1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/Constants.h" 17 #include "llvm/GlobalAlias.h" 18 #include "llvm/GlobalVariable.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Intrinsics.h" 22 #include "llvm/IntrinsicInst.h" 23 #include "llvm/LLVMContext.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/DebugInfo.h" 27 #include "llvm/Target/TargetData.h" 28 #include "llvm/Support/GetElementPtrTypeIterator.h" 29 #include "llvm/Support/MathExtras.h" 30 using namespace llvm; 31 32 //===----------------------------------------------------------------------===// 33 // Local analysis. 34 // 35 36 /// isSafeToLoadUnconditionally - Return true if we know that executing a load 37 /// from this value cannot trap. If it is not obviously safe to load from the 38 /// specified pointer, we do a quick local scan of the basic block containing 39 /// ScanFrom, to determine if the address is already accessed. 40 bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) { 41 // If it is an alloca it is always safe to load from. 42 if (isa<AllocaInst>(V)) return true; 43 44 // If it is a global variable it is mostly safe to load from. 45 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V)) 46 // Don't try to evaluate aliases. External weak GV can be null. 47 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage(); 48 49 // Otherwise, be a little bit agressive by scanning the local block where we 50 // want to check to see if the pointer is already being loaded or stored 51 // from/to. If so, the previous load or store would have already trapped, 52 // so there is no harm doing an extra load (also, CSE will later eliminate 53 // the load entirely). 54 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin(); 55 56 while (BBI != E) { 57 --BBI; 58 59 // If we see a free or a call which may write to memory (i.e. which might do 60 // a free) the pointer could be marked invalid. 61 if (isa<FreeInst>(BBI) || 62 (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && 63 !isa<DbgInfoIntrinsic>(BBI))) 64 return false; 65 66 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 67 if (LI->getOperand(0) == V) return true; 68 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 69 if (SI->getOperand(1) == V) return true; 70 } 71 } 72 return false; 73 } 74 75 76 //===----------------------------------------------------------------------===// 77 // Local constant propagation. 78 // 79 80 // ConstantFoldTerminator - If a terminator instruction is predicated on a 81 // constant value, convert it into an unconditional branch to the constant 82 // destination. 83 // 84 bool llvm::ConstantFoldTerminator(BasicBlock *BB) { 85 TerminatorInst *T = BB->getTerminator(); 86 87 // Branch - See if we are conditional jumping on constant 88 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 89 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 90 BasicBlock *Dest1 = BI->getSuccessor(0); 91 BasicBlock *Dest2 = BI->getSuccessor(1); 92 93 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 94 // Are we branching on constant? 95 // YES. Change to unconditional branch... 96 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 97 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 98 99 //cerr << "Function: " << T->getParent()->getParent() 100 // << "\nRemoving branch from " << T->getParent() 101 // << "\n\nTo: " << OldDest << endl; 102 103 // Let the basic block know that we are letting go of it. Based on this, 104 // it will adjust it's PHI nodes. 105 assert(BI->getParent() && "Terminator not inserted in block!"); 106 OldDest->removePredecessor(BI->getParent()); 107 108 // Set the unconditional destination, and change the insn to be an 109 // unconditional branch. 110 BI->setUnconditionalDest(Destination); 111 return true; 112 } else if (Dest2 == Dest1) { // Conditional branch to same location? 113 // This branch matches something like this: 114 // br bool %cond, label %Dest, label %Dest 115 // and changes it into: br label %Dest 116 117 // Let the basic block know that we are letting go of one copy of it. 118 assert(BI->getParent() && "Terminator not inserted in block!"); 119 Dest1->removePredecessor(BI->getParent()); 120 121 // Change a conditional branch to unconditional. 122 BI->setUnconditionalDest(Dest1); 123 return true; 124 } 125 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 126 // If we are switching on a constant, we can convert the switch into a 127 // single branch instruction! 128 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 129 BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest 130 BasicBlock *DefaultDest = TheOnlyDest; 131 assert(TheOnlyDest == SI->getDefaultDest() && 132 "Default destination is not successor #0?"); 133 134 // Figure out which case it goes to... 135 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) { 136 // Found case matching a constant operand? 137 if (SI->getSuccessorValue(i) == CI) { 138 TheOnlyDest = SI->getSuccessor(i); 139 break; 140 } 141 142 // Check to see if this branch is going to the same place as the default 143 // dest. If so, eliminate it as an explicit compare. 144 if (SI->getSuccessor(i) == DefaultDest) { 145 // Remove this entry... 146 DefaultDest->removePredecessor(SI->getParent()); 147 SI->removeCase(i); 148 --i; --e; // Don't skip an entry... 149 continue; 150 } 151 152 // Otherwise, check to see if the switch only branches to one destination. 153 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 154 // destinations. 155 if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0; 156 } 157 158 if (CI && !TheOnlyDest) { 159 // Branching on a constant, but not any of the cases, go to the default 160 // successor. 161 TheOnlyDest = SI->getDefaultDest(); 162 } 163 164 // If we found a single destination that we can fold the switch into, do so 165 // now. 166 if (TheOnlyDest) { 167 // Insert the new branch.. 168 BranchInst::Create(TheOnlyDest, SI); 169 BasicBlock *BB = SI->getParent(); 170 171 // Remove entries from PHI nodes which we no longer branch to... 172 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 173 // Found case matching a constant operand? 