1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/AssumeBundleQueries.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/LazyValueInfo.h"
34 #include "llvm/Analysis/MemoryBuiltins.h"
35 #include "llvm/Analysis/MemorySSAUpdater.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/BinaryFormat/Dwarf.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/ValueMapper.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <climits>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <utility>
87 
88 using namespace llvm;
89 using namespace llvm::PatternMatch;
90 
91 #define DEBUG_TYPE "local"
92 
93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
95 
96 static cl::opt<bool> PHICSEDebugHash(
97     "phicse-debug-hash",
98 #ifdef EXPENSIVE_CHECKS
99     cl::init(true),
100 #else
101     cl::init(false),
102 #endif
103     cl::Hidden,
104     cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
105              "function is well-behaved w.r.t. its isEqual predicate"));
106 
107 static cl::opt<unsigned> PHICSENumPHISmallSize(
108     "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
109     cl::desc(
110         "When the basic block contains not more than this number of PHI nodes, "
111         "perform a (faster!) exhaustive search instead of set-driven one."));
112 
113 // Max recursion depth for collectBitParts used when detecting bswap and
114 // bitreverse idioms
115 static const unsigned BitPartRecursionMaxDepth = 64;
116 
117 //===----------------------------------------------------------------------===//
118 //  Local constant propagation.
119 //
120 
121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
122 /// constant value, convert it into an unconditional branch to the constant
123 /// destination.  This is a nontrivial operation because the successors of this
124 /// basic block must have their PHI nodes updated.
125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
126 /// conditions and indirectbr addresses this might make dead if
127 /// DeleteDeadConditions is true.
128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
129                                   const TargetLibraryInfo *TLI,
130                                   DomTreeUpdater *DTU) {
131   Instruction *T = BB->getTerminator();
132   IRBuilder<> Builder(T);
133 
134   // Branch - See if we are conditional jumping on constant
135   if (auto *BI = dyn_cast<BranchInst>(T)) {
136     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
137 
138     BasicBlock *Dest1 = BI->getSuccessor(0);
139     BasicBlock *Dest2 = BI->getSuccessor(1);
140 
141     if (Dest2 == Dest1) {       // Conditional branch to same location?
142       // This branch matches something like this:
143       //     br bool %cond, label %Dest, label %Dest
144       // and changes it into:  br label %Dest
145 
146       // Let the basic block know that we are letting go of one copy of it.
147       assert(BI->getParent() && "Terminator not inserted in block!");
148       Dest1->removePredecessor(BI->getParent());
149 
150       // Replace the conditional branch with an unconditional one.
151       Builder.CreateBr(Dest1);
152       Value *Cond = BI->getCondition();
153       BI->eraseFromParent();
154       if (DeleteDeadConditions)
155         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
156       return true;
157     }
158 
159     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
160       // Are we branching on constant?
161       // YES.  Change to unconditional branch...
162       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
163       BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
164 
165       // Let the basic block know that we are letting go of it.  Based on this,
166       // it will adjust it's PHI nodes.
167       OldDest->removePredecessor(BB);
168 
169       // Replace the conditional branch with an unconditional one.
170       Builder.CreateBr(Destination);
171       BI->eraseFromParent();
172       if (DTU)
173         DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
174       return true;
175     }
176 
177     return false;
178   }
179 
180   if (auto *SI = dyn_cast<SwitchInst>(T)) {
181     // If we are switching on a constant, we can convert the switch to an
182     // unconditional branch.
183     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
184     BasicBlock *DefaultDest = SI->getDefaultDest();
185     BasicBlock *TheOnlyDest = DefaultDest;
186 
187     // If the default is unreachable, ignore it when searching for TheOnlyDest.
188     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
189         SI->getNumCases() > 0) {
190       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
191     }
192 
193     bool Changed = false;
194 
195     // Figure out which case it goes to.
196     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
197       // Found case matching a constant operand?
198       if (i->getCaseValue() == CI) {
199         TheOnlyDest = i->getCaseSuccessor();
200         break;
201       }
202 
203       // Check to see if this branch is going to the same place as the default
204       // dest.  If so, eliminate it as an explicit compare.
205       if (i->getCaseSuccessor() == DefaultDest) {
206         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
207         unsigned NCases = SI->getNumCases();
208         // Fold the case metadata into the default if there will be any branches
209         // left, unless the metadata doesn't match the switch.
210         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
211           // Collect branch weights into a vector.
212           SmallVector<uint32_t, 8> Weights;
213           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
214                ++MD_i) {
215             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
216             Weights.push_back(CI->getValue().getZExtValue());
217           }
218           // Merge weight of this case to the default weight.
219           unsigned idx = i->getCaseIndex();
220           Weights[0] += Weights[idx+1];
221           // Remove weight for this case.
222           std::swap(Weights[idx+1], Weights.back());
223           Weights.pop_back();
224           SI->setMetadata(LLVMContext::MD_prof,
225                           MDBuilder(BB->getContext()).
226                           createBranchWeights(Weights));
227         }
228         // Remove this entry.
229         BasicBlock *ParentBB = SI->getParent();
230         DefaultDest->removePredecessor(ParentBB);
231         i = SI->removeCase(i);
232         e = SI->case_end();
233         Changed = true;
234         continue;
235       }
236 
237       // Otherwise, check to see if the switch only branches to one destination.
238       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
239       // destinations.
240       if (i->getCaseSuccessor() != TheOnlyDest)
241         TheOnlyDest = nullptr;
242 
243       // Increment this iterator as we haven't removed the case.
244       ++i;
245     }
246 
247     if (CI && !TheOnlyDest) {
248       // Branching on a constant, but not any of the cases, go to the default
249       // successor.
250       TheOnlyDest = SI->getDefaultDest();
251     }
252 
253     // If we found a single destination that we can fold the switch into, do so
254     // now.
255     if (TheOnlyDest) {
256       // Insert the new branch.
257       Builder.CreateBr(TheOnlyDest);
258       BasicBlock *BB = SI->getParent();
259 
260       SmallSetVector<BasicBlock *, 8> RemovedSuccessors;
261 
262       // Remove entries from PHI nodes which we no longer branch to...
263       BasicBlock *SuccToKeep = TheOnlyDest;
264       for (BasicBlock *Succ : successors(SI)) {
265         if (DTU && Succ != TheOnlyDest)
266           RemovedSuccessors.insert(Succ);
267         // Found case matching a constant operand?
268         if (Succ == SuccToKeep) {
269           SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
270         } else {
271           Succ->removePredecessor(BB);
272         }
273       }
274 
275       // Delete the old switch.
276       Value *Cond = SI->getCondition();
277       SI->eraseFromParent();
278       if (DeleteDeadConditions)
279         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
280       if (DTU) {
281         std::vector<DominatorTree::UpdateType> Updates;
282         Updates.reserve(RemovedSuccessors.size());
283         for (auto *RemovedSuccessor : RemovedSuccessors)
284           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
285         DTU->applyUpdates(Updates);
286       }
287       return true;
288     }
289 
290     if (SI->getNumCases() == 1) {
291       // Otherwise, we can fold this switch into a conditional branch
292       // instruction if it has only one non-default destination.
293       auto FirstCase = *SI->case_begin();
294       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
295           FirstCase.getCaseValue(), "cond");
296 
297       // Insert the new branch.
298       BranchInst *NewBr = Builder.CreateCondBr(Cond,
299                                                FirstCase.getCaseSuccessor(),
300                                                SI->getDefaultDest());
301       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
302       if (MD && MD->getNumOperands() == 3) {
303         ConstantInt *SICase =
304             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
305         ConstantInt *SIDef =
306             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
307         assert(SICase && SIDef);
308         // The TrueWeight should be the weight for the single case of SI.
309         NewBr->setMetadata(LLVMContext::MD_prof,
310                         MDBuilder(BB->getContext()).
311                         createBranchWeights(SICase->getValue().getZExtValue(),
312                                             SIDef->getValue().getZExtValue()));
313       }
314 
315       // Update make.implicit metadata to the newly-created conditional branch.
316       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
317       if (MakeImplicitMD)
318         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
319 
320       // Delete the old switch.
321       SI->eraseFromParent();
322       return true;
323     }
324     return Changed;
325   }
326 
327   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
328     // indirectbr blockaddress(@F, @BB) -> br label @BB
329     if (auto *BA =
330           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
331       BasicBlock *TheOnlyDest = BA->getBasicBlock();
332       SmallSetVector<BasicBlock *, 8> RemovedSuccessors;
333 
334       // Insert the new branch.
335       Builder.CreateBr(TheOnlyDest);
336 
337       BasicBlock *SuccToKeep = TheOnlyDest;
338       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
339         BasicBlock *DestBB = IBI->getDestination(i);
340         if (DTU && DestBB != TheOnlyDest)
341           RemovedSuccessors.insert(DestBB);
342         if (IBI->getDestination(i) == SuccToKeep) {
343           SuccToKeep = nullptr;
344         } else {
345           DestBB->removePredecessor(BB);
346         }
347       }
348       Value *Address = IBI->getAddress();
349       IBI->eraseFromParent();
350       if (DeleteDeadConditions)
351         // Delete pointer cast instructions.
352         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
353 
354       // Also zap the blockaddress constant if there are no users remaining,
355       // otherwise the destination is still marked as having its address taken.
356       if (BA->use_empty())
357         BA->destroyConstant();
358 
359       // If we didn't find our destination in the IBI successor list, then we
360       // have undefined behavior.  Replace the unconditional branch with an
361       // 'unreachable' instruction.
362       if (SuccToKeep) {
363         BB->getTerminator()->eraseFromParent();
364         new UnreachableInst(BB->getContext(), BB);
365       }
366 
367       if (DTU) {
368         std::vector<DominatorTree::UpdateType> Updates;
369         Updates.reserve(RemovedSuccessors.size());
370         for (auto *RemovedSuccessor : RemovedSuccessors)
371           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
372         DTU->applyUpdates(Updates);
373       }
374       return true;
375     }
376   }
377 
378   return false;
379 }
380 
381 //===----------------------------------------------------------------------===//
382 //  Local dead code elimination.
383 //
384 
385 /// isInstructionTriviallyDead - Return true if the result produced by the
386 /// instruction is not used, and the instruction has no side effects.
387 ///
388 bool llvm::isInstructionTriviallyDead(Instruction *I,
389                                       const TargetLibraryInfo *TLI) {
390   if (!I->use_empty())
391     return false;
392   return wouldInstructionBeTriviallyDead(I, TLI);
393 }
394 
395 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
396                                            const TargetLibraryInfo *TLI) {
397   if (I->isTerminator())
398     return false;
399 
400   // We don't want the landingpad-like instructions removed by anything this
401   // general.
402   if (I->isEHPad())
403     return false;
404 
405   // We don't want debug info removed by anything this general, unless
406   // debug info is empty.
407   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
408     if (DDI->getAddress())
409       return false;
410     return true;
411   }
412   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
413     if (DVI->getValue())
414       return false;
415     return true;
416   }
417   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
418     if (DLI->getLabel())
419       return false;
420     return true;
421   }
422 
423   if (auto *CB = dyn_cast<CallBase>(I)) {
424     // Treat calls that may not return as alive.
425     // TODO: Remove the intrinsic escape hatch once all intrinsics set
426     // willreturn properly.
427     if (!CB->willReturn() && !isa<IntrinsicInst>(I))
428       return false;
429   }
430 
431   if (!I->mayHaveSideEffects())
432     return true;
433 
434   // Special case intrinsics that "may have side effects" but can be deleted
435   // when dead.
436   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
437     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
438     if (II->getIntrinsicID() == Intrinsic::stacksave ||
439         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
440       return true;
441 
442     if (II->isLifetimeStartOrEnd()) {
443       auto *Arg = II->getArgOperand(1);
444       // Lifetime intrinsics are dead when their right-hand is undef.
445       if (isa<UndefValue>(Arg))
446         return true;
447       // If the right-hand is an alloc, global, or argument and the only uses
448       // are lifetime intrinsics then the intrinsics are dead.
449       if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
450         return llvm::all_of(Arg->uses(), [](Use &Use) {
451           if (IntrinsicInst *IntrinsicUse =
452                   dyn_cast<IntrinsicInst>(Use.getUser()))
453             return IntrinsicUse->isLifetimeStartOrEnd();
454           return false;
455         });
456       return false;
457     }
458 
459     // Assumptions are dead if their condition is trivially true.  Guards on
460     // true are operationally no-ops.  In the future we can consider more
461     // sophisticated tradeoffs for guards considering potential for check
462     // widening, but for now we keep things simple.
463     if ((II->getIntrinsicID() == Intrinsic::assume &&
464          isAssumeWithEmptyBundle(*II)) ||
465         II->getIntrinsicID() == Intrinsic::experimental_guard) {
466       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
467         return !Cond->isZero();
468 
469       return false;
470     }
471   }
472 
473   if (isAllocLikeFn(I, TLI))
474     return true;
475 
476   if (CallInst *CI = isFreeCall(I, TLI))
477     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
478       return C->isNullValue() || isa<UndefValue>(C);
479 
480   if (auto *Call = dyn_cast<CallBase>(I))
481     if (isMathLibCallNoop(Call, TLI))
482       return true;
483 
484   return false;
485 }
486 
487 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
488 /// trivially dead instruction, delete it.  If that makes any of its operands
489 /// trivially dead, delete them too, recursively.  Return true if any
490 /// instructions were deleted.
