delete Pred as a predecessor of BB.  If
633 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
634 ///
635 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
636 /// nodes that collapse into identity values.  For example, if we have:
637 ///   x = phi(1, 0, 0, 0)
638 ///   y = and x, z
639 ///
640 /// .. and delete the predecessor corresponding to the '1', this will attempt to
641 /// recursively fold the and to 0.
642 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
643                                         DomTreeUpdater *DTU) {
644   // This only adjusts blocks with PHI nodes.
645   if (!isa<PHINode>(BB->begin()))
646     return;
647 
648   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
649   // them down.  This will leave us with single entry phi nodes and other phis
650   // that can be removed.
651   BB->removePredecessor(Pred, true);
652 
653   WeakTrackingVH PhiIt = &BB->front();
654   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
655     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
656     Value *OldPhiIt = PhiIt;
657 
658     if (!recursivelySimplifyInstruction(PN))
659       continue;
660 
661     // If recursive simplification ended up deleting the next PHI node we would
662     // iterate to, then our iterator is invalid, restart scanning from the top
663     // of the block.
664     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
665   }
666   if (DTU)
667     DTU->deleteEdgeRelaxed(Pred, BB);
668 }
669 
670 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
671 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
672 /// between them, moving the instructions in the predecessor into DestBB and
673 /// deleting the predecessor block.
674 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
675                                        DomTreeUpdater *DTU) {
676 
677   // If BB has single-entry PHI nodes, fold them.
678   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
679     Value *NewVal = PN->getIncomingValue(0);
680     // Replace self referencing PHI with undef, it must be dead.
681     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
682     PN->replaceAllUsesWith(NewVal);
683     PN->eraseFromParent();
684   }
685 
686   BasicBlock *PredBB = DestBB->getSinglePredecessor();
687   assert(PredBB && "Block doesn't have a single predecessor!");
688 
689   bool ReplaceEntryBB = false;
690   if (PredBB == &DestBB->getParent()->getEntryBlock())
691     ReplaceEntryBB = true;
692 
693   // DTU updates: Collect all the edges that enter
694   // PredBB. These dominator edges will be redirected to DestBB.
695   SmallVector<DominatorTree::UpdateType, 32> Updates;
696 
697   if (DTU) {
698     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
699     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
700       Updates.push_back({DominatorTree::Delete, *I, PredBB});
701       // This predecessor of PredBB may already have DestBB as a successor.
702       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
703         Updates.push_back({DominatorTree::Insert, *I, DestBB});
704     }
705   }
706 
707   // Zap anything that took the address of DestBB.  Not doing this will give the
708   // address an invalid value.
709   if (DestBB->hasAddressTaken()) {
710     BlockAddress *BA = BlockAddress::get(DestBB);
711     Constant *Replacement =
712       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
713     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
714                                                      BA->getType()));
715     BA->destroyConstant();
716   }
717 
718   // Anything that branched to PredBB now branches to DestBB.
719   PredBB->replaceAllUsesWith(DestBB);
720 
721   // Splice all the instructions from PredBB to DestBB.
722   PredBB->getTerminator()->eraseFromParent();
723   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
724   new UnreachableInst(PredBB->getContext(), PredBB);
725 
726   // If the PredBB is the entry block of the function, move DestBB up to
727   // become the entry block after we erase PredBB.
728   if (ReplaceEntryBB)
729     DestBB->moveAfter(PredBB);
730 
731   if (DTU) {
732     assert(PredBB->getInstList().size() == 1 &&
733            isa<UnreachableInst>(PredBB->getTerminator()) &&
734            "The successor list of PredBB isn't empty before "
735            "applying corresponding DTU updates.");
736     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
737     DTU->deleteBB(PredBB);
738     // Recalculation of DomTree is needed when updating a forward DomTree and
739     // the Entry BB is replaced.
740     if (ReplaceEntryBB && DTU->hasDomTree()) {
741       // The entry block was removed and there is no external interface for
742       // the dominator tree to be notified of this change. In this corner-case
743       // we recalculate the entire tree.
744       DTU->recalculate(*(DestBB->getParent()));
745     }
746   }
747 
748   else {
749     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
750   }
751 }
752 
753 /// CanMergeValues - Return true if we can choose one of these values to use
754 /// in place of the other. Note that we will always choose the non-undef
755 /// value to keep.
756 static bool CanMergeValues(Value *First, Value *Second) {
757   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
758 }
759 
760 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
761 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
762 ///
763 /// Assumption: Succ is the single successor for BB.
764 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
765   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
766 
767   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
768                     << Succ->getName() << "\n");
769   // Shortcut, if there is only a single predecessor it must be BB and merging
770   // is always safe
771   if (Succ->getSinglePredecessor()) return true;
772 
773   // Make a list of the predecessors of BB
774   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
775 
776   // Look at all the phi nodes in Succ, to see if they present a conflict when
777   // merging these blocks
778   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
779     PHINode *PN = cast<PHINode>(I);
780 
781     // If the incoming value from BB is again a PHINode in
782     // BB which has the same incoming value for *PI as PN does, we can
783     // merge the phi nodes and then the blocks can still be merged
784     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
785     if (BBPN && BBPN->getParent() == BB) {
786       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
787         BasicBlock *IBB = PN->getIncomingBlock(PI);
788         if (BBPreds.count(IBB) &&
789             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
790                             PN->getIncomingValue(PI))) {
791           LLVM_DEBUG(dbgs()
792                      << "Can't fold, phi node " << PN->getName() << " in "
793                      << Succ->getName() << " is conflicting with "
794                      << BBPN->getName() << " with regard to common predecessor "
795                      << IBB->getName() << "\n");
796           return false;
797         }
798       }
799     } else {
800       Value* Val = PN->getIncomingValueForBlock(BB);
801       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
802         // See if the incoming value for the common predecessor is equal to the
803         // one for BB, in which case this phi node will not prevent the merging
804         // of the block.
805         BasicBlock *IBB = PN->getIncomingBlock(PI);
806         if (BBPreds.count(IBB) &&
807             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
808           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
809                             << " in " << Succ->getName()
810                             << " is conflicting with regard to common "
811                             << "predecessor " << IBB->getName() << "\n");
812           return false;
813         }
814       }
815     }
816   }
817 
818   return true;
819 }
820 
821 using PredBlockVector = SmallVector<BasicBlock *, 16>;
822 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
823 
824 /// Determines the value to use as the phi node input for a block.
825 ///
826 /// Select between \p OldVal any value that we know flows from \p BB
827 /// to a particular phi on the basis of which one (if either) is not
828 /// undef. Update IncomingValues based on the selected value.
829 ///
830 /// \param OldVal The value we are considering selecting.
831 /// \param BB The block that the value flows in from.
832 /// \param IncomingValues A map from block-to-value for other phi inputs
833 /// that we have examined.
834 ///
835 /// \returns the selected value.
836 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
837                                           IncomingValueMap &IncomingValues) {
838   if (!isa<UndefValue>(OldVal)) {
839     assert((!IncomingValues.count(BB) ||
840             IncomingValues.find(BB)->second == OldVal) &&
841            "Expected OldVal to match incoming value from BB!");
842 
843     IncomingValues.insert(std::make_pair(BB, OldVal));
844     return OldVal;
845   }
846 
847   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
848   if (It != IncomingValues.end()) return It->second;
849 
850   return OldVal;
851 }
852 
853 /// Create a map from block to value for the operands of a
854 /// given phi.
855 ///
856 /// Create a map from block to value for each non-undef value flowing
857 /// into \p PN.
858 ///
859 /// \param PN The phi we are collecting the map for.
860 /// \param IncomingValues [out] The map from block to value for this phi.
861 static void gatherIncomingValuesToPhi(PHINode *PN,
862                                       IncomingValueMap &IncomingValues) {
863   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
864     BasicBlock *BB = PN->getIncomingBlock(i);
865     Value *V = PN->getIncomingValue(i);
866 
867     if (!isa<UndefValue>(V))
868       IncomingValues.insert(std::make_pair(BB, V));
869   }
870 }
871 
872 /// Replace the incoming undef values to a phi with the values
873 /// from a block-to-value map.
874 ///
875 /// \param PN The phi we are replacing the undefs in.
876 /// \param IncomingValues A map from block to value.
877 static void replaceUndefValuesInPhi(PHINode *PN,
878                                     const IncomingValueMap &IncomingValues) {
879   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
880     Value *V = PN->getIncomingValue(i);
881 
882     if (!isa<UndefValue>(V)) continue;
883 
884     BasicBlock *BB = PN->getIncomingBlock(i);
885     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
886     if (It == IncomingValues.end()) continue;
887 
888     PN->setIncomingValue(i, It->second);
889   }
890 }
891 
892 /// Replace a value flowing from a block to a phi with
893 /// potentially multiple instances of that value flowing from the
894 /// block's predecessors to the phi.
895 ///
896 /// \param BB The block with the value flowing into the phi.
897 /// \param BBPreds The predecessors of BB.
898 /// \param PN The phi that we are updating.
899 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
900                                                 const PredBlockVector &BBPreds,
901                                                 PHINode *PN) {
902   Value *OldVal = PN->removeIncomingValue(BB, false);
903   assert(OldVal && "No entry in PHI for Pred BB!");
904 
905   IncomingValueMap IncomingValues;
906 
907   // We are merging two blocks - BB, and the block containing PN - and
908   // as a result we need to redirect edges from the predecessors of BB
909   // to go to the block containing PN, and update PN
910   // accordingly. Since we allow merging blocks in the case where the
911   // predecessor and successor blocks both share some predecessors,
912   // and where some of those common predecessors might have undef
913   // values flowing into PN, we want to rewrite those values to be
914   // consistent with the non-undef values.
