1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemoryBuiltins.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/IR/Argument.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DIBuilder.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfo.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalObject.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/KnownBits.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <utility> 84 85 using namespace llvm; 86 using namespace llvm::PatternMatch; 87 88 #define DEBUG_TYPE "local" 89 90 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 91 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 92 93 static cl::opt<bool> PHICSEDebugHash( 94 "phicse-debug-hash", 95 #ifdef EXPENSIVE_CHECKS 96 cl::init(true), 97 #else 98 cl::init(false), 99 #endif 100 cl::Hidden, 101 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 102 "function is well-behaved w.r.t. its isEqual predicate")); 103 104 static cl::opt<unsigned> PHICSENumPHISmallSize( 105 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 106 cl::desc( 107 "When the basic block contains not more than this number of PHI nodes, " 108 "perform a (faster!) exhaustive search instead of set-driven one.")); 109 110 // Max recursion depth for collectBitParts used when detecting bswap and 111 // bitreverse idioms. 112 static const unsigned BitPartRecursionMaxDepth = 48; 113 114 //===----------------------------------------------------------------------===// 115 // Local constant propagation. 116 // 117 118 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 119 /// constant value, convert it into an unconditional branch to the constant 120 /// destination. This is a nontrivial operation because the successors of this 121 /// basic block must have their PHI nodes updated. 122 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 123 /// conditions and indirectbr addresses this might make dead if 124 /// DeleteDeadConditions is true. 125 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 126 const TargetLibraryInfo *TLI, 127 DomTreeUpdater *DTU) { 128 Instruction *T = BB->getTerminator(); 129 IRBuilder<> Builder(T); 130 131 // Branch - See if we are conditional jumping on constant 132 if (auto *BI = dyn_cast<BranchInst>(T)) { 133 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 134 135 BasicBlock *Dest1 = BI->getSuccessor(0); 136 BasicBlock *Dest2 = BI->getSuccessor(1); 137 138 if (Dest2 == Dest1) { // Conditional branch to same location? 139 // This branch matches something like this: 140 // br bool %cond, label %Dest, label %Dest 141 // and changes it into: br label %Dest 142 143 // Let the basic block know that we are letting go of one copy of it. 144 assert(BI->getParent() && "Terminator not inserted in block!"); 145 Dest1->removePredecessor(BI->getParent()); 146 147 // Replace the conditional branch with an unconditional one. 148 BranchInst *NewBI = Builder.CreateBr(Dest1); 149 150 // Transfer the metadata to the new branch instruction. 151 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 152 LLVMContext::MD_annotation}); 153 154 Value *Cond = BI->getCondition(); 155 BI->eraseFromParent(); 156 if (DeleteDeadConditions) 157 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 158 return true; 159 } 160 161 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 162 // Are we branching on constant? 163 // YES. Change to unconditional branch... 164 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 165 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 166 167 // Let the basic block know that we are letting go of it. Based on this, 168 // it will adjust it's PHI nodes. 169 OldDest->removePredecessor(BB); 170 171 // Replace the conditional branch with an unconditional one. 172 BranchInst *NewBI = Builder.CreateBr(Destination); 173 174 // Transfer the metadata to the new branch instruction. 175 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 176 LLVMContext::MD_annotation}); 177 178 BI->eraseFromParent(); 179 if (DTU) 180 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 181 return true; 182 } 183 184 return false; 185 } 186 187 if (auto *SI = dyn_cast<SwitchInst>(T)) { 188 // If we are switching on a constant, we can convert the switch to an 189 // unconditional branch. 190 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 191 BasicBlock *DefaultDest = SI->getDefaultDest(); 192 BasicBlock *TheOnlyDest = DefaultDest; 193 194 // If the default is unreachable, ignore it when searching for TheOnlyDest. 195 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 196 SI->getNumCases() > 0) { 197 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 198 } 199 200 bool Changed = false; 201 202 // Figure out which case it goes to. 203 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 204 // Found case matching a constant operand? 205 if (i->getCaseValue() == CI) { 206 TheOnlyDest = i->getCaseSuccessor(); 207 break; 208 } 209 210 // Check to see if this branch is going to the same place as the default 211 // dest. If so, eliminate it as an explicit compare. 212 if (i->getCaseSuccessor() == DefaultDest) { 213 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 214 unsigned NCases = SI->getNumCases(); 215 // Fold the case metadata into the default if there will be any branches 216 // left, unless the metadata doesn't match the switch. 217 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 218 // Collect branch weights into a vector. 219 SmallVector<uint32_t, 8> Weights; 220 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 221 ++MD_i) { 222 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 223 Weights.push_back(CI->getValue().getZExtValue()); 224 } 225 // Merge weight of this case to the default weight. 226 unsigned idx = i->getCaseIndex(); 227 Weights[0] += Weights[idx+1]; 228 // Remove weight for this case. 229 std::swap(Weights[idx+1], Weights.back()); 230 Weights.pop_back(); 231 SI->setMetadata(LLVMContext::MD_prof, 232 MDBuilder(BB->getContext()). 233 createBranchWeights(Weights)); 234 } 235 // Remove this entry. 236 BasicBlock *ParentBB = SI->getParent(); 237 DefaultDest->removePredecessor(ParentBB); 238 i = SI->removeCase(i); 239 e = SI->case_end(); 240 Changed = true; 241 continue; 242 } 243 244 // Otherwise, check to see if the switch only branches to one destination. 245 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 246 // destinations. 247 if (i->getCaseSuccessor() != TheOnlyDest) 248 TheOnlyDest = nullptr; 249 250 // Increment this iterator as we haven't removed the case. 251 ++i; 252 } 253 254 if (CI && !TheOnlyDest) { 255 // Branching on a constant, but not any of the cases, go to the default 256 // successor. 257 TheOnlyDest = SI->getDefaultDest(); 258 } 259 260 // If we found a single destination that we can fold the switch into, do so 261 // now. 262 if (TheOnlyDest) { 263 // Insert the new branch. 264 Builder.CreateBr(TheOnlyDest); 265 BasicBlock *BB = SI->getParent(); 266 267 SmallSet<BasicBlock *, 8> RemovedSuccessors; 268 269 // Remove entries from PHI nodes which we no longer branch to... 270 BasicBlock *SuccToKeep = TheOnlyDest; 271 for (BasicBlock *Succ : successors(SI)) { 272 if (DTU && Succ != TheOnlyDest) 273 RemovedSuccessors.insert(Succ); 274 // Found case matching a constant operand? 275 if (Succ == SuccToKeep) { 276 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 277 } else { 278 Succ->removePredecessor(BB); 279 } 280 } 281 282 // Delete the old switch. 283 Value *Cond = SI->getCondition(); 284 SI->eraseFromParent(); 285 if (DeleteDeadConditions) 286 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 287 if (DTU) { 288 std::vector<DominatorTree::UpdateType> Updates; 289 Updates.reserve(RemovedSuccessors.size()); 290 for (auto *RemovedSuccessor : RemovedSuccessors) 291 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 292 DTU->applyUpdates(Updates); 293 } 294 return true; 295 } 296 297 if (SI->getNumCases() == 1) { 298 // Otherwise, we can fold this switch into a conditional branch 299 // instruction if it has only one non-default destination. 300 auto FirstCase = *SI->case_begin(); 301 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 302 FirstCase.getCaseValue(), "cond"); 303 304 // Insert the new branch. 305 BranchInst *NewBr = Builder.CreateCondBr(Cond, 306 FirstCase.getCaseSuccessor(), 307 SI->getDefaultDest()); 308 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 309 if (MD && MD->getNumOperands() == 3) { 310 ConstantInt *SICase = 311 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 312 ConstantInt *SIDef = 313 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 314 assert(SICase && SIDef); 315 // The TrueWeight should be the weight for the single case of SI. 316 NewBr->setMetadata(LLVMContext::MD_prof, 317 MDBuilder(BB->getContext()). 318 createBranchWeights(SICase->getValue().getZExtValue(), 319 SIDef->getValue().getZExtValue())); 320 } 321 322 // Update make.implicit metadata to the newly-created conditional branch. 323 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 324 if (MakeImplicitMD) 325 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 326 327 // Delete the old switch. 328 SI->eraseFromParent(); 329 return true; 330 } 331 return Changed; 332 } 333 334 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 335 // indirectbr blockaddress(@F, @BB) -> br label @BB 336 if (auto *BA = 337 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 338 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 339 SmallSet<BasicBlock *, 8> RemovedSuccessors; 340 341 // Insert the new branch. 342 Builder.CreateBr(TheOnlyDest); 343 344 BasicBlock *SuccToKeep = TheOnlyDest; 345 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 346 BasicBlock *DestBB = IBI->getDestination(i); 347 if (DTU && DestBB != TheOnlyDest) 348 RemovedSuccessors.insert(DestBB); 349 if (IBI->getDestination(i) == SuccToKeep) { 350 SuccToKeep = nullptr; 351 } else { 352 DestBB->removePredecessor(BB); 353 } 354 } 355 Value *Address = IBI->getAddress(); 356 IBI->eraseFromParent(); 357 if (DeleteDeadConditions) 358 // Delete pointer cast instructions. 359 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 360 361 // Also zap the blockaddress constant if there are no users remaining, 362 // otherwise the destination is still marked as having its address taken. 363 if (BA->use_empty()) 364 BA->destroyConstant(); 365 366 // If we didn't find our destination in the IBI successor list, then we 367 // have undefined behavior. Replace the unconditional branch with an 368 // 'unreachable' instruction. 369 if (SuccToKeep) { 370 BB->getTerminator()->eraseFromParent(); 371 new UnreachableInst(BB->getContext(), BB); 372 } 373 374 if (DTU) { 375 std::vector<DominatorTree::UpdateType> Updates; 376 Updates.reserve(RemovedSuccessors.size()); 377 for (auto *RemovedSuccessor : RemovedSuccessors) 378 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 379 DTU->applyUpdates(Updates); 380 } 381 return true; 382 } 383 } 384 385 return false; 386 } 387 388 //===----------------------------------------------------------------------===// 389 // Local dead code elimination. 390 // 391 392 /// isInstructionTriviallyDead - Return true if the result produced by the 393 /// instruction is not used, and the instruction has no side effects. 394 /// 395 bool llvm::isInstructionTriviallyDead(Instruction *I, 396 const TargetLibraryInfo *TLI) { 397 if (!I->use_empty()) 398 return false; 399 return wouldInstructionBeTriviallyDead(I, TLI); 400 } 401 402 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( 403 Instruction *I, const TargetLibraryInfo *TLI) { 404 // Instructions that are "markers" and have implied meaning on code around 405 // them (without explicit uses), are not dead on unused paths. 406 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 407 if (II->getIntrinsicID() == Intrinsic::stacksave || 408 II->getIntrinsicID() == Intrinsic::launder_invariant_group || 409 II->isLifetimeStartOrEnd()) 410 return false; 411 return wouldInstructionBeTriviallyDead(I, TLI); 412 } 413 414 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 415 const TargetLibraryInfo *TLI) { 416 if (I->isTerminator()) 417 return false; 418 419 // We don't want the landingpad-like instructions removed by anything this 420 // general. 421 if (I->isEHPad()) 422 return false; 423 424 // We don't want debug info removed by anything this general, unless 425 // debug info is empty. 426 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 427 if (DDI->getAddress()) 428 return false; 429 return true; 430 } 431 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 432 if (DVI->hasArgList() || DVI->getValue(0)) 433 return false; 434 return true; 435 } 436 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 437 if (DLI->getLabel()) 438 return false; 439 return true; 440 } 441 442 if (!I->willReturn()) 443 return false; 444 445 if (!I->mayHaveSideEffects()) 446 return true; 447 448 // Special case intrinsics that "may have side effects" but can be deleted 449 // when dead. 450 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 451 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 452 if (II->getIntrinsicID() == Intrinsic::stacksave || 453 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 454 return true; 455 456 if (II->isLifetimeStartOrEnd()) { 457 auto *Arg = II->getArgOperand(1); 458 // Lifetime intrinsics are dead when their right-hand is undef. 459 if (isa<UndefValue>(Arg)) 460 return true; 461 // If the right-hand is an alloc, global, or argument and the only uses 462 // are lifetime intrinsics then the intrinsics are dead. 463 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 464 return llvm::all_of(Arg->uses(), [](Use &Use) { 465 if (IntrinsicInst *IntrinsicUse = 466 dyn_cast<IntrinsicInst>(Use.getUser())) 467 return IntrinsicUse->isLifetimeStartOrEnd(); 468 return false; 469 }); 470 return false; 471 } 472 473 // Assumptions are dead if their condition is trivially true. Guards on 474 // true are operationally no-ops. In the future we can consider more 475 // sophisticated tradeoffs for guards considering potential for check 476 // widening, but for now we keep things simple. 477 if ((II->getIntrinsicID() == Intrinsic::assume && 478 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || 479 II->getIntrinsicID() == Intrinsic::experimental_guard) { 480 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 481 return !Cond->isZero(); 482 483 return false; 484 } 485 486 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 487 Optional<fp::ExceptionBehavior> ExBehavior = FPI->getExceptionBehavior(); 488 return *ExBehavior != fp::ebStrict; 489 } 490 } 491 492 if (isAllocationFn(I, TLI) && isAllocRemovable(cast<CallBase>(I), TLI)) 493 return true; 494 495 if (CallInst *CI = isFreeCall(I, TLI)) 496 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 497 return C->isNullValue() || isa<UndefValue>(C); 498 499 if (auto *Call = dyn_cast<CallBase>(I)) 500 if (isMathLibCallNoop(Call, TLI)) 501 return true; 502 503 // Non-volatile atomic loads from constants can be removed. 