491 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
492     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
493     std::function<void(Value *)> AboutToDeleteCallback) {
494   Instruction *I = dyn_cast<Instruction>(V);
495   if (!I || !isInstructionTriviallyDead(I, TLI))
496     return false;
497 
498   SmallVector<WeakTrackingVH, 16> DeadInsts;
499   DeadInsts.push_back(I);
500   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
501                                              AboutToDeleteCallback);
502 
503   return true;
504 }
505 
506 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
507     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
508     MemorySSAUpdater *MSSAU,
509     std::function<void(Value *)> AboutToDeleteCallback) {
510   unsigned S = 0, E = DeadInsts.size(), Alive = 0;
511   for (; S != E; ++S) {
512     auto *I = cast<Instruction>(DeadInsts[S]);
513     if (!isInstructionTriviallyDead(I)) {
514       DeadInsts[S] = nullptr;
515       ++Alive;
516     }
517   }
518   if (Alive == E)
519     return false;
520   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
521                                              AboutToDeleteCallback);
522   return true;
523 }
524 
525 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
526     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
527     MemorySSAUpdater *MSSAU,
528     std::function<void(Value *)> AboutToDeleteCallback) {
529   // Process the dead instruction list until empty.
530   while (!DeadInsts.empty()) {
531     Value *V = DeadInsts.pop_back_val();
532     Instruction *I = cast_or_null<Instruction>(V);
533     if (!I)
534       continue;
535     assert(isInstructionTriviallyDead(I, TLI) &&
536            "Live instruction found in dead worklist!");
537     assert(I->use_empty() && "Instructions with uses are not dead.");
538 
539     // Don't lose the debug info while deleting the instructions.
540     salvageDebugInfo(*I);
541 
542     if (AboutToDeleteCallback)
543       AboutToDeleteCallback(I);
544 
545     // Null out all of the instruction's operands to see if any operand becomes
546     // dead as we go.
547     for (Use &OpU : I->operands()) {
548       Value *OpV = OpU.get();
549       OpU.set(nullptr);
550 
551       if (!OpV->use_empty())
552         continue;
553 
554       // If the operand is an instruction that became dead as we nulled out the
555       // operand, and if it is 'trivially' dead, delete it in a future loop
556       // iteration.
557       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
558         if (isInstructionTriviallyDead(OpI, TLI))
559           DeadInsts.push_back(OpI);
560     }
561     if (MSSAU)
562       MSSAU->removeMemoryAccess(I);
563 
564     I->eraseFromParent();
565   }
566 }
567 
568 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
569   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
570   findDbgUsers(DbgUsers, I);
571   for (auto *DII : DbgUsers) {
572     Value *Undef = UndefValue::get(I->getType());
573     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
574                                             ValueAsMetadata::get(Undef)));
575   }
576   return !DbgUsers.empty();
577 }
578 
579 /// areAllUsesEqual - Check whether the uses of a value are all the same.
580 /// This is similar to Instruction::hasOneUse() except this will also return
581 /// true when there are no uses or multiple uses that all refer to the same
582 /// value.
583 static bool areAllUsesEqual(Instruction *I) {
584   Value::user_iterator UI = I->user_begin();
585   Value::user_iterator UE = I->user_end();
586   if (UI == UE)
587     return true;
588 
589   User *TheUse = *UI;
590   for (++UI; UI != UE; ++UI) {
591     if (*UI != TheUse)
592       return false;
593   }
594   return true;
595 }
596 
597 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
598 /// dead PHI node, due to being a def-use chain of single-use nodes that
599 /// either forms a cycle or is terminated by a trivially dead instruction,
600 /// delete it.  If that makes any of its operands trivially dead, delete them
601 /// too, recursively.  Return true if a change was made.
602 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
603                                         const TargetLibraryInfo *TLI,
604                                         llvm::MemorySSAUpdater *MSSAU) {
605   SmallPtrSet<Instruction*, 4> Visited;
606   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
607        I = cast<Instruction>(*I->user_begin())) {
608     if (I->use_empty())
609       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
610 
611     // If we find an instruction more than once, we're on a cycle that
612     // won't prove fruitful.
613     if (!Visited.insert(I).second) {
614       // Break the cycle and delete the instruction and its operands.
615       I->replaceAllUsesWith(UndefValue::get(I->getType()));
616       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
617       return true;
618     }
619   }
620   return false;
621 }
622 
623 static bool
624 simplifyAndDCEInstruction(Instruction *I,
625                           SmallSetVector<Instruction *, 16> &WorkList,
626                           const DataLayout &DL,
627                           const TargetLibraryInfo *TLI) {
628   if (isInstructionTriviallyDead(I, TLI)) {
629     salvageDebugInfo(*I);
630 
631     // Null out all of the instruction's operands to see if any operand becomes
632     // dead as we go.
633     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
634       Value *OpV = I->getOperand(i);
635       I->setOperand(i, nullptr);
636 
637       if (!OpV->use_empty() || I == OpV)
638         continue;
639 
640       // If the operand is an instruction that became dead as we nulled out the
641       // operand, and if it is 'trivially' dead, delete it in a future loop
642       // iteration.
643       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
644         if (isInstructionTriviallyDead(OpI, TLI))
645           WorkList.insert(OpI);
646     }
647 
648     I->eraseFromParent();
649 
650     return true;
651   }
652 
653   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
654     // Add the users to the worklist. CAREFUL: an instruction can use itself,
655     // in the case of a phi node.
656     for (User *U : I->users()) {
657       if (U != I) {
658         WorkList.insert(cast<Instruction>(U));
659       }
660     }
661 
662     // Replace the instruction with its simplified value.
663     bool Changed = false;
664     if (!I->use_empty()) {
665       I->replaceAllUsesWith(SimpleV);
666       Changed = true;
667     }
668     if (isInstructionTriviallyDead(I, TLI)) {
669       I->eraseFromParent();
670       Changed = true;
671     }
672     return Changed;
673   }
674   return false;
675 }
676 
677 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
678 /// simplify any instructions in it and recursively delete dead instructions.
679 ///
680 /// This returns true if it changed the code, note that it can delete
681 /// instructions in other blocks as well in this block.
682 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
683                                        const TargetLibraryInfo *TLI) {
684   bool MadeChange = false;
685   const DataLayout &DL = BB->getModule()->getDataLayout();
686 
687 #ifndef NDEBUG
688   // In debug builds, ensure that the terminator of the block is never replaced
689   // or deleted by these simplifications. The idea of simplification is that it
690   // cannot introduce new instructions, and there is no way to replace the
691   // terminator of a block without introducing a new instruction.
692   AssertingVH<Instruction> TerminatorVH(&BB->back());
693 #endif
694 
695   SmallSetVector<Instruction *, 16> WorkList;
696   // Iterate over the original function, only adding insts to the worklist
697   // if they actually need to be revisited. This avoids having to pre-init
698   // the worklist with the entire function's worth of instructions.
699   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
700        BI != E;) {
701     assert(!BI->isTerminator());
702     Instruction *I = &*BI;
703     ++BI;
704 
705     // We're visiting this instruction now, so make sure it's not in the
706     // worklist from an earlier visit.
707     if (!WorkList.count(I))
708       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
709   }
710 
711   while (!WorkList.empty()) {
712     Instruction *I = WorkList.pop_back_val();
713     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
714   }
715   return MadeChange;
716 }
717 
718 //===----------------------------------------------------------------------===//
719 //  Control Flow Graph Restructuring.
720 //
721 
722 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
723                                        DomTreeUpdater *DTU) {
724 
725   // If BB has single-entry PHI nodes, fold them.
726   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
727     Value *NewVal = PN->getIncomingValue(0);
728     // Replace self referencing PHI with undef, it must be dead.
729     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
730     PN->replaceAllUsesWith(NewVal);
731     PN->eraseFromParent();
732   }
733 
734   BasicBlock *PredBB = DestBB->getSinglePredecessor();
735   assert(PredBB && "Block doesn't have a single predecessor!");
736 
737   bool ReplaceEntryBB = false;
738   if (PredBB == &DestBB->getParent()->getEntryBlock())
739     ReplaceEntryBB = true;
740 
741   // DTU updates: Collect all the edges that enter
742   // PredBB. These dominator edges will be redirected to DestBB.
743   SmallVector<DominatorTree::UpdateType, 32> Updates;
744 
745   if (DTU) {
746     for (BasicBlock *PredPredBB : predecessors(PredBB)) {
747       // This predecessor of PredBB may already have DestBB as a successor.
748       if (!llvm::is_contained(successors(PredPredBB), DestBB))
749         Updates.push_back({DominatorTree::Insert, PredPredBB, DestBB});
750       Updates.push_back({DominatorTree::Delete, PredPredBB, PredBB});
751     }
752     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
753   }
754 
755   // Zap anything that took the address of DestBB.  Not doing this will give the
756   // address an invalid value.
757   if (DestBB->hasAddressTaken()) {
758     BlockAddress *BA = BlockAddress::get(DestBB);
759     Constant *Replacement =
760       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
761     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
762                                                      BA->getType()));
763     BA->destroyConstant();
764   }
765 
766   // Anything that branched to PredBB now branches to DestBB.
767   PredBB->replaceAllUsesWith(DestBB);
768 
769   // Splice all the instructions from PredBB to DestBB.
770   PredBB->getTerminator()->eraseFromParent();
771   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
772   new UnreachableInst(PredBB->getContext(), PredBB);
773 
774   // If the PredBB is the entry block of the function, move DestBB up to
775   // become the entry block after we erase PredBB.
776   if (ReplaceEntryBB)
777     DestBB->moveAfter(PredBB);
778 
779   if (DTU) {
780     assert(PredBB->getInstList().size() == 1 &&
781            isa<UnreachableInst>(PredBB->getTerminator()) &&
782            "The successor list of PredBB isn't empty before "
783            "applying corresponding DTU updates.");
784     DTU->applyUpdatesPermissive(Updates);
785     DTU->deleteBB(PredBB);
786     // Recalculation of DomTree is needed when updating a forward DomTree and
787     // the Entry BB is replaced.
788     if (ReplaceEntryBB && DTU->hasDomTree()) {
789       // The entry block was removed and there is no external interface for
790       // the dominator tree to be notified of this change. In this corner-case
791       // we recalculate the entire tree.
792       DTU->recalculate(*(DestBB->getParent()));
793     }
794   }
795 
796   else {
797     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
798   }
799 }
800 
801 /// Return true if we can choose one of these values to use in place of the
802 /// other. Note that we will always choose the non-undef value to keep.
803 static bool CanMergeValues(Value *First, Value *Second) {
804   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
805 }
806 
807 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
808 /// branch to Succ, into Succ.
809 ///
810 /// Assumption: Succ is the single successor for BB.
811 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
812   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
813 
814   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
815                     << Succ->getName() << "\n");
816   // Shortcut, if there is only a single predecessor it must be BB and merging
817   // is always safe
818   if (Succ->getSinglePredecessor()) return true;
819 
820   // Make a list of the predecessors of BB
821   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
822 
823   // Look at all the phi nodes in Succ, to see if they present a conflict when
824   // merging these blocks
825   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
826     PHINode *PN = cast<PHINode>(I);
827 
828     // If the incoming value from BB is again a PHINode in
829     // BB which has the same incoming value for *PI as PN does, we can
830     // merge the phi nodes and then the blocks can still be merged
831     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
832     if (BBPN && BBPN->getParent() == BB) {
833       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
834         BasicBlock *IBB = PN->getIncomingBlock(PI);
835         if (BBPreds.count(IBB) &&
836             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
837                             PN->getIncomingValue(PI))) {
838           LLVM_DEBUG(dbgs()
839                      << "Can't fold, phi node " << PN->getName() << " in "
840                      << Succ->getName() << " is conflicting with "
841                      << BBPN->getName() << " with regard to common predecessor "
842                      << IBB->getName() << "\n");
843           return false;
844         }
845       }
846     } else {
847       Value* Val = PN->getIncomingValueForBlock(BB);
848       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
849         // See if the incoming value for the common predecessor is equal to the
850         // one for BB, in which case this phi node will not prevent the merging
851         // of the block.
852         BasicBlock *IBB = PN->getIncomingBlock(PI);
853         if (BBPreds.count(IBB) &&
854             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
855           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
856                             << " in " << Succ->getName()
857                             << " is conflicting with regard to common "
858                             << "predecessor " << IBB->getName() << "\n");
859           return false;
860         }
861       }
862     }
863   }
864 
865   return true;
866 }
867 
868 using PredBlockVector = SmallVector<BasicBlock *, 16>;
869 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
870 
871 /// Determines the value to use as the phi node input for a block.
872 ///
873 /// Select between \p OldVal any value that we know flows from \p BB
874 /// to a particular phi on the basis of which one (if either) is not
875 /// undef. Update IncomingValues based on the selected value.
876 ///
877 /// \param OldVal The value we are considering selecting.
878 /// \param BB The block that the value flows in from.
879 /// \param IncomingValues A map from block-to-value for other phi inputs
880 /// that we have examined.