915 
916   gatherIncomingValuesToPhi(PN, IncomingValues);
917 
918   // If this incoming value is one of the PHI nodes in BB, the new entries
919   // in the PHI node are the entries from the old PHI.
920   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
921     PHINode *OldValPN = cast<PHINode>(OldVal);
922     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
923       // Note that, since we are merging phi nodes and BB and Succ might
924       // have common predecessors, we could end up with a phi node with
925       // identical incoming branches. This will be cleaned up later (and
926       // will trigger asserts if we try to clean it up now, without also
927       // simplifying the corresponding conditional branch).
928       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
929       Value *PredVal = OldValPN->getIncomingValue(i);
930       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
931                                                     IncomingValues);
932 
933       // And add a new incoming value for this predecessor for the
934       // newly retargeted branch.
935       PN->addIncoming(Selected, PredBB);
936     }
937   } else {
938     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
939       // Update existing incoming values in PN for this
940       // predecessor of BB.
941       BasicBlock *PredBB = BBPreds[i];
942       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
943                                                     IncomingValues);
944 
945       // And add a new incoming value for this predecessor for the
946       // newly retargeted branch.
947       PN->addIncoming(Selected, PredBB);
948     }
949   }
950 
951   replaceUndefValuesInPhi(PN, IncomingValues);
952 }
953 
954 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
955 /// unconditional branch, and contains no instructions other than PHI nodes,
956 /// potential side-effect free intrinsics and the branch.  If possible,
957 /// eliminate BB by rewriting all the predecessors to branch to the successor
958 /// block and return true.  If we can't transform, return false.
959 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
960                                                    DomTreeUpdater *DTU) {
961   assert(BB != &BB->getParent()->getEntryBlock() &&
962          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
963 
964   // We can't eliminate infinite loops.
965   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
966   if (BB == Succ) return false;
967 
968   // Check to see if merging these blocks would cause conflicts for any of the
969   // phi nodes in BB or Succ. If not, we can safely merge.
970   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
971 
972   // Check for cases where Succ has multiple predecessors and a PHI node in BB
973   // has uses which will not disappear when the PHI nodes are merged.  It is
974   // possible to handle such cases, but difficult: it requires checking whether
975   // BB dominates Succ, which is non-trivial to calculate in the case where
976   // Succ has multiple predecessors.  Also, it requires checking whether
977   // constructing the necessary self-referential PHI node doesn't introduce any
978   // conflicts; this isn't too difficult, but the previous code for doing this
979   // was incorrect.
980   //
981   // Note that if this check finds a live use, BB dominates Succ, so BB is
982   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
983   // folding the branch isn't profitable in that case anyway.
984   if (!Succ->getSinglePredecessor()) {
985     BasicBlock::iterator BBI = BB->begin();
986     while (isa<PHINode>(*BBI)) {
987       for (Use &U : BBI->uses()) {
988         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
989           if (PN->getIncomingBlock(U) != BB)
990             return false;
991         } else {
992           return false;
993         }
994       }
995       ++BBI;
996     }
997   }
998 
999   // We cannot fold the block if it's a branch to an already present callbr
1000   // successor because that creates duplicate successors.
1001   for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1002     if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) {
1003       if (Succ == CBI->getDefaultDest())
1004         return false;
1005       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1006         if (Succ == CBI->getIndirectDest(i))
1007           return false;
1008     }
1009   }
1010 
1011   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1012 
1013   SmallVector<DominatorTree::UpdateType, 32> Updates;
1014   if (DTU) {
1015     Updates.push_back({DominatorTree::Delete, BB, Succ});
1016     // All predecessors of BB will be moved to Succ.
1017     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1018       Updates.push_back({DominatorTree::Delete, *I, BB});
1019       // This predecessor of BB may already have Succ as a successor.
1020       if (llvm::find(successors(*I), Succ) == succ_end(*I))
1021         Updates.push_back({DominatorTree::Insert, *I, Succ});
1022     }
1023   }
1024 
1025   if (isa<PHINode>(Succ->begin())) {
1026     // If there is more than one pred of succ, and there are PHI nodes in
1027     // the successor, then we need to add incoming edges for the PHI nodes
1028     //
1029     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1030 
1031     // Loop over all of the PHI nodes in the successor of BB.
1032     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1033       PHINode *PN = cast<PHINode>(I);
1034 
1035       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1036     }
1037   }
1038 
1039   if (Succ->getSinglePredecessor()) {
1040     // BB is the only predecessor of Succ, so Succ will end up with exactly
1041     // the same predecessors BB had.
1042 
1043     // Copy over any phi, debug or lifetime instruction.
1044     BB->getTerminator()->eraseFromParent();
1045     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1046                                BB->getInstList());
1047   } else {
1048     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1049       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1050       assert(PN->use_empty() && "There shouldn't be any uses here!");
1051       PN->eraseFromParent();
1052     }
1053   }
1054 
1055   // If the unconditional branch we replaced contains llvm.loop metadata, we
1056   // add the metadata to the branch instructions in the predecessors.
1057   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1058   Instruction *TI = BB->getTerminator();
1059   if (TI)
1060     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1061       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1062         BasicBlock *Pred = *PI;
1063         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1064       }
1065 
1066   // Everything that jumped to BB now goes to Succ.
1067   BB->replaceAllUsesWith(Succ);
1068   if (!Succ->hasName()) Succ->takeName(BB);
1069 
1070   // Clear the successor list of BB to match updates applying to DTU later.
1071   if (BB->getTerminator())
1072     BB->getInstList().pop_back();
1073   new UnreachableInst(BB->getContext(), BB);
1074   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1075                            "applying corresponding DTU updates.");
1076 
1077   if (DTU) {
1078     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1079     DTU->deleteBB(BB);
1080   } else {
1081     BB->eraseFromParent(); // Delete the old basic block.
1082   }
1083   return true;
1084 }
1085 
1086 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1087 /// nodes in this block. This doesn't try to be clever about PHI nodes
1088 /// which differ only in the order of the incoming values, but instcombine
1089 /// orders them so it usually won't matter.
1090 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1091   // This implementation doesn't currently consider undef operands
1092   // specially. Theoretically, two phis which are identical except for
1093   // one having an undef where the other doesn't could be collapsed.
1094 
1095   struct PHIDenseMapInfo {
1096     static PHINode *getEmptyKey() {
1097       return DenseMapInfo<PHINode *>::getEmptyKey();
1098     }
1099 
1100     static PHINode *getTombstoneKey() {
1101       return DenseMapInfo<PHINode *>::getTombstoneKey();
1102     }
1103 
1104     static unsigned getHashValue(PHINode *PN) {
1105       // Compute a hash value on the operands. Instcombine will likely have
1106       // sorted them, which helps expose duplicates, but we have to check all
1107       // the operands to be safe in case instcombine hasn't run.
1108       return static_cast<unsigned>(hash_combine(
1109           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1110           hash_combine_range(PN->block_begin(), PN->block_end())));
1111     }
1112 
1113     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1114       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1115           RHS == getEmptyKey() || RHS == getTombstoneKey())
1116         return LHS == RHS;
1117       return LHS->isIdenticalTo(RHS);
1118     }
1119   };
1120 
1121   // Set of unique PHINodes.
1122   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1123 
1124   // Examine each PHI.
1125   bool Changed = false;
1126   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1127     auto Inserted = PHISet.insert(PN);
1128     if (!Inserted.second) {
1129       // A duplicate. Replace this PHI with its duplicate.
1130       PN->replaceAllUsesWith(*Inserted.first);
1131       PN->eraseFromParent();
1132       Changed = true;
1133 
1134       // The RAUW can change PHIs that we already visited. Start over from the
1135       // beginning.
1136       PHISet.clear();
1137       I = BB->begin();
1138     }
1139   }
1140 
1141   return Changed;
1142 }
1143 
1144 /// enforceKnownAlignment - If the specified pointer points to an object that
1145 /// we control, modify the object's alignment to PrefAlign. This isn't
1146 /// often possible though. If alignment is important, a more reliable approach
1147 /// is to simply align all global variables and allocation instructions to
1148 /// their preferred alignment from the beginning.
1149 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1150                                       unsigned PrefAlign,
1151                                       const DataLayout &DL) {
1152   assert(PrefAlign > Align);
1153 
1154   V = V->stripPointerCasts();
1155 
1156   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1157     // TODO: ideally, computeKnownBits ought to have used
1158     // AllocaInst::getAlignment() in its computation already, making
1159     // the below max redundant. But, as it turns out,
1160     // stripPointerCasts recurses through infinite layers of bitcasts,
1161     // while computeKnownBits is not allowed to traverse more than 6
1162     // levels.
1163     Align = std::max(AI->getAlignment(), Align);
1164     if (PrefAlign <= Align)
1165       return Align;
1166 
1167     // If the preferred alignment is greater than the natural stack alignment
1168     // then don't round up. This avoids dynamic stack realignment.
1169     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1170       return Align;
1171     AI->setAlignment(PrefAlign);
1172     return PrefAlign;
1173   }
1174 
1175   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1176     // TODO: as above, this shouldn't be necessary.