504 if (auto *LI = dyn_cast<LoadInst>(I)) 505 if (auto *GV = dyn_cast<GlobalVariable>( 506 LI->getPointerOperand()->stripPointerCasts())) 507 if (!LI->isVolatile() && GV->isConstant()) 508 return true; 509 510 return false; 511 } 512 513 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 514 /// trivially dead instruction, delete it. If that makes any of its operands 515 /// trivially dead, delete them too, recursively. Return true if any 516 /// instructions were deleted. 517 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 518 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 519 std::function<void(Value *)> AboutToDeleteCallback) { 520 Instruction *I = dyn_cast<Instruction>(V); 521 if (!I || !isInstructionTriviallyDead(I, TLI)) 522 return false; 523 524 SmallVector<WeakTrackingVH, 16> DeadInsts; 525 DeadInsts.push_back(I); 526 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 527 AboutToDeleteCallback); 528 529 return true; 530 } 531 532 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 533 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 534 MemorySSAUpdater *MSSAU, 535 std::function<void(Value *)> AboutToDeleteCallback) { 536 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 537 for (; S != E; ++S) { 538 auto *I = dyn_cast<Instruction>(DeadInsts[S]); 539 if (!I || !isInstructionTriviallyDead(I)) { 540 DeadInsts[S] = nullptr; 541 ++Alive; 542 } 543 } 544 if (Alive == E) 545 return false; 546 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 547 AboutToDeleteCallback); 548 return true; 549 } 550 551 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 552 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 553 MemorySSAUpdater *MSSAU, 554 std::function<void(Value *)> AboutToDeleteCallback) { 555 // Process the dead instruction list until empty. 556 while (!DeadInsts.empty()) { 557 Value *V = DeadInsts.pop_back_val(); 558 Instruction *I = cast_or_null<Instruction>(V); 559 if (!I) 560 continue; 561 assert(isInstructionTriviallyDead(I, TLI) && 562 "Live instruction found in dead worklist!"); 563 assert(I->use_empty() && "Instructions with uses are not dead."); 564 565 // Don't lose the debug info while deleting the instructions. 566 salvageDebugInfo(*I); 567 568 if (AboutToDeleteCallback) 569 AboutToDeleteCallback(I); 570 571 // Null out all of the instruction's operands to see if any operand becomes 572 // dead as we go. 573 for (Use &OpU : I->operands()) { 574 Value *OpV = OpU.get(); 575 OpU.set(nullptr); 576 577 if (!OpV->use_empty()) 578 continue; 579 580 // If the operand is an instruction that became dead as we nulled out the 581 // operand, and if it is 'trivially' dead, delete it in a future loop 582 // iteration. 583 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 584 if (isInstructionTriviallyDead(OpI, TLI)) 585 DeadInsts.push_back(OpI); 586 } 587 if (MSSAU) 588 MSSAU->removeMemoryAccess(I); 589 590 I->eraseFromParent(); 591 } 592 } 593 594 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 595 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 596 findDbgUsers(DbgUsers, I); 597 for (auto *DII : DbgUsers) { 598 Value *Undef = UndefValue::get(I->getType()); 599 DII->replaceVariableLocationOp(I, Undef); 600 } 601 return !DbgUsers.empty(); 602 } 603 604 /// areAllUsesEqual - Check whether the uses of a value are all the same. 605 /// This is similar to Instruction::hasOneUse() except this will also return 606 /// true when there are no uses or multiple uses that all refer to the same 607 /// value. 608 static bool areAllUsesEqual(Instruction *I) { 609 Value::user_iterator UI = I->user_begin(); 610 Value::user_iterator UE = I->user_end(); 611 if (UI == UE) 612 return true; 613 614 User *TheUse = *UI; 615 for (++UI; UI != UE; ++UI) { 616 if (*UI != TheUse) 617 return false; 618 } 619 return true; 620 } 621 622 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 623 /// dead PHI node, due to being a def-use chain of single-use nodes that 624 /// either forms a cycle or is terminated by a trivially dead instruction, 625 /// delete it. If that makes any of its operands trivially dead, delete them 626 /// too, recursively. Return true if a change was made. 627 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 628 const TargetLibraryInfo *TLI, 629 llvm::MemorySSAUpdater *MSSAU) { 630 SmallPtrSet<Instruction*, 4> Visited; 631 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 632 I = cast<Instruction>(*I->user_begin())) { 633 if (I->use_empty()) 634 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 635 636 // If we find an instruction more than once, we're on a cycle that 637 // won't prove fruitful. 638 if (!Visited.insert(I).second) { 639 // Break the cycle and delete the instruction and its operands. 640 I->replaceAllUsesWith(UndefValue::get(I->getType())); 641 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 642 return true; 643 } 644 } 645 return false; 646 } 647 648 static bool 649 simplifyAndDCEInstruction(Instruction *I, 650 SmallSetVector<Instruction *, 16> &WorkList, 651 const DataLayout &DL, 652 const TargetLibraryInfo *TLI) { 653 if (isInstructionTriviallyDead(I, TLI)) { 654 salvageDebugInfo(*I); 655 656 // Null out all of the instruction's operands to see if any operand becomes 657 // dead as we go. 658 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 659 Value *OpV = I->getOperand(i); 660 I->setOperand(i, nullptr); 661 662 if (!OpV->use_empty() || I == OpV) 663 continue; 664 665 // If the operand is an instruction that became dead as we nulled out the 666 // operand, and if it is 'trivially' dead, delete it in a future loop 667 // iteration. 668 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 669 if (isInstructionTriviallyDead(OpI, TLI)) 670 WorkList.insert(OpI); 671 } 672 673 I->eraseFromParent(); 674 675 return true; 676 } 677 678 if (Value *SimpleV = simplifyInstruction(I, DL)) { 679 // Add the users to the worklist. CAREFUL: an instruction can use itself, 680 // in the case of a phi node. 681 for (User *U : I->users()) { 682 if (U != I) { 683 WorkList.insert(cast<Instruction>(U)); 684 } 685 } 686 687 // Replace the instruction with its simplified value. 688 bool Changed = false; 689 if (!I->use_empty()) { 690 I->replaceAllUsesWith(SimpleV); 691 Changed = true; 692 } 693 if (isInstructionTriviallyDead(I, TLI)) { 694 I->eraseFromParent(); 695 Changed = true; 696 } 697 return Changed; 698 } 699 return false; 700 } 701 702 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 703 /// simplify any instructions in it and recursively delete dead instructions. 704 /// 705 /// This returns true if it changed the code, note that it can delete 706 /// instructions in other blocks as well in this block. 707 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 708 const TargetLibraryInfo *TLI) { 709 bool MadeChange = false; 710 const DataLayout &DL = BB->getModule()->getDataLayout(); 711 712 #ifndef NDEBUG 713 // In debug builds, ensure that the terminator of the block is never replaced 714 // or deleted by these simplifications. The idea of simplification is that it 715 // cannot introduce new instructions, and there is no way to replace the 716 // terminator of a block without introducing a new instruction. 717 AssertingVH<Instruction> TerminatorVH(&BB->back()); 718 #endif 719 720 SmallSetVector<Instruction *, 16> WorkList; 721 // Iterate over the original function, only adding insts to the worklist 722 // if they actually need to be revisited. This avoids having to pre-init 723 // the worklist with the entire function's worth of instructions. 724 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 725 BI != E;) { 726 assert(!BI->isTerminator()); 727 Instruction *I = &*BI; 728 ++BI; 729 730 // We're visiting this instruction now, so make sure it's not in the 731 // worklist from an earlier visit. 732 if (!WorkList.count(I)) 733 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 734 } 735 736 while (!WorkList.empty()) { 737 Instruction *I = WorkList.pop_back_val(); 738 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 739 } 740 return MadeChange; 741 } 742 743 //===----------------------------------------------------------------------===// 744 // Control Flow Graph Restructuring. 745 // 746 747 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 748 DomTreeUpdater *DTU) { 749 750 // If BB has single-entry PHI nodes, fold them. 751 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 752 Value *NewVal = PN->getIncomingValue(0); 753 // Replace self referencing PHI with undef, it must be dead. 754 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 755 PN->replaceAllUsesWith(NewVal); 756 PN->eraseFromParent(); 757 } 758 759 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 760 assert(PredBB && "Block doesn't have a single predecessor!"); 761 762 bool ReplaceEntryBB = PredBB->isEntryBlock(); 763 764 // DTU updates: Collect all the edges that enter 765 // PredBB. These dominator edges will be redirected to DestBB. 766 SmallVector<DominatorTree::UpdateType, 32> Updates; 767 768 if (DTU) { 769 // To avoid processing the same predecessor more than once. 770 SmallPtrSet<BasicBlock *, 2> SeenPreds; 771 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1); 772 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 773 // This predecessor of PredBB may already have DestBB as a successor. 774 if (PredOfPredBB != PredBB) 775 if (SeenPreds.insert(PredOfPredBB).second) 776 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 777 SeenPreds.clear(); 778 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 779 if (SeenPreds.insert(PredOfPredBB).second) 780 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 781 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 782 } 783 784 // Zap anything that took the address of DestBB. Not doing this will give the 785 // address an invalid value. 786 if (DestBB->hasAddressTaken()) { 787 BlockAddress *BA = BlockAddress::get(DestBB); 788 Constant *Replacement = 789 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 790 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 791 BA->getType())); 792 BA->destroyConstant(); 793 } 794 795 // Anything that branched to PredBB now branches to DestBB. 796 PredBB->replaceAllUsesWith(DestBB); 797 798 // Splice all the instructions from PredBB to DestBB. 799 PredBB->getTerminator()->eraseFromParent(); 800 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 801 new UnreachableInst(PredBB->getContext(), PredBB); 802 803 // If the PredBB is the entry block of the function, move DestBB up to 804 // become the entry block after we erase PredBB. 805 if (ReplaceEntryBB) 806 DestBB->moveAfter(PredBB); 807 808 if (DTU) { 809 assert(PredBB->getInstList().size() == 1 && 810 isa<UnreachableInst>(PredBB->getTerminator()) && 811 "The successor list of PredBB isn't empty before " 812 "applying corresponding DTU updates."); 813 DTU->applyUpdatesPermissive(Updates); 814 DTU->deleteBB(PredBB); 815 // Recalculation of DomTree is needed when updating a forward DomTree and 816 // the Entry BB is replaced. 817 if (ReplaceEntryBB && DTU->hasDomTree()) { 818 // The entry block was removed and there is no external interface for 819 // the dominator tree to be notified of this change. In this corner-case 820 // we recalculate the entire tree. 821 DTU->recalculate(*(DestBB->getParent())); 822 } 823 } 824 825 else { 826 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 827 } 828 } 829 830 /// Return true if we can choose one of these values to use in place of the 831 /// other. Note that we will always choose the non-undef value to keep. 832 static bool CanMergeValues(Value *First, Value *Second) { 833 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 834 } 835 836 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 837 /// branch to Succ, into Succ. 838 /// 839 /// Assumption: Succ is the single successor for BB. 840 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 841 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 842 843 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 844 << Succ->getName() << "\n"); 845 // Shortcut, if there is only a single predecessor it must be BB and merging 846 // is always safe 847 if (Succ->getSinglePredecessor()) return true; 848 849 // Make a list of the predecessors of BB 850 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 851 852 // Look at all the phi nodes in Succ, to see if they present a conflict when 853 // merging these blocks 854 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 855 PHINode *PN = cast<PHINode>(I); 856 857 // If the incoming value from BB is again a PHINode in 858 // BB which has the same incoming value for *PI as PN does, we can 859 // merge the phi nodes and then the blocks can still be merged 860 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 861 if (BBPN && BBPN->getParent() == BB) { 862 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 863 BasicBlock *IBB = PN->getIncomingBlock(PI); 864 if (BBPreds.count(IBB) && 865 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 866 PN->getIncomingValue(PI))) { 867 LLVM_DEBUG(dbgs() 868 << "Can't fold, phi node " << PN->getName() << " in " 869 << Succ->getName() << " is conflicting with " 870 << BBPN->getName() << " with regard to common predecessor " 871 << IBB->getName() << "\n"); 872 return false; 873 } 874 } 875 } else { 876 Value* Val = PN->getIncomingValueForBlock(BB); 877 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 878 // See if the incoming value for the common predecessor is equal to the 879 // one for BB, in which case this phi node will not prevent the merging 880 // of the block. 881 BasicBlock *IBB = PN->getIncomingBlock(PI); 882 if (BBPreds.count(IBB) && 883 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 884 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 885 << " in " << Succ->getName() 886 << " is conflicting with regard to common " 887 << "predecessor " << IBB->getName() << "\n"); 888 return false; 889 } 890 } 891 } 892 } 893 894 return true; 895 } 896 897 using PredBlockVector = SmallVector<BasicBlock *, 16>; 898 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 899 900 /// Determines the value to use as the phi node input for a block. 901 /// 902 /// Select between \p OldVal any value that we know flows from \p BB 903 /// to a particular phi on the basis of which one (if either) is not 904 /// undef. Update IncomingValues based on the selected value. 905 /// 906 /// \param OldVal The value we are considering selecting. 907 /// \param BB The block that the value flows in from. 908 /// \param IncomingValues A map from block-to-value for other phi inputs 909 /// that we have examined. 910 /// 911 /// \returns the selected value. 