1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LazyValueInfo.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/ConstantRange.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DIBuilder.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalAlias.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Metadata.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/IR/ValueHandle.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/KnownBits.h" 50 #include "llvm/Support/MathExtras.h" 51 #include "llvm/Support/raw_ostream.h" 52 using namespace llvm; 53 using namespace llvm::PatternMatch; 54 55 #define DEBUG_TYPE "local" 56 57 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 58 59 //===----------------------------------------------------------------------===// 60 // Local constant propagation. 61 // 62 63 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 64 /// constant value, convert it into an unconditional branch to the constant 65 /// destination. This is a nontrivial operation because the successors of this 66 /// basic block must have their PHI nodes updated. 67 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 68 /// conditions and indirectbr addresses this might make dead if 69 /// DeleteDeadConditions is true. 70 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 71 const TargetLibraryInfo *TLI) { 72 TerminatorInst *T = BB->getTerminator(); 73 IRBuilder<> Builder(T); 74 75 // Branch - See if we are conditional jumping on constant 76 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 77 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 78 BasicBlock *Dest1 = BI->getSuccessor(0); 79 BasicBlock *Dest2 = BI->getSuccessor(1); 80 81 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 82 // Are we branching on constant? 83 // YES. Change to unconditional branch... 84 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 85 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 86 87 //cerr << "Function: " << T->getParent()->getParent() 88 // << "\nRemoving branch from " << T->getParent() 89 // << "\n\nTo: " << OldDest << endl; 90 91 // Let the basic block know that we are letting go of it. Based on this, 92 // it will adjust it's PHI nodes. 93 OldDest->removePredecessor(BB); 94 95 // Replace the conditional branch with an unconditional one. 96 Builder.CreateBr(Destination); 97 BI->eraseFromParent(); 98 return true; 99 } 100 101 if (Dest2 == Dest1) { // Conditional branch to same location? 102 // This branch matches something like this: 103 // br bool %cond, label %Dest, label %Dest 104 // and changes it into: br label %Dest 105 106 // Let the basic block know that we are letting go of one copy of it. 107 assert(BI->getParent() && "Terminator not inserted in block!"); 108 Dest1->removePredecessor(BI->getParent()); 109 110 // Replace the conditional branch with an unconditional one. 111 Builder.CreateBr(Dest1); 112 Value *Cond = BI->getCondition(); 113 BI->eraseFromParent(); 114 if (DeleteDeadConditions) 115 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 116 return true; 117 } 118 return false; 119 } 120 121 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 122 // If we are switching on a constant, we can convert the switch to an 123 // unconditional branch. 124 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 125 BasicBlock *DefaultDest = SI->getDefaultDest(); 126 BasicBlock *TheOnlyDest = DefaultDest; 127 128 // If the default is unreachable, ignore it when searching for TheOnlyDest. 129 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 130 SI->getNumCases() > 0) { 131 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 132 } 133 134 // Figure out which case it goes to. 135 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 136 // Found case matching a constant operand? 137 if (i->getCaseValue() == CI) { 138 TheOnlyDest = i->getCaseSuccessor(); 139 break; 140 } 141 142 // Check to see if this branch is going to the same place as the default 143 // dest. If so, eliminate it as an explicit compare. 144 if (i->getCaseSuccessor() == DefaultDest) { 145 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 146 unsigned NCases = SI->getNumCases(); 147 // Fold the case metadata into the default if there will be any branches 148 // left, unless the metadata doesn't match the switch. 149 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 150 // Collect branch weights into a vector. 151 SmallVector<uint32_t, 8> Weights; 152 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 153 ++MD_i) { 154 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 155 Weights.push_back(CI->getValue().getZExtValue()); 156 } 157 // Merge weight of this case to the default weight. 158 unsigned idx = i->getCaseIndex(); 159 Weights[0] += Weights[idx+1]; 160 // Remove weight for this case. 161 std::swap(Weights[idx+1], Weights.back()); 162 Weights.pop_back(); 163 SI->setMetadata(LLVMContext::MD_prof, 164 MDBuilder(BB->getContext()). 165 createBranchWeights(Weights)); 166 } 167 // Remove this entry. 168 DefaultDest->removePredecessor(SI->getParent()); 169 i = SI->removeCase(i); 170 e = SI->case_end(); 171 continue; 172 } 173 174 // Otherwise, check to see if the switch only branches to one destination. 175 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 176 // destinations. 177 if (i->getCaseSuccessor() != TheOnlyDest) 178 TheOnlyDest = nullptr; 179 180 // Increment this iterator as we haven't removed the case. 181 ++i; 182 } 183 184 if (CI && !TheOnlyDest) { 185 // Branching on a constant, but not any of the cases, go to the default 186 // successor. 187 TheOnlyDest = SI->getDefaultDest(); 188 } 189 190 // If we found a single destination that we can fold the switch into, do so 191 // now. 192 if (TheOnlyDest) { 193 // Insert the new branch. 194 Builder.CreateBr(TheOnlyDest); 195 BasicBlock *BB = SI->getParent(); 196 197 // Remove entries from PHI nodes which we no longer branch to... 198 for (BasicBlock *Succ : SI->successors()) { 199 // Found case matching a constant operand? 200 if (Succ == TheOnlyDest) 201 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 202 else 203 Succ->removePredecessor(BB); 204 } 205 206 // Delete the old switch. 207 Value *Cond = SI->getCondition(); 208 SI->eraseFromParent(); 209 if (DeleteDeadConditions) 210 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 211 return true; 212 } 213 214 if (SI->getNumCases() == 1) { 215 // Otherwise, we can fold this switch into a conditional branch 216 // instruction if it has only one non-default destination. 217 auto FirstCase = *SI->case_begin(); 218 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 219 FirstCase.getCaseValue(), "cond"); 220 221 // Insert the new branch. 222 BranchInst *NewBr = Builder.CreateCondBr(Cond, 223 FirstCase.getCaseSuccessor(), 224 SI->getDefaultDest()); 225 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 226 if (MD && MD->getNumOperands() == 3) { 227 ConstantInt *SICase = 228 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 229 ConstantInt *SIDef = 230 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 231 assert(SICase && SIDef); 232 // The TrueWeight should be the weight for the single case of SI. 233 NewBr->setMetadata(LLVMContext::MD_prof, 234 MDBuilder(BB->getContext()). 235 createBranchWeights(SICase->getValue().getZExtValue(), 236 SIDef->getValue().getZExtValue())); 237 } 238 239 // Update make.implicit metadata to the newly-created conditional branch. 240 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 241 if (MakeImplicitMD) 242 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 243 244 // Delete the old switch. 245 SI->eraseFromParent(); 246 return true; 247 } 248 return false; 249 } 250 251 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 252 // indirectbr blockaddress(@F, @BB) -> br label @BB 253 if (BlockAddress *BA = 254 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 255 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 256 // Insert the new branch. 257 Builder.CreateBr(TheOnlyDest); 258 259 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 260 if (IBI->getDestination(i) == TheOnlyDest) 261 TheOnlyDest = nullptr; 262 else 263 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 264 } 265 Value *Address = IBI->getAddress(); 266 IBI->eraseFromParent(); 267 if (DeleteDeadConditions) 268 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 269 270 // If we didn't find our destination in the IBI successor list, then we 271 // have undefined behavior. Replace the unconditional branch with an 272 // 'unreachable' instruction. 273 if (TheOnlyDest) { 274 BB->getTerminator()->eraseFromParent(); 275 new UnreachableInst(BB->getContext(), BB); 276 } 277 278 return true; 279 } 280 } 281 282 return false; 283 } 284 285 286 //===----------------------------------------------------------------------===// 287 // Local dead code elimination. 288 // 289 290 /// isInstructionTriviallyDead - Return true if the result produced by the 291 /// instruction is not used, and the instruction has no side effects. 292 /// 293 bool llvm::isInstructionTriviallyDead(Instruction *I, 294 const TargetLibraryInfo *TLI) { 295 if (!I->use_empty()) 296 return false; 297 return wouldInstructionBeTriviallyDead(I, TLI); 298 } 299 300 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 301 const TargetLibraryInfo *TLI) { 302 if (isa<TerminatorInst>(I)) 303 return false; 304 305 // We don't want the landingpad-like instructions removed by anything this 306 // general. 307 if (I->isEHPad()) 308 return false; 309 310 // We don't want debug info removed by anything this general, unless 311 // debug info is empty. 312 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 313 if (DDI->getAddress()) 314 return false; 315 return true; 316 } 317 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 318 if (DVI->getValue()) 319 return false; 320 return true; 321 } 322 323 if (!I->mayHaveSideEffects()) 324 return true; 325 326 // Special case intrinsics that "may have side effects" but can be deleted 327 // when dead. 328 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 329 // Safe to delete llvm.stacksave if dead. 330 if (II->getIntrinsicID() == Intrinsic::stacksave) 331 return true; 332 333 // Lifetime intrinsics are dead when their right-hand is undef. 