1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms loops by placing phi nodes at the end of the loops for 10 // all values that are live across the loop boundary. For example, it turns 11 // the left into the right code: 12 // 13 // for (...) for (...) 14 // if (c) if (c) 15 // X1 = ... X1 = ... 16 // else else 17 // X2 = ... X2 = ... 18 // X3 = phi(X1, X2) X3 = phi(X1, X2) 19 // ... = X3 + 4 X4 = phi(X3) 20 // ... = X4 + 4 21 // 22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 23 // be trivially eliminated by InstCombine. The major benefit of this 24 // transformation is that it makes many other loop optimizations, such as 25 // LoopUnswitching, simpler. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Utils/LCSSA.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BasicAliasAnalysis.h" 34 #include "llvm/Analysis/BranchProbabilityInfo.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopPass.h" 37 #include "llvm/Analysis/MemorySSA.h" 38 #include "llvm/Analysis/ScalarEvolution.h" 39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/PredIteratorCache.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Transforms/Utils.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include "llvm/Transforms/Utils/LoopUtils.h" 51 #include "llvm/Transforms/Utils/SSAUpdater.h" 52 using namespace llvm; 53 54 #define DEBUG_TYPE "lcssa" 55 56 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 57 58 #ifdef EXPENSIVE_CHECKS 59 static bool VerifyLoopLCSSA = true; 60 #else 61 static bool VerifyLoopLCSSA = false; 62 #endif 63 static cl::opt<bool, true> 64 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 65 cl::Hidden, 66 cl::desc("Verify loop lcssa form (time consuming)")); 67 68 /// Return true if the specified block is in the list. 69 static bool isExitBlock(BasicBlock *BB, 70 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 71 return is_contained(ExitBlocks, BB); 72 } 73 74 /// For every instruction from the worklist, check to see if it has any uses 75 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 76 /// rewrite the uses. 77 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 78 DominatorTree &DT, LoopInfo &LI, 79 ScalarEvolution *SE) { 80 SmallVector<Use *, 16> UsesToRewrite; 81 SmallSetVector<PHINode *, 16> PHIsToRemove; 82 PredIteratorCache PredCache; 83 bool Changed = false; 84 85 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 86 // instructions within the same loops, computing the exit blocks is 87 // expensive, and we're not mutating the loop structure. 88 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 89 90 while (!Worklist.empty()) { 91 UsesToRewrite.clear(); 92 93 Instruction *I = Worklist.pop_back_val(); 94 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); 95 BasicBlock *InstBB = I->getParent(); 96 Loop *L = LI.getLoopFor(InstBB); 97 assert(L && "Instruction belongs to a BB that's not part of a loop"); 98 if (!LoopExitBlocks.count(L)) 99 L->getExitBlocks(LoopExitBlocks[L]); 100 assert(LoopExitBlocks.count(L)); 101 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 102 103 if (ExitBlocks.empty()) 104 continue; 105 106 for (Use &U : I->uses()) { 107 Instruction *User = cast<Instruction>(U.getUser()); 108 BasicBlock *UserBB = User->getParent(); 109 if (auto *PN = dyn_cast<PHINode>(User)) 110 UserBB = PN->getIncomingBlock(U); 111 112 if (InstBB != UserBB && !L->contains(UserBB)) 113 UsesToRewrite.push_back(&U); 114 } 115 116 // If there are no uses outside the loop, exit with no change. 117 if (UsesToRewrite.empty()) 118 continue; 119 120 ++NumLCSSA; // We are applying the transformation 121 122 // Invoke instructions are special in that their result value is not 123 // available along their unwind edge. The code below tests to see whether 124 // DomBB dominates the value, so adjust DomBB to the normal destination 125 // block, which is effectively where the value is first usable. 126 BasicBlock *DomBB = InstBB; 127 if (auto *Inv = dyn_cast<InvokeInst>(I)) 128 DomBB = Inv->getNormalDest(); 129 130 DomTreeNode *DomNode = DT.getNode(DomBB); 131 132 SmallVector<PHINode *, 16> AddedPHIs; 133 SmallVector<PHINode *, 8> PostProcessPHIs; 134 135 SmallVector<PHINode *, 4> InsertedPHIs; 136 SSAUpdater SSAUpdate(&InsertedPHIs); 137 SSAUpdate.Initialize(I->getType(), I->getName()); 138 139 // Force re-computation of I, as some users now need to use the new PHI 140 // node. 141 if (SE) 142 SE->forgetValue(I); 143 144 // Insert the LCSSA phi's into all of the exit blocks dominated by the 145 // value, and add them to the Phi's map. 146 for (BasicBlock *ExitBB : ExitBlocks) { 147 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 148 continue; 149 150 // If we already inserted something for this BB, don't reprocess it. 151 if (SSAUpdate.HasValueForBlock(ExitBB)) 152 continue; 153 154 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), 155 I->getName() + ".lcssa", &ExitBB->front()); 156 // Get the debug location from the original instruction. 