1177     Align = std::max(GO->getAlignment(), Align);
1178     if (PrefAlign <= Align)
1179       return Align;
1180 
1181     // If there is a large requested alignment and we can, bump up the alignment
1182     // of the global.  If the memory we set aside for the global may not be the
1183     // memory used by the final program then it is impossible for us to reliably
1184     // enforce the preferred alignment.
1185     if (!GO->canIncreaseAlignment())
1186       return Align;
1187 
1188     GO->setAlignment(PrefAlign);
1189     return PrefAlign;
1190   }
1191 
1192   return Align;
1193 }
1194 
1195 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1196                                           const DataLayout &DL,
1197                                           const Instruction *CxtI,
1198                                           AssumptionCache *AC,
1199                                           const DominatorTree *DT) {
1200   assert(V->getType()->isPointerTy() &&
1201          "getOrEnforceKnownAlignment expects a pointer!");
1202 
1203   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1204   unsigned TrailZ = Known.countMinTrailingZeros();
1205 
1206   // Avoid trouble with ridiculously large TrailZ values, such as
1207   // those computed from a null pointer.
1208   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1209 
1210   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1211 
1212   // LLVM doesn't support alignments larger than this currently.
1213   Align = std::min(Align, +Value::MaximumAlignment);
1214 
1215   if (PrefAlign > Align)
1216     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1217 
1218   // We don't need to make any adjustment.
1219   return Align;
1220 }
1221 
1222 ///===---------------------------------------------------------------------===//
1223 ///  Dbg Intrinsic utilities
1224 ///
1225 
1226 /// See if there is a dbg.value intrinsic for DIVar before I.
1227 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1228                               Instruction *I) {
1229   // Since we can't guarantee that the original dbg.declare instrinsic
1230   // is removed by LowerDbgDeclare(), we need to make sure that we are
1231   // not inserting the same dbg.value intrinsic over and over.
1232   BasicBlock::InstListType::iterator PrevI(I);
1233   if (PrevI != I->getParent()->getInstList().begin()) {
1234     --PrevI;
1235     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1236       if (DVI->getValue() == I->getOperand(0) &&
1237           DVI->getVariable() == DIVar &&
1238           DVI->getExpression() == DIExpr)
1239         return true;
1240   }
1241   return false;
1242 }
1243 
1244 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1245 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1246                              DIExpression *DIExpr,
1247                              PHINode *APN) {
1248   // Since we can't guarantee that the original dbg.declare instrinsic
1249   // is removed by LowerDbgDeclare(), we need to make sure that we are
1250   // not inserting the same dbg.value intrinsic over and over.
1251   SmallVector<DbgValueInst *, 1> DbgValues;
1252   findDbgValues(DbgValues, APN);
1253   for (auto *DVI : DbgValues) {
1254     assert(DVI->getValue() == APN);
1255     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1256       return true;
1257   }
1258   return false;
1259 }
1260 
1261 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1262 /// (or fragment of the variable) described by \p DII.
1263 ///
1264 /// This is primarily intended as a helper for the different
1265 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1266 /// converted describes an alloca'd variable, so we need to use the
1267 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1268 /// identified as covering an n-bit fragment, if the store size of i1 is at
1269 /// least n bits.
1270 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1271   const DataLayout &DL = DII->getModule()->getDataLayout();
1272   uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1273   if (auto FragmentSize = DII->getFragmentSizeInBits())
1274     return ValueSize >= *FragmentSize;
1275   // We can't always calculate the size of the DI variable (e.g. if it is a
1276   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1277   // intead.
1278   if (DII->isAddressOfVariable())
1279     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1280       if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1281         return ValueSize >= *FragmentSize;
1282   // Could not determine size of variable. Conservatively return false.
1283   return false;
1284 }
1285 
1286 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1287 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1288 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1289                                            StoreInst *SI, DIBuilder &Builder) {
1290   assert(DII->isAddressOfVariable());
1291   auto *DIVar = DII->getVariable();
1292   assert(DIVar && "Missing variable");
1293   auto *DIExpr = DII->getExpression();
1294   Value *DV = SI->getOperand(0);
1295 
1296   if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) {
1297     // FIXME: If storing to a part of the variable described by the dbg.declare,
1298     // then we want to insert a dbg.value for the corresponding fragment.
1299     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1300                       << *DII << '\n');
1301     // For now, when there is a store to parts of the variable (but we do not
1302     // know which part) we insert an dbg.value instrinsic to indicate that we
1303     // know nothing about the variable's content.
1304     DV = UndefValue::get(DV->getType());
1305     if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1306       Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1307                                       SI);
1308     return;
1309   }
1310 
1311   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1312     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1313                                     SI);
1314 }
1315 
1316 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1317 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1318 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1319                                            LoadInst *LI, DIBuilder &Builder) {
1320   auto *DIVar = DII->getVariable();
1321   auto *DIExpr = DII->getExpression();
1322   assert(DIVar && "Missing variable");
1323 
1324   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1325     return;
1326 
1327   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1328     // FIXME: If only referring to a part of the variable described by the
1329     // dbg.declare, then we want to insert a dbg.value for the corresponding
1330     // fragment.
1331     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1332                       << *DII << '\n');
1333     return;
1334   }
1335 
1336   // We are now tracking the loaded value instead of the address. In the
1337   // future if multi-location support is added to the IR, it might be
1338   // preferable to keep tracking both the loaded value and the original
1339   // address in case the alloca can not be elided.
1340   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1341       LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1342   DbgValue->insertAfter(LI);
1343 }
1344 
1345 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1346 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1347 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1348                                            PHINode *APN, DIBuilder &Builder) {
1349   auto *DIVar = DII->getVariable();
1350   auto *DIExpr = DII->getExpression();
1351   assert(DIVar && "Missing variable");
1352 
1353   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1354     return;
1355 
1356   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1357     // FIXME: If only referring to a part of the variable described by the
1358     // dbg.declare, then we want to insert a dbg.value for the corresponding
1359     // fragment.
1360     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1361                       << *DII << '\n');
1362     return;
1363   }
1364 
1365   BasicBlock *BB = APN->getParent();
1366   auto InsertionPt = BB->getFirstInsertionPt();
1367 
1368   // The block may be a catchswitch block, which does not have a valid
1369   // insertion point.
1370   // FIXME: Insert dbg.value markers in the successors when appropriate.
1371   if (InsertionPt != BB->end())
1372     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1373                                     &*InsertionPt);
1374 }
1375 
1376 /// Determine whether this alloca is either a VLA or an array.
1377 static bool isArray(AllocaInst *AI) {
1378   return AI->isArrayAllocation() ||
1379     AI->getType()->getElementType()->isArrayTy();
1380 }
1381 
1382 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1383 /// of llvm.dbg.value intrinsics.
1384 bool llvm::LowerDbgDeclare(Function &F) {
1385   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1386   SmallVector<DbgDeclareInst *, 4> Dbgs;
1387   for (auto &FI : F)
1388     for (Instruction &BI : FI)
1389       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1390         Dbgs.push_back(DDI);
1391 
1392   if (Dbgs.empty())
1393     return false;
1394 
1395   for (auto &I : Dbgs) {
1396     DbgDeclareInst *DDI = I;
1397     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1398     // If this is an alloca for a scalar variable, insert a dbg.value
1399     // at each load and store to the alloca and erase the dbg.declare.
1400     // The dbg.values allow tracking a variable even if it is not
1401     // stored on the stack, while the dbg.declare can only describe
1402     // the stack slot (and at a lexical-scope granularity). Later
1403     // passes will attempt to elide the stack slot.
1404     if (!AI || isArray(AI))
1405       continue;
1406 
1407     // A volatile load/store means that the alloca can't be elided anyway.
1408     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1409           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1410             return LI->isVolatile();
1411           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1412             return SI->isVolatile();
1413           return false;
1414         }))
1415       continue;
1416 
1417     for (auto &AIUse : AI->uses()) {
1418       User *U = AIUse.getUser();
1419       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1420         if (AIUse.getOperandNo() == 1)
1421           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1422       } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1423         ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1424       } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1425         // This is a call by-value or some other instruction that takes a
1426         // pointer to the variable. Insert a *value* intrinsic that describes
1427         // the variable by dereferencing the alloca.
1428         auto *DerefExpr =
1429             DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1430         DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1431                                     DDI->getDebugLoc(), CI);
1432       }
1433     }
1434     DDI->eraseFromParent();
1435   }
1436   return true;
1437 }
1438 
1439 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1440 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1441                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1442   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1443   if (InsertedPHIs.size() == 0)
1444     return;
1445 
1446   // Map existing PHI nodes to their dbg.values.
1447   ValueToValueMapTy DbgValueMap;
1448   for (auto &I : *BB) {
1449     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1450       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1451         DbgValueMap.insert({Loc, DbgII});
1452     }
1453   }
1454   if (DbgValueMap.size() == 0)
1455     return;
1456 
1457   // Then iterate through the new PHIs and look to see if they use one of the
1458   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1459   // propagate the info through the new PHI.
1460   LLVMContext &C = BB->getContext();
1461   for (auto PHI : InsertedPHIs) {
1462     BasicBlock *Parent = PHI->getParent();
1463     // Avoid inserting an intrinsic into an EH block.