334 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 335 II->getIntrinsicID() == Intrinsic::lifetime_end) 336 return isa<UndefValue>(II->getArgOperand(1)); 337 338 // Assumptions are dead if their condition is trivially true. Guards on 339 // true are operationally no-ops. In the future we can consider more 340 // sophisticated tradeoffs for guards considering potential for check 341 // widening, but for now we keep things simple. 342 if (II->getIntrinsicID() == Intrinsic::assume || 343 II->getIntrinsicID() == Intrinsic::experimental_guard) { 344 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 345 return !Cond->isZero(); 346 347 return false; 348 } 349 } 350 351 if (isAllocLikeFn(I, TLI)) 352 return true; 353 354 if (CallInst *CI = isFreeCall(I, TLI)) 355 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 356 return C->isNullValue() || isa<UndefValue>(C); 357 358 if (CallSite CS = CallSite(I)) 359 if (isMathLibCallNoop(CS, TLI)) 360 return true; 361 362 return false; 363 } 364 365 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 366 /// trivially dead instruction, delete it. If that makes any of its operands 367 /// trivially dead, delete them too, recursively. Return true if any 368 /// instructions were deleted. 369 bool 370 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 371 const TargetLibraryInfo *TLI) { 372 Instruction *I = dyn_cast<Instruction>(V); 373 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 374 return false; 375 376 SmallVector<Instruction*, 16> DeadInsts; 377 DeadInsts.push_back(I); 378 379 do { 380 I = DeadInsts.pop_back_val(); 381 382 // Null out all of the instruction's operands to see if any operand becomes 383 // dead as we go. 384 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 385 Value *OpV = I->getOperand(i); 386 I->setOperand(i, nullptr); 387 388 if (!OpV->use_empty()) continue; 389 390 // If the operand is an instruction that became dead as we nulled out the 391 // operand, and if it is 'trivially' dead, delete it in a future loop 392 // iteration. 393 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 394 if (isInstructionTriviallyDead(OpI, TLI)) 395 DeadInsts.push_back(OpI); 396 } 397 398 I->eraseFromParent(); 399 } while (!DeadInsts.empty()); 400 401 return true; 402 } 403 404 /// areAllUsesEqual - Check whether the uses of a value are all the same. 405 /// This is similar to Instruction::hasOneUse() except this will also return 406 /// true when there are no uses or multiple uses that all refer to the same 407 /// value. 408 static bool areAllUsesEqual(Instruction *I) { 409 Value::user_iterator UI = I->user_begin(); 410 Value::user_iterator UE = I->user_end(); 411 if (UI == UE) 412 return true; 413 414 User *TheUse = *UI; 415 for (++UI; UI != UE; ++UI) { 416 if (*UI != TheUse) 417 return false; 418 } 419 return true; 420 } 421 422 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 423 /// dead PHI node, due to being a def-use chain of single-use nodes that 424 /// either forms a cycle or is terminated by a trivially dead instruction, 425 /// delete it. If that makes any of its operands trivially dead, delete them 426 /// too, recursively. Return true if a change was made. 427 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 428 const TargetLibraryInfo *TLI) { 429 SmallPtrSet<Instruction*, 4> Visited; 430 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 431 I = cast<Instruction>(*I->user_begin())) { 432 if (I->use_empty()) 433 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 434 435 // If we find an instruction more than once, we're on a cycle that 436 // won't prove fruitful. 437 if (!Visited.insert(I).second) { 438 // Break the cycle and delete the instruction and its operands. 439 I->replaceAllUsesWith(UndefValue::get(I->getType())); 440 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 441 return true; 442 } 443 } 444 return false; 445 } 446 447 static bool 448 simplifyAndDCEInstruction(Instruction *I, 449 SmallSetVector<Instruction *, 16> &WorkList, 450 const DataLayout &DL, 451 const TargetLibraryInfo *TLI) { 452 if (isInstructionTriviallyDead(I, TLI)) { 453 // Null out all of the instruction's operands to see if any operand becomes 454 // dead as we go. 455 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 456 Value *OpV = I->getOperand(i); 457 I->setOperand(i, nullptr); 458 459 if (!OpV->use_empty() || I == OpV) 460 continue; 461 462 // If the operand is an instruction that became dead as we nulled out the 463 // operand, and if it is 'trivially' dead, delete it in a future loop 464 // iteration. 465 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 466 if (isInstructionTriviallyDead(OpI, TLI)) 467 WorkList.insert(OpI); 468 } 469 470 I->eraseFromParent(); 471 472 return true; 473 } 474 475 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 476 // Add the users to the worklist. CAREFUL: an instruction can use itself, 477 // in the case of a phi node. 478 for (User *U : I->users()) { 479 if (U != I) { 480 WorkList.insert(cast<Instruction>(U)); 481 } 482 } 483 484 // Replace the instruction with its simplified value. 485 bool Changed = false; 486 if (!I->use_empty()) { 487 I->replaceAllUsesWith(SimpleV); 488 Changed = true; 489 } 490 if (isInstructionTriviallyDead(I, TLI)) { 491 I->eraseFromParent(); 492 Changed = true; 493 } 494 return Changed; 495 } 496 return false; 497 } 498 499 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 500 /// simplify any instructions in it and recursively delete dead instructions. 501 /// 502 /// This returns true if it changed the code, note that it can delete 503 /// instructions in other blocks as well in this block. 504 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 505 const TargetLibraryInfo *TLI) { 506 bool MadeChange = false; 507 const DataLayout &DL = BB->getModule()->getDataLayout(); 508 509 #ifndef NDEBUG 510 // In debug builds, ensure that the terminator of the block is never replaced 511 // or deleted by these simplifications. The idea of simplification is that it 512 // cannot introduce new instructions, and there is no way to replace the 513 // terminator of a block without introducing a new instruction. 514 AssertingVH<Instruction> TerminatorVH(&BB->back()); 515 #endif 516 517 SmallSetVector<Instruction *, 16> WorkList; 518 // Iterate over the original function, only adding insts to the worklist 519 // if they actually need to be revisited. This avoids having to pre-init 520 // the worklist with the entire function's worth of instructions. 521 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 522 BI != E;) { 523 assert(!BI->isTerminator()); 524 Instruction *I = &*BI; 525 ++BI; 526 527 // We're visiting this instruction now, so make sure it's not in the 528 // worklist from an earlier visit. 529 if (!WorkList.count(I)) 530 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 531 } 532 533 while (!WorkList.empty()) { 534 Instruction *I = WorkList.pop_back_val(); 535 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 536 } 537 return MadeChange; 538 } 539 540 //===----------------------------------------------------------------------===// 541 // Control Flow Graph Restructuring. 542 // 543 544 545 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 546 /// method is called when we're about to delete Pred as a predecessor of BB. If 547 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 548 /// 549 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 550 /// nodes that collapse into identity values. For example, if we have: 551 /// x = phi(1, 0, 0, 0) 552 /// y = and x, z 553 /// 554 /// .. and delete the predecessor corresponding to the '1', this will attempt to 555 /// recursively fold the and to 0. 556 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 557 // This only adjusts blocks with PHI nodes. 558 if (!isa<PHINode>(BB->begin())) 559 return; 560 561 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 562 // them down. This will leave us with single entry phi nodes and other phis 563 // that can be removed. 564 BB->removePredecessor(Pred, true); 565 566 WeakTrackingVH PhiIt = &BB->front(); 567 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 568 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 569 Value *OldPhiIt = PhiIt; 570 571 if (!recursivelySimplifyInstruction(PN)) 572 continue; 573 574 // If recursive simplification ended up deleting the next PHI node we would 575 // iterate to, then our iterator is invalid, restart scanning from the top 576 // of the block. 577 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 578 } 579 } 580 581 582 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 583 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 584 /// between them, moving the instructions in the predecessor into DestBB and 585 /// deleting the predecessor block. 586 /// 587 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 588 // If BB has single-entry PHI nodes, fold them. 589 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 590 Value *NewVal = PN->getIncomingValue(0); 591 // Replace self referencing PHI with undef, it must be dead. 592 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 593 PN->replaceAllUsesWith(NewVal); 594 PN->eraseFromParent(); 595 } 596 597 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 598 assert(PredBB && "Block doesn't have a single predecessor!"); 599 600 // Zap anything that took the address of DestBB. Not doing this will give the 601 // address an invalid value. 602 if (DestBB->hasAddressTaken()) { 603 BlockAddress *BA = BlockAddress::get(DestBB); 604 Constant *Replacement = 605 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 606 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 607 BA->getType())); 608 BA->destroyConstant(); 609 } 610 611 // Anything that branched to PredBB now branches to DestBB. 