912 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 913 IncomingValueMap &IncomingValues) { 914 if (!isa<UndefValue>(OldVal)) { 915 assert((!IncomingValues.count(BB) || 916 IncomingValues.find(BB)->second == OldVal) && 917 "Expected OldVal to match incoming value from BB!"); 918 919 IncomingValues.insert(std::make_pair(BB, OldVal)); 920 return OldVal; 921 } 922 923 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 924 if (It != IncomingValues.end()) return It->second; 925 926 return OldVal; 927 } 928 929 /// Create a map from block to value for the operands of a 930 /// given phi. 931 /// 932 /// Create a map from block to value for each non-undef value flowing 933 /// into \p PN. 934 /// 935 /// \param PN The phi we are collecting the map for. 936 /// \param IncomingValues [out] The map from block to value for this phi. 937 static void gatherIncomingValuesToPhi(PHINode *PN, 938 IncomingValueMap &IncomingValues) { 939 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 940 BasicBlock *BB = PN->getIncomingBlock(i); 941 Value *V = PN->getIncomingValue(i); 942 943 if (!isa<UndefValue>(V)) 944 IncomingValues.insert(std::make_pair(BB, V)); 945 } 946 } 947 948 /// Replace the incoming undef values to a phi with the values 949 /// from a block-to-value map. 950 /// 951 /// \param PN The phi we are replacing the undefs in. 952 /// \param IncomingValues A map from block to value. 953 static void replaceUndefValuesInPhi(PHINode *PN, 954 const IncomingValueMap &IncomingValues) { 955 SmallVector<unsigned> TrueUndefOps; 956 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 957 Value *V = PN->getIncomingValue(i); 958 959 if (!isa<UndefValue>(V)) continue; 960 961 BasicBlock *BB = PN->getIncomingBlock(i); 962 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 963 964 // Keep track of undef/poison incoming values. Those must match, so we fix 965 // them up below if needed. 966 // Note: this is conservatively correct, but we could try harder and group 967 // the undef values per incoming basic block. 968 if (It == IncomingValues.end()) { 969 TrueUndefOps.push_back(i); 970 continue; 971 } 972 973 // There is a defined value for this incoming block, so map this undef 974 // incoming value to the defined value. 975 PN->setIncomingValue(i, It->second); 976 } 977 978 // If there are both undef and poison values incoming, then convert those 979 // values to undef. It is invalid to have different values for the same 980 // incoming block. 981 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 982 return isa<PoisonValue>(PN->getIncomingValue(i)); 983 }); 984 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 985 for (unsigned i : TrueUndefOps) 986 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 987 } 988 } 989 990 /// Replace a value flowing from a block to a phi with 991 /// potentially multiple instances of that value flowing from the 992 /// block's predecessors to the phi. 993 /// 994 /// \param BB The block with the value flowing into the phi. 995 /// \param BBPreds The predecessors of BB. 996 /// \param PN The phi that we are updating. 997 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 998 const PredBlockVector &BBPreds, 999 PHINode *PN) { 1000 Value *OldVal = PN->removeIncomingValue(BB, false); 1001 assert(OldVal && "No entry in PHI for Pred BB!"); 1002 1003 IncomingValueMap IncomingValues; 1004 1005 // We are merging two blocks - BB, and the block containing PN - and 1006 // as a result we need to redirect edges from the predecessors of BB 1007 // to go to the block containing PN, and update PN 1008 // accordingly. Since we allow merging blocks in the case where the 1009 // predecessor and successor blocks both share some predecessors, 1010 // and where some of those common predecessors might have undef 1011 // values flowing into PN, we want to rewrite those values to be 1012 // consistent with the non-undef values. 1013 1014 gatherIncomingValuesToPhi(PN, IncomingValues); 1015 1016 // If this incoming value is one of the PHI nodes in BB, the new entries 1017 // in the PHI node are the entries from the old PHI. 1018 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1019 PHINode *OldValPN = cast<PHINode>(OldVal); 1020 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1021 // Note that, since we are merging phi nodes and BB and Succ might 1022 // have common predecessors, we could end up with a phi node with 1023 // identical incoming branches. This will be cleaned up later (and 1024 // will trigger asserts if we try to clean it up now, without also 1025 // simplifying the corresponding conditional branch). 1026 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1027 Value *PredVal = OldValPN->getIncomingValue(i); 1028 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 1029 IncomingValues); 1030 1031 // And add a new incoming value for this predecessor for the 1032 // newly retargeted branch. 1033 PN->addIncoming(Selected, PredBB); 1034 } 1035 } else { 1036 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1037 // Update existing incoming values in PN for this 1038 // predecessor of BB. 1039 BasicBlock *PredBB = BBPreds[i]; 1040 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1041 IncomingValues); 1042 1043 // And add a new incoming value for this predecessor for the 1044 // newly retargeted branch. 1045 PN->addIncoming(Selected, PredBB); 1046 } 1047 } 1048 1049 replaceUndefValuesInPhi(PN, IncomingValues); 1050 } 1051 1052 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1053 DomTreeUpdater *DTU) { 1054 assert(BB != &BB->getParent()->getEntryBlock() && 1055 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1056 1057 // We can't eliminate infinite loops. 1058 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1059 if (BB == Succ) return false; 1060 1061 // Check to see if merging these blocks would cause conflicts for any of the 1062 // phi nodes in BB or Succ. If not, we can safely merge. 1063 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1064 1065 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1066 // has uses which will not disappear when the PHI nodes are merged. It is 1067 // possible to handle such cases, but difficult: it requires checking whether 1068 // BB dominates Succ, which is non-trivial to calculate in the case where 1069 // Succ has multiple predecessors. Also, it requires checking whether 1070 // constructing the necessary self-referential PHI node doesn't introduce any 1071 // conflicts; this isn't too difficult, but the previous code for doing this 1072 // was incorrect. 1073 // 1074 // Note that if this check finds a live use, BB dominates Succ, so BB is 1075 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1076 // folding the branch isn't profitable in that case anyway. 1077 if (!Succ->getSinglePredecessor()) { 1078 BasicBlock::iterator BBI = BB->begin(); 1079 while (isa<PHINode>(*BBI)) { 1080 for (Use &U : BBI->uses()) { 1081 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1082 if (PN->getIncomingBlock(U) != BB) 1083 return false; 1084 } else { 1085 return false; 1086 } 1087 } 1088 ++BBI; 1089 } 1090 } 1091 1092 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1093 1094 SmallVector<DominatorTree::UpdateType, 32> Updates; 1095 if (DTU) { 1096 // To avoid processing the same predecessor more than once. 1097 SmallPtrSet<BasicBlock *, 8> SeenPreds; 1098 // All predecessors of BB will be moved to Succ. 1099 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); 1100 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1); 1101 for (auto *PredOfBB : predecessors(BB)) 1102 // This predecessor of BB may already have Succ as a successor. 1103 if (!PredsOfSucc.contains(PredOfBB)) 1104 if (SeenPreds.insert(PredOfBB).second) 1105 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1106 SeenPreds.clear(); 1107 for (auto *PredOfBB : predecessors(BB)) 1108 if (SeenPreds.insert(PredOfBB).second) 1109 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1110 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1111 } 1112 1113 if (isa<PHINode>(Succ->begin())) { 1114 // If there is more than one pred of succ, and there are PHI nodes in 1115 // the successor, then we need to add incoming edges for the PHI nodes 1116 // 1117 const PredBlockVector BBPreds(predecessors(BB)); 1118 1119 // Loop over all of the PHI nodes in the successor of BB. 1120 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1121 PHINode *PN = cast<PHINode>(I); 1122 1123 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1124 } 1125 } 1126 1127 if (Succ->getSinglePredecessor()) { 1128 // BB is the only predecessor of Succ, so Succ will end up with exactly 1129 // the same predecessors BB had. 1130 1131 // Copy over any phi, debug or lifetime instruction. 1132 BB->getTerminator()->eraseFromParent(); 1133 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1134 BB->getInstList()); 1135 } else { 1136 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1137 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1138 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1139 PN->eraseFromParent(); 1140 } 1141 } 1142 1143 // If the unconditional branch we replaced contains llvm.loop metadata, we 1144 // add the metadata to the branch instructions in the predecessors. 1145 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1146 Instruction *TI = BB->getTerminator(); 1147 if (TI) 1148 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1149 for (BasicBlock *Pred : predecessors(BB)) 1150 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1151 1152 // Everything that jumped to BB now goes to Succ. 1153 BB->replaceAllUsesWith(Succ); 1154 if (!Succ->hasName()) Succ->takeName(BB); 1155 1156 // Clear the successor list of BB to match updates applying to DTU later. 1157 if (BB->getTerminator()) 1158 BB->getInstList().pop_back(); 1159 new UnreachableInst(BB->getContext(), BB); 1160 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1161 "applying corresponding DTU updates."); 1162 1163 if (DTU) 1164 DTU->applyUpdates(Updates); 1165 1166 DeleteDeadBlock(BB, DTU); 1167 1168 return true; 1169 } 1170 1171 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1172 // This implementation doesn't currently consider undef operands 1173 // specially. Theoretically, two phis which are identical except for 1174 // one having an undef where the other doesn't could be collapsed. 1175 1176 bool Changed = false; 1177 1178 // Examine each PHI. 1179 // Note that increment of I must *NOT* be in the iteration_expression, since 1180 // we don't want to immediately advance when we restart from the beginning. 1181 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1182 ++I; 1183 // Is there an identical PHI node in this basic block? 1184 // Note that we only look in the upper square's triangle, 1185 // we already checked that the lower triangle PHI's aren't identical. 1186 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1187 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1188 continue; 1189 // A duplicate. Replace this PHI with the base PHI. 1190 ++NumPHICSEs; 1191 DuplicatePN->replaceAllUsesWith(PN); 1192 DuplicatePN->eraseFromParent(); 1193 Changed = true; 1194 1195 // The RAUW can change PHIs that we already visited. 1196 I = BB->begin(); 1197 break; // Start over from the beginning. 1198 } 1199 } 1200 return Changed; 1201 } 1202 1203 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1204 // This implementation doesn't currently consider undef operands 1205 // specially. Theoretically, two phis which are identical except for 1206 // one having an undef where the other doesn't could be collapsed. 1207 1208 struct PHIDenseMapInfo { 1209 static PHINode *getEmptyKey() { 1210 return DenseMapInfo<PHINode *>::getEmptyKey(); 1211 } 1212 1213 static PHINode *getTombstoneKey() { 1214 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1215 } 1216 1217 static bool isSentinel(PHINode *PN) { 1218 return PN == getEmptyKey() || PN == getTombstoneKey(); 1219 } 1220 1221 // WARNING: this logic must be kept in sync with 1222 // Instruction::isIdenticalToWhenDefined()! 1223 static unsigned getHashValueImpl(PHINode *PN) { 1224 // Compute a hash value on the operands. Instcombine will likely have 1225 // sorted them, which helps expose duplicates, but we have to check all 1226 // the operands to be safe in case instcombine hasn't run. 1227 return static_cast<unsigned>(hash_combine( 1228 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1229 hash_combine_range(PN->block_begin(), PN->block_end()))); 1230 } 1231 1232 static unsigned getHashValue(PHINode *PN) { 1233 #ifndef NDEBUG 1234 // If -phicse-debug-hash was specified, return a constant -- this 1235 // will force all hashing to collide, so we'll exhaustively search 1236 // the table for a match, and the assertion in isEqual will fire if 1237 // there's a bug causing equal keys to hash differently. 1238 if (PHICSEDebugHash) 1239 return 0; 1240 #endif 1241 return getHashValueImpl(PN); 1242 } 1243 1244 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1245 if (isSentinel(LHS) || isSentinel(RHS)) 1246 return LHS == RHS; 1247 return LHS->isIdenticalTo(RHS); 1248 } 1249 1250 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1251 // These comparisons are nontrivial, so assert that equality implies 1252 // hash equality (DenseMap demands this as an invariant). 1253 bool Result = isEqualImpl(LHS, RHS); 1254 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1255 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1256 return Result; 1257 } 1258 }; 1259 1260 // Set of unique PHINodes. 1261 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1262 PHISet.reserve(4 * PHICSENumPHISmallSize); 1263 1264 // Examine each PHI. 1265 bool Changed = false; 1266 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1267 auto Inserted = PHISet.insert(PN); 1268 if (!Inserted.second) { 1269 // A duplicate. Replace this PHI with its duplicate. 1270 ++NumPHICSEs; 1271 PN->replaceAllUsesWith(*Inserted.first); 1272 PN->eraseFromParent(); 1273 Changed = true; 1274 1275 // The RAUW can change PHIs that we already visited. Start over from the 1276 // beginning. 1277 PHISet.clear(); 1278 I = BB->begin(); 1279 } 1280 } 1281 1282 return Changed; 1283 } 1284 1285 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1286 if ( 1287 #ifndef NDEBUG 1288 !PHICSEDebugHash && 1289 #endif 1290 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1291 return EliminateDuplicatePHINodesNaiveImpl(BB); 1292 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1293 } 1294 1295 /// If the specified pointer points to an object that we control, try to modify 1296 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1297 /// the value after the operation, which may be lower than PrefAlign. 1298 /// 1299 /// Increating value alignment isn't often possible though. If alignment is 1300 /// important, a more reliable approach is to simply align all global variables 1301 /// and allocation instructions to their preferred alignment from the beginning. 1302 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1303 const DataLayout &DL) { 1304 V = V->stripPointerCasts(); 1305 1306 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1307 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1308 // than the current alignment, as the known bits calculation should have 1309 // already taken it into account. However, this is not always the case, 1310 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1311 // doesn't. 1312 Align CurrentAlign = AI->getAlign(); 1313 if (PrefAlign <= CurrentAlign) 1314 return CurrentAlign; 1315 1316 // If the preferred alignment is greater than the natural stack alignment 1317 // then don't round up. This avoids dynamic stack realignment. 1318 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1319 return CurrentAlign; 1320 AI->setAlignment(PrefAlign); 1321 return PrefAlign; 1322 } 1323 1324 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1325 // TODO: as above, this shouldn't be necessary. 