881 ///
882 /// \returns the selected value.
883 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
884                                           IncomingValueMap &IncomingValues) {
885   if (!isa<UndefValue>(OldVal)) {
886     assert((!IncomingValues.count(BB) ||
887             IncomingValues.find(BB)->second == OldVal) &&
888            "Expected OldVal to match incoming value from BB!");
889 
890     IncomingValues.insert(std::make_pair(BB, OldVal));
891     return OldVal;
892   }
893 
894   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
895   if (It != IncomingValues.end()) return It->second;
896 
897   return OldVal;
898 }
899 
900 /// Create a map from block to value for the operands of a
901 /// given phi.
902 ///
903 /// Create a map from block to value for each non-undef value flowing
904 /// into \p PN.
905 ///
906 /// \param PN The phi we are collecting the map for.
907 /// \param IncomingValues [out] The map from block to value for this phi.
908 static void gatherIncomingValuesToPhi(PHINode *PN,
909                                       IncomingValueMap &IncomingValues) {
910   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
911     BasicBlock *BB = PN->getIncomingBlock(i);
912     Value *V = PN->getIncomingValue(i);
913 
914     if (!isa<UndefValue>(V))
915       IncomingValues.insert(std::make_pair(BB, V));
916   }
917 }
918 
919 /// Replace the incoming undef values to a phi with the values
920 /// from a block-to-value map.
921 ///
922 /// \param PN The phi we are replacing the undefs in.
923 /// \param IncomingValues A map from block to value.
924 static void replaceUndefValuesInPhi(PHINode *PN,
925                                     const IncomingValueMap &IncomingValues) {
926   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
927     Value *V = PN->getIncomingValue(i);
928 
929     if (!isa<UndefValue>(V)) continue;
930 
931     BasicBlock *BB = PN->getIncomingBlock(i);
932     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
933     if (It == IncomingValues.end()) continue;
934 
935     PN->setIncomingValue(i, It->second);
936   }
937 }
938 
939 /// Replace a value flowing from a block to a phi with
940 /// potentially multiple instances of that value flowing from the
941 /// block's predecessors to the phi.
942 ///
943 /// \param BB The block with the value flowing into the phi.
944 /// \param BBPreds The predecessors of BB.
945 /// \param PN The phi that we are updating.
946 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
947                                                 const PredBlockVector &BBPreds,
948                                                 PHINode *PN) {
949   Value *OldVal = PN->removeIncomingValue(BB, false);
950   assert(OldVal && "No entry in PHI for Pred BB!");
951 
952   IncomingValueMap IncomingValues;
953 
954   // We are merging two blocks - BB, and the block containing PN - and
955   // as a result we need to redirect edges from the predecessors of BB
956   // to go to the block containing PN, and update PN
957   // accordingly. Since we allow merging blocks in the case where the
958   // predecessor and successor blocks both share some predecessors,
959   // and where some of those common predecessors might have undef
960   // values flowing into PN, we want to rewrite those values to be
961   // consistent with the non-undef values.
962 
963   gatherIncomingValuesToPhi(PN, IncomingValues);
964 
965   // If this incoming value is one of the PHI nodes in BB, the new entries
966   // in the PHI node are the entries from the old PHI.
967   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
968     PHINode *OldValPN = cast<PHINode>(OldVal);
969     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
970       // Note that, since we are merging phi nodes and BB and Succ might
971       // have common predecessors, we could end up with a phi node with
972       // identical incoming branches. This will be cleaned up later (and
973       // will trigger asserts if we try to clean it up now, without also
974       // simplifying the corresponding conditional branch).
975       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
976       Value *PredVal = OldValPN->getIncomingValue(i);
977       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
978                                                     IncomingValues);
979 
980       // And add a new incoming value for this predecessor for the
981       // newly retargeted branch.
982       PN->addIncoming(Selected, PredBB);
983     }
984   } else {
985     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
986       // Update existing incoming values in PN for this
987       // predecessor of BB.
988       BasicBlock *PredBB = BBPreds[i];
989       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
990                                                     IncomingValues);
991 
992       // And add a new incoming value for this predecessor for the
993       // newly retargeted branch.
994       PN->addIncoming(Selected, PredBB);
995     }
996   }
997 
998   replaceUndefValuesInPhi(PN, IncomingValues);
999 }
1000 
1001 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
1002                                                    DomTreeUpdater *DTU) {
1003   assert(BB != &BB->getParent()->getEntryBlock() &&
1004          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
1005 
1006   // We can't eliminate infinite loops.
1007   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1008   if (BB == Succ) return false;
1009 
1010   // Check to see if merging these blocks would cause conflicts for any of the
1011   // phi nodes in BB or Succ. If not, we can safely merge.
1012   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
1013 
1014   // Check for cases where Succ has multiple predecessors and a PHI node in BB
1015   // has uses which will not disappear when the PHI nodes are merged.  It is
1016   // possible to handle such cases, but difficult: it requires checking whether
1017   // BB dominates Succ, which is non-trivial to calculate in the case where
1018   // Succ has multiple predecessors.  Also, it requires checking whether
1019   // constructing the necessary self-referential PHI node doesn't introduce any
1020   // conflicts; this isn't too difficult, but the previous code for doing this
1021   // was incorrect.
1022   //
1023   // Note that if this check finds a live use, BB dominates Succ, so BB is
1024   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1025   // folding the branch isn't profitable in that case anyway.
1026   if (!Succ->getSinglePredecessor()) {
1027     BasicBlock::iterator BBI = BB->begin();
1028     while (isa<PHINode>(*BBI)) {
1029       for (Use &U : BBI->uses()) {
1030         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1031           if (PN->getIncomingBlock(U) != BB)
1032             return false;
1033         } else {
1034           return false;
1035         }
1036       }
1037       ++BBI;
1038     }
1039   }
1040 
1041   // We cannot fold the block if it's a branch to an already present callbr
1042   // successor because that creates duplicate successors.
1043   for (BasicBlock *PredBB : predecessors(BB)) {
1044     if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) {
1045       if (Succ == CBI->getDefaultDest())
1046         return false;
1047       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1048         if (Succ == CBI->getIndirectDest(i))
1049           return false;
1050     }
1051   }
1052 
1053   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1054 
1055   SmallVector<DominatorTree::UpdateType, 32> Updates;
1056   if (DTU) {
1057     // All predecessors of BB will be moved to Succ.
1058     SmallSetVector<BasicBlock *, 8> Predecessors(pred_begin(BB), pred_end(BB));
1059     Updates.reserve(Updates.size() + 2 * Predecessors.size());
1060     for (auto *Predecessor : Predecessors) {
1061       // This predecessor of BB may already have Succ as a successor.
1062       if (!llvm::is_contained(successors(Predecessor), Succ))
1063         Updates.push_back({DominatorTree::Insert, Predecessor, Succ});
1064       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
1065     }
1066     Updates.push_back({DominatorTree::Delete, BB, Succ});
1067   }
1068 
1069   if (isa<PHINode>(Succ->begin())) {
1070     // If there is more than one pred of succ, and there are PHI nodes in
1071     // the successor, then we need to add incoming edges for the PHI nodes
1072     //
1073     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1074 
1075     // Loop over all of the PHI nodes in the successor of BB.
1076     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1077       PHINode *PN = cast<PHINode>(I);
1078 
1079       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1080     }
1081   }
1082 
1083   if (Succ->getSinglePredecessor()) {
1084     // BB is the only predecessor of Succ, so Succ will end up with exactly
1085     // the same predecessors BB had.
1086 
1087     // Copy over any phi, debug or lifetime instruction.
1088     BB->getTerminator()->eraseFromParent();
1089     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1090                                BB->getInstList());
1091   } else {
1092     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1093       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1094       assert(PN->use_empty() && "There shouldn't be any uses here!");
1095       PN->eraseFromParent();
1096     }
1097   }
1098 
1099   // If the unconditional branch we replaced contains llvm.loop metadata, we
1100   // add the metadata to the branch instructions in the predecessors.
1101   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1102   Instruction *TI = BB->getTerminator();
1103   if (TI)
1104     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1105       for (BasicBlock *Pred : predecessors(BB))
1106         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1107 
1108   // Everything that jumped to BB now goes to Succ.
1109   BB->replaceAllUsesWith(Succ);
1110   if (!Succ->hasName()) Succ->takeName(BB);
1111 
1112   // Clear the successor list of BB to match updates applying to DTU later.
1113   if (BB->getTerminator())
1114     BB->getInstList().pop_back();
1115   new UnreachableInst(BB->getContext(), BB);
1116   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1117                            "applying corresponding DTU updates.");
1118 
1119   if (DTU) {
1120     DTU->applyUpdates(Updates);
1121     DTU->deleteBB(BB);
1122   } else {
1123     BB->eraseFromParent(); // Delete the old basic block.
1124   }
1125   return true;
1126 }
1127 
1128 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) {
1129   // This implementation doesn't currently consider undef operands
1130   // specially. Theoretically, two phis which are identical except for
1131   // one having an undef where the other doesn't could be collapsed.
1132 
1133   bool Changed = false;
1134 
1135   // Examine each PHI.
1136   // Note that increment of I must *NOT* be in the iteration_expression, since
1137   // we don't want to immediately advance when we restart from the beginning.
1138   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
1139     ++I;
1140     // Is there an identical PHI node in this basic block?
1141     // Note that we only look in the upper square's triangle,
1142     // we already checked that the lower triangle PHI's aren't identical.
1143     for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
1144       if (!DuplicatePN->isIdenticalToWhenDefined(PN))
1145         continue;
1146       // A duplicate. Replace this PHI with the base PHI.
1147       ++NumPHICSEs;
1148       DuplicatePN->replaceAllUsesWith(PN);
1149       DuplicatePN->eraseFromParent();
1150       Changed = true;
1151 
1152       // The RAUW can change PHIs that we already visited.
1153       I = BB->begin();
1154       break; // Start over from the beginning.
1155     }
1156   }
1157   return Changed;
1158 }
1159 
1160 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) {
1161   // This implementation doesn't currently consider undef operands
1162   // specially. Theoretically, two phis which are identical except for
1163   // one having an undef where the other doesn't could be collapsed.
1164 
1165   struct PHIDenseMapInfo {
1166     static PHINode *getEmptyKey() {
1167       return DenseMapInfo<PHINode *>::getEmptyKey();
1168     }
1169 
1170     static PHINode *getTombstoneKey() {
1171       return DenseMapInfo<PHINode *>::getTombstoneKey();
1172     }
1173 
1174     static bool isSentinel(PHINode *PN) {
1175       return PN == getEmptyKey() || PN == getTombstoneKey();
1176     }
1177 
1178     // WARNING: this logic must be kept in sync with
1179     //          Instruction::isIdenticalToWhenDefined()!
1180     static unsigned getHashValueImpl(PHINode *PN) {
1181       // Compute a hash value on the operands. Instcombine will likely have
1182       // sorted them, which helps expose duplicates, but we have to check all
1183       // the operands to be safe in case instcombine hasn't run.
1184       return static_cast<unsigned>(hash_combine(
1185           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1186           hash_combine_range(PN->block_begin(), PN->block_end())));
1187     }
1188 
1189     static unsigned getHashValue(PHINode *PN) {
1190 #ifndef NDEBUG
1191       // If -phicse-debug-hash was specified, return a constant -- this
1192       // will force all hashing to collide, so we'll exhaustively search
1193       // the table for a match, and the assertion in isEqual will fire if
1194       // there's a bug causing equal keys to hash differently.
1195       if (PHICSEDebugHash)
1196         return 0;
1197 #endif
1198       return getHashValueImpl(PN);
1199     }
1200 
1201     static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
1202       if (isSentinel(LHS) || isSentinel(RHS))
1203         return LHS == RHS;
1204       return LHS->isIdenticalTo(RHS);
1205     }
1206 
1207     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1208       // These comparisons are nontrivial, so assert that equality implies
1209       // hash equality (DenseMap demands this as an invariant).
1210       bool Result = isEqualImpl(LHS, RHS);
1211       assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
1212              getHashValueImpl(LHS) == getHashValueImpl(RHS));
1213       return Result;
1214     }
1215   };
1216 
1217   // Set of unique PHINodes.
1218   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1219   PHISet.reserve(4 * PHICSENumPHISmallSize);
1220 
1221   // Examine each PHI.
1222   bool Changed = false;
1223   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1224     auto Inserted = PHISet.insert(PN);
1225     if (!Inserted.second) {
1226       // A duplicate. Replace this PHI with its duplicate.
1227       ++NumPHICSEs;
1228       PN->replaceAllUsesWith(*Inserted.first);
1229       PN->eraseFromParent();
1230       Changed = true;
1231 
1232       // The RAUW can change PHIs that we already visited. Start over from the
1233       // beginning.
1234       PHISet.clear();
1235       I = BB->begin();
1236     }
1237   }
1238 
1239   return Changed;
1240 }
1241 
1242 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1243   if (
1244 #ifndef NDEBUG
1245       !PHICSEDebugHash &&
1246 #endif
1247       hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
1248     return EliminateDuplicatePHINodesNaiveImpl(BB);
1249   return EliminateDuplicatePHINodesSetBasedImpl(BB);
1250 }
1251 
1252 /// If the specified pointer points to an object that we control, try to modify
1253 /// the object's alignment to PrefAlign. Returns a minimum known alignment of
1254 /// the value after the operation, which may be lower than PrefAlign.