612 PredBB->replaceAllUsesWith(DestBB); 613 614 // Splice all the instructions from PredBB to DestBB. 615 PredBB->getTerminator()->eraseFromParent(); 616 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 617 618 // If the PredBB is the entry block of the function, move DestBB up to 619 // become the entry block after we erase PredBB. 620 if (PredBB == &DestBB->getParent()->getEntryBlock()) 621 DestBB->moveAfter(PredBB); 622 623 if (DT) { 624 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 625 DT->changeImmediateDominator(DestBB, PredBBIDom); 626 DT->eraseNode(PredBB); 627 } 628 // Nuke BB. 629 PredBB->eraseFromParent(); 630 } 631 632 /// CanMergeValues - Return true if we can choose one of these values to use 633 /// in place of the other. Note that we will always choose the non-undef 634 /// value to keep. 635 static bool CanMergeValues(Value *First, Value *Second) { 636 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 637 } 638 639 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 640 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 641 /// 642 /// Assumption: Succ is the single successor for BB. 643 /// 644 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 645 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 646 647 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 648 << Succ->getName() << "\n"); 649 // Shortcut, if there is only a single predecessor it must be BB and merging 650 // is always safe 651 if (Succ->getSinglePredecessor()) return true; 652 653 // Make a list of the predecessors of BB 654 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 655 656 // Look at all the phi nodes in Succ, to see if they present a conflict when 657 // merging these blocks 658 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 659 PHINode *PN = cast<PHINode>(I); 660 661 // If the incoming value from BB is again a PHINode in 662 // BB which has the same incoming value for *PI as PN does, we can 663 // merge the phi nodes and then the blocks can still be merged 664 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 665 if (BBPN && BBPN->getParent() == BB) { 666 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 667 BasicBlock *IBB = PN->getIncomingBlock(PI); 668 if (BBPreds.count(IBB) && 669 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 670 PN->getIncomingValue(PI))) { 671 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 672 << Succ->getName() << " is conflicting with " 673 << BBPN->getName() << " with regard to common predecessor " 674 << IBB->getName() << "\n"); 675 return false; 676 } 677 } 678 } else { 679 Value* Val = PN->getIncomingValueForBlock(BB); 680 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 681 // See if the incoming value for the common predecessor is equal to the 682 // one for BB, in which case this phi node will not prevent the merging 683 // of the block. 684 BasicBlock *IBB = PN->getIncomingBlock(PI); 685 if (BBPreds.count(IBB) && 686 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 687 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 688 << Succ->getName() << " is conflicting with regard to common " 689 << "predecessor " << IBB->getName() << "\n"); 690 return false; 691 } 692 } 693 } 694 } 695 696 return true; 697 } 698 699 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 700 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 701 702 /// \brief Determines the value to use as the phi node input for a block. 703 /// 704 /// Select between \p OldVal any value that we know flows from \p BB 705 /// to a particular phi on the basis of which one (if either) is not 706 /// undef. Update IncomingValues based on the selected value. 707 /// 708 /// \param OldVal The value we are considering selecting. 709 /// \param BB The block that the value flows in from. 710 /// \param IncomingValues A map from block-to-value for other phi inputs 711 /// that we have examined. 712 /// 713 /// \returns the selected value. 714 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 715 IncomingValueMap &IncomingValues) { 716 if (!isa<UndefValue>(OldVal)) { 717 assert((!IncomingValues.count(BB) || 718 IncomingValues.find(BB)->second == OldVal) && 719 "Expected OldVal to match incoming value from BB!"); 720 721 IncomingValues.insert(std::make_pair(BB, OldVal)); 722 return OldVal; 723 } 724 725 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 726 if (It != IncomingValues.end()) return It->second; 727 728 return OldVal; 729 } 730 731 /// \brief Create a map from block to value for the operands of a 732 /// given phi. 733 /// 734 /// Create a map from block to value for each non-undef value flowing 735 /// into \p PN. 736 /// 737 /// \param PN The phi we are collecting the map for. 738 /// \param IncomingValues [out] The map from block to value for this phi. 739 static void gatherIncomingValuesToPhi(PHINode *PN, 740 IncomingValueMap &IncomingValues) { 741 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 742 BasicBlock *BB = PN->getIncomingBlock(i); 743 Value *V = PN->getIncomingValue(i); 744 745 if (!isa<UndefValue>(V)) 746 IncomingValues.insert(std::make_pair(BB, V)); 747 } 748 } 749 750 /// \brief Replace the incoming undef values to a phi with the values 751 /// from a block-to-value map. 752 /// 753 /// \param PN The phi we are replacing the undefs in. 754 /// \param IncomingValues A map from block to value. 755 static void replaceUndefValuesInPhi(PHINode *PN, 756 const IncomingValueMap &IncomingValues) { 757 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 758 Value *V = PN->getIncomingValue(i); 759 760 if (!isa<UndefValue>(V)) continue; 761 762 BasicBlock *BB = PN->getIncomingBlock(i); 763 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 764 if (It == IncomingValues.end()) continue; 765 766 PN->setIncomingValue(i, It->second); 767 } 768 } 769 770 /// \brief Replace a value flowing from a block to a phi with 771 /// potentially multiple instances of that value flowing from the 772 /// block's predecessors to the phi. 773 /// 774 /// \param BB The block with the value flowing into the phi. 775 /// \param BBPreds The predecessors of BB. 776 /// \param PN The phi that we are updating. 777 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 778 const PredBlockVector &BBPreds, 779 PHINode *PN) { 780 Value *OldVal = PN->removeIncomingValue(BB, false); 781 assert(OldVal && "No entry in PHI for Pred BB!"); 782 783 IncomingValueMap IncomingValues; 784 785 // We are merging two blocks - BB, and the block containing PN - and 786 // as a result we need to redirect edges from the predecessors of BB 787 // to go to the block containing PN, and update PN 788 // accordingly. Since we allow merging blocks in the case where the 789 // predecessor and successor blocks both share some predecessors, 790 // and where some of those common predecessors might have undef 791 // values flowing into PN, we want to rewrite those values to be 792 // consistent with the non-undef values. 793 794 gatherIncomingValuesToPhi(PN, IncomingValues); 795 796 // If this incoming value is one of the PHI nodes in BB, the new entries 797 // in the PHI node are the entries from the old PHI. 798 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 799 PHINode *OldValPN = cast<PHINode>(OldVal); 800 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 801 // Note that, since we are merging phi nodes and BB and Succ might 802 // have common predecessors, we could end up with a phi node with 803 // identical incoming branches. This will be cleaned up later (and 804 // will trigger asserts if we try to clean it up now, without also 805 // simplifying the corresponding conditional branch). 806 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 807 Value *PredVal = OldValPN->getIncomingValue(i); 808 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 809 IncomingValues); 810 811 // And add a new incoming value for this predecessor for the 812 // newly retargeted branch. 813 PN->addIncoming(Selected, PredBB); 814 } 815 } else { 816 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 817 // Update existing incoming values in PN for this 818 // predecessor of BB. 819 BasicBlock *PredBB = BBPreds[i]; 820 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 821 IncomingValues); 822 823 // And add a new incoming value for this predecessor for the 824 // newly retargeted branch. 825 PN->addIncoming(Selected, PredBB); 826 } 827 } 828 829 replaceUndefValuesInPhi(PN, IncomingValues); 830 } 831 832 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 833 /// unconditional branch, and contains no instructions other than PHI nodes, 834 /// potential side-effect free intrinsics and the branch. If possible, 835 /// eliminate BB by rewriting all the predecessors to branch to the successor 836 /// block and return true. If we can't transform, return false. 837 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 838 assert(BB != &BB->getParent()->getEntryBlock() && 839 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 840 841 // We can't eliminate infinite loops. 842 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 843 if (BB == Succ) return false; 844 845 // Check to see if merging these blocks would cause conflicts for any of the 846 // phi nodes in BB or Succ. If not, we can safely merge. 847 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 848 849 // Check for cases where Succ has multiple predecessors and a PHI node in BB 850 // has uses which will not disappear when the PHI nodes are merged. It is 851 // possible to handle such cases, but difficult: it requires checking whether 852 // BB dominates Succ, which is non-trivial to calculate in the case where 853 // Succ has multiple predecessors. Also, it requires checking whether 854 // constructing the necessary self-referential PHI node doesn't introduce any 855 // conflicts; this isn't too difficult, but the previous code for doing this 856 // was incorrect. 