1326 Align CurrentAlign = GO->getPointerAlignment(DL); 1327 if (PrefAlign <= CurrentAlign) 1328 return CurrentAlign; 1329 1330 // If there is a large requested alignment and we can, bump up the alignment 1331 // of the global. If the memory we set aside for the global may not be the 1332 // memory used by the final program then it is impossible for us to reliably 1333 // enforce the preferred alignment. 1334 if (!GO->canIncreaseAlignment()) 1335 return CurrentAlign; 1336 1337 GO->setAlignment(PrefAlign); 1338 return PrefAlign; 1339 } 1340 1341 return Align(1); 1342 } 1343 1344 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1345 const DataLayout &DL, 1346 const Instruction *CxtI, 1347 AssumptionCache *AC, 1348 const DominatorTree *DT) { 1349 assert(V->getType()->isPointerTy() && 1350 "getOrEnforceKnownAlignment expects a pointer!"); 1351 1352 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1353 unsigned TrailZ = Known.countMinTrailingZeros(); 1354 1355 // Avoid trouble with ridiculously large TrailZ values, such as 1356 // those computed from a null pointer. 1357 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1358 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1359 1360 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1361 1362 if (PrefAlign && *PrefAlign > Alignment) 1363 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1364 1365 // We don't need to make any adjustment. 1366 return Alignment; 1367 } 1368 1369 ///===---------------------------------------------------------------------===// 1370 /// Dbg Intrinsic utilities 1371 /// 1372 1373 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1374 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1375 DIExpression *DIExpr, 1376 PHINode *APN) { 1377 // Since we can't guarantee that the original dbg.declare intrinsic 1378 // is removed by LowerDbgDeclare(), we need to make sure that we are 1379 // not inserting the same dbg.value intrinsic over and over. 1380 SmallVector<DbgValueInst *, 1> DbgValues; 1381 findDbgValues(DbgValues, APN); 1382 for (auto *DVI : DbgValues) { 1383 assert(is_contained(DVI->getValues(), APN)); 1384 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1385 return true; 1386 } 1387 return false; 1388 } 1389 1390 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1391 /// (or fragment of the variable) described by \p DII. 1392 /// 1393 /// This is primarily intended as a helper for the different 1394 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1395 /// converted describes an alloca'd variable, so we need to use the 1396 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1397 /// identified as covering an n-bit fragment, if the store size of i1 is at 1398 /// least n bits. 1399 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1400 const DataLayout &DL = DII->getModule()->getDataLayout(); 1401 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1402 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1403 assert(!ValueSize.isScalable() && 1404 "Fragments don't work on scalable types."); 1405 return ValueSize.getFixedSize() >= *FragmentSize; 1406 } 1407 // We can't always calculate the size of the DI variable (e.g. if it is a 1408 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1409 // intead. 1410 if (DII->isAddressOfVariable()) { 1411 // DII should have exactly 1 location when it is an address. 1412 assert(DII->getNumVariableLocationOps() == 1 && 1413 "address of variable must have exactly 1 location operand."); 1414 if (auto *AI = 1415 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1416 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1417 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1418 } 1419 } 1420 } 1421 // Could not determine size of variable. Conservatively return false. 1422 return false; 1423 } 1424 1425 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1426 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1427 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1428 /// case this DebugLoc leaks into any adjacent instructions. 1429 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1430 // Original dbg.declare must have a location. 1431 const DebugLoc &DeclareLoc = DII->getDebugLoc(); 1432 MDNode *Scope = DeclareLoc.getScope(); 1433 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1434 // Produce an unknown location with the correct scope / inlinedAt fields. 1435 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1436 } 1437 1438 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1439 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1440 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1441 StoreInst *SI, DIBuilder &Builder) { 1442 assert(DII->isAddressOfVariable()); 1443 auto *DIVar = DII->getVariable(); 1444 assert(DIVar && "Missing variable"); 1445 auto *DIExpr = DII->getExpression(); 1446 Value *DV = SI->getValueOperand(); 1447 1448 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1449 1450 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1451 // FIXME: If storing to a part of the variable described by the dbg.declare, 1452 // then we want to insert a dbg.value for the corresponding fragment. 1453 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1454 << *DII << '\n'); 1455 // For now, when there is a store to parts of the variable (but we do not 1456 // know which part) we insert an dbg.value intrinsic to indicate that we 1457 // know nothing about the variable's content. 1458 DV = UndefValue::get(DV->getType()); 1459 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1460 return; 1461 } 1462 1463 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1464 } 1465 1466 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1467 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1468 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1469 LoadInst *LI, DIBuilder &Builder) { 1470 auto *DIVar = DII->getVariable(); 1471 auto *DIExpr = DII->getExpression(); 1472 assert(DIVar && "Missing variable"); 1473 1474 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1475 // FIXME: If only referring to a part of the variable described by the 1476 // dbg.declare, then we want to insert a dbg.value for the corresponding 1477 // fragment. 1478 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1479 << *DII << '\n'); 1480 return; 1481 } 1482 1483 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1484 1485 // We are now tracking the loaded value instead of the address. In the 1486 // future if multi-location support is added to the IR, it might be 1487 // preferable to keep tracking both the loaded value and the original 1488 // address in case the alloca can not be elided. 1489 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1490 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1491 DbgValue->insertAfter(LI); 1492 } 1493 1494 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1495 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1496 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1497 PHINode *APN, DIBuilder &Builder) { 1498 auto *DIVar = DII->getVariable(); 1499 auto *DIExpr = DII->getExpression(); 1500 assert(DIVar && "Missing variable"); 1501 1502 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1503 return; 1504 1505 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1506 // FIXME: If only referring to a part of the variable described by the 1507 // dbg.declare, then we want to insert a dbg.value for the corresponding 1508 // fragment. 1509 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1510 << *DII << '\n'); 1511 return; 1512 } 1513 1514 BasicBlock *BB = APN->getParent(); 1515 auto InsertionPt = BB->getFirstInsertionPt(); 1516 1517 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1518 1519 // The block may be a catchswitch block, which does not have a valid 1520 // insertion point. 1521 // FIXME: Insert dbg.value markers in the successors when appropriate. 1522 if (InsertionPt != BB->end()) 1523 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1524 } 1525 1526 /// Determine whether this alloca is either a VLA or an array. 1527 static bool isArray(AllocaInst *AI) { 1528 return AI->isArrayAllocation() || 1529 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1530 } 1531 1532 /// Determine whether this alloca is a structure. 1533 static bool isStructure(AllocaInst *AI) { 1534 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1535 } 1536 1537 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1538 /// of llvm.dbg.value intrinsics. 1539 bool llvm::LowerDbgDeclare(Function &F) { 1540 bool Changed = false; 1541 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1542 SmallVector<DbgDeclareInst *, 4> Dbgs; 1543 for (auto &FI : F) 1544 for (Instruction &BI : FI) 1545 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1546 Dbgs.push_back(DDI); 1547 1548 if (Dbgs.empty()) 1549 return Changed; 1550 1551 for (auto &I : Dbgs) { 1552 DbgDeclareInst *DDI = I; 1553 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1554 // If this is an alloca for a scalar variable, insert a dbg.value 1555 // at each load and store to the alloca and erase the dbg.declare. 1556 // The dbg.values allow tracking a variable even if it is not 1557 // stored on the stack, while the dbg.declare can only describe 1558 // the stack slot (and at a lexical-scope granularity). Later 1559 // passes will attempt to elide the stack slot. 1560 if (!AI || isArray(AI) || isStructure(AI)) 1561 continue; 1562 1563 // A volatile load/store means that the alloca can't be elided anyway. 1564 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1565 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1566 return LI->isVolatile(); 1567 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1568 return SI->isVolatile(); 1569 return false; 1570 })) 1571 continue; 1572 1573 SmallVector<const Value *, 8> WorkList; 1574 WorkList.push_back(AI); 1575 while (!WorkList.empty()) { 1576 const Value *V = WorkList.pop_back_val(); 1577 for (auto &AIUse : V->uses()) { 1578 User *U = AIUse.getUser(); 1579 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1580 if (AIUse.getOperandNo() == 1) 1581 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1582 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1583 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1584 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1585 // This is a call by-value or some other instruction that takes a 1586 // pointer to the variable. Insert a *value* intrinsic that describes 1587 // the variable by dereferencing the alloca. 1588 if (!CI->isLifetimeStartOrEnd()) { 1589 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1590 auto *DerefExpr = 1591 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1592 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1593 NewLoc, CI); 1594 } 1595 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1596 if (BI->getType()->isPointerTy()) 1597 WorkList.push_back(BI); 1598 } 1599 } 1600 } 1601 DDI->eraseFromParent(); 1602 Changed = true; 1603 } 1604 1605 if (Changed) 1606 for (BasicBlock &BB : F) 1607 RemoveRedundantDbgInstrs(&BB); 1608 1609 return Changed; 1610 } 1611 1612 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1613 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1614 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1615 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1616 if (InsertedPHIs.size() == 0) 1617 return; 1618 1619 // Map existing PHI nodes to their dbg.values. 1620 ValueToValueMapTy DbgValueMap; 1621 for (auto &I : *BB) { 1622 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1623 for (Value *V : DbgII->location_ops()) 1624 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 1625 DbgValueMap.insert({Loc, DbgII}); 1626 } 1627 } 1628 if (DbgValueMap.size() == 0) 1629 return; 1630 1631 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 1632 // so that if a dbg.value is being rewritten to use more than one of the 1633 // inserted PHIs in the same destination BB, we can update the same dbg.value 1634 // with all the new PHIs instead of creating one copy for each. 1635 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 1636 DbgVariableIntrinsic *> 1637 NewDbgValueMap; 1638 // Then iterate through the new PHIs and look to see if they use one of the 1639 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 1640 // propagate the info through the new PHI. If we use more than one new PHI in 1641 // a single destination BB with the same old dbg.value, merge the updates so 1642 // that we get a single new dbg.value with all the new PHIs. 1643 for (auto PHI : InsertedPHIs) { 1644 BasicBlock *Parent = PHI->getParent(); 1645 // Avoid inserting an intrinsic into an EH block. 1646 if (Parent->getFirstNonPHI()->isEHPad()) 1647 continue; 1648 for (auto VI : PHI->operand_values()) { 1649 auto V = DbgValueMap.find(VI); 1650 if (V != DbgValueMap.end()) { 1651 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1652 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 1653 if (NewDI == NewDbgValueMap.end()) { 1654 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 1655 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 1656 } 1657 DbgVariableIntrinsic *NewDbgII = NewDI->second; 1658 // If PHI contains VI as an operand more than once, we may 1659 // replaced it in NewDbgII; confirm that it is present. 1660 if (is_contained(NewDbgII->location_ops(), VI)) 1661 NewDbgII->replaceVariableLocationOp(VI, PHI); 1662 } 1663 } 1664 } 1665 // Insert thew new dbg.values into their destination blocks. 1666 for (auto DI : NewDbgValueMap) { 1667 BasicBlock *Parent = DI.first.first; 1668 auto *NewDbgII = DI.second; 1669 auto InsertionPt = Parent->getFirstInsertionPt(); 1670 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1671 NewDbgII->insertBefore(&*InsertionPt); 1672 } 1673 } 1674 1675 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1676 DIBuilder &Builder, uint8_t DIExprFlags, 1677 int Offset) { 1678 auto DbgAddrs = FindDbgAddrUses(Address); 1679 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1680 const DebugLoc &Loc = DII->getDebugLoc(); 1681 auto *DIVar = DII->getVariable(); 1682 auto *DIExpr = DII->getExpression(); 1683 assert(DIVar && "Missing variable"); 1684 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1685 // Insert llvm.dbg.declare immediately before DII, and remove old 1686 // llvm.dbg.declare. 1687 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1688 DII->eraseFromParent(); 1689 } 1690 return !DbgAddrs.empty(); 1691 } 1692 1693 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1694 DIBuilder &Builder, int Offset) { 1695 const DebugLoc &Loc = DVI->getDebugLoc(); 1696 auto *DIVar = DVI->getVariable(); 1697 auto *DIExpr = DVI->getExpression(); 1698 assert(DIVar && "Missing variable"); 1699 1700 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1701 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1702 // it and give up. 1703 if (!DIExpr || DIExpr->getNumElements() < 1 || 1704 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1705 return; 1706 1707 // Insert the offset before the first deref. 