1464     if (Parent->getFirstNonPHI()->isEHPad())
1465       continue;
1466     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1467     for (auto VI : PHI->operand_values()) {
1468       auto V = DbgValueMap.find(VI);
1469       if (V != DbgValueMap.end()) {
1470         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1471         Instruction *NewDbgII = DbgII->clone();
1472         NewDbgII->setOperand(0, PhiMAV);
1473         auto InsertionPt = Parent->getFirstInsertionPt();
1474         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1475         NewDbgII->insertBefore(&*InsertionPt);
1476       }
1477     }
1478   }
1479 }
1480 
1481 /// Finds all intrinsics declaring local variables as living in the memory that
1482 /// 'V' points to. This may include a mix of dbg.declare and
1483 /// dbg.addr intrinsics.
1484 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1485   // This function is hot. Check whether the value has any metadata to avoid a
1486   // DenseMap lookup.
1487   if (!V->isUsedByMetadata())
1488     return {};
1489   auto *L = LocalAsMetadata::getIfExists(V);
1490   if (!L)
1491     return {};
1492   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1493   if (!MDV)
1494     return {};
1495 
1496   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1497   for (User *U : MDV->users()) {
1498     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1499       if (DII->isAddressOfVariable())
1500         Declares.push_back(DII);
1501   }
1502 
1503   return Declares;
1504 }
1505 
1506 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1507   // This function is hot. Check whether the value has any metadata to avoid a
1508   // DenseMap lookup.
1509   if (!V->isUsedByMetadata())
1510     return;
1511   if (auto *L = LocalAsMetadata::getIfExists(V))
1512     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1513       for (User *U : MDV->users())
1514         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1515           DbgValues.push_back(DVI);
1516 }
1517 
1518 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1519                         Value *V) {
1520   // This function is hot. Check whether the value has any metadata to avoid a
1521   // DenseMap lookup.
1522   if (!V->isUsedByMetadata())
1523     return;
1524   if (auto *L = LocalAsMetadata::getIfExists(V))
1525     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1526       for (User *U : MDV->users())
1527         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1528           DbgUsers.push_back(DII);
1529 }
1530 
1531 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1532                              Instruction *InsertBefore, DIBuilder &Builder,
1533                              bool DerefBefore, int Offset, bool DerefAfter) {
1534   auto DbgAddrs = FindDbgAddrUses(Address);
1535   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1536     DebugLoc Loc = DII->getDebugLoc();
1537     auto *DIVar = DII->getVariable();
1538     auto *DIExpr = DII->getExpression();
1539     assert(DIVar && "Missing variable");
1540     DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1541     // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1542     // llvm.dbg.declare.
1543     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1544     if (DII == InsertBefore)
1545       InsertBefore = InsertBefore->getNextNode();
1546     DII->eraseFromParent();
1547   }
1548   return !DbgAddrs.empty();
1549 }
1550 
1551 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1552                                       DIBuilder &Builder, bool DerefBefore,
1553                                       int Offset, bool DerefAfter) {
1554   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1555                            DerefBefore, Offset, DerefAfter);
1556 }
1557 
1558 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1559                                         DIBuilder &Builder, int Offset) {
1560   DebugLoc Loc = DVI->getDebugLoc();
1561   auto *DIVar = DVI->getVariable();
1562   auto *DIExpr = DVI->getExpression();
1563   assert(DIVar && "Missing variable");
1564 
1565   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1566   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1567   // it and give up.
1568   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1569       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1570     return;
1571 
1572   // Insert the offset immediately after the first deref.
1573   // We could just change the offset argument of dbg.value, but it's unsigned...
1574   if (Offset) {
1575     SmallVector<uint64_t, 4> Ops;
1576     Ops.push_back(dwarf::DW_OP_deref);
1577     DIExpression::appendOffset(Ops, Offset);
1578     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1579     DIExpr = Builder.createExpression(Ops);
1580   }
1581 
1582   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1583   DVI->eraseFromParent();
1584 }
1585 
1586 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1587                                     DIBuilder &Builder, int Offset) {
1588   if (auto *L = LocalAsMetadata::getIfExists(AI))
1589     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1590       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1591         Use &U = *UI++;
1592         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1593           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1594       }
1595 }
1596 
1597 /// Wrap \p V in a ValueAsMetadata instance.
1598 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1599   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1600 }
1601 
1602 bool llvm::salvageDebugInfo(Instruction &I) {
1603   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1604   findDbgUsers(DbgUsers, &I);
1605   if (DbgUsers.empty())
1606     return false;
1607 
1608   return salvageDebugInfoForDbgValues(I, DbgUsers);
1609 }
1610 
1611 bool llvm::salvageDebugInfoForDbgValues(
1612     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1613   auto &Ctx = I.getContext();
1614   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1615 
1616   for (auto *DII : DbgUsers) {
1617     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1618     // are implicitly pointing out the value as a DWARF memory location
1619     // description.
1620     bool StackValue = isa<DbgValueInst>(DII);
1621 
1622     DIExpression *DIExpr =
1623         salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1624 
1625     // salvageDebugInfoImpl should fail on examining the first element of
1626     // DbgUsers, or none of them.
1627     if (!DIExpr)
1628       return false;
1629 
1630     DII->setOperand(0, wrapMD(I.getOperand(0)));
1631     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1632     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1633   }
1634 
1635   return true;
1636 }
1637 
1638 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1639                                          DIExpression *SrcDIExpr,
1640                                          bool WithStackValue) {
1641   auto &M = *I.getModule();
1642   auto &DL = M.getDataLayout();
1643 
1644   // Apply a vector of opcodes to the source DIExpression.
1645   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1646     DIExpression *DIExpr = SrcDIExpr;
1647     if (!Ops.empty()) {
1648       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1649     }
1650     return DIExpr;
1651   };
1652 
1653   // Apply the given offset to the source DIExpression.
1654   auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1655     SmallVector<uint64_t, 8> Ops;
1656     DIExpression::appendOffset(Ops, Offset);
1657     return doSalvage(Ops);
1658   };
1659 
1660   // initializer-list helper for applying operators to the source DIExpression.
1661   auto applyOps =
1662       [&](std::initializer_list<uint64_t> Opcodes) -> DIExpression * {
1663     SmallVector<uint64_t, 8> Ops(Opcodes);
1664     return doSalvage(Ops);
1665   };
1666 
1667   if (auto *CI = dyn_cast<CastInst>(&I)) {
1668     if (!CI->isNoopCast(DL))
1669       return nullptr;
1670 
1671     // No-op casts are irrelevant for debug info.
1672     return SrcDIExpr;
1673   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1674     unsigned BitWidth =
1675         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1676     // Rewrite a constant GEP into a DIExpression.
1677     APInt Offset(BitWidth, 0);
1678     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1679       return applyOffset(Offset.getSExtValue());
1680     } else {
1681       return nullptr;
1682     }
1683   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1684     // Rewrite binary operations with constant integer operands.
1685     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1686     if (!ConstInt || ConstInt->getBitWidth() > 64)
1687       return nullptr;
1688 
1689     uint64_t Val = ConstInt->getSExtValue();
1690     switch (BI->getOpcode()) {
1691     case Instruction::Add:
1692       return applyOffset(Val);
1693     case Instruction::Sub:
1694       return applyOffset(-int64_t(Val));
1695     case Instruction::Mul:
1696       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1697     case Instruction::SDiv:
1698       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1699     case Instruction::SRem:
1700       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1701     case Instruction::Or:
1702       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1703     case Instruction::And:
1704       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1705     case Instruction::Xor:
1706       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1707     case Instruction::Shl:
1708       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1709     case Instruction::LShr:
1710       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1711     case Instruction::AShr:
1712       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1713     default:
1714       // TODO: Salvage constants from each kind of binop we know about.
1715       return nullptr;
1716     }
1717     // *Not* to do: we should not attempt to salvage load instructions,
1718     // because the validity and lifetime of a dbg.value containing
1719     // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1720   }
1721   return nullptr;
1722 }
1723 
1724 /// A replacement for a dbg.value expression.
1725 using DbgValReplacement = Optional<DIExpression *>;
1726 
1727 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1728 /// possibly moving/deleting users to prevent use-before-def. Returns true if
1729 /// changes are made.
1730 static bool rewriteDebugUsers(
1731     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1732     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1733   // Find debug users of From.
1734   SmallVector<DbgVariableIntrinsic *, 1> Users;
1735   findDbgUsers(Users, &From);
1736   if (Users.empty())
1737     return false;
1738 
1739   // Prevent use-before-def of To.
1740   bool Changed = false;
1741   SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage;
1742   if (isa<Instruction>(&To)) {
1743     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1744 
1745     for (auto *DII : Users) {
1746       // It's common to see a debug user between From and DomPoint. Move it
1747       // after DomPoint to preserve the variable update without any reordering.
1748       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1749         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1750         DII->moveAfter(&DomPoint);
1751         Changed = true;
1752 
1753       // Users which otherwise aren't dominated by the replacement value must
1754       // be salvaged or deleted.
1755       } else if (!DT.dominates(&DomPoint, DII)) {
1756         DeleteOrSalvage.insert(DII);
1757       }
1758     }
1759   }
1760 
1761   // Update debug users without use-before-def risk.
1762   for (auto *DII : Users) {
1763     if (DeleteOrSalvage.count(DII))
1764       continue;
1765 
1766     LLVMContext &Ctx = DII->getContext();
1767     DbgValReplacement DVR = RewriteExpr(*DII);
1768     if (!DVR)
1769       continue;
1770 
1771     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1772     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1773     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1774     Changed = true;
1775   }
1776 
1777   if (!DeleteOrSalvage.empty()) {
1778     // Try to salvage the remaining debug users.