1255 ///
1256 /// Increating value alignment isn't often possible though. If alignment is
1257 /// important, a more reliable approach is to simply align all global variables
1258 /// and allocation instructions to their preferred alignment from the beginning.
1259 static Align tryEnforceAlignment(Value *V, Align PrefAlign,
1260                                  const DataLayout &DL) {
1261   V = V->stripPointerCasts();
1262 
1263   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1264     // TODO: Ideally, this function would not be called if PrefAlign is smaller
1265     // than the current alignment, as the known bits calculation should have
1266     // already taken it into account. However, this is not always the case,
1267     // as computeKnownBits() has a depth limit, while stripPointerCasts()
1268     // doesn't.
1269     Align CurrentAlign = AI->getAlign();
1270     if (PrefAlign <= CurrentAlign)
1271       return CurrentAlign;
1272 
1273     // If the preferred alignment is greater than the natural stack alignment
1274     // then don't round up. This avoids dynamic stack realignment.
1275     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1276       return CurrentAlign;
1277     AI->setAlignment(PrefAlign);
1278     return PrefAlign;
1279   }
1280 
1281   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1282     // TODO: as above, this shouldn't be necessary.
1283     Align CurrentAlign = GO->getPointerAlignment(DL);
1284     if (PrefAlign <= CurrentAlign)
1285       return CurrentAlign;
1286 
1287     // If there is a large requested alignment and we can, bump up the alignment
1288     // of the global.  If the memory we set aside for the global may not be the
1289     // memory used by the final program then it is impossible for us to reliably
1290     // enforce the preferred alignment.
1291     if (!GO->canIncreaseAlignment())
1292       return CurrentAlign;
1293 
1294     GO->setAlignment(PrefAlign);
1295     return PrefAlign;
1296   }
1297 
1298   return Align(1);
1299 }
1300 
1301 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1302                                        const DataLayout &DL,
1303                                        const Instruction *CxtI,
1304                                        AssumptionCache *AC,
1305                                        const DominatorTree *DT) {
1306   assert(V->getType()->isPointerTy() &&
1307          "getOrEnforceKnownAlignment expects a pointer!");
1308 
1309   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1310   unsigned TrailZ = Known.countMinTrailingZeros();
1311 
1312   // Avoid trouble with ridiculously large TrailZ values, such as
1313   // those computed from a null pointer.
1314   // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1315   TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1316 
1317   Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1318 
1319   if (PrefAlign && *PrefAlign > Alignment)
1320     Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
1321 
1322   // We don't need to make any adjustment.
1323   return Alignment;
1324 }
1325 
1326 ///===---------------------------------------------------------------------===//
1327 ///  Dbg Intrinsic utilities
1328 ///
1329 
1330 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1331 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1332                              DIExpression *DIExpr,
1333                              PHINode *APN) {
1334   // Since we can't guarantee that the original dbg.declare instrinsic
1335   // is removed by LowerDbgDeclare(), we need to make sure that we are
1336   // not inserting the same dbg.value intrinsic over and over.
1337   SmallVector<DbgValueInst *, 1> DbgValues;
1338   findDbgValues(DbgValues, APN);
1339   for (auto *DVI : DbgValues) {
1340     assert(DVI->getValue() == APN);
1341     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1342       return true;
1343   }
1344   return false;
1345 }
1346 
1347 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1348 /// (or fragment of the variable) described by \p DII.
1349 ///
1350 /// This is primarily intended as a helper for the different
1351 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1352 /// converted describes an alloca'd variable, so we need to use the
1353 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1354 /// identified as covering an n-bit fragment, if the store size of i1 is at
1355 /// least n bits.
1356 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1357   const DataLayout &DL = DII->getModule()->getDataLayout();
1358   TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1359   if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) {
1360     assert(!ValueSize.isScalable() &&
1361            "Fragments don't work on scalable types.");
1362     return ValueSize.getFixedSize() >= *FragmentSize;
1363   }
1364   // We can't always calculate the size of the DI variable (e.g. if it is a
1365   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1366   // intead.
1367   if (DII->isAddressOfVariable())
1368     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1369       if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
1370         assert(ValueSize.isScalable() == FragmentSize->isScalable() &&
1371                "Both sizes should agree on the scalable flag.");
1372         return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1373       }
1374   // Could not determine size of variable. Conservatively return false.
1375   return false;
1376 }
1377 
1378 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1379 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1380 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1381 /// case this DebugLoc leaks into any adjacent instructions.
1382 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1383   // Original dbg.declare must have a location.
1384   DebugLoc DeclareLoc = DII->getDebugLoc();
1385   MDNode *Scope = DeclareLoc.getScope();
1386   DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1387   // Produce an unknown location with the correct scope / inlinedAt fields.
1388   return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt);
1389 }
1390 
1391 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1392 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1393 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1394                                            StoreInst *SI, DIBuilder &Builder) {
1395   assert(DII->isAddressOfVariable());
1396   auto *DIVar = DII->getVariable();
1397   assert(DIVar && "Missing variable");
1398   auto *DIExpr = DII->getExpression();
1399   Value *DV = SI->getValueOperand();
1400 
1401   DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1402 
1403   if (!valueCoversEntireFragment(DV->getType(), DII)) {
1404     // FIXME: If storing to a part of the variable described by the dbg.declare,
1405     // then we want to insert a dbg.value for the corresponding fragment.
1406     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1407                       << *DII << '\n');
1408     // For now, when there is a store to parts of the variable (but we do not
1409     // know which part) we insert an dbg.value instrinsic to indicate that we
1410     // know nothing about the variable's content.
1411     DV = UndefValue::get(DV->getType());
1412     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1413     return;
1414   }
1415 
1416   Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1417 }
1418 
1419 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1420 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1421 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1422                                            LoadInst *LI, DIBuilder &Builder) {
1423   auto *DIVar = DII->getVariable();
1424   auto *DIExpr = DII->getExpression();
1425   assert(DIVar && "Missing variable");
1426 
1427   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1428     // FIXME: If only referring to a part of the variable described by the
1429     // dbg.declare, then we want to insert a dbg.value for the corresponding
1430     // fragment.
1431     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1432                       << *DII << '\n');
1433     return;
1434   }
1435 
1436   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1437 
1438   // We are now tracking the loaded value instead of the address. In the
1439   // future if multi-location support is added to the IR, it might be
1440   // preferable to keep tracking both the loaded value and the original
1441   // address in case the alloca can not be elided.
1442   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1443       LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1444   DbgValue->insertAfter(LI);
1445 }
1446 
1447 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1448 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1449 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1450                                            PHINode *APN, DIBuilder &Builder) {
1451   auto *DIVar = DII->getVariable();
1452   auto *DIExpr = DII->getExpression();
1453   assert(DIVar && "Missing variable");
1454 
1455   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1456     return;
1457 
1458   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1459     // FIXME: If only referring to a part of the variable described by the
1460     // dbg.declare, then we want to insert a dbg.value for the corresponding
1461     // fragment.
1462     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1463                       << *DII << '\n');
1464     return;
1465   }
1466 
1467   BasicBlock *BB = APN->getParent();
1468   auto InsertionPt = BB->getFirstInsertionPt();
1469 
1470   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1471 
1472   // The block may be a catchswitch block, which does not have a valid
1473   // insertion point.
1474   // FIXME: Insert dbg.value markers in the successors when appropriate.
1475   if (InsertionPt != BB->end())
1476     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1477 }
1478 
1479 /// Determine whether this alloca is either a VLA or an array.
1480 static bool isArray(AllocaInst *AI) {
1481   return AI->isArrayAllocation() ||
1482          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1483 }
1484 
1485 /// Determine whether this alloca is a structure.
1486 static bool isStructure(AllocaInst *AI) {
1487   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1488 }
1489 
1490 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1491 /// of llvm.dbg.value intrinsics.
1492 bool llvm::LowerDbgDeclare(Function &F) {
1493   bool Changed = false;
1494   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1495   SmallVector<DbgDeclareInst *, 4> Dbgs;
1496   for (auto &FI : F)
1497     for (Instruction &BI : FI)
1498       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1499         Dbgs.push_back(DDI);
1500 
1501   if (Dbgs.empty())
1502     return Changed;
1503 
1504   for (auto &I : Dbgs) {
1505     DbgDeclareInst *DDI = I;
1506     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1507     // If this is an alloca for a scalar variable, insert a dbg.value
1508     // at each load and store to the alloca and erase the dbg.declare.
1509     // The dbg.values allow tracking a variable even if it is not
1510     // stored on the stack, while the dbg.declare can only describe
1511     // the stack slot (and at a lexical-scope granularity). Later
1512     // passes will attempt to elide the stack slot.
1513     if (!AI || isArray(AI) || isStructure(AI))
1514       continue;
1515 
1516     // A volatile load/store means that the alloca can't be elided anyway.
1517     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1518           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1519             return LI->isVolatile();
1520           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1521             return SI->isVolatile();
1522           return false;
1523         }))
1524       continue;
1525 
1526     SmallVector<const Value *, 8> WorkList;
1527     WorkList.push_back(AI);
1528     while (!WorkList.empty()) {
1529       const Value *V = WorkList.pop_back_val();
1530       for (auto &AIUse : V->uses()) {
1531         User *U = AIUse.getUser();
1532         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1533           if (AIUse.getOperandNo() == 1)
1534             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1535         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1536           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1537         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1538           // This is a call by-value or some other instruction that takes a
1539           // pointer to the variable. Insert a *value* intrinsic that describes
1540           // the variable by dereferencing the alloca.
1541           if (!CI->isLifetimeStartOrEnd()) {
1542             DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1543             auto *DerefExpr =
1544                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1545             DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1546                                         NewLoc, CI);
1547           }
1548         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1549           if (BI->getType()->isPointerTy())
1550             WorkList.push_back(BI);
1551         }
1552       }
1553     }
1554     DDI->eraseFromParent();
1555     Changed = true;
1556   }
1557 
1558   if (Changed)
1559   for (BasicBlock &BB : F)
1560     RemoveRedundantDbgInstrs(&BB);
1561 
1562   return Changed;
1563 }
1564 
1565 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1566 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1567                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1568   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1569   if (InsertedPHIs.size() == 0)
1570     return;
1571 
1572   // Map existing PHI nodes to their dbg.values.
1573   ValueToValueMapTy DbgValueMap;
1574   for (auto &I : *BB) {
1575     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1576       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1577         DbgValueMap.insert({Loc, DbgII});
1578     }
1579   }
1580   if (DbgValueMap.size() == 0)
1581     return;
1582 
1583   // Then iterate through the new PHIs and look to see if they use one of the
1584   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1585   // propagate the info through the new PHI.
1586   LLVMContext &C = BB->getContext();
1587   for (auto PHI : InsertedPHIs) {
1588     BasicBlock *Parent = PHI->getParent();
1589     // Avoid inserting an intrinsic into an EH block.
1590     if (Parent->getFirstNonPHI()->isEHPad())
1591       continue;
1592     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1593     for (auto VI : PHI->operand_values()) {
1594       auto V = DbgValueMap.find(VI);
1595       if (V != DbgValueMap.end()) {
1596         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1597         Instruction *NewDbgII = DbgII->clone();
1598         NewDbgII->setOperand(0, PhiMAV);
1599         auto InsertionPt = Parent->getFirstInsertionPt();
1600         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1601         NewDbgII->insertBefore(&*InsertionPt);
1602       }
1603     }
1604   }
1605 }
1606 
1607 /// Finds all intrinsics declaring local variables as living in the memory that
1608 /// 'V' points to. This may include a mix of dbg.declare and
1609 /// dbg.addr intrinsics.
1610 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1611   // This function is hot. Check whether the value has any metadata to avoid a
1612   // DenseMap lookup.
1613   if (!V->isUsedByMetadata())
1614     return {};
1615   auto *L = LocalAsMetadata::getIfExists(V);
1616   if (!L)
1617     return {};
1618   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1619   if (!MDV)
1620     return {};
1621 
1622   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1623   for (User *U : MDV->users()) {
1624     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1625       if (DII->isAddressOfVariable())
1626         Declares.push_back(DII);
1627   }
1628 
1629   return Declares;
1630 }
1631 
1632 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) {
1633   TinyPtrVector<DbgDeclareInst *> DDIs;
1634   for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V))
1635     if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI))
1636       DDIs.push_back(DDI);
1637   return DDIs;
1638 }
1639 
1640 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1641   // This function is hot. Check whether the value has any metadata to avoid a
1642   // DenseMap lookup.
1643   if (!V->isUsedByMetadata())
1644     return;
1645   if (auto *L = LocalAsMetadata::getIfExists(V))
1646     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1647       for (User *U : MDV->users())
1648         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1649           DbgValues.push_back(DVI);
1650 }
1651 
1652 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1653                         Value *V) {
1654   // This function is hot. Check whether the value has any metadata to avoid a
1655   // DenseMap lookup.