857 // 858 // Note that if this check finds a live use, BB dominates Succ, so BB is 859 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 860 // folding the branch isn't profitable in that case anyway. 861 if (!Succ->getSinglePredecessor()) { 862 BasicBlock::iterator BBI = BB->begin(); 863 while (isa<PHINode>(*BBI)) { 864 for (Use &U : BBI->uses()) { 865 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 866 if (PN->getIncomingBlock(U) != BB) 867 return false; 868 } else { 869 return false; 870 } 871 } 872 ++BBI; 873 } 874 } 875 876 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 877 878 if (isa<PHINode>(Succ->begin())) { 879 // If there is more than one pred of succ, and there are PHI nodes in 880 // the successor, then we need to add incoming edges for the PHI nodes 881 // 882 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 883 884 // Loop over all of the PHI nodes in the successor of BB. 885 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 886 PHINode *PN = cast<PHINode>(I); 887 888 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 889 } 890 } 891 892 if (Succ->getSinglePredecessor()) { 893 // BB is the only predecessor of Succ, so Succ will end up with exactly 894 // the same predecessors BB had. 895 896 // Copy over any phi, debug or lifetime instruction. 897 BB->getTerminator()->eraseFromParent(); 898 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 899 BB->getInstList()); 900 } else { 901 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 902 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 903 assert(PN->use_empty() && "There shouldn't be any uses here!"); 904 PN->eraseFromParent(); 905 } 906 } 907 908 // If the unconditional branch we replaced contains llvm.loop metadata, we 909 // add the metadata to the branch instructions in the predecessors. 910 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 911 Instruction *TI = BB->getTerminator(); 912 if (TI) 913 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 914 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 915 BasicBlock *Pred = *PI; 916 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 917 } 918 919 // Everything that jumped to BB now goes to Succ. 920 BB->replaceAllUsesWith(Succ); 921 if (!Succ->hasName()) Succ->takeName(BB); 922 BB->eraseFromParent(); // Delete the old basic block. 923 return true; 924 } 925 926 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 927 /// nodes in this block. This doesn't try to be clever about PHI nodes 928 /// which differ only in the order of the incoming values, but instcombine 929 /// orders them so it usually won't matter. 930 /// 931 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 932 // This implementation doesn't currently consider undef operands 933 // specially. Theoretically, two phis which are identical except for 934 // one having an undef where the other doesn't could be collapsed. 935 936 struct PHIDenseMapInfo { 937 static PHINode *getEmptyKey() { 938 return DenseMapInfo<PHINode *>::getEmptyKey(); 939 } 940 static PHINode *getTombstoneKey() { 941 return DenseMapInfo<PHINode *>::getTombstoneKey(); 942 } 943 static unsigned getHashValue(PHINode *PN) { 944 // Compute a hash value on the operands. Instcombine will likely have 945 // sorted them, which helps expose duplicates, but we have to check all 946 // the operands to be safe in case instcombine hasn't run. 947 return static_cast<unsigned>(hash_combine( 948 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 949 hash_combine_range(PN->block_begin(), PN->block_end()))); 950 } 951 static bool isEqual(PHINode *LHS, PHINode *RHS) { 952 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 953 RHS == getEmptyKey() || RHS == getTombstoneKey()) 954 return LHS == RHS; 955 return LHS->isIdenticalTo(RHS); 956 } 957 }; 958 959 // Set of unique PHINodes. 960 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 961 962 // Examine each PHI. 963 bool Changed = false; 964 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 965 auto Inserted = PHISet.insert(PN); 966 if (!Inserted.second) { 967 // A duplicate. Replace this PHI with its duplicate. 968 PN->replaceAllUsesWith(*Inserted.first); 969 PN->eraseFromParent(); 970 Changed = true; 971 972 // The RAUW can change PHIs that we already visited. Start over from the 973 // beginning. 974 PHISet.clear(); 975 I = BB->begin(); 976 } 977 } 978 979 return Changed; 980 } 981 982 /// enforceKnownAlignment - If the specified pointer points to an object that 983 /// we control, modify the object's alignment to PrefAlign. This isn't 984 /// often possible though. If alignment is important, a more reliable approach 985 /// is to simply align all global variables and allocation instructions to 986 /// their preferred alignment from the beginning. 987 /// 988 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 989 unsigned PrefAlign, 990 const DataLayout &DL) { 991 assert(PrefAlign > Align); 992 993 V = V->stripPointerCasts(); 994 995 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 996 // TODO: ideally, computeKnownBits ought to have used 997 // AllocaInst::getAlignment() in its computation already, making 998 // the below max redundant. But, as it turns out, 999 // stripPointerCasts recurses through infinite layers of bitcasts, 1000 // while computeKnownBits is not allowed to traverse more than 6 1001 // levels. 1002 Align = std::max(AI->getAlignment(), Align); 1003 if (PrefAlign <= Align) 1004 return Align; 1005 1006 // If the preferred alignment is greater than the natural stack alignment 1007 // then don't round up. This avoids dynamic stack realignment. 1008 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1009 return Align; 1010 AI->setAlignment(PrefAlign); 1011 return PrefAlign; 1012 } 1013 1014 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1015 // TODO: as above, this shouldn't be necessary. 1016 Align = std::max(GO->getAlignment(), Align); 1017 if (PrefAlign <= Align) 1018 return Align; 1019 1020 // If there is a large requested alignment and we can, bump up the alignment 1021 // of the global. If the memory we set aside for the global may not be the 1022 // memory used by the final program then it is impossible for us to reliably 1023 // enforce the preferred alignment. 1024 if (!GO->canIncreaseAlignment()) 1025 return Align; 1026 1027 GO->setAlignment(PrefAlign); 1028 return PrefAlign; 1029 } 1030 1031 return Align; 1032 } 1033 1034 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1035 const DataLayout &DL, 1036 const Instruction *CxtI, 1037 AssumptionCache *AC, 1038 const DominatorTree *DT) { 1039 assert(V->getType()->isPointerTy() && 1040 "getOrEnforceKnownAlignment expects a pointer!"); 1041 1042 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1043 unsigned TrailZ = Known.countMinTrailingZeros(); 1044 1045 // Avoid trouble with ridiculously large TrailZ values, such as 1046 // those computed from a null pointer. 1047 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1048 1049 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1050 1051 // LLVM doesn't support alignments larger than this currently. 1052 Align = std::min(Align, +Value::MaximumAlignment); 1053 1054 if (PrefAlign > Align) 1055 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1056 1057 // We don't need to make any adjustment. 1058 return Align; 1059 } 1060 1061 ///===---------------------------------------------------------------------===// 1062 /// Dbg Intrinsic utilities 1063 /// 1064 1065 /// See if there is a dbg.value intrinsic for DIVar before I. 1066 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1067 Instruction *I) { 1068 // Since we can't guarantee that the original dbg.declare instrinsic 1069 // is removed by LowerDbgDeclare(), we need to make sure that we are 1070 // not inserting the same dbg.value intrinsic over and over. 1071 llvm::BasicBlock::InstListType::iterator PrevI(I); 1072 if (PrevI != I->getParent()->getInstList().begin()) { 1073 --PrevI; 1074 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1075 if (DVI->getValue() == I->getOperand(0) && 1076 DVI->getVariable() == DIVar && 1077 DVI->getExpression() == DIExpr) 1078 return true; 1079 } 1080 return false; 1081 } 1082 1083 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1084 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1085 DIExpression *DIExpr, 1086 PHINode *APN) { 1087 // Since we can't guarantee that the original dbg.declare instrinsic 1088 // is removed by LowerDbgDeclare(), we need to make sure that we are 1089 // not inserting the same dbg.value intrinsic over and over. 1090 SmallVector<DbgValueInst *, 1> DbgValues; 1091 findDbgValues(DbgValues, APN); 1092 for (auto *DVI : DbgValues) { 1093 assert(DVI->getValue() == APN); 1094 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1095 return true; 1096 } 1097 return false; 1098 } 1099 1100 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1101 /// that has an associated llvm.dbg.decl intrinsic. 1102 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1103 StoreInst *SI, DIBuilder &Builder) { 1104 auto *DIVar = DDI->getVariable(); 1105 assert(DIVar && "Missing variable"); 1106 auto *DIExpr = DDI->getExpression(); 1107 Value *DV = SI->getOperand(0); 1108 1109 // If an argument is zero extended then use argument directly. The ZExt 1110 // may be zapped by an optimization pass in future. 1111 Argument *ExtendedArg = nullptr; 1112 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1113 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1114 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1115 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1116 if (ExtendedArg) { 1117 // If this DDI was already describing only a fragment of a variable, ensure 1118 // that fragment is appropriately narrowed here. 1119 // But if a fragment wasn't used, describe the value as the original 1120 // argument (rather than the zext or sext) so that it remains described even 1121 // if the sext/zext is optimized away. This widens the variable description, 1122 // leaving it up to the consumer to know how the smaller value may be 1123 // represented in a larger register. 