1708 // We could just change the offset argument of dbg.value, but it's unsigned... 1709 if (Offset) 1710 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1711 1712 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1713 DVI->eraseFromParent(); 1714 } 1715 1716 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1717 DIBuilder &Builder, int Offset) { 1718 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1719 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1720 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1721 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1722 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1723 } 1724 1725 /// Where possible to salvage debug information for \p I do so 1726 /// and return True. If not possible mark undef and return False. 1727 void llvm::salvageDebugInfo(Instruction &I) { 1728 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1729 findDbgUsers(DbgUsers, &I); 1730 salvageDebugInfoForDbgValues(I, DbgUsers); 1731 } 1732 1733 void llvm::salvageDebugInfoForDbgValues( 1734 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1735 // These are arbitrary chosen limits on the maximum number of values and the 1736 // maximum size of a debug expression we can salvage up to, used for 1737 // performance reasons. 1738 const unsigned MaxDebugArgs = 16; 1739 const unsigned MaxExpressionSize = 128; 1740 bool Salvaged = false; 1741 1742 for (auto *DII : DbgUsers) { 1743 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1744 // are implicitly pointing out the value as a DWARF memory location 1745 // description. 1746 bool StackValue = isa<DbgValueInst>(DII); 1747 auto DIILocation = DII->location_ops(); 1748 assert( 1749 is_contained(DIILocation, &I) && 1750 "DbgVariableIntrinsic must use salvaged instruction as its location"); 1751 SmallVector<Value *, 4> AdditionalValues; 1752 // `I` may appear more than once in DII's location ops, and each use of `I` 1753 // must be updated in the DIExpression and potentially have additional 1754 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 1755 // DIILocation. 1756 Value *Op0 = nullptr; 1757 DIExpression *SalvagedExpr = DII->getExpression(); 1758 auto LocItr = find(DIILocation, &I); 1759 while (SalvagedExpr && LocItr != DIILocation.end()) { 1760 SmallVector<uint64_t, 16> Ops; 1761 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 1762 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 1763 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 1764 if (!Op0) 1765 break; 1766 SalvagedExpr = 1767 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 1768 LocItr = std::find(++LocItr, DIILocation.end(), &I); 1769 } 1770 // salvageDebugInfoImpl should fail on examining the first element of 1771 // DbgUsers, or none of them. 1772 if (!Op0) 1773 break; 1774 1775 DII->replaceVariableLocationOp(&I, Op0); 1776 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; 1777 if (AdditionalValues.empty() && IsValidSalvageExpr) { 1778 DII->setExpression(SalvagedExpr); 1779 } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr && 1780 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 1781 MaxDebugArgs) { 1782 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 1783 } else { 1784 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 1785 // currently only valid for stack value expressions. 1786 // Also do not salvage if the resulting DIArgList would contain an 1787 // unreasonably large number of values. 1788 Value *Undef = UndefValue::get(I.getOperand(0)->getType()); 1789 DII->replaceVariableLocationOp(I.getOperand(0), Undef); 1790 } 1791 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1792 Salvaged = true; 1793 } 1794 1795 if (Salvaged) 1796 return; 1797 1798 for (auto *DII : DbgUsers) { 1799 Value *Undef = UndefValue::get(I.getType()); 1800 DII->replaceVariableLocationOp(&I, Undef); 1801 } 1802 } 1803 1804 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 1805 uint64_t CurrentLocOps, 1806 SmallVectorImpl<uint64_t> &Opcodes, 1807 SmallVectorImpl<Value *> &AdditionalValues) { 1808 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 1809 // Rewrite a GEP into a DIExpression. 1810 MapVector<Value *, APInt> VariableOffsets; 1811 APInt ConstantOffset(BitWidth, 0); 1812 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 1813 return nullptr; 1814 if (!VariableOffsets.empty() && !CurrentLocOps) { 1815 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 1816 CurrentLocOps = 1; 1817 } 1818 for (auto Offset : VariableOffsets) { 1819 AdditionalValues.push_back(Offset.first); 1820 assert(Offset.second.isStrictlyPositive() && 1821 "Expected strictly positive multiplier for offset."); 1822 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 1823 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 1824 dwarf::DW_OP_plus}); 1825 } 1826 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 1827 return GEP->getOperand(0); 1828 } 1829 1830 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 1831 switch (Opcode) { 1832 case Instruction::Add: 1833 return dwarf::DW_OP_plus; 1834 case Instruction::Sub: 1835 return dwarf::DW_OP_minus; 1836 case Instruction::Mul: 1837 return dwarf::DW_OP_mul; 1838 case Instruction::SDiv: 1839 return dwarf::DW_OP_div; 1840 case Instruction::SRem: 1841 return dwarf::DW_OP_mod; 1842 case Instruction::Or: 1843 return dwarf::DW_OP_or; 1844 case Instruction::And: 1845 return dwarf::DW_OP_and; 1846 case Instruction::Xor: 1847 return dwarf::DW_OP_xor; 1848 case Instruction::Shl: 1849 return dwarf::DW_OP_shl; 1850 case Instruction::LShr: 1851 return dwarf::DW_OP_shr; 1852 case Instruction::AShr: 1853 return dwarf::DW_OP_shra; 1854 default: 1855 // TODO: Salvage from each kind of binop we know about. 1856 return 0; 1857 } 1858 } 1859 1860 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 1861 SmallVectorImpl<uint64_t> &Opcodes, 1862 SmallVectorImpl<Value *> &AdditionalValues) { 1863 // Handle binary operations with constant integer operands as a special case. 1864 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 1865 // Values wider than 64 bits cannot be represented within a DIExpression. 1866 if (ConstInt && ConstInt->getBitWidth() > 64) 1867 return nullptr; 1868 1869 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 1870 // Push any Constant Int operand onto the expression stack. 1871 if (ConstInt) { 1872 uint64_t Val = ConstInt->getSExtValue(); 1873 // Add or Sub Instructions with a constant operand can potentially be 1874 // simplified. 1875 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 1876 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 1877 DIExpression::appendOffset(Opcodes, Offset); 1878 return BI->getOperand(0); 1879 } 1880 Opcodes.append({dwarf::DW_OP_constu, Val}); 1881 } else { 1882 if (!CurrentLocOps) { 1883 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 1884 CurrentLocOps = 1; 1885 } 1886 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 1887 AdditionalValues.push_back(BI->getOperand(1)); 1888 } 1889 1890 // Add salvaged binary operator to expression stack, if it has a valid 1891 // representation in a DIExpression. 1892 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 1893 if (!DwarfBinOp) 1894 return nullptr; 1895 Opcodes.push_back(DwarfBinOp); 1896 return BI->getOperand(0); 1897 } 1898 1899 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 1900 SmallVectorImpl<uint64_t> &Ops, 1901 SmallVectorImpl<Value *> &AdditionalValues) { 1902 auto &M = *I.getModule(); 1903 auto &DL = M.getDataLayout(); 1904 1905 if (auto *CI = dyn_cast<CastInst>(&I)) { 1906 Value *FromValue = CI->getOperand(0); 1907 // No-op casts are irrelevant for debug info. 1908 if (CI->isNoopCast(DL)) { 1909 return FromValue; 1910 } 1911 1912 Type *Type = CI->getType(); 1913 if (Type->isPointerTy()) 1914 Type = DL.getIntPtrType(Type); 1915 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1916 if (Type->isVectorTy() || 1917 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || 1918 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) 1919 return nullptr; 1920 1921 llvm::Type *FromType = FromValue->getType(); 1922 if (FromType->isPointerTy()) 1923 FromType = DL.getIntPtrType(FromType); 1924 1925 unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); 1926 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1927 1928 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1929 isa<SExtInst>(&I)); 1930 Ops.append(ExtOps.begin(), ExtOps.end()); 1931 return FromValue; 1932 } 1933 1934 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 1935 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); 1936 if (auto *BI = dyn_cast<BinaryOperator>(&I)) 1937 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); 1938 1939 // *Not* to do: we should not attempt to salvage load instructions, 1940 // because the validity and lifetime of a dbg.value containing 1941 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1942 return nullptr; 1943 } 1944 1945 /// A replacement for a dbg.value expression. 1946 using DbgValReplacement = Optional<DIExpression *>; 1947 1948 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1949 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1950 /// changes are made. 1951 static bool rewriteDebugUsers( 1952 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1953 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1954 // Find debug users of From. 1955 SmallVector<DbgVariableIntrinsic *, 1> Users; 1956 findDbgUsers(Users, &From); 1957 if (Users.empty()) 1958 return false; 1959 1960 // Prevent use-before-def of To. 1961 bool Changed = false; 1962 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1963 if (isa<Instruction>(&To)) { 1964 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1965 1966 for (auto *DII : Users) { 1967 // It's common to see a debug user between From and DomPoint. Move it 1968 // after DomPoint to preserve the variable update without any reordering. 1969 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1970 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1971 DII->moveAfter(&DomPoint); 1972 Changed = true; 1973 1974 // Users which otherwise aren't dominated by the replacement value must 1975 // be salvaged or deleted. 1976 } else if (!DT.dominates(&DomPoint, DII)) { 1977 UndefOrSalvage.insert(DII); 1978 } 1979 } 1980 } 1981 1982 // Update debug users without use-before-def risk. 1983 for (auto *DII : Users) { 1984 if (UndefOrSalvage.count(DII)) 1985 continue; 1986 1987 DbgValReplacement DVR = RewriteExpr(*DII); 1988 if (!DVR) 1989 continue; 1990 1991 DII->replaceVariableLocationOp(&From, &To); 1992 DII->setExpression(*DVR); 1993 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1994 Changed = true; 1995 } 1996 1997 if (!UndefOrSalvage.empty()) { 1998 // Try to salvage the remaining debug users. 1999 salvageDebugInfo(From); 2000 Changed = true; 2001 } 2002 2003 return Changed; 2004 } 2005 2006 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2007 /// losslessly preserve the bits and semantics of the value. This predicate is 2008 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2009 /// 2010 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2011 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2012 /// and also does not allow lossless pointer <-> integer conversions. 2013 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2014 Type *ToTy) { 2015 // Trivially compatible types. 2016 if (FromTy == ToTy) 2017 return true; 2018 2019 // Handle compatible pointer <-> integer conversions. 2020 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2021 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2022 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2023 !DL.isNonIntegralPointerType(ToTy); 2024 return SameSize && LosslessConversion; 2025 } 2026 2027 // TODO: This is not exhaustive. 2028 return false; 2029 } 2030 2031 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2032 Instruction &DomPoint, DominatorTree &DT) { 2033 // Exit early if From has no debug users. 2034 if (!From.isUsedByMetadata()) 2035 return false; 2036 2037 assert(&From != &To && "Can't replace something with itself"); 2038 2039 Type *FromTy = From.getType(); 2040 Type *ToTy = To.getType(); 2041 2042 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2043 return DII.getExpression(); 2044 }; 2045 2046 // Handle no-op conversions. 2047 Module &M = *From.getModule(); 2048 const DataLayout &DL = M.getDataLayout(); 2049 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2050 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2051 2052 // Handle integer-to-integer widening and narrowing. 2053 // FIXME: Use DW_OP_convert when it's available everywhere. 2054 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2055 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2056 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2057 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2058 2059 // When the width of the result grows, assume that a debugger will only 2060 // access the low `FromBits` bits when inspecting the source variable. 2061 if (FromBits < ToBits) 2062 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2063 2064 // The width of the result has shrunk. Use sign/zero extension to describe 2065 // the source variable's high bits. 2066 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2067 DILocalVariable *Var = DII.getVariable(); 2068 2069 // Without knowing signedness, sign/zero extension isn't possible. 2070 auto Signedness = Var->getSignedness(); 2071 if (!Signedness) 2072 return None; 2073 2074 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2075 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2076 Signed); 2077 }; 2078 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2079 } 2080 2081 // TODO: Floating-point conversions, vectors. 2082 return false; 2083 } 2084 2085 std::pair<unsigned, unsigned> 2086 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2087 unsigned NumDeadInst = 0; 2088 unsigned NumDeadDbgInst = 0; 2089 // Delete the instructions backwards, as it has a reduced likelihood of 2090 // having to update as many def-use and use-def chains. 2091 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2092 while (EndInst != &BB->front()) { 2093 // Delete the next to last instruction. 2094 Instruction *Inst = &*--EndInst->getIterator(); 2095 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2096 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2097 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2098 EndInst = Inst; 2099 continue; 2100 } 2101 if (isa<DbgInfoIntrinsic>(Inst)) 2102 ++NumDeadDbgInst; 2103 else 2104 ++NumDeadInst; 2105 Inst->eraseFromParent(); 2106 } 2107 return {NumDeadInst, NumDeadDbgInst}; 2108 } 2109 2110 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, 2111 DomTreeUpdater *DTU, 2112 MemorySSAUpdater *MSSAU) { 2113 BasicBlock *BB = I->getParent(); 2114 2115 if (MSSAU) 2116 MSSAU->changeToUnreachable(I); 2117 2118 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2119 2120 // Loop over all of the successors, removing BB's entry from any PHI 2121 // nodes. 