1656   if (!V->isUsedByMetadata())
1657     return;
1658   if (auto *L = LocalAsMetadata::getIfExists(V))
1659     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1660       for (User *U : MDV->users())
1661         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1662           DbgUsers.push_back(DII);
1663 }
1664 
1665 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1666                              DIBuilder &Builder, uint8_t DIExprFlags,
1667                              int Offset) {
1668   auto DbgAddrs = FindDbgAddrUses(Address);
1669   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1670     DebugLoc Loc = DII->getDebugLoc();
1671     auto *DIVar = DII->getVariable();
1672     auto *DIExpr = DII->getExpression();
1673     assert(DIVar && "Missing variable");
1674     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1675     // Insert llvm.dbg.declare immediately before DII, and remove old
1676     // llvm.dbg.declare.
1677     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
1678     DII->eraseFromParent();
1679   }
1680   return !DbgAddrs.empty();
1681 }
1682 
1683 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1684                                         DIBuilder &Builder, int Offset) {
1685   DebugLoc Loc = DVI->getDebugLoc();
1686   auto *DIVar = DVI->getVariable();
1687   auto *DIExpr = DVI->getExpression();
1688   assert(DIVar && "Missing variable");
1689 
1690   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1691   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1692   // it and give up.
1693   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1694       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1695     return;
1696 
1697   // Insert the offset before the first deref.
1698   // We could just change the offset argument of dbg.value, but it's unsigned...
1699   if (Offset)
1700     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1701 
1702   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1703   DVI->eraseFromParent();
1704 }
1705 
1706 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1707                                     DIBuilder &Builder, int Offset) {
1708   if (auto *L = LocalAsMetadata::getIfExists(AI))
1709     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1710       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1711         Use &U = *UI++;
1712         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1713           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1714       }
1715 }
1716 
1717 /// Wrap \p V in a ValueAsMetadata instance.
1718 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1719   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1720 }
1721 
1722 /// Where possible to salvage debug information for \p I do so
1723 /// and return True. If not possible mark undef and return False.
1724 void llvm::salvageDebugInfo(Instruction &I) {
1725   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1726   findDbgUsers(DbgUsers, &I);
1727   salvageDebugInfoForDbgValues(I, DbgUsers);
1728 }
1729 
1730 void llvm::salvageDebugInfoForDbgValues(
1731     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1732   auto &Ctx = I.getContext();
1733   bool Salvaged = false;
1734   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1735 
1736   for (auto *DII : DbgUsers) {
1737     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1738     // are implicitly pointing out the value as a DWARF memory location
1739     // description.
1740     bool StackValue = isa<DbgValueInst>(DII);
1741 
1742     DIExpression *DIExpr =
1743         salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1744 
1745     // salvageDebugInfoImpl should fail on examining the first element of
1746     // DbgUsers, or none of them.
1747     if (!DIExpr)
1748       break;
1749 
1750     DII->setOperand(0, wrapMD(I.getOperand(0)));
1751     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1752     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1753     Salvaged = true;
1754   }
1755 
1756   if (Salvaged)
1757     return;
1758 
1759   for (auto *DII : DbgUsers) {
1760     Value *Undef = UndefValue::get(I.getType());
1761     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
1762                                             ValueAsMetadata::get(Undef)));
1763   }
1764 }
1765 
1766 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1767                                          DIExpression *SrcDIExpr,
1768                                          bool WithStackValue) {
1769   auto &M = *I.getModule();
1770   auto &DL = M.getDataLayout();
1771 
1772   // Apply a vector of opcodes to the source DIExpression.
1773   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1774     DIExpression *DIExpr = SrcDIExpr;
1775     if (!Ops.empty()) {
1776       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1777     }
1778     return DIExpr;
1779   };
1780 
1781   // Apply the given offset to the source DIExpression.
1782   auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1783     SmallVector<uint64_t, 8> Ops;
1784     DIExpression::appendOffset(Ops, Offset);
1785     return doSalvage(Ops);
1786   };
1787 
1788   // initializer-list helper for applying operators to the source DIExpression.
1789   auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * {
1790     SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1791     return doSalvage(Ops);
1792   };
1793 
1794   if (auto *CI = dyn_cast<CastInst>(&I)) {
1795     // No-op casts are irrelevant for debug info.
1796     if (CI->isNoopCast(DL))
1797       return SrcDIExpr;
1798 
1799     Type *Type = CI->getType();
1800     // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
1801     if (Type->isVectorTy() ||
1802         !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I)))
1803       return nullptr;
1804 
1805     Value *FromValue = CI->getOperand(0);
1806     unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1807     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1808 
1809     return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1810                                             isa<SExtInst>(&I)));
1811   }
1812 
1813   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1814     unsigned BitWidth =
1815         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1816     // Rewrite a constant GEP into a DIExpression.
1817     APInt Offset(BitWidth, 0);
1818     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1819       return applyOffset(Offset.getSExtValue());
1820     } else {
1821       return nullptr;
1822     }
1823   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1824     // Rewrite binary operations with constant integer operands.
1825     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1826     if (!ConstInt || ConstInt->getBitWidth() > 64)
1827       return nullptr;
1828 
1829     uint64_t Val = ConstInt->getSExtValue();
1830     switch (BI->getOpcode()) {
1831     case Instruction::Add:
1832       return applyOffset(Val);
1833     case Instruction::Sub:
1834       return applyOffset(-int64_t(Val));
1835     case Instruction::Mul:
1836       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1837     case Instruction::SDiv:
1838       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1839     case Instruction::SRem:
1840       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1841     case Instruction::Or:
1842       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1843     case Instruction::And:
1844       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1845     case Instruction::Xor:
1846       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1847     case Instruction::Shl:
1848       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1849     case Instruction::LShr:
1850       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1851     case Instruction::AShr:
1852       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1853     default:
1854       // TODO: Salvage constants from each kind of binop we know about.
1855       return nullptr;
1856     }
1857     // *Not* to do: we should not attempt to salvage load instructions,
1858     // because the validity and lifetime of a dbg.value containing
1859     // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1860   }
1861   return nullptr;
1862 }
1863 
1864 /// A replacement for a dbg.value expression.
1865 using DbgValReplacement = Optional<DIExpression *>;
1866 
1867 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1868 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1869 /// changes are made.
1870 static bool rewriteDebugUsers(
1871     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1872     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1873   // Find debug users of From.
1874   SmallVector<DbgVariableIntrinsic *, 1> Users;
1875   findDbgUsers(Users, &From);
1876   if (Users.empty())
1877     return false;
1878 
1879   // Prevent use-before-def of To.
1880   bool Changed = false;
1881   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1882   if (isa<Instruction>(&To)) {
1883     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1884 
1885     for (auto *DII : Users) {
1886       // It's common to see a debug user between From and DomPoint. Move it
1887       // after DomPoint to preserve the variable update without any reordering.
1888       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1889         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1890         DII->moveAfter(&DomPoint);
1891         Changed = true;
1892 
1893       // Users which otherwise aren't dominated by the replacement value must
1894       // be salvaged or deleted.
1895       } else if (!DT.dominates(&DomPoint, DII)) {
1896         UndefOrSalvage.insert(DII);
1897       }
1898     }
1899   }
1900 
1901   // Update debug users without use-before-def risk.
1902   for (auto *DII : Users) {
1903     if (UndefOrSalvage.count(DII))
1904       continue;
1905 
1906     LLVMContext &Ctx = DII->getContext();
1907     DbgValReplacement DVR = RewriteExpr(*DII);
1908     if (!DVR)
1909       continue;
1910 
1911     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1912     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1913     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1914     Changed = true;
1915   }
1916 
1917   if (!UndefOrSalvage.empty()) {
1918     // Try to salvage the remaining debug users.
1919     salvageDebugInfo(From);
1920     Changed = true;
1921   }
1922 
1923   return Changed;
1924 }
1925 
1926 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1927 /// losslessly preserve the bits and semantics of the value. This predicate is
1928 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1929 ///
1930 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1931 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1932 /// and also does not allow lossless pointer <-> integer conversions.
1933 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1934                                          Type *ToTy) {
1935   // Trivially compatible types.
1936   if (FromTy == ToTy)
1937     return true;
1938 
1939   // Handle compatible pointer <-> integer conversions.
1940   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1941     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1942     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1943                               !DL.isNonIntegralPointerType(ToTy);
1944     return SameSize && LosslessConversion;
1945   }
1946 
1947   // TODO: This is not exhaustive.
1948   return false;
1949 }
1950 
1951 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1952                                  Instruction &DomPoint, DominatorTree &DT) {
1953   // Exit early if From has no debug users.
1954   if (!From.isUsedByMetadata())
1955     return false;
1956 
1957   assert(&From != &To && "Can't replace something with itself");
1958 
1959   Type *FromTy = From.getType();
1960   Type *ToTy = To.getType();
1961 
1962   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1963     return DII.getExpression();
1964   };
1965 
1966   // Handle no-op conversions.
1967   Module &M = *From.getModule();
1968   const DataLayout &DL = M.getDataLayout();
1969   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1970     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1971 
1972   // Handle integer-to-integer widening and narrowing.
1973   // FIXME: Use DW_OP_convert when it's available everywhere.
1974   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1975     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1976     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1977     assert(FromBits != ToBits && "Unexpected no-op conversion");
1978 
1979     // When the width of the result grows, assume that a debugger will only
1980     // access the low `FromBits` bits when inspecting the source variable.
1981     if (FromBits < ToBits)
1982       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1983 
1984     // The width of the result has shrunk. Use sign/zero extension to describe
1985     // the source variable's high bits.
1986     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1987       DILocalVariable *Var = DII.getVariable();
1988 
1989       // Without knowing signedness, sign/zero extension isn't possible.
1990       auto Signedness = Var->getSignedness();
1991       if (!Signedness)
1992         return None;
1993 
1994       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1995       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
1996                                      Signed);
1997     };
1998     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1999   }
2000 
2001   // TODO: Floating-point conversions, vectors.
2002   return false;
2003 }
2004 
2005 std::pair<unsigned, unsigned>
2006 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
2007   unsigned NumDeadInst = 0;
2008   unsigned NumDeadDbgInst = 0;
2009   // Delete the instructions backwards, as it has a reduced likelihood of
2010   // having to update as many def-use and use-def chains.
2011   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2012   while (EndInst != &BB->front()) {
2013     // Delete the next to last instruction.
2014     Instruction *Inst = &*--EndInst->getIterator();
2015     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
2016       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2017     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
2018       EndInst = Inst;
2019       continue;
2020     }
2021     if (isa<DbgInfoIntrinsic>(Inst))
2022       ++NumDeadDbgInst;
2023     else
2024       ++NumDeadInst;
2025     Inst->eraseFromParent();
2026   }
2027   return {NumDeadInst, NumDeadDbgInst};
2028 }
2029 
2030 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
2031                                    bool PreserveLCSSA, DomTreeUpdater *DTU,
2032                                    MemorySSAUpdater *MSSAU) {
2033   BasicBlock *BB = I->getParent();
2034 
2035   if (MSSAU)
2036     MSSAU->changeToUnreachable(I);
2037 
2038   SmallSetVector<BasicBlock *, 8> UniqueSuccessors;
2039 
2040   // Loop over all of the successors, removing BB's entry from any PHI
2041   // nodes.
2042   for (BasicBlock *Successor : successors(BB)) {
2043     Successor->removePredecessor(BB, PreserveLCSSA);
2044     if (DTU)
2045       UniqueSuccessors.insert(Successor);
2046   }
2047   // Insert a call to llvm.trap right before this.  This turns the undefined
2048   // behavior into a hard fail instead of falling through into random code.
2049   if (UseLLVMTrap) {
2050     Function *TrapFn =
2051       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
2052     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
2053     CallTrap->setDebugLoc(I->getDebugLoc());
2054   }
2055   auto *UI = new UnreachableInst(I->getContext(), I);
2056   UI->setDebugLoc(I->getDebugLoc());
2057 
2058   // All instructions after this are dead.
2059   unsigned NumInstrsRemoved = 0;
2060   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
2061   while (BBI != BBE) {
2062     if (!BBI->use_empty())
2063       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2064     BB->getInstList().erase(BBI++);
2065     ++NumInstrsRemoved;
2066   }
2067   if (DTU) {
2068     SmallVector<DominatorTree::UpdateType, 8> Updates;
2069     Updates.reserve(UniqueSuccessors.size());
2070     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
2071       Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2072     DTU->applyUpdates(Updates);
2073   }
2074   return NumInstrsRemoved;
2075 }
2076 
2077 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
2078   SmallVector<Value *, 8> Args(II->args());
2079   SmallVector<OperandBundleDef, 1> OpBundles;
2080   II->getOperandBundlesAsDefs(OpBundles);
2081   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
2082                                        II->getCalledOperand(), Args, OpBundles);
2083   NewCall->setCallingConv(II->getCallingConv());
2084   NewCall->setAttributes(II->getAttributes());
2085   NewCall->setDebugLoc(II->getDebugLoc());
2086   NewCall->copyMetadata(*II);
2087 
2088   // If the invoke had profile metadata, try converting them for CallInst.
2089   uint64_t TotalWeight;
2090   if (NewCall->extractProfTotalWeight(TotalWeight)) {
2091     // Set the total weight if it fits into i32, otherwise reset.