1124 if (auto Fragment = DIExpr->getFragmentInfo()) { 1125 unsigned FragmentOffset = Fragment->OffsetInBits; 1126 SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(), 1127 DIExpr->elements_end() - 3); 1128 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1129 Ops.push_back(FragmentOffset); 1130 const DataLayout &DL = DDI->getModule()->getDataLayout(); 1131 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1132 DIExpr = Builder.createExpression(Ops); 1133 } 1134 DV = ExtendedArg; 1135 } 1136 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1137 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DDI->getDebugLoc(), 1138 SI); 1139 } 1140 1141 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1142 /// that has an associated llvm.dbg.decl intrinsic. 1143 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1144 LoadInst *LI, DIBuilder &Builder) { 1145 auto *DIVar = DDI->getVariable(); 1146 auto *DIExpr = DDI->getExpression(); 1147 assert(DIVar && "Missing variable"); 1148 1149 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1150 return; 1151 1152 // We are now tracking the loaded value instead of the address. In the 1153 // future if multi-location support is added to the IR, it might be 1154 // preferable to keep tracking both the loaded value and the original 1155 // address in case the alloca can not be elided. 1156 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1157 LI, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr); 1158 DbgValue->insertAfter(LI); 1159 } 1160 1161 /// Inserts a llvm.dbg.value intrinsic after a phi 1162 /// that has an associated llvm.dbg.decl intrinsic. 1163 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1164 PHINode *APN, DIBuilder &Builder) { 1165 auto *DIVar = DDI->getVariable(); 1166 auto *DIExpr = DDI->getExpression(); 1167 assert(DIVar && "Missing variable"); 1168 1169 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1170 return; 1171 1172 BasicBlock *BB = APN->getParent(); 1173 auto InsertionPt = BB->getFirstInsertionPt(); 1174 1175 // The block may be a catchswitch block, which does not have a valid 1176 // insertion point. 1177 // FIXME: Insert dbg.value markers in the successors when appropriate. 1178 if (InsertionPt != BB->end()) 1179 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DDI->getDebugLoc(), 1180 &*InsertionPt); 1181 } 1182 1183 /// Determine whether this alloca is either a VLA or an array. 1184 static bool isArray(AllocaInst *AI) { 1185 return AI->isArrayAllocation() || 1186 AI->getType()->getElementType()->isArrayTy(); 1187 } 1188 1189 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1190 /// of llvm.dbg.value intrinsics. 1191 bool llvm::LowerDbgDeclare(Function &F) { 1192 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1193 SmallVector<DbgDeclareInst *, 4> Dbgs; 1194 for (auto &FI : F) 1195 for (Instruction &BI : FI) 1196 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1197 Dbgs.push_back(DDI); 1198 1199 if (Dbgs.empty()) 1200 return false; 1201 1202 for (auto &I : Dbgs) { 1203 DbgDeclareInst *DDI = I; 1204 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1205 // If this is an alloca for a scalar variable, insert a dbg.value 1206 // at each load and store to the alloca and erase the dbg.declare. 1207 // The dbg.values allow tracking a variable even if it is not 1208 // stored on the stack, while the dbg.declare can only describe 1209 // the stack slot (and at a lexical-scope granularity). Later 1210 // passes will attempt to elide the stack slot. 1211 if (AI && !isArray(AI)) { 1212 for (auto &AIUse : AI->uses()) { 1213 User *U = AIUse.getUser(); 1214 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1215 if (AIUse.getOperandNo() == 1) 1216 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1217 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1218 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1219 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1220 // This is a call by-value or some other instruction that 1221 // takes a pointer to the variable. Insert a *value* 1222 // intrinsic that describes the alloca. 1223 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), 1224 DDI->getExpression(), DDI->getDebugLoc(), 1225 CI); 1226 } 1227 } 1228 DDI->eraseFromParent(); 1229 } 1230 } 1231 return true; 1232 } 1233 1234 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1235 /// alloca 'V', if any. 1236 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1237 if (auto *L = LocalAsMetadata::getIfExists(V)) 1238 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1239 for (User *U : MDV->users()) 1240 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1241 return DDI; 1242 1243 return nullptr; 1244 } 1245 1246 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1247 if (auto *L = LocalAsMetadata::getIfExists(V)) 1248 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1249 for (User *U : MDV->users()) 1250 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1251 DbgValues.push_back(DVI); 1252 } 1253 1254 1255 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1256 Instruction *InsertBefore, DIBuilder &Builder, 1257 bool Deref, int Offset) { 1258 DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address); 1259 if (!DDI) 1260 return false; 1261 DebugLoc Loc = DDI->getDebugLoc(); 1262 auto *DIVar = DDI->getVariable(); 1263 auto *DIExpr = DDI->getExpression(); 1264 assert(DIVar && "Missing variable"); 1265 DIExpr = DIExpression::prepend(DIExpr, Deref, Offset); 1266 // Insert llvm.dbg.declare immediately after the original alloca, and remove 1267 // old llvm.dbg.declare. 1268 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1269 DDI->eraseFromParent(); 1270 return true; 1271 } 1272 1273 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1274 DIBuilder &Builder, bool Deref, int Offset) { 1275 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1276 Deref, Offset); 1277 } 1278 1279 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1280 DIBuilder &Builder, int Offset) { 1281 DebugLoc Loc = DVI->getDebugLoc(); 1282 auto *DIVar = DVI->getVariable(); 1283 auto *DIExpr = DVI->getExpression(); 1284 assert(DIVar && "Missing variable"); 1285 1286 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1287 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1288 // it and give up. 1289 if (!DIExpr || DIExpr->getNumElements() < 1 || 1290 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1291 return; 1292 1293 // Insert the offset immediately after the first deref. 1294 // We could just change the offset argument of dbg.value, but it's unsigned... 1295 if (Offset) { 1296 SmallVector<uint64_t, 4> Ops; 1297 Ops.push_back(dwarf::DW_OP_deref); 1298 DIExpression::appendOffset(Ops, Offset); 1299 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1300 DIExpr = Builder.createExpression(Ops); 1301 } 1302 1303 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1304 DVI->eraseFromParent(); 1305 } 1306 1307 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1308 DIBuilder &Builder, int Offset) { 1309 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1310 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1311 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1312 Use &U = *UI++; 1313 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1314 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1315 } 1316 } 1317 1318 void llvm::salvageDebugInfo(Instruction &I) { 1319 SmallVector<DbgValueInst *, 1> DbgValues; 1320 auto &M = *I.getModule(); 1321 1322 auto MDWrap = [&](Value *V) { 1323 return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V)); 1324 }; 1325 1326 if (isa<BitCastInst>(&I)) { 1327 findDbgValues(DbgValues, &I); 1328 for (auto *DVI : DbgValues) { 1329 // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value 1330 // to use the cast's source. 1331 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1332 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1333 } 1334 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1335 findDbgValues(DbgValues, &I); 1336 for (auto *DVI : DbgValues) { 1337 unsigned BitWidth = 1338 M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace()); 1339 APInt Offset(BitWidth, 0); 1340 // Rewrite a constant GEP into a DIExpression. Since we are performing 1341 // arithmetic to compute the variable's *value* in the DIExpression, we 1342 // need to mark the expression with a DW_OP_stack_value. 1343 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1344 auto *DIExpr = DVI->getExpression(); 1345 DIBuilder DIB(M, /*AllowUnresolved*/ false); 1346 // GEP offsets are i32 and thus always fit into an int64_t. 1347 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, 1348 Offset.getSExtValue(), 1349 DIExpression::WithStackValue); 1350 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1351 DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1352 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1353 } 1354 } 1355 } else if (isa<LoadInst>(&I)) { 1356 findDbgValues(DbgValues, &I); 1357 for (auto *DVI : DbgValues) { 1358 // Rewrite the load into DW_OP_deref. 1359 auto *DIExpr = DVI->getExpression(); 1360 DIBuilder DIB(M, /*AllowUnresolved*/ false); 1361 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref); 1362 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1363 DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1364 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1365 } 1366 } 1367 } 1368 1369 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1370 unsigned NumDeadInst = 0; 1371 // Delete the instructions backwards, as it has a reduced likelihood of 1372 // having to update as many def-use and use-def chains. 1373 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1374 while (EndInst != &BB->front()) { 1375 // Delete the next to last instruction. 