174 BasicBlock *Succ = SI->getSuccessor(i); 175 if (Succ == TheOnlyDest) 176 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest 177 else 178 Succ->removePredecessor(BB); 179 } 180 181 // Delete the old switch... 182 BB->getInstList().erase(SI); 183 return true; 184 } else if (SI->getNumSuccessors() == 2) { 185 // Otherwise, we can fold this switch into a conditional branch 186 // instruction if it has only one non-default destination. 187 Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(), 188 SI->getSuccessorValue(1), "cond"); 189 // Insert the new branch... 190 BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI); 191 192 // Delete the old switch... 193 SI->eraseFromParent(); 194 return true; 195 } 196 } 197 return false; 198 } 199 200 201 //===----------------------------------------------------------------------===// 202 // Local dead code elimination... 203 // 204 205 /// isInstructionTriviallyDead - Return true if the result produced by the 206 /// instruction is not used, and the instruction has no side effects. 207 /// 208 bool llvm::isInstructionTriviallyDead(Instruction *I) { 209 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 210 211 // We don't want debug info removed by anything this general. 212 if (isa<DbgInfoIntrinsic>(I)) return false; 213 214 if (!I->mayHaveSideEffects()) return true; 215 216 // Special case intrinsics that "may have side effects" but can be deleted 217 // when dead. 218 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 219 // Safe to delete llvm.stacksave if dead. 220 if (II->getIntrinsicID() == Intrinsic::stacksave) 221 return true; 222 return false; 223 } 224 225 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 226 /// trivially dead instruction, delete it. If that makes any of its operands 227 /// trivially dead, delete them too, recursively. 228 void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) { 229 Instruction *I = dyn_cast<Instruction>(V); 230 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I)) 231 return; 232 233 SmallVector<Instruction*, 16> DeadInsts; 234 DeadInsts.push_back(I); 235 236 while (!DeadInsts.empty()) { 237 I = DeadInsts.pop_back_val(); 238 239 // Null out all of the instruction's operands to see if any operand becomes 240 // dead as we go. 241 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 242 Value *OpV = I->getOperand(i); 243 I->setOperand(i, 0); 244 245 if (!OpV->use_empty()) continue; 246 247 // If the operand is an instruction that became dead as we nulled out the 248 // operand, and if it is 'trivially' dead, delete it in a future loop 249 // iteration. 250 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 251 if (isInstructionTriviallyDead(OpI)) 252 DeadInsts.push_back(OpI); 253 } 254 255 I->eraseFromParent(); 256 } 257 } 258 259 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 260 /// dead PHI node, due to being a def-use chain of single-use nodes that 261 /// either forms a cycle or is terminated by a trivially dead instruction, 262 /// delete it. If that makes any of its operands trivially dead, delete them 263 /// too, recursively. 264 void 265 llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) { 266 LLVMContext &Context = PN->getContext(); 267 268 // We can remove a PHI if it is on a cycle in the def-use graph 269 // where each node in the cycle has degree one, i.e. only one use, 270 // and is an instruction with no side effects. 271 if (!PN->hasOneUse()) 272 return; 273 274 SmallPtrSet<PHINode *, 4> PHIs; 275 PHIs.insert(PN); 276 for (Instruction *J = cast<Instruction>(*PN->use_begin()); 277 J->hasOneUse() && !J->mayHaveSideEffects(); 278 J = cast<Instruction>(*J->use_begin())) 279 // If we find a PHI more than once, we're on a cycle that 280 // won't prove fruitful. 281 if (PHINode *JP = dyn_cast<PHINode>(J)) 282 if (!PHIs.insert(cast<PHINode>(JP))) { 283 // Break the cycle and delete the PHI and its operands. 284 JP->replaceAllUsesWith(Context.getUndef(JP->getType())); 285 RecursivelyDeleteTriviallyDeadInstructions(JP); 286 break; 287 } 288 } 289 290 //===----------------------------------------------------------------------===// 291 // Control Flow Graph Restructuring... 292 // 293 294 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 295 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 296 /// between them, moving the instructions in the predecessor into DestBB and 297 /// deleting the predecessor block. 298 /// 299 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB) { 300 // If BB has single-entry PHI nodes, fold them. 301 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 302 Value *NewVal = PN->getIncomingValue(0); 303 // Replace self referencing PHI with undef, it must be dead. 304 if (NewVal == PN) NewVal = DestBB->getContext().getUndef(PN->getType()); 305 PN->replaceAllUsesWith(NewVal); 306 PN->eraseFromParent(); 307 } 308 309 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 310 assert(PredBB && "Block doesn't have a single predecessor!"); 311 312 // Splice all the instructions from PredBB to DestBB. 313 PredBB->getTerminator()->eraseFromParent(); 314 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 315 316 // Anything that branched to PredBB now branches to DestBB. 317 PredBB->replaceAllUsesWith(DestBB); 318 319 // Nuke BB. 320 PredBB->eraseFromParent(); 321 } 322 323 /// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used 324 /// by DbgIntrinsics. If DbgInUses is specified then the vector is filled 325 /// with the DbgInfoIntrinsic that use the instruction I. 326 bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I, 327 SmallVectorImpl<DbgInfoIntrinsic *> *DbgInUses) { 328 if (DbgInUses) 329 DbgInUses->clear(); 330 331 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; 332 ++UI) { 333 if (DbgInfoIntrinsic *DI = dyn_cast<DbgInfoIntrinsic>(*UI)) { 334 if (DbgInUses) 335 DbgInUses->push_back(DI); 336 } else { 337 if (DbgInUses) 338 DbgInUses->clear(); 339 return false; 340 } 341 } 342 return true; 343 } 344 345