2092     MDBuilder MDB(NewCall->getContext());
2093     auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2094                           ? nullptr
2095                           : MDB.createBranchWeights({uint32_t(TotalWeight)});
2096     NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2097   }
2098 
2099   return NewCall;
2100 }
2101 
2102 /// changeToCall - Convert the specified invoke into a normal call.
2103 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2104   CallInst *NewCall = createCallMatchingInvoke(II);
2105   NewCall->takeName(II);
2106   NewCall->insertBefore(II);
2107   II->replaceAllUsesWith(NewCall);
2108 
2109   // Follow the call by a branch to the normal destination.
2110   BasicBlock *NormalDestBB = II->getNormalDest();
2111   BranchInst::Create(NormalDestBB, II);
2112 
2113   // Update PHI nodes in the unwind destination
2114   BasicBlock *BB = II->getParent();
2115   BasicBlock *UnwindDestBB = II->getUnwindDest();
2116   UnwindDestBB->removePredecessor(BB);
2117   II->eraseFromParent();
2118   if (DTU)
2119     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2120 }
2121 
2122 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2123                                                    BasicBlock *UnwindEdge,
2124                                                    DomTreeUpdater *DTU) {
2125   BasicBlock *BB = CI->getParent();
2126 
2127   // Convert this function call into an invoke instruction.  First, split the
2128   // basic block.
2129   BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
2130                                  CI->getName() + ".noexc");
2131 
2132   // Delete the unconditional branch inserted by SplitBlock
2133   BB->getInstList().pop_back();
2134 
2135   // Create the new invoke instruction.
2136   SmallVector<Value *, 8> InvokeArgs(CI->args());
2137   SmallVector<OperandBundleDef, 1> OpBundles;
2138 
2139   CI->getOperandBundlesAsDefs(OpBundles);
2140 
2141   // Note: we're round tripping operand bundles through memory here, and that
2142   // can potentially be avoided with a cleverer API design that we do not have
2143   // as of this time.
2144 
2145   InvokeInst *II =
2146       InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2147                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2148   II->setDebugLoc(CI->getDebugLoc());
2149   II->setCallingConv(CI->getCallingConv());
2150   II->setAttributes(CI->getAttributes());
2151 
2152   if (DTU)
2153     DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
2154 
2155   // Make sure that anything using the call now uses the invoke!  This also
2156   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2157   CI->replaceAllUsesWith(II);
2158 
2159   // Delete the original call
2160   Split->getInstList().pop_front();
2161   return Split;
2162 }
2163 
2164 static bool markAliveBlocks(Function &F,
2165                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2166                             DomTreeUpdater *DTU = nullptr) {
2167   SmallVector<BasicBlock*, 128> Worklist;
2168   BasicBlock *BB = &F.front();
2169   Worklist.push_back(BB);
2170   Reachable.insert(BB);
2171   bool Changed = false;
2172   do {
2173     BB = Worklist.pop_back_val();
2174 
2175     // Do a quick scan of the basic block, turning any obviously unreachable
2176     // instructions into LLVM unreachable insts.  The instruction combining pass
2177     // canonicalizes unreachable insts into stores to null or undef.
2178     for (Instruction &I : *BB) {
2179       if (auto *CI = dyn_cast<CallInst>(&I)) {
2180         Value *Callee = CI->getCalledOperand();
2181         // Handle intrinsic calls.
2182         if (Function *F = dyn_cast<Function>(Callee)) {
2183           auto IntrinsicID = F->getIntrinsicID();
2184           // Assumptions that are known to be false are equivalent to
2185           // unreachable. Also, if the condition is undefined, then we make the
2186           // choice most beneficial to the optimizer, and choose that to also be
2187           // unreachable.
2188           if (IntrinsicID == Intrinsic::assume) {
2189             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2190               // Don't insert a call to llvm.trap right before the unreachable.
2191               changeToUnreachable(CI, false, false, DTU);
2192               Changed = true;
2193               break;
2194             }
2195           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2196             // A call to the guard intrinsic bails out of the current
2197             // compilation unit if the predicate passed to it is false. If the
2198             // predicate is a constant false, then we know the guard will bail
2199             // out of the current compile unconditionally, so all code following
2200             // it is dead.
2201             //
2202             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2203             // guards to treat `undef` as `false` since a guard on `undef` can
2204             // still be useful for widening.
2205             if (match(CI->getArgOperand(0), m_Zero()))
2206               if (!isa<UnreachableInst>(CI->getNextNode())) {
2207                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2208                                     false, DTU);
2209                 Changed = true;
2210                 break;
2211               }
2212           }
2213         } else if ((isa<ConstantPointerNull>(Callee) &&
2214                     !NullPointerIsDefined(CI->getFunction())) ||
2215                    isa<UndefValue>(Callee)) {
2216           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2217           Changed = true;
2218           break;
2219         }
2220         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2221           // If we found a call to a no-return function, insert an unreachable
2222           // instruction after it.  Make sure there isn't *already* one there
2223           // though.
2224           if (!isa<UnreachableInst>(CI->getNextNode())) {
2225             // Don't insert a call to llvm.trap right before the unreachable.
2226             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2227             Changed = true;
2228           }
2229           break;
2230         }
2231       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2232         // Store to undef and store to null are undefined and used to signal
2233         // that they should be changed to unreachable by passes that can't
2234         // modify the CFG.
2235 
2236         // Don't touch volatile stores.
2237         if (SI->isVolatile()) continue;
2238 
2239         Value *Ptr = SI->getOperand(1);
2240 
2241         if (isa<UndefValue>(Ptr) ||
2242             (isa<ConstantPointerNull>(Ptr) &&
2243              !NullPointerIsDefined(SI->getFunction(),
2244                                    SI->getPointerAddressSpace()))) {
2245           changeToUnreachable(SI, true, false, DTU);
2246           Changed = true;
2247           break;
2248         }
2249       }
2250     }
2251 
2252     Instruction *Terminator = BB->getTerminator();
2253     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2254       // Turn invokes that call 'nounwind' functions into ordinary calls.
2255       Value *Callee = II->getCalledOperand();
2256       if ((isa<ConstantPointerNull>(Callee) &&
2257            !NullPointerIsDefined(BB->getParent())) ||
2258           isa<UndefValue>(Callee)) {
2259         changeToUnreachable(II, true, false, DTU);
2260         Changed = true;
2261       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2262         if (II->use_empty() && II->onlyReadsMemory()) {
2263           // jump to the normal destination branch.
2264           BasicBlock *NormalDestBB = II->getNormalDest();
2265           BasicBlock *UnwindDestBB = II->getUnwindDest();
2266           BranchInst::Create(NormalDestBB, II);
2267           UnwindDestBB->removePredecessor(II->getParent());
2268           II->eraseFromParent();
2269           if (DTU)
2270             DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2271         } else
2272           changeToCall(II, DTU);
2273         Changed = true;
2274       }
2275     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2276       // Remove catchpads which cannot be reached.
2277       struct CatchPadDenseMapInfo {
2278         static CatchPadInst *getEmptyKey() {
2279           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2280         }
2281 
2282         static CatchPadInst *getTombstoneKey() {
2283           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2284         }
2285 
2286         static unsigned getHashValue(CatchPadInst *CatchPad) {
2287           return static_cast<unsigned>(hash_combine_range(
2288               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2289         }
2290 
2291         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2292           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2293               RHS == getEmptyKey() || RHS == getTombstoneKey())
2294             return LHS == RHS;
2295           return LHS->isIdenticalTo(RHS);
2296         }
2297       };
2298 
2299       SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
2300       // Set of unique CatchPads.
2301       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2302                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2303           HandlerSet;
2304       detail::DenseSetEmpty Empty;
2305       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2306                                              E = CatchSwitch->handler_end();
2307            I != E; ++I) {
2308         BasicBlock *HandlerBB = *I;
2309         ++NumPerSuccessorCases[HandlerBB];
2310         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2311         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2312           --NumPerSuccessorCases[HandlerBB];
2313           CatchSwitch->removeHandler(I);
2314           --I;
2315           --E;
2316           Changed = true;
2317         }
2318       }
2319       std::vector<DominatorTree::UpdateType> Updates;
2320       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
2321         if (I.second == 0)
2322           Updates.push_back({DominatorTree::Delete, BB, I.first});
2323       if (DTU)
2324         DTU->applyUpdates(Updates);
2325     }
2326 
2327     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2328     for (BasicBlock *Successor : successors(BB))
2329       if (Reachable.insert(Successor).second)
2330         Worklist.push_back(Successor);
2331   } while (!Worklist.empty());
2332   return Changed;
2333 }
2334 
2335 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2336   Instruction *TI = BB->getTerminator();
2337 
2338   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2339     changeToCall(II, DTU);
2340     return;
2341   }
2342 
2343   Instruction *NewTI;
2344   BasicBlock *UnwindDest;
2345 
2346   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2347     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2348     UnwindDest = CRI->getUnwindDest();
2349   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2350     auto *NewCatchSwitch = CatchSwitchInst::Create(
2351         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2352         CatchSwitch->getName(), CatchSwitch);
2353     for (BasicBlock *PadBB : CatchSwitch->handlers())
2354       NewCatchSwitch->addHandler(PadBB);
2355 
2356     NewTI = NewCatchSwitch;
2357     UnwindDest = CatchSwitch->getUnwindDest();
2358   } else {
2359     llvm_unreachable("Could not find unwind successor");
2360   }
2361 
2362   NewTI->takeName(TI);
2363   NewTI->setDebugLoc(TI->getDebugLoc());
2364   UnwindDest->removePredecessor(BB);
2365   TI->replaceAllUsesWith(NewTI);
2366   TI->eraseFromParent();
2367   if (DTU)
2368     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
2369 }
2370 
2371 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2372 /// if they are in a dead cycle.  Return true if a change was made, false
2373 /// otherwise.
2374 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2375                                    MemorySSAUpdater *MSSAU) {
2376   SmallPtrSet<BasicBlock *, 16> Reachable;
2377   bool Changed = markAliveBlocks(F, Reachable, DTU);
2378 
2379   // If there are unreachable blocks in the CFG...
2380   if (Reachable.size() == F.size())
2381     return Changed;
2382 
2383   assert(Reachable.size() < F.size());
2384 
2385   // Are there any blocks left to actually delete?
2386   SmallSetVector<BasicBlock *, 8> BlocksToRemove;
2387   for (BasicBlock &BB : F) {
2388     // Skip reachable basic blocks
2389     if (Reachable.count(&BB))
2390       continue;
2391     // Skip already-deleted blocks
2392     if (DTU && DTU->isBBPendingDeletion(&BB))
2393       continue;
2394     BlocksToRemove.insert(&BB);
2395   }
2396 
2397   if (BlocksToRemove.empty())
2398     return Changed;
2399 
2400   Changed = true;
2401   NumRemoved += BlocksToRemove.size();
2402 
2403   if (MSSAU)
2404     MSSAU->removeBlocks(BlocksToRemove);
2405 
2406   // Loop over all of the basic blocks that are up for removal, dropping all of
2407   // their internal references. Update DTU if available.
2408   std::vector<DominatorTree::UpdateType> Updates;
2409   for (auto *BB : BlocksToRemove) {
2410     SmallSetVector<BasicBlock *, 8> UniqueSuccessors;
2411     for (BasicBlock *Successor : successors(BB)) {
2412       // Only remove references to BB in reachable successors of BB.
2413       if (Reachable.count(Successor))
2414         Successor->removePredecessor(BB);
2415       if (DTU)
2416         UniqueSuccessors.insert(Successor);
2417     }
2418     BB->dropAllReferences();
2419     if (DTU) {
2420       Instruction *TI = BB->getTerminator();
2421       assert(TI && "Basic block should have a terminator");
2422       // Terminators like invoke can have users. We have to replace their users,
2423       // before removing them.
2424       if (!TI->use_empty())
2425         TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
2426       TI->eraseFromParent();
2427       new UnreachableInst(BB->getContext(), BB);
2428       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2429                                "applying corresponding DTU updates.");
2430       Updates.reserve(Updates.size() + UniqueSuccessors.size());
2431       for (auto *UniqueSuccessor : UniqueSuccessors)
2432         Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2433     }
2434   }
2435 
2436   if (DTU) {
2437     DTU->applyUpdates(Updates);
2438     for (auto *BB : BlocksToRemove)
2439       DTU->deleteBB(BB);
2440   } else {
2441     for (auto *BB : BlocksToRemove)
2442       BB->eraseFromParent();
2443   }
2444 
2445   return Changed;
2446 }
2447 
2448 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2449                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2450   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2451   K->dropUnknownNonDebugMetadata(KnownIDs);
2452   K->getAllMetadataOtherThanDebugLoc(Metadata);
2453   for (const auto &MD : Metadata) {
2454     unsigned Kind = MD.first;
2455     MDNode *JMD = J->getMetadata(Kind);
2456     MDNode *KMD = MD.second;
2457 
2458     switch (Kind) {
2459       default:
2460         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2461         break;
2462       case LLVMContext::MD_dbg:
2463         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2464       case LLVMContext::MD_tbaa:
2465         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2466         break;
2467       case LLVMContext::MD_alias_scope:
2468         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2469         break;
2470       case LLVMContext::MD_noalias:
2471       case LLVMContext::MD_mem_parallel_loop_access:
2472         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2473         break;
2474       case LLVMContext::MD_access_group:
2475         K->setMetadata(LLVMContext::MD_access_group,
2476                        intersectAccessGroups(K, J));
2477         break;
2478       case LLVMContext::MD_range:
2479 
2480         // If K does move, use most generic range. Otherwise keep the range of
2481         // K.