1376 Instruction *Inst = &*--EndInst->getIterator(); 1377 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1378 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1379 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1380 EndInst = Inst; 1381 continue; 1382 } 1383 if (!isa<DbgInfoIntrinsic>(Inst)) 1384 ++NumDeadInst; 1385 Inst->eraseFromParent(); 1386 } 1387 return NumDeadInst; 1388 } 1389 1390 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1391 bool PreserveLCSSA) { 1392 BasicBlock *BB = I->getParent(); 1393 // Loop over all of the successors, removing BB's entry from any PHI 1394 // nodes. 1395 for (BasicBlock *Successor : successors(BB)) 1396 Successor->removePredecessor(BB, PreserveLCSSA); 1397 1398 // Insert a call to llvm.trap right before this. This turns the undefined 1399 // behavior into a hard fail instead of falling through into random code. 1400 if (UseLLVMTrap) { 1401 Function *TrapFn = 1402 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1403 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1404 CallTrap->setDebugLoc(I->getDebugLoc()); 1405 } 1406 new UnreachableInst(I->getContext(), I); 1407 1408 // All instructions after this are dead. 1409 unsigned NumInstrsRemoved = 0; 1410 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1411 while (BBI != BBE) { 1412 if (!BBI->use_empty()) 1413 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1414 BB->getInstList().erase(BBI++); 1415 ++NumInstrsRemoved; 1416 } 1417 return NumInstrsRemoved; 1418 } 1419 1420 /// changeToCall - Convert the specified invoke into a normal call. 1421 static void changeToCall(InvokeInst *II) { 1422 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1423 SmallVector<OperandBundleDef, 1> OpBundles; 1424 II->getOperandBundlesAsDefs(OpBundles); 1425 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1426 "", II); 1427 NewCall->takeName(II); 1428 NewCall->setCallingConv(II->getCallingConv()); 1429 NewCall->setAttributes(II->getAttributes()); 1430 NewCall->setDebugLoc(II->getDebugLoc()); 1431 II->replaceAllUsesWith(NewCall); 1432 1433 // Follow the call by a branch to the normal destination. 1434 BranchInst::Create(II->getNormalDest(), II); 1435 1436 // Update PHI nodes in the unwind destination 1437 II->getUnwindDest()->removePredecessor(II->getParent()); 1438 II->eraseFromParent(); 1439 } 1440 1441 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1442 BasicBlock *UnwindEdge) { 1443 BasicBlock *BB = CI->getParent(); 1444 1445 // Convert this function call into an invoke instruction. First, split the 1446 // basic block. 1447 BasicBlock *Split = 1448 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1449 1450 // Delete the unconditional branch inserted by splitBasicBlock 1451 BB->getInstList().pop_back(); 1452 1453 // Create the new invoke instruction. 1454 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1455 SmallVector<OperandBundleDef, 1> OpBundles; 1456 1457 CI->getOperandBundlesAsDefs(OpBundles); 1458 1459 // Note: we're round tripping operand bundles through memory here, and that 1460 // can potentially be avoided with a cleverer API design that we do not have 1461 // as of this time. 1462 1463 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1464 InvokeArgs, OpBundles, CI->getName(), BB); 1465 II->setDebugLoc(CI->getDebugLoc()); 1466 II->setCallingConv(CI->getCallingConv()); 1467 II->setAttributes(CI->getAttributes()); 1468 1469 // Make sure that anything using the call now uses the invoke! This also 1470 // updates the CallGraph if present, because it uses a WeakTrackingVH. 1471 CI->replaceAllUsesWith(II); 1472 1473 // Delete the original call 1474 Split->getInstList().pop_front(); 1475 return Split; 1476 } 1477 1478 static bool markAliveBlocks(Function &F, 1479 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1480 1481 SmallVector<BasicBlock*, 128> Worklist; 1482 BasicBlock *BB = &F.front(); 1483 Worklist.push_back(BB); 1484 Reachable.insert(BB); 1485 bool Changed = false; 1486 do { 1487 BB = Worklist.pop_back_val(); 1488 1489 // Do a quick scan of the basic block, turning any obviously unreachable 1490 // instructions into LLVM unreachable insts. The instruction combining pass 1491 // canonicalizes unreachable insts into stores to null or undef. 1492 for (Instruction &I : *BB) { 1493 // Assumptions that are known to be false are equivalent to unreachable. 1494 // Also, if the condition is undefined, then we make the choice most 1495 // beneficial to the optimizer, and choose that to also be unreachable. 1496 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1497 if (II->getIntrinsicID() == Intrinsic::assume) { 1498 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 1499 // Don't insert a call to llvm.trap right before the unreachable. 1500 changeToUnreachable(II, false); 1501 Changed = true; 1502 break; 1503 } 1504 } 1505 1506 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1507 // A call to the guard intrinsic bails out of the current compilation 1508 // unit if the predicate passed to it is false. If the predicate is a 1509 // constant false, then we know the guard will bail out of the current 1510 // compile unconditionally, so all code following it is dead. 1511 // 1512 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1513 // guards to treat `undef` as `false` since a guard on `undef` can 1514 // still be useful for widening. 1515 if (match(II->getArgOperand(0), m_Zero())) 1516 if (!isa<UnreachableInst>(II->getNextNode())) { 1517 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false); 1518 Changed = true; 1519 break; 1520 } 1521 } 1522 } 1523 1524 if (auto *CI = dyn_cast<CallInst>(&I)) { 1525 Value *Callee = CI->getCalledValue(); 1526 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1527 changeToUnreachable(CI, /*UseLLVMTrap=*/false); 1528 Changed = true; 1529 break; 1530 } 1531 if (CI->doesNotReturn()) { 1532 // If we found a call to a no-return function, insert an unreachable 1533 // instruction after it. Make sure there isn't *already* one there 1534 // though. 1535 if (!isa<UnreachableInst>(CI->getNextNode())) { 1536 // Don't insert a call to llvm.trap right before the unreachable. 1537 changeToUnreachable(CI->getNextNode(), false); 1538 Changed = true; 1539 } 1540 break; 1541 } 1542 } 1543 1544 // Store to undef and store to null are undefined and used to signal that 1545 // they should be changed to unreachable by passes that can't modify the 1546 // CFG. 1547 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1548 // Don't touch volatile stores. 1549 if (SI->isVolatile()) continue; 1550 1551 Value *Ptr = SI->getOperand(1); 1552 1553 if (isa<UndefValue>(Ptr) || 1554 (isa<ConstantPointerNull>(Ptr) && 1555 SI->getPointerAddressSpace() == 0)) { 1556 changeToUnreachable(SI, true); 1557 Changed = true; 1558 break; 1559 } 1560 } 1561 } 1562 1563 TerminatorInst *Terminator = BB->getTerminator(); 1564 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1565 // Turn invokes that call 'nounwind' functions into ordinary calls. 1566 Value *Callee = II->getCalledValue(); 1567 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1568 changeToUnreachable(II, true); 1569 Changed = true; 1570 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1571 if (II->use_empty() && II->onlyReadsMemory()) { 1572 // jump to the normal destination branch. 1573 BranchInst::Create(II->getNormalDest(), II); 1574 II->getUnwindDest()->removePredecessor(II->getParent()); 1575 II->eraseFromParent(); 1576 } else 1577 changeToCall(II); 1578 Changed = true; 1579 } 1580 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1581 // Remove catchpads which cannot be reached. 1582 struct CatchPadDenseMapInfo { 1583 static CatchPadInst *getEmptyKey() { 1584 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1585 } 1586 static CatchPadInst *getTombstoneKey() { 1587 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1588 } 1589 static unsigned getHashValue(CatchPadInst *CatchPad) { 1590 return static_cast<unsigned>(hash_combine_range( 1591 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1592 } 1593 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1594 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1595 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1596 return LHS == RHS; 1597 return LHS->isIdenticalTo(RHS); 1598 } 1599 }; 1600 1601 // Set of unique CatchPads. 1602 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1603 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1604 HandlerSet; 1605 detail::DenseSetEmpty Empty; 1606 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1607 E = CatchSwitch->handler_end(); 1608 I != E; ++I) { 1609 BasicBlock *HandlerBB = *I; 1610 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1611 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1612 CatchSwitch->removeHandler(I); 1613 --I; 1614 --E; 1615 Changed = true; 1616 } 1617 } 1618 } 1619 1620 Changed |= ConstantFoldTerminator(BB, true); 1621 for (BasicBlock *Successor : successors(BB)) 1622 if (Reachable.insert(Successor).second) 1623 Worklist.push_back(Successor); 1624 } while (!Worklist.empty()); 1625 return Changed; 1626 } 1627 1628 void llvm::removeUnwindEdge(BasicBlock *BB) { 1629 TerminatorInst *TI = BB->getTerminator(); 1630 1631 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1632 changeToCall(II); 1633 return; 1634 } 1635 1636 TerminatorInst *NewTI; 1637 BasicBlock *UnwindDest; 1638 1639 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1640 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1641 UnwindDest = CRI->getUnwindDest(); 1642 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1643 auto *NewCatchSwitch = CatchSwitchInst::Create( 1644 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1645 CatchSwitch->getName(), CatchSwitch); 1646 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1647 NewCatchSwitch->addHandler(PadBB); 1648 1649 NewTI = NewCatchSwitch; 1650 UnwindDest = CatchSwitch->getUnwindDest(); 1651 } else { 1652 llvm_unreachable("Could not find unwind successor"); 1653 } 1654 1655 NewTI->takeName(TI); 1656 NewTI->setDebugLoc(TI->getDebugLoc()); 1657 UnwindDest->removePredecessor(BB); 1658 TI->replaceAllUsesWith(NewTI); 1659 TI->eraseFromParent(); 1660 } 1661 1662 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 1663 /// if they are in a dead cycle. Return true if a change was made, false 1664 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 1665 /// after modifying the CFG. 1666 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) { 1667 SmallPtrSet<BasicBlock*, 16> Reachable; 1668 bool Changed = markAliveBlocks(F, Reachable); 1669 1670 // If there are unreachable blocks in the CFG... 1671 if (Reachable.size() == F.size()) 1672 return Changed; 1673 1674 assert(Reachable.size() < F.size()); 1675 NumRemoved += F.size()-Reachable.size(); 1676 1677 // Loop over all of the basic blocks that are not reachable, dropping all of 1678 // their internal references... 