2122 for (BasicBlock *Successor : successors(BB)) { 2123 Successor->removePredecessor(BB, PreserveLCSSA); 2124 if (DTU) 2125 UniqueSuccessors.insert(Successor); 2126 } 2127 auto *UI = new UnreachableInst(I->getContext(), I); 2128 UI->setDebugLoc(I->getDebugLoc()); 2129 2130 // All instructions after this are dead. 2131 unsigned NumInstrsRemoved = 0; 2132 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2133 while (BBI != BBE) { 2134 if (!BBI->use_empty()) 2135 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2136 BB->getInstList().erase(BBI++); 2137 ++NumInstrsRemoved; 2138 } 2139 if (DTU) { 2140 SmallVector<DominatorTree::UpdateType, 8> Updates; 2141 Updates.reserve(UniqueSuccessors.size()); 2142 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2143 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2144 DTU->applyUpdates(Updates); 2145 } 2146 return NumInstrsRemoved; 2147 } 2148 2149 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2150 SmallVector<Value *, 8> Args(II->args()); 2151 SmallVector<OperandBundleDef, 1> OpBundles; 2152 II->getOperandBundlesAsDefs(OpBundles); 2153 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2154 II->getCalledOperand(), Args, OpBundles); 2155 NewCall->setCallingConv(II->getCallingConv()); 2156 NewCall->setAttributes(II->getAttributes()); 2157 NewCall->setDebugLoc(II->getDebugLoc()); 2158 NewCall->copyMetadata(*II); 2159 2160 // If the invoke had profile metadata, try converting them for CallInst. 2161 uint64_t TotalWeight; 2162 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2163 // Set the total weight if it fits into i32, otherwise reset. 2164 MDBuilder MDB(NewCall->getContext()); 2165 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2166 ? nullptr 2167 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2168 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2169 } 2170 2171 return NewCall; 2172 } 2173 2174 // changeToCall - Convert the specified invoke into a normal call. 2175 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2176 CallInst *NewCall = createCallMatchingInvoke(II); 2177 NewCall->takeName(II); 2178 NewCall->insertBefore(II); 2179 II->replaceAllUsesWith(NewCall); 2180 2181 // Follow the call by a branch to the normal destination. 2182 BasicBlock *NormalDestBB = II->getNormalDest(); 2183 BranchInst::Create(NormalDestBB, II); 2184 2185 // Update PHI nodes in the unwind destination 2186 BasicBlock *BB = II->getParent(); 2187 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2188 UnwindDestBB->removePredecessor(BB); 2189 II->eraseFromParent(); 2190 if (DTU) 2191 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2192 return NewCall; 2193 } 2194 2195 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2196 BasicBlock *UnwindEdge, 2197 DomTreeUpdater *DTU) { 2198 BasicBlock *BB = CI->getParent(); 2199 2200 // Convert this function call into an invoke instruction. First, split the 2201 // basic block. 2202 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2203 CI->getName() + ".noexc"); 2204 2205 // Delete the unconditional branch inserted by SplitBlock 2206 BB->getInstList().pop_back(); 2207 2208 // Create the new invoke instruction. 2209 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2210 SmallVector<OperandBundleDef, 1> OpBundles; 2211 2212 CI->getOperandBundlesAsDefs(OpBundles); 2213 2214 // Note: we're round tripping operand bundles through memory here, and that 2215 // can potentially be avoided with a cleverer API design that we do not have 2216 // as of this time. 2217 2218 InvokeInst *II = 2219 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2220 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2221 II->setDebugLoc(CI->getDebugLoc()); 2222 II->setCallingConv(CI->getCallingConv()); 2223 II->setAttributes(CI->getAttributes()); 2224 II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof)); 2225 2226 if (DTU) 2227 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2228 2229 // Make sure that anything using the call now uses the invoke! This also 2230 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2231 CI->replaceAllUsesWith(II); 2232 2233 // Delete the original call 2234 Split->getInstList().pop_front(); 2235 return Split; 2236 } 2237 2238 static bool markAliveBlocks(Function &F, 2239 SmallPtrSetImpl<BasicBlock *> &Reachable, 2240 DomTreeUpdater *DTU = nullptr) { 2241 SmallVector<BasicBlock*, 128> Worklist; 2242 BasicBlock *BB = &F.front(); 2243 Worklist.push_back(BB); 2244 Reachable.insert(BB); 2245 bool Changed = false; 2246 do { 2247 BB = Worklist.pop_back_val(); 2248 2249 // Do a quick scan of the basic block, turning any obviously unreachable 2250 // instructions into LLVM unreachable insts. The instruction combining pass 2251 // canonicalizes unreachable insts into stores to null or undef. 2252 for (Instruction &I : *BB) { 2253 if (auto *CI = dyn_cast<CallInst>(&I)) { 2254 Value *Callee = CI->getCalledOperand(); 2255 // Handle intrinsic calls. 2256 if (Function *F = dyn_cast<Function>(Callee)) { 2257 auto IntrinsicID = F->getIntrinsicID(); 2258 // Assumptions that are known to be false are equivalent to 2259 // unreachable. Also, if the condition is undefined, then we make the 2260 // choice most beneficial to the optimizer, and choose that to also be 2261 // unreachable. 2262 if (IntrinsicID == Intrinsic::assume) { 2263 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2264 // Don't insert a call to llvm.trap right before the unreachable. 2265 changeToUnreachable(CI, false, DTU); 2266 Changed = true; 2267 break; 2268 } 2269 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2270 // A call to the guard intrinsic bails out of the current 2271 // compilation unit if the predicate passed to it is false. If the 2272 // predicate is a constant false, then we know the guard will bail 2273 // out of the current compile unconditionally, so all code following 2274 // it is dead. 2275 // 2276 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2277 // guards to treat `undef` as `false` since a guard on `undef` can 2278 // still be useful for widening. 2279 if (match(CI->getArgOperand(0), m_Zero())) 2280 if (!isa<UnreachableInst>(CI->getNextNode())) { 2281 changeToUnreachable(CI->getNextNode(), false, DTU); 2282 Changed = true; 2283 break; 2284 } 2285 } 2286 } else if ((isa<ConstantPointerNull>(Callee) && 2287 !NullPointerIsDefined(CI->getFunction())) || 2288 isa<UndefValue>(Callee)) { 2289 changeToUnreachable(CI, false, DTU); 2290 Changed = true; 2291 break; 2292 } 2293 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2294 // If we found a call to a no-return function, insert an unreachable 2295 // instruction after it. Make sure there isn't *already* one there 2296 // though. 2297 if (!isa<UnreachableInst>(CI->getNextNode())) { 2298 // Don't insert a call to llvm.trap right before the unreachable. 2299 changeToUnreachable(CI->getNextNode(), false, DTU); 2300 Changed = true; 2301 } 2302 break; 2303 } 2304 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2305 // Store to undef and store to null are undefined and used to signal 2306 // that they should be changed to unreachable by passes that can't 2307 // modify the CFG. 2308 2309 // Don't touch volatile stores. 2310 if (SI->isVolatile()) continue; 2311 2312 Value *Ptr = SI->getOperand(1); 2313 2314 if (isa<UndefValue>(Ptr) || 2315 (isa<ConstantPointerNull>(Ptr) && 2316 !NullPointerIsDefined(SI->getFunction(), 2317 SI->getPointerAddressSpace()))) { 2318 changeToUnreachable(SI, false, DTU); 2319 Changed = true; 2320 break; 2321 } 2322 } 2323 } 2324 2325 Instruction *Terminator = BB->getTerminator(); 2326 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2327 // Turn invokes that call 'nounwind' functions into ordinary calls. 2328 Value *Callee = II->getCalledOperand(); 2329 if ((isa<ConstantPointerNull>(Callee) && 2330 !NullPointerIsDefined(BB->getParent())) || 2331 isa<UndefValue>(Callee)) { 2332 changeToUnreachable(II, false, DTU); 2333 Changed = true; 2334 } else { 2335 if (II->doesNotReturn() && 2336 !isa<UnreachableInst>(II->getNormalDest()->front())) { 2337 // If we found an invoke of a no-return function, 2338 // create a new empty basic block with an `unreachable` terminator, 2339 // and set it as the normal destination for the invoke, 2340 // unless that is already the case. 2341 // Note that the original normal destination could have other uses. 2342 BasicBlock *OrigNormalDest = II->getNormalDest(); 2343 OrigNormalDest->removePredecessor(II->getParent()); 2344 LLVMContext &Ctx = II->getContext(); 2345 BasicBlock *UnreachableNormalDest = BasicBlock::Create( 2346 Ctx, OrigNormalDest->getName() + ".unreachable", 2347 II->getFunction(), OrigNormalDest); 2348 new UnreachableInst(Ctx, UnreachableNormalDest); 2349 II->setNormalDest(UnreachableNormalDest); 2350 if (DTU) 2351 DTU->applyUpdates( 2352 {{DominatorTree::Delete, BB, OrigNormalDest}, 2353 {DominatorTree::Insert, BB, UnreachableNormalDest}}); 2354 Changed = true; 2355 } 2356 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2357 if (II->use_empty() && !II->mayHaveSideEffects()) { 2358 // jump to the normal destination branch. 2359 BasicBlock *NormalDestBB = II->getNormalDest(); 2360 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2361 BranchInst::Create(NormalDestBB, II); 2362 UnwindDestBB->removePredecessor(II->getParent()); 2363 II->eraseFromParent(); 2364 if (DTU) 2365 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2366 } else 2367 changeToCall(II, DTU); 2368 Changed = true; 2369 } 2370 } 2371 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2372 // Remove catchpads which cannot be reached. 2373 struct CatchPadDenseMapInfo { 2374 static CatchPadInst *getEmptyKey() { 2375 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2376 } 2377 2378 static CatchPadInst *getTombstoneKey() { 2379 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2380 } 2381 2382 static unsigned getHashValue(CatchPadInst *CatchPad) { 2383 return static_cast<unsigned>(hash_combine_range( 2384 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2385 } 2386 2387 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2388 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2389 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2390 return LHS == RHS; 2391 return LHS->isIdenticalTo(RHS); 2392 } 2393 }; 2394 2395 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 2396 // Set of unique CatchPads. 2397 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2398 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2399 HandlerSet; 2400 detail::DenseSetEmpty Empty; 2401 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2402 E = CatchSwitch->handler_end(); 2403 I != E; ++I) { 2404 BasicBlock *HandlerBB = *I; 2405 if (DTU) 2406 ++NumPerSuccessorCases[HandlerBB]; 2407 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2408 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2409 if (DTU) 2410 --NumPerSuccessorCases[HandlerBB]; 2411 CatchSwitch->removeHandler(I); 2412 --I; 2413 --E; 2414 Changed = true; 2415 } 2416 } 2417 if (DTU) { 2418 std::vector<DominatorTree::UpdateType> Updates; 2419 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2420 if (I.second == 0) 2421 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2422 DTU->applyUpdates(Updates); 2423 } 2424 } 2425 2426 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2427 for (BasicBlock *Successor : successors(BB)) 2428 if (Reachable.insert(Successor).second) 2429 Worklist.push_back(Successor); 2430 } while (!Worklist.empty()); 2431 return Changed; 2432 } 2433 2434 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2435 Instruction *TI = BB->getTerminator(); 2436 2437 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2438 changeToCall(II, DTU); 2439 return; 2440 } 2441 2442 Instruction *NewTI; 2443 BasicBlock *UnwindDest; 2444 2445 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2446 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2447 UnwindDest = CRI->getUnwindDest(); 2448 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2449 auto *NewCatchSwitch = CatchSwitchInst::Create( 2450 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2451 CatchSwitch->getName(), CatchSwitch); 2452 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2453 NewCatchSwitch->addHandler(PadBB); 2454 2455 NewTI = NewCatchSwitch; 2456 UnwindDest = CatchSwitch->getUnwindDest(); 2457 } else { 2458 llvm_unreachable("Could not find unwind successor"); 2459 } 2460 2461 NewTI->takeName(TI); 2462 NewTI->setDebugLoc(TI->getDebugLoc()); 2463 UnwindDest->removePredecessor(BB); 2464 TI->replaceAllUsesWith(NewTI); 2465 TI->eraseFromParent(); 2466 if (DTU) 2467 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2468 } 2469 2470 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2471 /// if they are in a dead cycle. Return true if a change was made, false 2472 /// otherwise. 2473 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2474 MemorySSAUpdater *MSSAU) { 2475 SmallPtrSet<BasicBlock *, 16> Reachable; 2476 bool Changed = markAliveBlocks(F, Reachable, DTU); 2477 2478 // If there are unreachable blocks in the CFG... 2479 if (Reachable.size() == F.size()) 2480 return Changed; 2481 2482 assert(Reachable.size() < F.size()); 2483 2484 // Are there any blocks left to actually delete? 2485 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2486 for (BasicBlock &BB : F) { 2487 // Skip reachable basic blocks 2488 if (Reachable.count(&BB)) 2489 continue; 2490 // Skip already-deleted blocks 2491 if (DTU && DTU->isBBPendingDeletion(&BB)) 2492 continue; 2493 BlocksToRemove.insert(&BB); 2494 } 2495 2496 if (BlocksToRemove.empty()) 2497 return Changed; 2498 2499 Changed = true; 2500 NumRemoved += BlocksToRemove.size(); 2501 2502 if (MSSAU) 2503 MSSAU->removeBlocks(BlocksToRemove); 2504 2505 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 2506 2507 return Changed; 2508 } 2509 2510 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2511 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2512 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2513 K->dropUnknownNonDebugMetadata(KnownIDs); 2514 K->getAllMetadataOtherThanDebugLoc(Metadata); 2515 for (const auto &MD : Metadata) { 2516 unsigned Kind = MD.first; 2517 MDNode *JMD = J->getMetadata(Kind); 2518 MDNode *KMD = MD.second; 2519 2520 switch (Kind) { 2521 default: 2522 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2523 break; 2524 case LLVMContext::MD_dbg: 2525 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2526 case LLVMContext::MD_tbaa: 2527 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2528 break; 2529 case LLVMContext::MD_alias_scope: 2530 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2531 break; 2532 case LLVMContext::MD_noalias: 2533 case LLVMContext::MD_mem_parallel_loop_access: 2534 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2535 break; 2536 case LLVMContext::MD_access_group: 2537 K->setMetadata(LLVMContext::MD_access_group, 2538 intersectAccessGroups(K, J)); 2539 break; 2540 case LLVMContext::MD_range: 2541 2542 // If K does move, use most generic range. Otherwise keep the range of 2543 // K. 2544 if (DoesKMove) 2545 // FIXME: If K does move, we should drop the range info and nonnull. 2546 // Currently this function is used with DoesKMove in passes 2547 // doing hoisting/sinking and the current behavior of using the 2548 // most generic range is correct in those cases. 