2482         if (DoesKMove)
2483           // FIXME: If K does move, we should drop the range info and nonnull.
2484           //        Currently this function is used with DoesKMove in passes
2485           //        doing hoisting/sinking and the current behavior of using the
2486           //        most generic range is correct in those cases.
2487           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2488         break;
2489       case LLVMContext::MD_fpmath:
2490         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2491         break;
2492       case LLVMContext::MD_invariant_load:
2493         // Only set the !invariant.load if it is present in both instructions.
2494         K->setMetadata(Kind, JMD);
2495         break;
2496       case LLVMContext::MD_nonnull:
2497         // If K does move, keep nonull if it is present in both instructions.
2498         if (DoesKMove)
2499           K->setMetadata(Kind, JMD);
2500         break;
2501       case LLVMContext::MD_invariant_group:
2502         // Preserve !invariant.group in K.
2503         break;
2504       case LLVMContext::MD_align:
2505         K->setMetadata(Kind,
2506           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2507         break;
2508       case LLVMContext::MD_dereferenceable:
2509       case LLVMContext::MD_dereferenceable_or_null:
2510         K->setMetadata(Kind,
2511           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2512         break;
2513       case LLVMContext::MD_preserve_access_index:
2514         // Preserve !preserve.access.index in K.
2515         break;
2516     }
2517   }
2518   // Set !invariant.group from J if J has it. If both instructions have it
2519   // then we will just pick it from J - even when they are different.
2520   // Also make sure that K is load or store - f.e. combining bitcast with load
2521   // could produce bitcast with invariant.group metadata, which is invalid.
2522   // FIXME: we should try to preserve both invariant.group md if they are
2523   // different, but right now instruction can only have one invariant.group.
2524   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2525     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2526       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2527 }
2528 
2529 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2530                                  bool KDominatesJ) {
2531   unsigned KnownIDs[] = {
2532       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2533       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2534       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2535       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2536       LLVMContext::MD_dereferenceable,
2537       LLVMContext::MD_dereferenceable_or_null,
2538       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2539   combineMetadata(K, J, KnownIDs, KDominatesJ);
2540 }
2541 
2542 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2543   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2544   Source.getAllMetadata(MD);
2545   MDBuilder MDB(Dest.getContext());
2546   Type *NewType = Dest.getType();
2547   const DataLayout &DL = Source.getModule()->getDataLayout();
2548   for (const auto &MDPair : MD) {
2549     unsigned ID = MDPair.first;
2550     MDNode *N = MDPair.second;
2551     // Note, essentially every kind of metadata should be preserved here! This
2552     // routine is supposed to clone a load instruction changing *only its type*.
2553     // The only metadata it makes sense to drop is metadata which is invalidated
2554     // when the pointer type changes. This should essentially never be the case
2555     // in LLVM, but we explicitly switch over only known metadata to be
2556     // conservatively correct. If you are adding metadata to LLVM which pertains
2557     // to loads, you almost certainly want to add it here.
2558     switch (ID) {
2559     case LLVMContext::MD_dbg:
2560     case LLVMContext::MD_tbaa:
2561     case LLVMContext::MD_prof:
2562     case LLVMContext::MD_fpmath:
2563     case LLVMContext::MD_tbaa_struct:
2564     case LLVMContext::MD_invariant_load:
2565     case LLVMContext::MD_alias_scope:
2566     case LLVMContext::MD_noalias:
2567     case LLVMContext::MD_nontemporal:
2568     case LLVMContext::MD_mem_parallel_loop_access:
2569     case LLVMContext::MD_access_group:
2570       // All of these directly apply.
2571       Dest.setMetadata(ID, N);
2572       break;
2573 
2574     case LLVMContext::MD_nonnull:
2575       copyNonnullMetadata(Source, N, Dest);
2576       break;
2577 
2578     case LLVMContext::MD_align:
2579     case LLVMContext::MD_dereferenceable:
2580     case LLVMContext::MD_dereferenceable_or_null:
2581       // These only directly apply if the new type is also a pointer.
2582       if (NewType->isPointerTy())
2583         Dest.setMetadata(ID, N);
2584       break;
2585 
2586     case LLVMContext::MD_range:
2587       copyRangeMetadata(DL, Source, N, Dest);
2588       break;
2589     }
2590   }
2591 }
2592 
2593 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2594   auto *ReplInst = dyn_cast<Instruction>(Repl);
2595   if (!ReplInst)
2596     return;
2597 
2598   // Patch the replacement so that it is not more restrictive than the value
2599   // being replaced.
2600   // Note that if 'I' is a load being replaced by some operation,
2601   // for example, by an arithmetic operation, then andIRFlags()
2602   // would just erase all math flags from the original arithmetic
2603   // operation, which is clearly not wanted and not needed.
2604   if (!isa<LoadInst>(I))
2605     ReplInst->andIRFlags(I);
2606 
2607   // FIXME: If both the original and replacement value are part of the
2608   // same control-flow region (meaning that the execution of one
2609   // guarantees the execution of the other), then we can combine the
2610   // noalias scopes here and do better than the general conservative
2611   // answer used in combineMetadata().
2612 
2613   // In general, GVN unifies expressions over different control-flow
2614   // regions, and so we need a conservative combination of the noalias
2615   // scopes.
2616   static const unsigned KnownIDs[] = {
2617       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2618       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2619       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2620       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2621       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2622   combineMetadata(ReplInst, I, KnownIDs, false);
2623 }
2624 
2625 template <typename RootType, typename DominatesFn>
2626 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2627                                          const RootType &Root,
2628                                          const DominatesFn &Dominates) {
2629   assert(From->getType() == To->getType());
2630 
2631   unsigned Count = 0;
2632   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2633        UI != UE;) {
2634     Use &U = *UI++;
2635     if (!Dominates(Root, U))
2636       continue;
2637     U.set(To);
2638     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2639                       << "' as " << *To << " in " << *U << "\n");
2640     ++Count;
2641   }
2642   return Count;
2643 }
2644 
2645 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2646    assert(From->getType() == To->getType());
2647    auto *BB = From->getParent();
2648    unsigned Count = 0;
2649 
2650   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2651        UI != UE;) {
2652     Use &U = *UI++;
2653     auto *I = cast<Instruction>(U.getUser());
2654     if (I->getParent() == BB)
2655       continue;
2656     U.set(To);
2657     ++Count;
2658   }
2659   return Count;
2660 }
2661 
2662 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2663                                         DominatorTree &DT,
2664                                         const BasicBlockEdge &Root) {
2665   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2666     return DT.dominates(Root, U);
2667   };
2668   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2669 }
2670 
2671 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2672                                         DominatorTree &DT,
2673                                         const BasicBlock *BB) {
2674   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2675     auto *I = cast<Instruction>(U.getUser())->getParent();
2676     return DT.properlyDominates(BB, I);
2677   };
2678   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2679 }
2680 
2681 bool llvm::callsGCLeafFunction(const CallBase *Call,
2682                                const TargetLibraryInfo &TLI) {
2683   // Check if the function is specifically marked as a gc leaf function.
2684   if (Call->hasFnAttr("gc-leaf-function"))
2685     return true;
2686   if (const Function *F = Call->getCalledFunction()) {
2687     if (F->hasFnAttribute("gc-leaf-function"))
2688       return true;
2689 
2690     if (auto IID = F->getIntrinsicID()) {
2691       // Most LLVM intrinsics do not take safepoints.
2692       return IID != Intrinsic::experimental_gc_statepoint &&
2693              IID != Intrinsic::experimental_deoptimize &&
2694              IID != Intrinsic::memcpy_element_unordered_atomic &&
2695              IID != Intrinsic::memmove_element_unordered_atomic;
2696     }
2697   }
2698 
2699   // Lib calls can be materialized by some passes, and won't be
2700   // marked as 'gc-leaf-function.' All available Libcalls are
2701   // GC-leaf.
2702   LibFunc LF;
2703   if (TLI.getLibFunc(*Call, LF)) {
2704     return TLI.has(LF);
2705   }
2706 
2707   return false;
2708 }
2709 
2710 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2711                                LoadInst &NewLI) {
2712   auto *NewTy = NewLI.getType();
2713 
2714   // This only directly applies if the new type is also a pointer.
2715   if (NewTy->isPointerTy()) {
2716     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2717     return;
2718   }
2719 
2720   // The only other translation we can do is to integral loads with !range
2721   // metadata.
2722   if (!NewTy->isIntegerTy())
2723     return;
2724 
2725   MDBuilder MDB(NewLI.getContext());
2726   const Value *Ptr = OldLI.getPointerOperand();
2727   auto *ITy = cast<IntegerType>(NewTy);
2728   auto *NullInt = ConstantExpr::getPtrToInt(
2729       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2730   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2731   NewLI.setMetadata(LLVMContext::MD_range,
2732                     MDB.createRange(NonNullInt, NullInt));
2733 }
2734 
2735 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2736                              MDNode *N, LoadInst &NewLI) {
2737   auto *NewTy = NewLI.getType();
2738 
2739   // Give up unless it is converted to a pointer where there is a single very
2740   // valuable mapping we can do reliably.
2741   // FIXME: It would be nice to propagate this in more ways, but the type
2742   // conversions make it hard.
2743   if (!NewTy->isPointerTy())
2744     return;
2745 
2746   unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2747   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2748     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2749     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2750   }
2751 }
2752 
2753 void llvm::dropDebugUsers(Instruction &I) {
2754   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2755   findDbgUsers(DbgUsers, &I);
2756   for (auto *DII : DbgUsers)
2757     DII->eraseFromParent();
2758 }
2759 
2760 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2761                                     BasicBlock *BB) {
2762   // Since we are moving the instructions out of its basic block, we do not
2763   // retain their original debug locations (DILocations) and debug intrinsic
2764   // instructions.
2765   //
2766   // Doing so would degrade the debugging experience and adversely affect the
2767   // accuracy of profiling information.
2768   //
2769   // Currently, when hoisting the instructions, we take the following actions:
2770   // - Remove their debug intrinsic instructions.
2771   // - Set their debug locations to the values from the insertion point.
2772   //
2773   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2774   // need to be deleted, is because there will not be any instructions with a
2775   // DILocation in either branch left after performing the transformation. We
2776   // can only insert a dbg.value after the two branches are joined again.
2777   //
2778   // See PR38762, PR39243 for more details.
2779   //
2780   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2781   // encode predicated DIExpressions that yield different results on different
2782   // code paths.
2783   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2784     Instruction *I = &*II;
2785     I->dropUnknownNonDebugMetadata();
2786     if (I->isUsedByMetadata())
2787       dropDebugUsers(*I);
2788     if (isa<DbgInfoIntrinsic>(I)) {
2789       // Remove DbgInfo Intrinsics.
2790       II = I->eraseFromParent();
2791       continue;
2792     }
2793     I->setDebugLoc(InsertPt->getDebugLoc());
2794     ++II;
2795   }
2796   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2797                                  BB->begin(),
2798                                  BB->getTerminator()->getIterator());
2799 }
2800 
2801 namespace {
2802 
2803 /// A potential constituent of a bitreverse or bswap expression. See
2804 /// collectBitParts for a fuller explanation.
2805 struct BitPart {
2806   BitPart(Value *P, unsigned BW) : Provider(P) {
2807     Provenance.resize(BW);
2808   }
2809 
2810   /// The Value that this is a bitreverse/bswap of.
2811   Value *Provider;
2812 
2813   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2814   /// in Provider becomes bit B in the result of this expression.
2815   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2816 
2817   enum { Unset = -1 };
2818 };
2819 
2820 } // end anonymous namespace
2821 
2822 /// Analyze the specified subexpression and see if it is capable of providing
2823 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2824 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
2825 /// the output of the expression came from a corresponding bit in some other
2826 /// value. This function is recursive, and the end result is a mapping of
2827 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2828 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2829 ///
2830 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2831 /// that the expression deposits the low byte of %X into the high byte of the
2832 /// result and that all other bits are zero. This expression is accepted and a
2833 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2834 /// [0-7].
2835 ///
2836 /// For vector types, all analysis is performed at the per-element level. No
2837 /// cross-element analysis is supported (shuffle/insertion/reduction), and all
2838 /// constant masks must be splatted across all elements.
2839 ///
2840 /// To avoid revisiting values, the BitPart results are memoized into the
2841 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2842 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2843 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2844 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2845 /// type instead to provide the same functionality.
2846 ///
2847 /// Because we pass around references into \c BPS, we must use a container that
2848 /// does not invalidate internal references (std::map instead of DenseMap).
2849 static const Optional<BitPart> &
2850 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2851                 std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
2852   auto I = BPS.find(V);
2853   if (I != BPS.end())
2854     return I->second;
2855 
2856   auto &Result = BPS[V] = None;
2857   auto BitWidth = V->getType()->getScalarSizeInBits();
2858 
2859   // Prevent stack overflow by limiting the recursion depth
2860   if (Depth == BitPartRecursionMaxDepth) {
2861     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2862     return Result;
2863   }
2864 
2865   if (auto *I = dyn_cast<Instruction>(V)) {
2866     Value *X, *Y;
2867     const APInt *C;
2868 
2869     // If this is an or instruction, it may be an inner node of the bswap.