1679 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1680 if (Reachable.count(&*BB)) 1681 continue; 1682 1683 for (BasicBlock *Successor : successors(&*BB)) 1684 if (Reachable.count(Successor)) 1685 Successor->removePredecessor(&*BB); 1686 if (LVI) 1687 LVI->eraseBlock(&*BB); 1688 BB->dropAllReferences(); 1689 } 1690 1691 for (Function::iterator I = ++F.begin(); I != F.end();) 1692 if (!Reachable.count(&*I)) 1693 I = F.getBasicBlockList().erase(I); 1694 else 1695 ++I; 1696 1697 return true; 1698 } 1699 1700 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1701 ArrayRef<unsigned> KnownIDs) { 1702 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1703 K->dropUnknownNonDebugMetadata(KnownIDs); 1704 K->getAllMetadataOtherThanDebugLoc(Metadata); 1705 for (const auto &MD : Metadata) { 1706 unsigned Kind = MD.first; 1707 MDNode *JMD = J->getMetadata(Kind); 1708 MDNode *KMD = MD.second; 1709 1710 switch (Kind) { 1711 default: 1712 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1713 break; 1714 case LLVMContext::MD_dbg: 1715 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1716 case LLVMContext::MD_tbaa: 1717 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1718 break; 1719 case LLVMContext::MD_alias_scope: 1720 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1721 break; 1722 case LLVMContext::MD_noalias: 1723 case LLVMContext::MD_mem_parallel_loop_access: 1724 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1725 break; 1726 case LLVMContext::MD_range: 1727 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1728 break; 1729 case LLVMContext::MD_fpmath: 1730 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1731 break; 1732 case LLVMContext::MD_invariant_load: 1733 // Only set the !invariant.load if it is present in both instructions. 1734 K->setMetadata(Kind, JMD); 1735 break; 1736 case LLVMContext::MD_nonnull: 1737 // Only set the !nonnull if it is present in both instructions. 1738 K->setMetadata(Kind, JMD); 1739 break; 1740 case LLVMContext::MD_invariant_group: 1741 // Preserve !invariant.group in K. 1742 break; 1743 case LLVMContext::MD_align: 1744 K->setMetadata(Kind, 1745 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1746 break; 1747 case LLVMContext::MD_dereferenceable: 1748 case LLVMContext::MD_dereferenceable_or_null: 1749 K->setMetadata(Kind, 1750 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1751 break; 1752 } 1753 } 1754 // Set !invariant.group from J if J has it. If both instructions have it 1755 // then we will just pick it from J - even when they are different. 1756 // Also make sure that K is load or store - f.e. combining bitcast with load 1757 // could produce bitcast with invariant.group metadata, which is invalid. 1758 // FIXME: we should try to preserve both invariant.group md if they are 1759 // different, but right now instruction can only have one invariant.group. 1760 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1761 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1762 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1763 } 1764 1765 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 1766 unsigned KnownIDs[] = { 1767 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1768 LLVMContext::MD_noalias, LLVMContext::MD_range, 1769 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 1770 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 1771 LLVMContext::MD_dereferenceable, 1772 LLVMContext::MD_dereferenceable_or_null}; 1773 combineMetadata(K, J, KnownIDs); 1774 } 1775 1776 template <typename RootType, typename DominatesFn> 1777 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 1778 const RootType &Root, 1779 const DominatesFn &Dominates) { 1780 assert(From->getType() == To->getType()); 1781 1782 unsigned Count = 0; 1783 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1784 UI != UE;) { 1785 Use &U = *UI++; 1786 if (!Dominates(Root, U)) 1787 continue; 1788 U.set(To); 1789 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1790 << *To << " in " << *U << "\n"); 1791 ++Count; 1792 } 1793 return Count; 1794 } 1795 1796 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 1797 assert(From->getType() == To->getType()); 1798 auto *BB = From->getParent(); 1799 unsigned Count = 0; 1800 1801 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1802 UI != UE;) { 1803 Use &U = *UI++; 1804 auto *I = cast<Instruction>(U.getUser()); 1805 if (I->getParent() == BB) 1806 continue; 1807 U.set(To); 1808 ++Count; 1809 } 1810 return Count; 1811 } 1812 1813 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1814 DominatorTree &DT, 1815 const BasicBlockEdge &Root) { 1816 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 1817 return DT.dominates(Root, U); 1818 }; 1819 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 1820 } 1821 1822 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1823 DominatorTree &DT, 1824 const BasicBlock *BB) { 1825 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 1826 auto *I = cast<Instruction>(U.getUser())->getParent(); 1827 return DT.properlyDominates(BB, I); 1828 }; 1829 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 1830 } 1831 1832 bool llvm::callsGCLeafFunction(ImmutableCallSite CS, 1833 const TargetLibraryInfo &TLI) { 1834 // Check if the function is specifically marked as a gc leaf function. 1835 if (CS.hasFnAttr("gc-leaf-function")) 1836 return true; 1837 if (const Function *F = CS.getCalledFunction()) { 1838 if (F->hasFnAttribute("gc-leaf-function")) 1839 return true; 1840 1841 if (auto IID = F->getIntrinsicID()) 1842 // Most LLVM intrinsics do not take safepoints. 1843 return IID != Intrinsic::experimental_gc_statepoint && 1844 IID != Intrinsic::experimental_deoptimize; 1845 } 1846 1847 // Lib calls can be materialized by some passes, and won't be 1848 // marked as 'gc-leaf-function.' All available Libcalls are 1849 // GC-leaf. 1850 LibFunc LF; 1851 if (TLI.getLibFunc(CS, LF)) { 1852 return TLI.has(LF); 1853 } 1854 1855 return false; 1856 } 1857 1858 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 1859 LoadInst &NewLI) { 1860 auto *NewTy = NewLI.getType(); 1861 1862 // This only directly applies if the new type is also a pointer. 1863 if (NewTy->isPointerTy()) { 1864 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 1865 return; 1866 } 1867 1868 // The only other translation we can do is to integral loads with !range 1869 // metadata. 1870 if (!NewTy->isIntegerTy()) 1871 return; 1872 1873 MDBuilder MDB(NewLI.getContext()); 1874 const Value *Ptr = OldLI.getPointerOperand(); 1875 auto *ITy = cast<IntegerType>(NewTy); 1876 auto *NullInt = ConstantExpr::getPtrToInt( 1877 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 1878 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 1879 NewLI.setMetadata(LLVMContext::MD_range, 1880 MDB.createRange(NonNullInt, NullInt)); 1881 } 1882 1883 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 1884 MDNode *N, LoadInst &NewLI) { 1885 auto *NewTy = NewLI.getType(); 1886 1887 // Give up unless it is converted to a pointer where there is a single very 1888 // valuable mapping we can do reliably. 1889 // FIXME: It would be nice to propagate this in more ways, but the type 1890 // conversions make it hard. 1891 if (!NewTy->isPointerTy()) 1892 return; 1893 1894 unsigned BitWidth = DL.getTypeSizeInBits(NewTy); 1895 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 1896 MDNode *NN = MDNode::get(OldLI.getContext(), None); 1897 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 1898 } 1899 } 1900 1901 namespace { 1902 /// A potential constituent of a bitreverse or bswap expression. See 1903 /// collectBitParts for a fuller explanation. 1904 struct BitPart { 1905 BitPart(Value *P, unsigned BW) : Provider(P) { 1906 Provenance.resize(BW); 1907 } 1908 1909 /// The Value that this is a bitreverse/bswap of. 1910 Value *Provider; 1911 /// The "provenance" of each bit. Provenance[A] = B means that bit A 1912 /// in Provider becomes bit B in the result of this expression. 1913 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 1914 1915 enum { Unset = -1 }; 1916 }; 1917 } // end anonymous namespace 1918 1919 /// Analyze the specified subexpression and see if it is capable of providing 1920 /// pieces of a bswap or bitreverse. The subexpression provides a potential 1921 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 1922 /// the output of the expression came from a corresponding bit in some other 1923 /// value. This function is recursive, and the end result is a mapping of 1924 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 1925 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 1926 /// 1927 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 1928 /// that the expression deposits the low byte of %X into the high byte of the 1929 /// result and that all other bits are zero. This expression is accepted and a 1930 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 1931 /// [0-7]. 