1779     Changed |= salvageDebugInfo(From);
1780 
1781     // Delete the debug users which weren't salvaged.
1782     for (auto *DII : DeleteOrSalvage) {
1783       if (DII->getVariableLocation() == &From) {
1784         LLVM_DEBUG(dbgs() << "Erased UseBeforeDef:  " << *DII << '\n');
1785         DII->eraseFromParent();
1786         Changed = true;
1787       }
1788     }
1789   }
1790 
1791   return Changed;
1792 }
1793 
1794 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1795 /// losslessly preserve the bits and semantics of the value. This predicate is
1796 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1797 ///
1798 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1799 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1800 /// and also does not allow lossless pointer <-> integer conversions.
1801 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1802                                          Type *ToTy) {
1803   // Trivially compatible types.
1804   if (FromTy == ToTy)
1805     return true;
1806 
1807   // Handle compatible pointer <-> integer conversions.
1808   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1809     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1810     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1811                               !DL.isNonIntegralPointerType(ToTy);
1812     return SameSize && LosslessConversion;
1813   }
1814 
1815   // TODO: This is not exhaustive.
1816   return false;
1817 }
1818 
1819 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1820                                  Instruction &DomPoint, DominatorTree &DT) {
1821   // Exit early if From has no debug users.
1822   if (!From.isUsedByMetadata())
1823     return false;
1824 
1825   assert(&From != &To && "Can't replace something with itself");
1826 
1827   Type *FromTy = From.getType();
1828   Type *ToTy = To.getType();
1829 
1830   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1831     return DII.getExpression();
1832   };
1833 
1834   // Handle no-op conversions.
1835   Module &M = *From.getModule();
1836   const DataLayout &DL = M.getDataLayout();
1837   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1838     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1839 
1840   // Handle integer-to-integer widening and narrowing.
1841   // FIXME: Use DW_OP_convert when it's available everywhere.
1842   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1843     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1844     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1845     assert(FromBits != ToBits && "Unexpected no-op conversion");
1846 
1847     // When the width of the result grows, assume that a debugger will only
1848     // access the low `FromBits` bits when inspecting the source variable.
1849     if (FromBits < ToBits)
1850       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1851 
1852     // The width of the result has shrunk. Use sign/zero extension to describe
1853     // the source variable's high bits.
1854     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1855       DILocalVariable *Var = DII.getVariable();
1856 
1857       // Without knowing signedness, sign/zero extension isn't possible.
1858       auto Signedness = Var->getSignedness();
1859       if (!Signedness)
1860         return None;
1861 
1862       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1863 
1864       if (!Signed) {
1865         // In the unsigned case, assume that a debugger will initialize the
1866         // high bits to 0 and do a no-op conversion.
1867         return Identity(DII);
1868       } else {
1869         // In the signed case, the high bits are given by sign extension, i.e:
1870         //   (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1)
1871         // Calculate the high bits and OR them together with the low bits.
1872         SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu,
1873                                       (ToBits - 1), dwarf::DW_OP_shr,
1874                                       dwarf::DW_OP_lit0, dwarf::DW_OP_not,
1875                                       dwarf::DW_OP_mul, dwarf::DW_OP_or});
1876         return DIExpression::appendToStack(DII.getExpression(), Ops);
1877       }
1878     };
1879     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1880   }
1881 
1882   // TODO: Floating-point conversions, vectors.
1883   return false;
1884 }
1885 
1886 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1887   unsigned NumDeadInst = 0;
1888   // Delete the instructions backwards, as it has a reduced likelihood of
1889   // having to update as many def-use and use-def chains.
1890   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1891   while (EndInst != &BB->front()) {
1892     // Delete the next to last instruction.
1893     Instruction *Inst = &*--EndInst->getIterator();
1894     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1895       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1896     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1897       EndInst = Inst;
1898       continue;
1899     }
1900     if (!isa<DbgInfoIntrinsic>(Inst))
1901       ++NumDeadInst;
1902     Inst->eraseFromParent();
1903   }
1904   return NumDeadInst;
1905 }
1906 
1907 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1908                                    bool PreserveLCSSA, DomTreeUpdater *DTU) {
1909   BasicBlock *BB = I->getParent();
1910   std::vector <DominatorTree::UpdateType> Updates;
1911 
1912   // Loop over all of the successors, removing BB's entry from any PHI
1913   // nodes.
1914   if (DTU)
1915     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1916   for (BasicBlock *Successor : successors(BB)) {
1917     Successor->removePredecessor(BB, PreserveLCSSA);
1918     if (DTU)
1919       Updates.push_back({DominatorTree::Delete, BB, Successor});
1920   }
1921   // Insert a call to llvm.trap right before this.  This turns the undefined
1922   // behavior into a hard fail instead of falling through into random code.
1923   if (UseLLVMTrap) {
1924     Function *TrapFn =
1925       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1926     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1927     CallTrap->setDebugLoc(I->getDebugLoc());
1928   }
1929   auto *UI = new UnreachableInst(I->getContext(), I);
1930   UI->setDebugLoc(I->getDebugLoc());
1931 
1932   // All instructions after this are dead.
1933   unsigned NumInstrsRemoved = 0;
1934   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1935   while (BBI != BBE) {
1936     if (!BBI->use_empty())
1937       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1938     BB->getInstList().erase(BBI++);
1939     ++NumInstrsRemoved;
1940   }
1941   if (DTU)
1942     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1943   return NumInstrsRemoved;
1944 }
1945 
1946 /// changeToCall - Convert the specified invoke into a normal call.
1947 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) {
1948   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1949   SmallVector<OperandBundleDef, 1> OpBundles;
1950   II->getOperandBundlesAsDefs(OpBundles);
1951   CallInst *NewCall = CallInst::Create(
1952       II->getFunctionType(), II->getCalledValue(), Args, OpBundles, "", II);
1953   NewCall->takeName(II);
1954   NewCall->setCallingConv(II->getCallingConv());
1955   NewCall->setAttributes(II->getAttributes());
1956   NewCall->setDebugLoc(II->getDebugLoc());
1957   NewCall->copyMetadata(*II);
1958   II->replaceAllUsesWith(NewCall);
1959 
1960   // Follow the call by a branch to the normal destination.
1961   BasicBlock *NormalDestBB = II->getNormalDest();
1962   BranchInst::Create(NormalDestBB, II);
1963 
1964   // Update PHI nodes in the unwind destination
1965   BasicBlock *BB = II->getParent();
1966   BasicBlock *UnwindDestBB = II->getUnwindDest();
1967   UnwindDestBB->removePredecessor(BB);
1968   II->eraseFromParent();
1969   if (DTU)
1970     DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
1971 }
1972 
1973 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1974                                                    BasicBlock *UnwindEdge) {
1975   BasicBlock *BB = CI->getParent();
1976 
1977   // Convert this function call into an invoke instruction.  First, split the
1978   // basic block.
1979   BasicBlock *Split =
1980       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1981 
1982   // Delete the unconditional branch inserted by splitBasicBlock
1983   BB->getInstList().pop_back();
1984 
1985   // Create the new invoke instruction.
1986   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1987   SmallVector<OperandBundleDef, 1> OpBundles;
1988 
1989   CI->getOperandBundlesAsDefs(OpBundles);
1990 
1991   // Note: we're round tripping operand bundles through memory here, and that
1992   // can potentially be avoided with a cleverer API design that we do not have
1993   // as of this time.
1994 
1995   InvokeInst *II =
1996       InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split,
1997                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
1998   II->setDebugLoc(CI->getDebugLoc());
1999   II->setCallingConv(CI->getCallingConv());
2000   II->setAttributes(CI->getAttributes());
2001 
2002   // Make sure that anything using the call now uses the invoke!  This also
2003   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2004   CI->replaceAllUsesWith(II);
2005 
2006   // Delete the original call
2007   Split->getInstList().pop_front();
2008   return Split;
2009 }
2010 
2011 static bool markAliveBlocks(Function &F,
2012                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2013                             DomTreeUpdater *DTU = nullptr) {
2014   SmallVector<BasicBlock*, 128> Worklist;
2015   BasicBlock *BB = &F.front();
2016   Worklist.push_back(BB);
2017   Reachable.insert(BB);
2018   bool Changed = false;
2019   do {
2020     BB = Worklist.pop_back_val();
2021 
2022     // Do a quick scan of the basic block, turning any obviously unreachable
2023     // instructions into LLVM unreachable insts.  The instruction combining pass
2024     // canonicalizes unreachable insts into stores to null or undef.
2025     for (Instruction &I : *BB) {
2026       if (auto *CI = dyn_cast<CallInst>(&I)) {
2027         Value *Callee = CI->getCalledValue();
2028         // Handle intrinsic calls.
2029         if (Function *F = dyn_cast<Function>(Callee)) {
2030           auto IntrinsicID = F->getIntrinsicID();
2031           // Assumptions that are known to be false are equivalent to
2032           // unreachable. Also, if the condition is undefined, then we make the
2033           // choice most beneficial to the optimizer, and choose that to also be
2034           // unreachable.
2035           if (IntrinsicID == Intrinsic::assume) {
2036             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2037               // Don't insert a call to llvm.trap right before the unreachable.