2549 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2550 break; 2551 case LLVMContext::MD_fpmath: 2552 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2553 break; 2554 case LLVMContext::MD_invariant_load: 2555 // Only set the !invariant.load if it is present in both instructions. 2556 K->setMetadata(Kind, JMD); 2557 break; 2558 case LLVMContext::MD_nonnull: 2559 // If K does move, keep nonull if it is present in both instructions. 2560 if (DoesKMove) 2561 K->setMetadata(Kind, JMD); 2562 break; 2563 case LLVMContext::MD_invariant_group: 2564 // Preserve !invariant.group in K. 2565 break; 2566 case LLVMContext::MD_align: 2567 K->setMetadata(Kind, 2568 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2569 break; 2570 case LLVMContext::MD_dereferenceable: 2571 case LLVMContext::MD_dereferenceable_or_null: 2572 K->setMetadata(Kind, 2573 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2574 break; 2575 case LLVMContext::MD_preserve_access_index: 2576 // Preserve !preserve.access.index in K. 2577 break; 2578 } 2579 } 2580 // Set !invariant.group from J if J has it. If both instructions have it 2581 // then we will just pick it from J - even when they are different. 2582 // Also make sure that K is load or store - f.e. combining bitcast with load 2583 // could produce bitcast with invariant.group metadata, which is invalid. 2584 // FIXME: we should try to preserve both invariant.group md if they are 2585 // different, but right now instruction can only have one invariant.group. 2586 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2587 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2588 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2589 } 2590 2591 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2592 bool KDominatesJ) { 2593 unsigned KnownIDs[] = { 2594 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2595 LLVMContext::MD_noalias, LLVMContext::MD_range, 2596 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2597 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2598 LLVMContext::MD_dereferenceable, 2599 LLVMContext::MD_dereferenceable_or_null, 2600 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2601 combineMetadata(K, J, KnownIDs, KDominatesJ); 2602 } 2603 2604 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2605 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2606 Source.getAllMetadata(MD); 2607 MDBuilder MDB(Dest.getContext()); 2608 Type *NewType = Dest.getType(); 2609 const DataLayout &DL = Source.getModule()->getDataLayout(); 2610 for (const auto &MDPair : MD) { 2611 unsigned ID = MDPair.first; 2612 MDNode *N = MDPair.second; 2613 // Note, essentially every kind of metadata should be preserved here! This 2614 // routine is supposed to clone a load instruction changing *only its type*. 2615 // The only metadata it makes sense to drop is metadata which is invalidated 2616 // when the pointer type changes. This should essentially never be the case 2617 // in LLVM, but we explicitly switch over only known metadata to be 2618 // conservatively correct. If you are adding metadata to LLVM which pertains 2619 // to loads, you almost certainly want to add it here. 2620 switch (ID) { 2621 case LLVMContext::MD_dbg: 2622 case LLVMContext::MD_tbaa: 2623 case LLVMContext::MD_prof: 2624 case LLVMContext::MD_fpmath: 2625 case LLVMContext::MD_tbaa_struct: 2626 case LLVMContext::MD_invariant_load: 2627 case LLVMContext::MD_alias_scope: 2628 case LLVMContext::MD_noalias: 2629 case LLVMContext::MD_nontemporal: 2630 case LLVMContext::MD_mem_parallel_loop_access: 2631 case LLVMContext::MD_access_group: 2632 // All of these directly apply. 2633 Dest.setMetadata(ID, N); 2634 break; 2635 2636 case LLVMContext::MD_nonnull: 2637 copyNonnullMetadata(Source, N, Dest); 2638 break; 2639 2640 case LLVMContext::MD_align: 2641 case LLVMContext::MD_dereferenceable: 2642 case LLVMContext::MD_dereferenceable_or_null: 2643 // These only directly apply if the new type is also a pointer. 2644 if (NewType->isPointerTy()) 2645 Dest.setMetadata(ID, N); 2646 break; 2647 2648 case LLVMContext::MD_range: 2649 copyRangeMetadata(DL, Source, N, Dest); 2650 break; 2651 } 2652 } 2653 } 2654 2655 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2656 auto *ReplInst = dyn_cast<Instruction>(Repl); 2657 if (!ReplInst) 2658 return; 2659 2660 // Patch the replacement so that it is not more restrictive than the value 2661 // being replaced. 2662 // Note that if 'I' is a load being replaced by some operation, 2663 // for example, by an arithmetic operation, then andIRFlags() 2664 // would just erase all math flags from the original arithmetic 2665 // operation, which is clearly not wanted and not needed. 2666 if (!isa<LoadInst>(I)) 2667 ReplInst->andIRFlags(I); 2668 2669 // FIXME: If both the original and replacement value are part of the 2670 // same control-flow region (meaning that the execution of one 2671 // guarantees the execution of the other), then we can combine the 2672 // noalias scopes here and do better than the general conservative 2673 // answer used in combineMetadata(). 2674 2675 // In general, GVN unifies expressions over different control-flow 2676 // regions, and so we need a conservative combination of the noalias 2677 // scopes. 2678 static const unsigned KnownIDs[] = { 2679 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2680 LLVMContext::MD_noalias, LLVMContext::MD_range, 2681 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2682 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2683 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2684 combineMetadata(ReplInst, I, KnownIDs, false); 2685 } 2686 2687 template <typename RootType, typename DominatesFn> 2688 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2689 const RootType &Root, 2690 const DominatesFn &Dominates) { 2691 assert(From->getType() == To->getType()); 2692 2693 unsigned Count = 0; 2694 for (Use &U : llvm::make_early_inc_range(From->uses())) { 2695 if (!Dominates(Root, U)) 2696 continue; 2697 U.set(To); 2698 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2699 << "' as " << *To << " in " << *U << "\n"); 2700 ++Count; 2701 } 2702 return Count; 2703 } 2704 2705 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2706 assert(From->getType() == To->getType()); 2707 auto *BB = From->getParent(); 2708 unsigned Count = 0; 2709 2710 for (Use &U : llvm::make_early_inc_range(From->uses())) { 2711 auto *I = cast<Instruction>(U.getUser()); 2712 if (I->getParent() == BB) 2713 continue; 2714 U.set(To); 2715 ++Count; 2716 } 2717 return Count; 2718 } 2719 2720 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2721 DominatorTree &DT, 2722 const BasicBlockEdge &Root) { 2723 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2724 return DT.dominates(Root, U); 2725 }; 2726 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2727 } 2728 2729 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2730 DominatorTree &DT, 2731 const BasicBlock *BB) { 2732 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 2733 return DT.dominates(BB, U); 2734 }; 2735 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 2736 } 2737 2738 bool llvm::callsGCLeafFunction(const CallBase *Call, 2739 const TargetLibraryInfo &TLI) { 2740 // Check if the function is specifically marked as a gc leaf function. 2741 if (Call->hasFnAttr("gc-leaf-function")) 2742 return true; 2743 if (const Function *F = Call->getCalledFunction()) { 2744 if (F->hasFnAttribute("gc-leaf-function")) 2745 return true; 2746 2747 if (auto IID = F->getIntrinsicID()) { 2748 // Most LLVM intrinsics do not take safepoints. 2749 return IID != Intrinsic::experimental_gc_statepoint && 2750 IID != Intrinsic::experimental_deoptimize && 2751 IID != Intrinsic::memcpy_element_unordered_atomic && 2752 IID != Intrinsic::memmove_element_unordered_atomic; 2753 } 2754 } 2755 2756 // Lib calls can be materialized by some passes, and won't be 2757 // marked as 'gc-leaf-function.' All available Libcalls are 2758 // GC-leaf. 2759 LibFunc LF; 2760 if (TLI.getLibFunc(*Call, LF)) { 2761 return TLI.has(LF); 2762 } 2763 2764 return false; 2765 } 2766 2767 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2768 LoadInst &NewLI) { 2769 auto *NewTy = NewLI.getType(); 2770 2771 // This only directly applies if the new type is also a pointer. 2772 if (NewTy->isPointerTy()) { 2773 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2774 return; 2775 } 2776 2777 // The only other translation we can do is to integral loads with !range 2778 // metadata. 2779 if (!NewTy->isIntegerTy()) 2780 return; 2781 2782 MDBuilder MDB(NewLI.getContext()); 2783 const Value *Ptr = OldLI.getPointerOperand(); 2784 auto *ITy = cast<IntegerType>(NewTy); 2785 auto *NullInt = ConstantExpr::getPtrToInt( 2786 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2787 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2788 NewLI.setMetadata(LLVMContext::MD_range, 2789 MDB.createRange(NonNullInt, NullInt)); 2790 } 2791 2792 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2793 MDNode *N, LoadInst &NewLI) { 2794 auto *NewTy = NewLI.getType(); 2795 2796 // Give up unless it is converted to a pointer where there is a single very 2797 // valuable mapping we can do reliably. 2798 // FIXME: It would be nice to propagate this in more ways, but the type 2799 // conversions make it hard. 2800 if (!NewTy->isPointerTy()) 2801 return; 2802 2803 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2804 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2805 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2806 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2807 } 2808 } 2809 2810 void llvm::dropDebugUsers(Instruction &I) { 2811 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2812 findDbgUsers(DbgUsers, &I); 2813 for (auto *DII : DbgUsers) 2814 DII->eraseFromParent(); 2815 } 2816 2817 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2818 BasicBlock *BB) { 2819 // Since we are moving the instructions out of its basic block, we do not 2820 // retain their original debug locations (DILocations) and debug intrinsic 2821 // instructions. 2822 // 2823 // Doing so would degrade the debugging experience and adversely affect the 2824 // accuracy of profiling information. 2825 // 2826 // Currently, when hoisting the instructions, we take the following actions: 2827 // - Remove their debug intrinsic instructions. 2828 // - Set their debug locations to the values from the insertion point. 2829 // 2830 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2831 // need to be deleted, is because there will not be any instructions with a 2832 // DILocation in either branch left after performing the transformation. We 2833 // can only insert a dbg.value after the two branches are joined again. 2834 // 2835 // See PR38762, PR39243 for more details. 2836 // 2837 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2838 // encode predicated DIExpressions that yield different results on different 2839 // code paths. 2840 2841 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2842 Instruction *I = &*II; 2843 I->dropUndefImplyingAttrsAndUnknownMetadata(); 2844 if (I->isUsedByMetadata()) 2845 dropDebugUsers(*I); 2846 if (I->isDebugOrPseudoInst()) { 2847 // Remove DbgInfo and pseudo probe Intrinsics. 2848 II = I->eraseFromParent(); 2849 continue; 2850 } 2851 I->setDebugLoc(InsertPt->getDebugLoc()); 2852 ++II; 2853 } 2854 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2855 BB->begin(), 2856 BB->getTerminator()->getIterator()); 2857 } 2858 2859 namespace { 2860 2861 /// A potential constituent of a bitreverse or bswap expression. See 2862 /// collectBitParts for a fuller explanation. 2863 struct BitPart { 2864 BitPart(Value *P, unsigned BW) : Provider(P) { 2865 Provenance.resize(BW); 2866 } 2867 2868 /// The Value that this is a bitreverse/bswap of. 2869 Value *Provider; 2870 2871 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2872 /// in Provider becomes bit B in the result of this expression. 2873 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2874 2875 enum { Unset = -1 }; 2876 }; 2877 2878 } // end anonymous namespace 2879 2880 /// Analyze the specified subexpression and see if it is capable of providing 2881 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2882 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2883 /// the output of the expression came from a corresponding bit in some other 2884 /// value. This function is recursive, and the end result is a mapping of 2885 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2886 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2887 /// 2888 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2889 /// that the expression deposits the low byte of %X into the high byte of the 2890 /// result and that all other bits are zero. This expression is accepted and a 2891 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2892 /// [0-7]. 2893 /// 2894 /// For vector types, all analysis is performed at the per-element level. No 2895 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2896 /// constant masks must be splatted across all elements. 2897 /// 2898 /// To avoid revisiting values, the BitPart results are memoized into the 2899 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2900 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2901 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2902 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2903 /// type instead to provide the same functionality. 2904 /// 2905 /// Because we pass around references into \c BPS, we must use a container that 2906 /// does not invalidate internal references (std::map instead of DenseMap). 2907 static const Optional<BitPart> & 2908 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2909 std::map<Value *, Optional<BitPart>> &BPS, int Depth, 2910 bool &FoundRoot) { 2911 auto I = BPS.find(V); 2912 if (I != BPS.end()) 2913 return I->second; 2914 2915 auto &Result = BPS[V] = None; 2916 auto BitWidth = V->getType()->getScalarSizeInBits(); 2917 2918 // Can't do integer/elements > 128 bits. 2919 if (BitWidth > 128) 2920 return Result; 2921 2922 // Prevent stack overflow by limiting the recursion depth 2923 if (Depth == BitPartRecursionMaxDepth) { 2924 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2925 return Result; 2926 } 2927 2928 if (auto *I = dyn_cast<Instruction>(V)) { 2929 Value *X, *Y; 2930 const APInt *C; 2931 2932 // If this is an or instruction, it may be an inner node of the bswap. 2933 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2934 // Check we have both sources and they are from the same provider. 2935 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2936 Depth + 1, FoundRoot); 2937 if (!A || !A->Provider) 2938 return Result; 2939 2940 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 2941 Depth + 1, FoundRoot); 2942 if (!B || A->Provider != B->Provider) 2943 return Result; 2944 2945 // Try and merge the two together. 