1932 /// 1933 /// To avoid revisiting values, the BitPart results are memoized into the 1934 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 1935 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 1936 /// store BitParts objects, not pointers. As we need the concept of a nullptr 1937 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 1938 /// type instead to provide the same functionality. 1939 /// 1940 /// Because we pass around references into \c BPS, we must use a container that 1941 /// does not invalidate internal references (std::map instead of DenseMap). 1942 /// 1943 static const Optional<BitPart> & 1944 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 1945 std::map<Value *, Optional<BitPart>> &BPS) { 1946 auto I = BPS.find(V); 1947 if (I != BPS.end()) 1948 return I->second; 1949 1950 auto &Result = BPS[V] = None; 1951 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1952 1953 if (Instruction *I = dyn_cast<Instruction>(V)) { 1954 // If this is an or instruction, it may be an inner node of the bswap. 1955 if (I->getOpcode() == Instruction::Or) { 1956 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 1957 MatchBitReversals, BPS); 1958 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 1959 MatchBitReversals, BPS); 1960 if (!A || !B) 1961 return Result; 1962 1963 // Try and merge the two together. 1964 if (!A->Provider || A->Provider != B->Provider) 1965 return Result; 1966 1967 Result = BitPart(A->Provider, BitWidth); 1968 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 1969 if (A->Provenance[i] != BitPart::Unset && 1970 B->Provenance[i] != BitPart::Unset && 1971 A->Provenance[i] != B->Provenance[i]) 1972 return Result = None; 1973 1974 if (A->Provenance[i] == BitPart::Unset) 1975 Result->Provenance[i] = B->Provenance[i]; 1976 else 1977 Result->Provenance[i] = A->Provenance[i]; 1978 } 1979 1980 return Result; 1981 } 1982 1983 // If this is a logical shift by a constant, recurse then shift the result. 1984 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 1985 unsigned BitShift = 1986 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 1987 // Ensure the shift amount is defined. 1988 if (BitShift > BitWidth) 1989 return Result; 1990 1991 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1992 MatchBitReversals, BPS); 1993 if (!Res) 1994 return Result; 1995 Result = Res; 1996 1997 // Perform the "shift" on BitProvenance. 1998 auto &P = Result->Provenance; 1999 if (I->getOpcode() == Instruction::Shl) { 2000 P.erase(std::prev(P.end(), BitShift), P.end()); 2001 P.insert(P.begin(), BitShift, BitPart::Unset); 2002 } else { 2003 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2004 P.insert(P.end(), BitShift, BitPart::Unset); 2005 } 2006 2007 return Result; 2008 } 2009 2010 // If this is a logical 'and' with a mask that clears bits, recurse then 2011 // unset the appropriate bits. 2012 if (I->getOpcode() == Instruction::And && 2013 isa<ConstantInt>(I->getOperand(1))) { 2014 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2015 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2016 2017 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2018 // early exit. 2019 unsigned NumMaskedBits = AndMask.countPopulation(); 2020 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2021 return Result; 2022 2023 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2024 MatchBitReversals, BPS); 2025 if (!Res) 2026 return Result; 2027 Result = Res; 2028 2029 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2030 // If the AndMask is zero for this bit, clear the bit. 2031 if ((AndMask & Bit) == 0) 2032 Result->Provenance[i] = BitPart::Unset; 2033 return Result; 2034 } 2035 2036 // If this is a zext instruction zero extend the result. 2037 if (I->getOpcode() == Instruction::ZExt) { 2038 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2039 MatchBitReversals, BPS); 2040 if (!Res) 2041 return Result; 2042 2043 Result = BitPart(Res->Provider, BitWidth); 2044 auto NarrowBitWidth = 2045 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2046 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2047 Result->Provenance[i] = Res->Provenance[i]; 2048 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2049 Result->Provenance[i] = BitPart::Unset; 2050 return Result; 2051 } 2052 } 2053 2054 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2055 // the input value to the bswap/bitreverse. 2056 Result = BitPart(V, BitWidth); 2057 for (unsigned i = 0; i < BitWidth; ++i) 2058 Result->Provenance[i] = i; 2059 return Result; 2060 } 2061 2062 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2063 unsigned BitWidth) { 2064 if (From % 8 != To % 8) 2065 return false; 2066 // Convert from bit indices to byte indices and check for a byte reversal. 2067 From >>= 3; 2068 To >>= 3; 2069 BitWidth >>= 3; 2070 return From == BitWidth - To - 1; 2071 } 2072 2073 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2074 unsigned BitWidth) { 2075 return From == BitWidth - To - 1; 2076 } 2077 2078 /// Given an OR instruction, check to see if this is a bitreverse 2079 /// idiom. If so, insert the new intrinsic and return true. 2080 bool llvm::recognizeBSwapOrBitReverseIdiom( 2081 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2082 SmallVectorImpl<Instruction *> &InsertedInsts) { 2083 if (Operator::getOpcode(I) != Instruction::Or) 2084 return false; 2085 if (!MatchBSwaps && !MatchBitReversals) 2086 return false; 2087 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2088 if (!ITy || ITy->getBitWidth() > 128) 2089 return false; // Can't do vectors or integers > 128 bits. 2090 unsigned BW = ITy->getBitWidth(); 2091 2092 unsigned DemandedBW = BW; 2093 IntegerType *DemandedTy = ITy; 2094 if (I->hasOneUse()) { 2095 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2096 DemandedTy = cast<IntegerType>(Trunc->getType()); 2097 DemandedBW = DemandedTy->getBitWidth(); 2098 } 2099 } 2100 2101 // Try to find all the pieces corresponding to the bswap. 2102 std::map<Value *, Optional<BitPart>> BPS; 2103 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2104 if (!Res) 2105 return false; 2106 auto &BitProvenance = Res->Provenance; 2107 2108 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2109 // only byteswap values with an even number of bytes. 2110 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2111 for (unsigned i = 0; i < DemandedBW; ++i) { 2112 OKForBSwap &= 2113 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2114 OKForBitReverse &= 2115 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2116 } 2117 2118 Intrinsic::ID Intrin; 2119 if (OKForBSwap && MatchBSwaps) 2120 Intrin = Intrinsic::bswap; 2121 else if (OKForBitReverse && MatchBitReversals) 2122 Intrin = Intrinsic::bitreverse; 2123 else 2124 return false; 2125 2126 if (ITy != DemandedTy) { 2127 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2128 Value *Provider = Res->Provider; 2129 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2130 // We may need to truncate the provider. 2131 if (DemandedTy != ProviderTy) { 2132 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2133 "trunc", I); 2134 InsertedInsts.push_back(Trunc); 2135 Provider = Trunc; 2136 } 2137 auto *CI = CallInst::Create(F, Provider, "rev", I); 2138 InsertedInsts.push_back(CI); 2139 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2140 InsertedInsts.push_back(ExtInst); 2141 return true; 2142 } 2143 2144 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2145 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2146 return true; 2147 } 2148 2149 // CodeGen has special handling for some string functions that may replace 2150 // them with target-specific intrinsics. Since that'd skip our interceptors 2151 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2152 // we mark affected calls as NoBuiltin, which will disable optimization 2153 // in CodeGen. 2154 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2155 CallInst *CI, const TargetLibraryInfo *TLI) { 2156 Function *F = CI->getCalledFunction(); 2157 LibFunc Func; 2158 if (F && !F->hasLocalLinkage() && F->hasName() && 2159 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2160 !F->doesNotAccessMemory()) 2161 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2162 } 2163 2164 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2165 // We can't have a PHI with a metadata type. 2166 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2167 return false; 2168 2169 // Early exit. 2170 if (!isa<Constant>(I->getOperand(OpIdx))) 2171 return true; 2172 2173 switch (I->getOpcode()) { 2174 default: 2175 return true; 2176 case Instruction::Call: 2177 case Instruction::Invoke: 2178 // Can't handle inline asm. Skip it. 2179 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2180 return false; 2181 // Many arithmetic intrinsics have no issue taking a 2182 // variable, however it's hard to distingish these from 2183 // specials such as @llvm.frameaddress that require a constant. 2184 if (isa<IntrinsicInst>(I)) 2185 return false; 2186 2187 // Constant bundle operands may need to retain their constant-ness for 2188 // correctness. 2189 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2190 return false; 2191 return true; 2192 case Instruction::ShuffleVector: 2193 // Shufflevector masks are constant. 2194 return OpIdx != 2; 2195 case Instruction::Switch: 2196 case Instruction::ExtractValue: 2197 // All operands apart from the first are constant. 2198 return OpIdx == 0; 2199 case Instruction::InsertValue: 2200 // All operands apart from the first and the second are constant. 2201 return OpIdx < 2; 2202 case Instruction::Alloca: 2203 // Static allocas (constant size in the entry block) are handled by 2204 // prologue/epilogue insertion so they're free anyway. We definitely don't 2205 // want to make them non-constant. 2206 return !dyn_cast<AllocaInst>(I)->isStaticAlloca(); 2207 case Instruction::GetElementPtr: 2208 if (OpIdx == 0) 2209 return true; 2210 gep_type_iterator It = gep_type_begin(I); 2211 for (auto E = std::next(It, OpIdx); It != E; ++It) 2212 if (It.isStruct()) 2213 return false; 2214 return true; 2215 } 2216 } 2217