2038               changeToUnreachable(CI, false, false, DTU);
2039               Changed = true;
2040               break;
2041             }
2042           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2043             // A call to the guard intrinsic bails out of the current
2044             // compilation unit if the predicate passed to it is false. If the
2045             // predicate is a constant false, then we know the guard will bail
2046             // out of the current compile unconditionally, so all code following
2047             // it is dead.
2048             //
2049             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2050             // guards to treat `undef` as `false` since a guard on `undef` can
2051             // still be useful for widening.
2052             if (match(CI->getArgOperand(0), m_Zero()))
2053               if (!isa<UnreachableInst>(CI->getNextNode())) {
2054                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2055                                     false, DTU);
2056                 Changed = true;
2057                 break;
2058               }
2059           }
2060         } else if ((isa<ConstantPointerNull>(Callee) &&
2061                     !NullPointerIsDefined(CI->getFunction())) ||
2062                    isa<UndefValue>(Callee)) {
2063           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2064           Changed = true;
2065           break;
2066         }
2067         if (CI->doesNotReturn()) {
2068           // If we found a call to a no-return function, insert an unreachable
2069           // instruction after it.  Make sure there isn't *already* one there
2070           // though.
2071           if (!isa<UnreachableInst>(CI->getNextNode())) {
2072             // Don't insert a call to llvm.trap right before the unreachable.
2073             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2074             Changed = true;
2075           }
2076           break;
2077         }
2078       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2079         // Store to undef and store to null are undefined and used to signal
2080         // that they should be changed to unreachable by passes that can't
2081         // modify the CFG.
2082 
2083         // Don't touch volatile stores.
2084         if (SI->isVolatile()) continue;
2085 
2086         Value *Ptr = SI->getOperand(1);
2087 
2088         if (isa<UndefValue>(Ptr) ||
2089             (isa<ConstantPointerNull>(Ptr) &&
2090              !NullPointerIsDefined(SI->getFunction(),
2091                                    SI->getPointerAddressSpace()))) {
2092           changeToUnreachable(SI, true, false, DTU);
2093           Changed = true;
2094           break;
2095         }
2096       }
2097     }
2098 
2099     Instruction *Terminator = BB->getTerminator();
2100     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2101       // Turn invokes that call 'nounwind' functions into ordinary calls.
2102       Value *Callee = II->getCalledValue();
2103       if ((isa<ConstantPointerNull>(Callee) &&
2104            !NullPointerIsDefined(BB->getParent())) ||
2105           isa<UndefValue>(Callee)) {
2106         changeToUnreachable(II, true, false, DTU);
2107         Changed = true;
2108       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2109         if (II->use_empty() && II->onlyReadsMemory()) {
2110           // jump to the normal destination branch.
2111           BasicBlock *NormalDestBB = II->getNormalDest();
2112           BasicBlock *UnwindDestBB = II->getUnwindDest();
2113           BranchInst::Create(NormalDestBB, II);
2114           UnwindDestBB->removePredecessor(II->getParent());
2115           II->eraseFromParent();
2116           if (DTU)
2117             DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
2118         } else
2119           changeToCall(II, DTU);
2120         Changed = true;
2121       }
2122     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2123       // Remove catchpads which cannot be reached.
2124       struct CatchPadDenseMapInfo {
2125         static CatchPadInst *getEmptyKey() {
2126           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2127         }
2128 
2129         static CatchPadInst *getTombstoneKey() {
2130           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2131         }
2132 
2133         static unsigned getHashValue(CatchPadInst *CatchPad) {
2134           return static_cast<unsigned>(hash_combine_range(
2135               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2136         }
2137 
2138         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2139           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2140               RHS == getEmptyKey() || RHS == getTombstoneKey())
2141             return LHS == RHS;
2142           return LHS->isIdenticalTo(RHS);
2143         }
2144       };
2145 
2146       // Set of unique CatchPads.
2147       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2148                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2149           HandlerSet;
2150       detail::DenseSetEmpty Empty;
2151       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2152                                              E = CatchSwitch->handler_end();
2153            I != E; ++I) {
2154         BasicBlock *HandlerBB = *I;
2155         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2156         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2157           CatchSwitch->removeHandler(I);
2158           --I;
2159           --E;
2160           Changed = true;
2161         }
2162       }
2163     }
2164 
2165     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2166     for (BasicBlock *Successor : successors(BB))
2167       if (Reachable.insert(Successor).second)
2168         Worklist.push_back(Successor);
2169   } while (!Worklist.empty());
2170   return Changed;
2171 }
2172 
2173 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2174   Instruction *TI = BB->getTerminator();
2175 
2176   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2177     changeToCall(II, DTU);
2178     return;
2179   }
2180 
2181   Instruction *NewTI;
2182   BasicBlock *UnwindDest;
2183 
2184   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2185     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2186     UnwindDest = CRI->getUnwindDest();
2187   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2188     auto *NewCatchSwitch = CatchSwitchInst::Create(
2189         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2190         CatchSwitch->getName(), CatchSwitch);
2191     for (BasicBlock *PadBB : CatchSwitch->handlers())
2192       NewCatchSwitch->addHandler(PadBB);
2193 
2194     NewTI = NewCatchSwitch;
2195     UnwindDest = CatchSwitch->getUnwindDest();
2196   } else {
2197     llvm_unreachable("Could not find unwind successor");
2198   }
2199 
2200   NewTI->takeName(TI);
2201   NewTI->setDebugLoc(TI->getDebugLoc());
2202   UnwindDest->removePredecessor(BB);
2203   TI->replaceAllUsesWith(NewTI);
2204   TI->eraseFromParent();
2205   if (DTU)
2206     DTU->deleteEdgeRelaxed(BB, UnwindDest);
2207 }
2208 
2209 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2210 /// if they are in a dead cycle.  Return true if a change was made, false
2211 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
2212 /// after modifying the CFG.
2213 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
2214                                    DomTreeUpdater *DTU,
2215                                    MemorySSAUpdater *MSSAU) {
2216   SmallPtrSet<BasicBlock*, 16> Reachable;
2217   bool Changed = markAliveBlocks(F, Reachable, DTU);
2218 
2219   // If there are unreachable blocks in the CFG...
2220   if (Reachable.size() == F.size())
2221     return Changed;
2222 
2223   assert(Reachable.size() < F.size());
2224   NumRemoved += F.size()-Reachable.size();
2225 
2226   SmallPtrSet<BasicBlock *, 16> DeadBlockSet;
2227   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
2228     auto *BB = &*I;
2229     if (Reachable.count(BB))
2230       continue;
2231     DeadBlockSet.insert(BB);
2232   }
2233 
2234   if (MSSAU)
2235     MSSAU->removeBlocks(DeadBlockSet);
2236 
2237   // Loop over all of the basic blocks that are not reachable, dropping all of
2238   // their internal references. Update DTU and LVI if available.
2239   std::vector<DominatorTree::UpdateType> Updates;
2240   for (auto *BB : DeadBlockSet) {
2241     for (BasicBlock *Successor : successors(BB)) {
2242       if (!DeadBlockSet.count(Successor))
2243         Successor->removePredecessor(BB);
2244       if (DTU)
2245         Updates.push_back({DominatorTree::Delete, BB, Successor});
2246     }
2247     if (LVI)
2248       LVI->eraseBlock(BB);
2249     BB->dropAllReferences();
2250   }
2251   for (Function::iterator I = ++F.begin(); I != F.end();) {
2252     auto *BB = &*I;
2253     if (Reachable.count(BB)) {
2254       ++I;
2255       continue;
2256     }
2257     if (DTU) {
2258       // Remove the terminator of BB to clear the successor list of BB.
2259       if (BB->getTerminator())
2260         BB->getInstList().pop_back();
2261       new UnreachableInst(BB->getContext(), BB);
2262       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2263                                "applying corresponding DTU updates.");
2264       ++I;
2265     } else {
2266       I = F.getBasicBlockList().erase(I);
2267     }
2268   }
2269 
2270   if (DTU) {
2271     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
2272     bool Deleted = false;
2273     for (auto *BB : DeadBlockSet) {
2274       if (DTU->isBBPendingDeletion(BB))
2275         --NumRemoved;
2276       else
2277         Deleted = true;
2278       DTU->deleteBB(BB);
2279     }
2280     if (!Deleted)
2281       return false;
2282   }
2283   return true;
2284 }
2285 
2286 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2287                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2288   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2289   K->dropUnknownNonDebugMetadata(KnownIDs);
2290   K->getAllMetadataOtherThanDebugLoc(Metadata);
2291   for (const auto &MD : Metadata) {
2292     unsigned Kind = MD.first;
2293     MDNode *JMD = J->getMetadata(Kind);
2294     MDNode *KMD = MD.second;
2295 
2296     switch (Kind) {
2297       default:
2298         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2299         break;
2300       case LLVMContext::MD_dbg:
2301         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2302       case LLVMContext::MD_tbaa:
2303         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2304         break;
2305       case LLVMContext::MD_alias_scope:
2306         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2307         break;
2308       case LLVMContext::MD_noalias:
2309       case LLVMContext::MD_mem_parallel_loop_access:
2310         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2311         break;
2312       case LLVMContext::MD_access_group:
2313         K->setMetadata(LLVMContext::MD_access_group,
2314                        intersectAccessGroups(K, J));
2315         break;
2316       case LLVMContext::MD_range:
2317 
2318         // If K does move, use most generic range. Otherwise keep the range of
2319         // K.
2320         if (DoesKMove)
2321           // FIXME: If K does move, we should drop the range info and nonnull.