2870     if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
2871       const auto &A =
2872           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2873       const auto &B =
2874           collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2875       if (!A || !B)
2876         return Result;
2877 
2878       // Try and merge the two together.
2879       if (!A->Provider || A->Provider != B->Provider)
2880         return Result;
2881 
2882       Result = BitPart(A->Provider, BitWidth);
2883       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
2884         if (A->Provenance[BitIdx] != BitPart::Unset &&
2885             B->Provenance[BitIdx] != BitPart::Unset &&
2886             A->Provenance[BitIdx] != B->Provenance[BitIdx])
2887           return Result = None;
2888 
2889         if (A->Provenance[BitIdx] == BitPart::Unset)
2890           Result->Provenance[BitIdx] = B->Provenance[BitIdx];
2891         else
2892           Result->Provenance[BitIdx] = A->Provenance[BitIdx];
2893       }
2894 
2895       return Result;
2896     }
2897 
2898     // If this is a logical shift by a constant, recurse then shift the result.
2899     if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
2900       const APInt &BitShift = *C;
2901 
2902       // Ensure the shift amount is defined.
2903       if (BitShift.uge(BitWidth))
2904         return Result;
2905 
2906       const auto &Res =
2907           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2908       if (!Res)
2909         return Result;
2910       Result = Res;
2911 
2912       // Perform the "shift" on BitProvenance.
2913       auto &P = Result->Provenance;
2914       if (I->getOpcode() == Instruction::Shl) {
2915         P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
2916         P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
2917       } else {
2918         P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
2919         P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
2920       }
2921 
2922       return Result;
2923     }
2924 
2925     // If this is a logical 'and' with a mask that clears bits, recurse then
2926     // unset the appropriate bits.
2927     if (match(V, m_And(m_Value(X), m_APInt(C)))) {
2928       const APInt &AndMask = *C;
2929 
2930       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2931       // early exit.
2932       unsigned NumMaskedBits = AndMask.countPopulation();
2933       if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
2934         return Result;
2935 
2936       const auto &Res =
2937           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2938       if (!Res)
2939         return Result;
2940       Result = Res;
2941 
2942       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
2943         // If the AndMask is zero for this bit, clear the bit.
2944         if (AndMask[BitIdx] == 0)
2945           Result->Provenance[BitIdx] = BitPart::Unset;
2946       return Result;
2947     }
2948 
2949     // If this is a zext instruction zero extend the result.
2950     if (match(V, m_ZExt(m_Value(X)))) {
2951       const auto &Res =
2952           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2953       if (!Res)
2954         return Result;
2955 
2956       Result = BitPart(Res->Provider, BitWidth);
2957       auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
2958       for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
2959         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
2960       for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
2961         Result->Provenance[BitIdx] = BitPart::Unset;
2962       return Result;
2963     }
2964 
2965     // BITREVERSE - most likely due to us previous matching a partial
2966     // bitreverse.
2967     if (match(V, m_BitReverse(m_Value(X)))) {
2968       const auto &Res =
2969           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2970       if (!Res)
2971         return Result;
2972 
2973       Result = BitPart(Res->Provider, BitWidth);
2974       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
2975         Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
2976       return Result;
2977     }
2978 
2979     // BSWAP - most likely due to us previous matching a partial bswap.
2980     if (match(V, m_BSwap(m_Value(X)))) {
2981       const auto &Res =
2982           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2983       if (!Res)
2984         return Result;
2985 
2986       unsigned ByteWidth = BitWidth / 8;
2987       Result = BitPart(Res->Provider, BitWidth);
2988       for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
2989         unsigned ByteBitOfs = ByteIdx * 8;
2990         for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
2991           Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
2992               Res->Provenance[ByteBitOfs + BitIdx];
2993       }
2994       return Result;
2995     }
2996 
2997     // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
2998     // amount (modulo).
2999     // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3000     // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3001     if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
3002         match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
3003       // We can treat fshr as a fshl by flipping the modulo amount.
3004       unsigned ModAmt = C->urem(BitWidth);
3005       if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
3006         ModAmt = BitWidth - ModAmt;
3007 
3008       const auto &LHS =
3009           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3010       const auto &RHS =
3011           collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3012 
3013       // Check we have both sources and they are from the same provider.
3014       if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider)
3015         return Result;
3016 
3017       unsigned StartBitRHS = BitWidth - ModAmt;
3018       Result = BitPart(LHS->Provider, BitWidth);
3019       for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
3020         Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
3021       for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
3022         Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
3023       return Result;
3024     }
3025   }
3026 
3027   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
3028   // the input value to the bswap/bitreverse.
3029   Result = BitPart(V, BitWidth);
3030   for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3031     Result->Provenance[BitIdx] = BitIdx;
3032   return Result;
3033 }
3034 
3035 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
3036                                           unsigned BitWidth) {
3037   if (From % 8 != To % 8)
3038     return false;
3039   // Convert from bit indices to byte indices and check for a byte reversal.
3040   From >>= 3;
3041   To >>= 3;
3042   BitWidth >>= 3;
3043   return From == BitWidth - To - 1;
3044 }
3045 
3046 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
3047                                                unsigned BitWidth) {
3048   return From == BitWidth - To - 1;
3049 }
3050 
3051 bool llvm::recognizeBSwapOrBitReverseIdiom(
3052     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
3053     SmallVectorImpl<Instruction *> &InsertedInsts) {
3054   if (Operator::getOpcode(I) != Instruction::Or)
3055     return false;
3056   if (!MatchBSwaps && !MatchBitReversals)
3057     return false;
3058   Type *ITy = I->getType();
3059   if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
3060     return false;  // Can't do integer/elements > 128 bits.
3061 
3062   Type *DemandedTy = ITy;
3063   if (I->hasOneUse())
3064     if (auto *Trunc = dyn_cast<TruncInst>(I->user_back()))
3065       DemandedTy = Trunc->getType();
3066 
3067   // Try to find all the pieces corresponding to the bswap.
3068   std::map<Value *, Optional<BitPart>> BPS;
3069   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
3070   if (!Res)
3071     return false;
3072   ArrayRef<int8_t> BitProvenance = Res->Provenance;
3073   assert(all_of(BitProvenance,
3074                 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
3075          "Illegal bit provenance index");
3076 
3077   // If the upper bits are zero, then attempt to perform as a truncated op.
3078   if (BitProvenance.back() == BitPart::Unset) {
3079     while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
3080       BitProvenance = BitProvenance.drop_back();
3081     if (BitProvenance.empty())
3082       return false; // TODO - handle null value?
3083     DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
3084     if (auto *IVecTy = dyn_cast<VectorType>(ITy))
3085       DemandedTy = VectorType::get(DemandedTy, IVecTy);
3086   }
3087 
3088   // Check BitProvenance hasn't found a source larger than the result type.
3089   unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
3090   if (DemandedBW > ITy->getScalarSizeInBits())
3091     return false;
3092 
3093   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
3094   // only byteswap values with an even number of bytes.
3095   APInt DemandedMask = APInt::getAllOnesValue(DemandedBW);
3096   bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
3097   bool OKForBitReverse = MatchBitReversals;
3098   for (unsigned BitIdx = 0;
3099        (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
3100     if (BitProvenance[BitIdx] == BitPart::Unset) {
3101       DemandedMask.clearBit(BitIdx);
3102       continue;
3103     }
3104     OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
3105                                                 DemandedBW);
3106     OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
3107                                                           BitIdx, DemandedBW);
3108   }
3109 
3110   Intrinsic::ID Intrin;
3111   if (OKForBSwap)
3112     Intrin = Intrinsic::bswap;
3113   else if (OKForBitReverse)
3114     Intrin = Intrinsic::bitreverse;
3115   else
3116     return false;
3117 
3118   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
3119   Value *Provider = Res->Provider;
3120 
3121   // We may need to truncate the provider.
3122   if (DemandedTy != Provider->getType()) {
3123     auto *Trunc =
3124         CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I);
3125     InsertedInsts.push_back(Trunc);
3126     Provider = Trunc;
3127   }
3128 
3129   Instruction *Result = CallInst::Create(F, Provider, "rev", I);
3130   InsertedInsts.push_back(Result);
3131 
3132   if (!DemandedMask.isAllOnesValue()) {
3133     auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
3134     Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I);
3135     InsertedInsts.push_back(Result);
3136   }
3137 
3138   // We may need to zeroextend back to the result type.
3139   if (ITy != Result->getType()) {
3140     auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I);
3141     InsertedInsts.push_back(ExtInst);
3142   }
3143 
3144   return true;
3145 }
3146 
3147 // CodeGen has special handling for some string functions that may replace
3148 // them with target-specific intrinsics.  Since that'd skip our interceptors
3149 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
3150 // we mark affected calls as NoBuiltin, which will disable optimization
3151 // in CodeGen.
3152 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
3153     CallInst *CI, const TargetLibraryInfo *TLI) {
3154   Function *F = CI->getCalledFunction();
3155   LibFunc Func;
3156   if (F && !F->hasLocalLinkage() && F->hasName() &&
3157       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
3158       !F->doesNotAccessMemory())
3159     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
3160 }
3161 
3162 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
3163   // We can't have a PHI with a metadata type.
3164   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
3165     return false;
3166 
3167   // Early exit.
3168   if (!isa<Constant>(I->getOperand(OpIdx)))
3169     return true;
3170 
3171   switch (I->getOpcode()) {
3172   default:
3173     return true;
3174   case Instruction::Call:
3175   case Instruction::Invoke: {
3176     const auto &CB = cast<CallBase>(*I);
3177 
3178     // Can't handle inline asm. Skip it.
3179     if (CB.isInlineAsm())
3180       return false;
3181 
3182     // Constant bundle operands may need to retain their constant-ness for
3183     // correctness.
3184     if (CB.isBundleOperand(OpIdx))
3185       return false;
3186 
3187     if (OpIdx < CB.getNumArgOperands()) {
3188       // Some variadic intrinsics require constants in the variadic arguments,
3189       // which currently aren't markable as immarg.
3190       if (isa<IntrinsicInst>(CB) &&
3191           OpIdx >= CB.getFunctionType()->getNumParams()) {
3192         // This is known to be OK for stackmap.
3193         return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
3194       }
3195 
3196       // gcroot is a special case, since it requires a constant argument which
3197       // isn't also required to be a simple ConstantInt.
3198       if (CB.getIntrinsicID() == Intrinsic::gcroot)
3199         return false;
3200 
3201       // Some intrinsic operands are required to be immediates.
3202       return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
3203     }
3204 
3205     // It is never allowed to replace the call argument to an intrinsic, but it
3206     // may be possible for a call.
3207     return !isa<IntrinsicInst>(CB);
3208   }
3209   case Instruction::ShuffleVector:
3210     // Shufflevector masks are constant.
3211     return OpIdx != 2;
3212   case Instruction::Switch:
3213   case Instruction::ExtractValue:
3214     // All operands apart from the first are constant.
3215     return OpIdx == 0;
3216   case Instruction::InsertValue:
3217     // All operands apart from the first and the second are constant.
3218     return OpIdx < 2;
3219   case Instruction::Alloca:
3220     // Static allocas (constant size in the entry block) are handled by
3221     // prologue/epilogue insertion so they're free anyway. We definitely don't
3222     // want to make them non-constant.
3223     return !cast<AllocaInst>(I)->isStaticAlloca();
3224   case Instruction::GetElementPtr:
3225     if (OpIdx == 0)
3226       return true;
3227     gep_type_iterator It = gep_type_begin(I);
3228     for (auto E = std::next(It, OpIdx); It != E; ++It)
3229       if (It.isStruct())
3230         return false;
3231     return true;
3232   }
3233 }
3234 
3235 Value *llvm::invertCondition(Value *Condition) {
3236   // First: Check if it's a constant
3237   if (Constant *C = dyn_cast<Constant>(Condition))
3238     return ConstantExpr::getNot(C);
3239 
3240   // Second: If the condition is already inverted, return the original value
3241   Value *NotCondition;
3242   if (match(Condition, m_Not(m_Value(NotCondition))))
3243     return NotCondition;
3244 
3245   BasicBlock *Parent = nullptr;
3246   Instruction *Inst = dyn_cast<Instruction>(Condition);
3247   if (Inst)
3248     Parent = Inst->getParent();
3249   else if (Argument *Arg = dyn_cast<Argument>(Condition))
3250     Parent = &Arg->getParent()->getEntryBlock();
3251   assert(Parent && "Unsupported condition to invert");
3252 
3253   // Third: Check all the users for an invert
3254   for (User *U : Condition->users())
3255     if (Instruction *I = dyn_cast<Instruction>(U))
3256       if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
3257         return I;
3258 
3259   // Last option: Create a new instruction
3260   auto *Inverted =
3261       BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
3262   if (Inst && !isa<PHINode>(Inst))
3263     Inverted->insertAfter(Inst);
3264   else
3265     Inverted->insertBefore(&*Parent->getFirstInsertionPt());
3266   return Inverted;
3267 }
3268