2946 Result = BitPart(A->Provider, BitWidth); 2947 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2948 if (A->Provenance[BitIdx] != BitPart::Unset && 2949 B->Provenance[BitIdx] != BitPart::Unset && 2950 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2951 return Result = None; 2952 2953 if (A->Provenance[BitIdx] == BitPart::Unset) 2954 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2955 else 2956 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2957 } 2958 2959 return Result; 2960 } 2961 2962 // If this is a logical shift by a constant, recurse then shift the result. 2963 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2964 const APInt &BitShift = *C; 2965 2966 // Ensure the shift amount is defined. 2967 if (BitShift.uge(BitWidth)) 2968 return Result; 2969 2970 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 2971 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 2972 return Result; 2973 2974 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2975 Depth + 1, FoundRoot); 2976 if (!Res) 2977 return Result; 2978 Result = Res; 2979 2980 // Perform the "shift" on BitProvenance. 2981 auto &P = Result->Provenance; 2982 if (I->getOpcode() == Instruction::Shl) { 2983 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2984 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2985 } else { 2986 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2987 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2988 } 2989 2990 return Result; 2991 } 2992 2993 // If this is a logical 'and' with a mask that clears bits, recurse then 2994 // unset the appropriate bits. 2995 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 2996 const APInt &AndMask = *C; 2997 2998 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2999 // early exit. 3000 unsigned NumMaskedBits = AndMask.countPopulation(); 3001 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3002 return Result; 3003 3004 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3005 Depth + 1, FoundRoot); 3006 if (!Res) 3007 return Result; 3008 Result = Res; 3009 3010 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3011 // If the AndMask is zero for this bit, clear the bit. 3012 if (AndMask[BitIdx] == 0) 3013 Result->Provenance[BitIdx] = BitPart::Unset; 3014 return Result; 3015 } 3016 3017 // If this is a zext instruction zero extend the result. 3018 if (match(V, m_ZExt(m_Value(X)))) { 3019 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3020 Depth + 1, FoundRoot); 3021 if (!Res) 3022 return Result; 3023 3024 Result = BitPart(Res->Provider, BitWidth); 3025 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3026 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3027 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3028 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3029 Result->Provenance[BitIdx] = BitPart::Unset; 3030 return Result; 3031 } 3032 3033 // If this is a truncate instruction, extract the lower bits. 3034 if (match(V, m_Trunc(m_Value(X)))) { 3035 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3036 Depth + 1, FoundRoot); 3037 if (!Res) 3038 return Result; 3039 3040 Result = BitPart(Res->Provider, BitWidth); 3041 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3042 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3043 return Result; 3044 } 3045 3046 // BITREVERSE - most likely due to us previous matching a partial 3047 // bitreverse. 3048 if (match(V, m_BitReverse(m_Value(X)))) { 3049 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3050 Depth + 1, FoundRoot); 3051 if (!Res) 3052 return Result; 3053 3054 Result = BitPart(Res->Provider, BitWidth); 3055 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3056 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3057 return Result; 3058 } 3059 3060 // BSWAP - most likely due to us previous matching a partial bswap. 3061 if (match(V, m_BSwap(m_Value(X)))) { 3062 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3063 Depth + 1, FoundRoot); 3064 if (!Res) 3065 return Result; 3066 3067 unsigned ByteWidth = BitWidth / 8; 3068 Result = BitPart(Res->Provider, BitWidth); 3069 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3070 unsigned ByteBitOfs = ByteIdx * 8; 3071 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3072 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3073 Res->Provenance[ByteBitOfs + BitIdx]; 3074 } 3075 return Result; 3076 } 3077 3078 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3079 // amount (modulo). 3080 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3081 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3082 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3083 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3084 // We can treat fshr as a fshl by flipping the modulo amount. 3085 unsigned ModAmt = C->urem(BitWidth); 3086 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3087 ModAmt = BitWidth - ModAmt; 3088 3089 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3090 if (!MatchBitReversals && (ModAmt % 8) != 0) 3091 return Result; 3092 3093 // Check we have both sources and they are from the same provider. 3094 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3095 Depth + 1, FoundRoot); 3096 if (!LHS || !LHS->Provider) 3097 return Result; 3098 3099 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3100 Depth + 1, FoundRoot); 3101 if (!RHS || LHS->Provider != RHS->Provider) 3102 return Result; 3103 3104 unsigned StartBitRHS = BitWidth - ModAmt; 3105 Result = BitPart(LHS->Provider, BitWidth); 3106 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3107 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3108 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3109 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3110 return Result; 3111 } 3112 } 3113 3114 // If we've already found a root input value then we're never going to merge 3115 // these back together. 3116 if (FoundRoot) 3117 return Result; 3118 3119 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 3120 // be the root input value to the bswap/bitreverse. 3121 FoundRoot = true; 3122 Result = BitPart(V, BitWidth); 3123 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3124 Result->Provenance[BitIdx] = BitIdx; 3125 return Result; 3126 } 3127 3128 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3129 unsigned BitWidth) { 3130 if (From % 8 != To % 8) 3131 return false; 3132 // Convert from bit indices to byte indices and check for a byte reversal. 3133 From >>= 3; 3134 To >>= 3; 3135 BitWidth >>= 3; 3136 return From == BitWidth - To - 1; 3137 } 3138 3139 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3140 unsigned BitWidth) { 3141 return From == BitWidth - To - 1; 3142 } 3143 3144 bool llvm::recognizeBSwapOrBitReverseIdiom( 3145 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3146 SmallVectorImpl<Instruction *> &InsertedInsts) { 3147 if (!match(I, m_Or(m_Value(), m_Value())) && 3148 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 3149 !match(I, m_FShr(m_Value(), m_Value(), m_Value()))) 3150 return false; 3151 if (!MatchBSwaps && !MatchBitReversals) 3152 return false; 3153 Type *ITy = I->getType(); 3154 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3155 return false; // Can't do integer/elements > 128 bits. 3156 3157 // Try to find all the pieces corresponding to the bswap. 3158 bool FoundRoot = false; 3159 std::map<Value *, Optional<BitPart>> BPS; 3160 const auto &Res = 3161 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 3162 if (!Res) 3163 return false; 3164 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3165 assert(all_of(BitProvenance, 3166 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3167 "Illegal bit provenance index"); 3168 3169 // If the upper bits are zero, then attempt to perform as a truncated op. 3170 Type *DemandedTy = ITy; 3171 if (BitProvenance.back() == BitPart::Unset) { 3172 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3173 BitProvenance = BitProvenance.drop_back(); 3174 if (BitProvenance.empty()) 3175 return false; // TODO - handle null value? 3176 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3177 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3178 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3179 } 3180 3181 // Check BitProvenance hasn't found a source larger than the result type. 3182 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3183 if (DemandedBW > ITy->getScalarSizeInBits()) 3184 return false; 3185 3186 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3187 // only byteswap values with an even number of bytes. 3188 APInt DemandedMask = APInt::getAllOnes(DemandedBW); 3189 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3190 bool OKForBitReverse = MatchBitReversals; 3191 for (unsigned BitIdx = 0; 3192 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3193 if (BitProvenance[BitIdx] == BitPart::Unset) { 3194 DemandedMask.clearBit(BitIdx); 3195 continue; 3196 } 3197 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3198 DemandedBW); 3199 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3200 BitIdx, DemandedBW); 3201 } 3202 3203 Intrinsic::ID Intrin; 3204 if (OKForBSwap) 3205 Intrin = Intrinsic::bswap; 3206 else if (OKForBitReverse) 3207 Intrin = Intrinsic::bitreverse; 3208 else 3209 return false; 3210 3211 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3212 Value *Provider = Res->Provider; 3213 3214 // We may need to truncate the provider. 3215 if (DemandedTy != Provider->getType()) { 3216 auto *Trunc = 3217 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3218 InsertedInsts.push_back(Trunc); 3219 Provider = Trunc; 3220 } 3221 3222 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3223 InsertedInsts.push_back(Result); 3224 3225 if (!DemandedMask.isAllOnes()) { 3226 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3227 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3228 InsertedInsts.push_back(Result); 3229 } 3230 3231 // We may need to zeroextend back to the result type. 3232 if (ITy != Result->getType()) { 3233 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3234 InsertedInsts.push_back(ExtInst); 3235 } 3236 3237 return true; 3238 } 3239 3240 // CodeGen has special handling for some string functions that may replace 3241 // them with target-specific intrinsics. Since that'd skip our interceptors 3242 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3243 // we mark affected calls as NoBuiltin, which will disable optimization 3244 // in CodeGen. 3245 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3246 CallInst *CI, const TargetLibraryInfo *TLI) { 3247 Function *F = CI->getCalledFunction(); 3248 LibFunc Func; 3249 if (F && !F->hasLocalLinkage() && F->hasName() && 3250 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3251 !F->doesNotAccessMemory()) 3252 CI->addFnAttr(Attribute::NoBuiltin); 3253 } 3254 3255 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3256 // We can't have a PHI with a metadata type. 3257 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3258 return false; 3259 3260 // Early exit. 3261 if (!isa<Constant>(I->getOperand(OpIdx))) 3262 return true; 3263 3264 switch (I->getOpcode()) { 3265 default: 3266 return true; 3267 case Instruction::Call: 3268 case Instruction::Invoke: { 3269 const auto &CB = cast<CallBase>(*I); 3270 3271 // Can't handle inline asm. Skip it. 3272 if (CB.isInlineAsm()) 3273 return false; 3274 3275 // Constant bundle operands may need to retain their constant-ness for 3276 // correctness. 3277 if (CB.isBundleOperand(OpIdx)) 3278 return false; 3279 3280 if (OpIdx < CB.arg_size()) { 3281 // Some variadic intrinsics require constants in the variadic arguments, 3282 // which currently aren't markable as immarg. 3283 if (isa<IntrinsicInst>(CB) && 3284 OpIdx >= CB.getFunctionType()->getNumParams()) { 3285 // This is known to be OK for stackmap. 3286 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3287 } 3288 3289 // gcroot is a special case, since it requires a constant argument which 3290 // isn't also required to be a simple ConstantInt. 3291 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3292 return false; 3293 3294 // Some intrinsic operands are required to be immediates. 3295 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3296 } 3297 3298 // It is never allowed to replace the call argument to an intrinsic, but it 3299 // may be possible for a call. 3300 return !isa<IntrinsicInst>(CB); 3301 } 3302 case Instruction::ShuffleVector: 3303 // Shufflevector masks are constant. 3304 return OpIdx != 2; 3305 case Instruction::Switch: 3306 case Instruction::ExtractValue: 3307 // All operands apart from the first are constant. 3308 return OpIdx == 0; 3309 case Instruction::InsertValue: 3310 // All operands apart from the first and the second are constant. 3311 return OpIdx < 2; 3312 case Instruction::Alloca: 3313 // Static allocas (constant size in the entry block) are handled by 3314 // prologue/epilogue insertion so they're free anyway. We definitely don't 3315 // want to make them non-constant. 3316 return !cast<AllocaInst>(I)->isStaticAlloca(); 3317 case Instruction::GetElementPtr: 3318 if (OpIdx == 0) 3319 return true; 3320 gep_type_iterator It = gep_type_begin(I); 3321 for (auto E = std::next(It, OpIdx); It != E; ++It) 3322 if (It.isStruct()) 3323 return false; 3324 return true; 3325 } 3326 } 3327 3328 Value *llvm::invertCondition(Value *Condition) { 3329 // First: Check if it's a constant 3330 if (Constant *C = dyn_cast<Constant>(Condition)) 3331 return ConstantExpr::getNot(C); 3332 3333 // Second: If the condition is already inverted, return the original value 3334 Value *NotCondition; 3335 if (match(Condition, m_Not(m_Value(NotCondition)))) 3336 return NotCondition; 3337 3338 BasicBlock *Parent = nullptr; 3339 Instruction *Inst = dyn_cast<Instruction>(Condition); 3340 if (Inst) 3341 Parent = Inst->getParent(); 3342 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3343 Parent = &Arg->getParent()->getEntryBlock(); 3344 assert(Parent && "Unsupported condition to invert"); 3345 3346 // Third: Check all the users for an invert 3347 for (User *U : Condition->users()) 3348 if (Instruction *I = dyn_cast<Instruction>(U)) 3349 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3350 return I; 3351 3352 // Last option: Create a new instruction 3353 auto *Inverted = 3354 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3355 if (Inst && !isa<PHINode>(Inst)) 3356 Inverted->insertAfter(Inst); 3357 else 3358 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3359 return Inverted; 3360 } 3361 3362 bool llvm::inferAttributesFromOthers(Function &F) { 3363 // Note: We explicitly check for attributes rather than using cover functions 3364 // because some of the cover functions include the logic being implemented. 3365 3366 bool Changed = false; 3367 // readnone + not convergent implies nosync 3368 if (!F.hasFnAttribute(Attribute::NoSync) && 3369 F.doesNotAccessMemory() && !F.isConvergent()) { 3370 F.setNoSync(); 3371 Changed = true; 3372 } 3373 3374 // readonly implies nofree 3375 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 3376 F.setDoesNotFreeMemory(); 3377 Changed = true; 3378 } 3379 3380 // willreturn implies mustprogress 3381 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 3382 F.setMustProgress(); 3383 Changed = true; 3384 } 3385 3386 // TODO: There are a bunch of cases of restrictive memory effects we 3387 // can infer by inspecting arguments of argmemonly-ish functions. 3388 3389 return Changed; 3390 } 3391