2322           //        Currently this function is used with DoesKMove in passes
2323           //        doing hoisting/sinking and the current behavior of using the
2324           //        most generic range is correct in those cases.
2325           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2326         break;
2327       case LLVMContext::MD_fpmath:
2328         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2329         break;
2330       case LLVMContext::MD_invariant_load:
2331         // Only set the !invariant.load if it is present in both instructions.
2332         K->setMetadata(Kind, JMD);
2333         break;
2334       case LLVMContext::MD_nonnull:
2335         // If K does move, keep nonull if it is present in both instructions.
2336         if (DoesKMove)
2337           K->setMetadata(Kind, JMD);
2338         break;
2339       case LLVMContext::MD_invariant_group:
2340         // Preserve !invariant.group in K.
2341         break;
2342       case LLVMContext::MD_align:
2343         K->setMetadata(Kind,
2344           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2345         break;
2346       case LLVMContext::MD_dereferenceable:
2347       case LLVMContext::MD_dereferenceable_or_null:
2348         K->setMetadata(Kind,
2349           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2350         break;
2351     }
2352   }
2353   // Set !invariant.group from J if J has it. If both instructions have it
2354   // then we will just pick it from J - even when they are different.
2355   // Also make sure that K is load or store - f.e. combining bitcast with load
2356   // could produce bitcast with invariant.group metadata, which is invalid.
2357   // FIXME: we should try to preserve both invariant.group md if they are
2358   // different, but right now instruction can only have one invariant.group.
2359   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2360     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2361       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2362 }
2363 
2364 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2365                                  bool KDominatesJ) {
2366   unsigned KnownIDs[] = {
2367       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2368       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2369       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2370       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2371       LLVMContext::MD_dereferenceable,
2372       LLVMContext::MD_dereferenceable_or_null,
2373       LLVMContext::MD_access_group};
2374   combineMetadata(K, J, KnownIDs, KDominatesJ);
2375 }
2376 
2377 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2378   auto *ReplInst = dyn_cast<Instruction>(Repl);
2379   if (!ReplInst)
2380     return;
2381 
2382   // Patch the replacement so that it is not more restrictive than the value
2383   // being replaced.
2384   // Note that if 'I' is a load being replaced by some operation,
2385   // for example, by an arithmetic operation, then andIRFlags()
2386   // would just erase all math flags from the original arithmetic
2387   // operation, which is clearly not wanted and not needed.
2388   if (!isa<LoadInst>(I))
2389     ReplInst->andIRFlags(I);
2390 
2391   // FIXME: If both the original and replacement value are part of the
2392   // same control-flow region (meaning that the execution of one
2393   // guarantees the execution of the other), then we can combine the
2394   // noalias scopes here and do better than the general conservative
2395   // answer used in combineMetadata().
2396 
2397   // In general, GVN unifies expressions over different control-flow
2398   // regions, and so we need a conservative combination of the noalias
2399   // scopes.
2400   static const unsigned KnownIDs[] = {
2401       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2402       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2403       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2404       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2405       LLVMContext::MD_access_group};
2406   combineMetadata(ReplInst, I, KnownIDs, false);
2407 }
2408 
2409 template <typename RootType, typename DominatesFn>
2410 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2411                                          const RootType &Root,
2412                                          const DominatesFn &Dominates) {
2413   assert(From->getType() == To->getType());
2414 
2415   unsigned Count = 0;
2416   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2417        UI != UE;) {
2418     Use &U = *UI++;
2419     if (!Dominates(Root, U))
2420       continue;
2421     U.set(To);
2422     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2423                       << "' as " << *To << " in " << *U << "\n");
2424     ++Count;
2425   }
2426   return Count;
2427 }
2428 
2429 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2430    assert(From->getType() == To->getType());
2431    auto *BB = From->getParent();
2432    unsigned Count = 0;
2433 
2434   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2435        UI != UE;) {
2436     Use &U = *UI++;
2437     auto *I = cast<Instruction>(U.getUser());
2438     if (I->getParent() == BB)
2439       continue;
2440     U.set(To);
2441     ++Count;
2442   }
2443   return Count;
2444 }
2445 
2446 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2447                                         DominatorTree &DT,
2448                                         const BasicBlockEdge &Root) {
2449   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2450     return DT.dominates(Root, U);
2451   };
2452   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2453 }
2454 
2455 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2456                                         DominatorTree &DT,
2457                                         const BasicBlock *BB) {
2458   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2459     auto *I = cast<Instruction>(U.getUser())->getParent();
2460     return DT.properlyDominates(BB, I);
2461   };
2462   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2463 }
2464 
2465 bool llvm::callsGCLeafFunction(const CallBase *Call,
2466                                const TargetLibraryInfo &TLI) {
2467   // Check if the function is specifically marked as a gc leaf function.
2468   if (Call->hasFnAttr("gc-leaf-function"))
2469     return true;
2470   if (const Function *F = Call->getCalledFunction()) {
2471     if (F->hasFnAttribute("gc-leaf-function"))
2472       return true;
2473 
2474     if (auto IID = F->getIntrinsicID())
2475       // Most LLVM intrinsics do not take safepoints.
2476       return IID != Intrinsic::experimental_gc_statepoint &&
2477              IID != Intrinsic::experimental_deoptimize;
2478   }
2479 
2480   // Lib calls can be materialized by some passes, and won't be
2481   // marked as 'gc-leaf-function.' All available Libcalls are
2482   // GC-leaf.
2483   LibFunc LF;
2484   if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) {
2485     return TLI.has(LF);
2486   }
2487 
2488   return false;
2489 }
2490 
2491 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2492                                LoadInst &NewLI) {
2493   auto *NewTy = NewLI.getType();
2494 
2495   // This only directly applies if the new type is also a pointer.
2496   if (NewTy->isPointerTy()) {
2497     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2498     return;
2499   }
2500 
2501   // The only other translation we can do is to integral loads with !range
2502   // metadata.
2503   if (!NewTy->isIntegerTy())
2504     return;
2505 
2506   MDBuilder MDB(NewLI.getContext());
2507   const Value *Ptr = OldLI.getPointerOperand();
2508   auto *ITy = cast<IntegerType>(NewTy);
2509   auto *NullInt = ConstantExpr::getPtrToInt(
2510       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2511   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2512   NewLI.setMetadata(LLVMContext::MD_range,
2513                     MDB.createRange(NonNullInt, NullInt));
2514 }
2515 
2516 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2517                              MDNode *N, LoadInst &NewLI) {
2518   auto *NewTy = NewLI.getType();
2519 
2520   // Give up unless it is converted to a pointer where there is a single very
2521   // valuable mapping we can do reliably.
2522   // FIXME: It would be nice to propagate this in more ways, but the type
2523   // conversions make it hard.
2524   if (!NewTy->isPointerTy())
2525     return;
2526 
2527   unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2528   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2529     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2530     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2531   }
2532 }
2533 
2534 void llvm::dropDebugUsers(Instruction &I) {
2535   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2536   findDbgUsers(DbgUsers, &I);
2537   for (auto *DII : DbgUsers)
2538     DII->eraseFromParent();
2539 }
2540 
2541 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2542                                     BasicBlock *BB) {
2543   // Since we are moving the instructions out of its basic block, we do not
2544   // retain their original debug locations (DILocations) and debug intrinsic
2545   // instructions.
2546   //
2547   // Doing so would degrade the debugging experience and adversely affect the
2548   // accuracy of profiling information.
2549   //
2550   // Currently, when hoisting the instructions, we take the following actions:
2551   // - Remove their debug intrinsic instructions.
2552   // - Set their debug locations to the values from the insertion point.
2553   //
2554   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2555   // need to be deleted, is because there will not be any instructions with a
2556   // DILocation in either branch left after performing the transformation. We
2557   // can only insert a dbg.value after the two branches are joined again.
2558   //
2559   // See PR38762, PR39243 for more details.
2560   //
2561   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2562   // encode predicated DIExpressions that yield different results on different
2563   // code paths.
2564   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2565     Instruction *I = &*II;
2566     I->dropUnknownNonDebugMetadata();
2567     if (I->isUsedByMetadata())
2568       dropDebugUsers(*I);
2569     if (isa<DbgInfoIntrinsic>(I)) {
2570       // Remove DbgInfo Intrinsics.
2571       II = I->eraseFromParent();
2572       continue;
2573     }
2574     I->setDebugLoc(InsertPt->getDebugLoc());
2575     ++II;
2576   }
2577   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2578                                  BB->begin(),
2579                                  BB->getTerminator()->getIterator());
2580 }
2581 
2582 namespace {
2583 
2584 /// A potential constituent of a bitreverse or bswap expression. See
2585 /// collectBitParts for a fuller explanation.
2586 struct BitPart {
2587   BitPart(Value *P, unsigned BW) : Provider(P) {
2588     Provenance.resize(BW);
2589   }
2590 
2591   /// The Value that this is a bitreverse/bswap of.
2592   Value *Provider;
2593 
2594   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2595   /// in Provider becomes bit B in the result of this expression.
2596   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2597 
2598   enum { Unset = -1 };
2599 };
2600 
2601 } // end anonymous namespace
2602 
2603 /// Analyze the specified subexpression and see if it is capable of providing
2604 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2605 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2606 /// the output of the expression came from a corresponding bit in some other
2607 /// value. This function is recursive, and the end result is a mapping of
2608 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2609 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2610 ///
2611 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2612 /// that the expression deposits the low byte of %X into the high byte of the
2613 /// result and that all other bits are zero. This expression is accepted and a
2614 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2615 /// [0-7].
2616 ///
2617 /// To avoid revisiting values, the BitPart results are memoized into the
2618 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2619 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2620 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2621 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2622 /// type instead to provide the same functionality.
2623 ///
2624 /// Because we pass around references into \c BPS, we must use a container that
2625 /// does not invalidate internal references (std::map instead of DenseMap).
2626 static const Optional<BitPart> &
2627 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2628                 std::map<Value *, Optional<BitPart>> &BPS) {
2629   auto I = BPS.find(V);
2630   if (I != BPS.end())
2631     return I->second;
2632 
2633   auto &Result = BPS[V] = None;
2634   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2635 
2636   if (Instruction *I = dyn_cast<Instruction>(V)) {
2637     // If this is an or instruction, it may be an inner node of the bswap.
2638     if (I->getOpcode() == Instruction::Or) {
2639       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2640                                 MatchBitReversals, BPS);
2641       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2642                                 MatchBitReversals, BPS);
2643       if (!A || !B)
2644         return Result;
2645 
2646       // Try and merge the two together.
2647       if (!A->Provider || A->Provider != B->Provider)
2648         return Result;
2649 
2650       Result = BitPart(A->Provider, BitWidth);
2651       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2652         if (A->Provenance[i] != BitPart::Unset &&
2653             B->Provenance[i] != BitPart::Unset &&
2654             A->Provenance[i] != B->Provenance[i])
2655           return Result = None;
2656 
2657         if (A->Provenance[i] == BitPart::Unset)
2658           Result->Provenance[i] = B->Provenance[i];
2659         else
2660           Result->Provenance[i] = A->Provenance[i];
2661       }
2662 
2663       return Result;
2664     }
2665 
2666     // If this is a logical shift by a constant, recurse then shift the result.
2667     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2668       unsigned BitShift =
2669           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2670       // Ensure the shift amount is defined.
2671       if (BitShift > BitWidth)
2672         return Result;
2673 
2674       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2675                                   MatchBitReversals, BPS);
2676       if (!Res)
2677         return Result;
2678       Result = Res;
2679 
2680       // Perform the "shift" on BitProvenance.
2681       auto &P = Result->Provenance;
2682       if (I->getOpcode() == Instruction::Shl) {
2683         P.erase(std::prev(P.end(), BitShift), P.end());
2684         P.insert(P.begin(), BitShift, BitPart::Unset);
2685       } else {
2686         P.erase(P.begin(), std::next(P.begin(), BitShift));
2687         P.insert(P.end(), BitShift, BitPart::Unset);
2688       }
2689 
2690       return Result;
2691     }
2692 
2693     // If this is a logical 'and' with a mask that clears bits, recurse then
2694     // unset the appropriate bits.
2695     if (I->getOpcode() == Instruction::And &&
2696         isa<ConstantInt>(I->getOperand(1))) {
2697       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2698       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2699 
2700       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2701       // early exit.
2702       unsigned NumMaskedBits = AndMask.countPopulation();
2703       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2704         return Result;
2705 
2706       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2707                                   MatchBitReversals, BPS);
2708       if (!Res)
2709         return Result;
2710       Result = Res;
2711 
2712       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2713         // If the AndMask is zero for this bit, clear the bit.
2714         if ((AndMask & Bit) == 0)
2715           Result->Provenance[i] = BitPart::Unset;
2716       return Result;
2717     }
2718 
2719     // If this is a zext instruction zero extend the result.
2720     if (I->getOpcode() == Instruction::ZExt) {
2721       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2722                                   MatchBitReversals, BPS);
2723       if (!Res)
2724         return Result;
2725 
2726       Result = BitPart(Res->Provider, BitWidth);
2727       auto NarrowBitWidth =
2728           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2729       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2730         Result->Provenance[i] = Res->Provenance[i];
2731       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2732         Result->Provenance[i] = BitPart::Unset;
2733       return Result;
2734     }
2735   }
2736 
2737   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2738   // the input value to the bswap/bitreverse.
2739   Result = BitPart(V, BitWidth);
2740   for (unsigned i = 0; i < BitWidth; ++i)
2741     Result->Provenance[i] = i;
2742   return Result;
2743 }
2744 
2745 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2746                                           unsigned BitWidth) {
2747   if (From % 8 != To % 8)
2748     return false;
2749   // Convert from bit indices to byte indices and check for a byte reversal.
2750   From >>= 3;
2751   To >>= 3;
2752   BitWidth >>= 3;
2753   return From == BitWidth - To - 1;
2754 }
2755 
2756 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2757                                                unsigned BitWidth) {
2758   return From == BitWidth - To - 1;
2759 }
2760 
2761 bool llvm::recognizeBSwapOrBitReverseIdiom(
2762     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2763     SmallVectorImpl<Instruction *> &InsertedInsts) {
2764   if (Operator::getOpcode(I) != Instruction::Or)
2765     return false;
2766   if (!MatchBSwaps && !MatchBitReversals)
2767     return false;
2768   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2769   if (!ITy || ITy->getBitWidth() > 128)
2770     return false;   // Can't do vectors or integers > 128 bits.
2771   unsigned BW = ITy->getBitWidth();
2772 
2773   unsigned DemandedBW = BW;
2774   IntegerType *DemandedTy = ITy;
2775   if (I->hasOneUse()) {
2776     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2777       DemandedTy = cast<IntegerType>(Trunc->getType());
2778       DemandedBW = DemandedTy->getBitWidth();
2779     }
2780   }
2781 
2782   // Try to find all the pieces corresponding to the bswap.
2783   std::map<Value *, Optional<BitPart>> BPS;
2784   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2785   if (!Res)
2786     return false;
2787   auto &BitProvenance = Res->Provenance;
2788 
2789   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2790   // only byteswap values with an even number of bytes.
2791   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2792   for (unsigned i = 0; i < DemandedBW; ++i) {
2793     OKForBSwap &=
2794         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2795     OKForBitReverse &=
2796         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2797   }
2798 
2799   Intrinsic::ID Intrin;
2800   if (OKForBSwap && MatchBSwaps)
2801     Intrin = Intrinsic::bswap;
2802   else if (OKForBitReverse && MatchBitReversals)
2803     Intrin = Intrinsic::bitreverse;
2804   else
2805     return false;
2806 
2807   if (ITy != DemandedTy) {
2808     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2809     Value *Provider = Res->Provider;
2810     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2811     // We may need to truncate the provider.
2812     if (DemandedTy != ProviderTy) {
2813       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2814                                      "trunc", I);
2815       InsertedInsts.push_back(Trunc);
2816       Provider = Trunc;
2817     }
2818     auto *CI = CallInst::Create(F, Provider, "rev", I);
2819     InsertedInsts.push_back(CI);
2820     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2821     InsertedInsts.push_back(ExtInst);
2822     return true;
2823   }
2824 
2825   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2826   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2827   return true;
2828 }
2829 
2830 // CodeGen has special handling for some string functions that may replace
2831 // them with target-specific intrinsics.  Since that'd skip our interceptors
2832 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2833 // we mark affected calls as NoBuiltin, which will disable optimization
2834 // in CodeGen.
2835 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2836     CallInst *CI, const TargetLibraryInfo *TLI) {
2837   Function *F = CI->getCalledFunction();
2838   LibFunc Func;
2839   if (F && !F->hasLocalLinkage() && F->hasName() &&
2840       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2841       !F->doesNotAccessMemory())
2842     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2843 }
2844 
2845 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2846   // We can't have a PHI with a metadata type.
2847   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2848     return false;
2849 
2850   // Early exit.
2851   if (!isa<Constant>(I->getOperand(OpIdx)))
2852     return true;
2853 
2854   switch (I->getOpcode()) {
2855   default:
2856     return true;
2857   case Instruction::Call:
2858   case Instruction::Invoke:
2859     // Can't handle inline asm. Skip it.
2860     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2861       return false;
2862     // Many arithmetic intrinsics have no issue taking a
2863     // variable, however it's hard to distingish these from
2864     // specials such as @llvm.frameaddress that require a constant.
2865     if (isa<IntrinsicInst>(I))
2866       return false;
2867 
2868     // Constant bundle operands may need to retain their constant-ness for
2869     // correctness.
2870     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2871       return false;
2872     return true;
2873   case Instruction::ShuffleVector:
2874     // Shufflevector masks are constant.
2875     return OpIdx != 2;
2876   case Instruction::Switch:
2877   case Instruction::ExtractValue:
2878     // All operands apart from the first are constant.
2879     return OpIdx == 0;
2880   case Instruction::InsertValue:
2881     // All operands apart from the first and the second are constant.
2882     return OpIdx < 2;
2883   case Instruction::Alloca:
2884     // Static allocas (constant size in the entry block) are handled by
2885     // prologue/epilogue insertion so they're free anyway. We definitely don't
2886     // want to make them non-constant.
2887     return !cast<AllocaInst>(I)->isStaticAlloca();
2888   case Instruction::GetElementPtr:
2889     if (OpIdx == 0)
2890       return true;
2891     gep_type_iterator It = gep_type_begin(I);
2892     for (auto E = std::next(It, OpIdx); It != E; ++It)
2893       if (It.isStruct())
2894         return false;
2895     return true;
2896   }
2897 }
2898