157 PN->setDebugLoc(I->getDebugLoc()); 158 // Add inputs from inside the loop for this PHI. 159 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 160 PN->addIncoming(I, Pred); 161 162 // If the exit block has a predecessor not within the loop, arrange for 163 // the incoming value use corresponding to that predecessor to be 164 // rewritten in terms of a different LCSSA PHI. 165 if (!L->contains(Pred)) 166 UsesToRewrite.push_back( 167 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 168 PN->getNumIncomingValues() - 1))); 169 } 170 171 AddedPHIs.push_back(PN); 172 173 // Remember that this phi makes the value alive in this block. 174 SSAUpdate.AddAvailableValue(ExitBB, PN); 175 176 // LoopSimplify might fail to simplify some loops (e.g. when indirect 177 // branches are involved). In such situations, it might happen that an 178 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 179 // create PHIs in such an exit block, we are also inserting PHIs into L2's 180 // header. This could break LCSSA form for L2 because these inserted PHIs 181 // can also have uses outside of L2. Remember all PHIs in such situation 182 // as to revisit than later on. FIXME: Remove this if indirectbr support 183 // into LoopSimplify gets improved. 184 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 185 if (!L->contains(OtherLoop)) 186 PostProcessPHIs.push_back(PN); 187 } 188 189 // Rewrite all uses outside the loop in terms of the new PHIs we just 190 // inserted. 191 for (Use *UseToRewrite : UsesToRewrite) { 192 // If this use is in an exit block, rewrite to use the newly inserted PHI. 193 // This is required for correctness because SSAUpdate doesn't handle uses 194 // in the same block. It assumes the PHI we inserted is at the end of the 195 // block. 196 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 197 BasicBlock *UserBB = User->getParent(); 198 if (auto *PN = dyn_cast<PHINode>(User)) 199 UserBB = PN->getIncomingBlock(*UseToRewrite); 200 201 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 202 // Tell the VHs that the uses changed. This updates SCEV's caches. 203 if (UseToRewrite->get()->hasValueHandle()) 204 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); 205 UseToRewrite->set(&UserBB->front()); 206 continue; 207 } 208 209 // If we added a single PHI, it must dominate all uses and we can directly 210 // rename it. 211 if (AddedPHIs.size() == 1) { 212 // Tell the VHs that the uses changed. This updates SCEV's caches. 213 // We might call ValueIsRAUWd multiple times for the same value. 214 if (UseToRewrite->get()->hasValueHandle()) 215 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, AddedPHIs[0]); 216 UseToRewrite->set(AddedPHIs[0]); 217 continue; 218 } 219 220 // Otherwise, do full PHI insertion. 221 SSAUpdate.RewriteUse(*UseToRewrite); 222 } 223 224 SmallVector<DbgValueInst *, 4> DbgValues; 225 llvm::findDbgValues(DbgValues, I); 226 227 // Update pre-existing debug value uses that reside outside the loop. 228 auto &Ctx = I->getContext(); 229 for (auto DVI : DbgValues) { 230 BasicBlock *UserBB = DVI->getParent(); 231 if (InstBB == UserBB || L->contains(UserBB)) 232 continue; 233 // We currently only handle debug values residing in blocks that were 234 // traversed while rewriting the uses. If we inserted just a single PHI, 235 // we will handle all relevant debug values. 236 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0] 237 : SSAUpdate.FindValueForBlock(UserBB); 238 if (V) 239 DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V))); 240 } 241 242 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 243 // to post-process them to keep LCSSA form. 244 for (PHINode *InsertedPN : InsertedPHIs) { 245 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 246 if (!L->contains(OtherLoop)) 247 PostProcessPHIs.push_back(InsertedPN); 248 } 249 250 // Post process PHI instructions that were inserted into another disjoint 251 // loop and update their exits properly. 252 for (auto *PostProcessPN : PostProcessPHIs) 253 if (!PostProcessPN->use_empty()) 254 Worklist.push_back(PostProcessPN); 255 256 // Keep track of PHI nodes that we want to remove because they did not have 257 // any uses rewritten. If the new PHI is used, store it so that we can 258 // try to propagate dbg.value intrinsics to it. 259 SmallVector<PHINode *, 2> NeedDbgValues; 260 for (PHINode *PN : AddedPHIs) 261 if (PN->use_empty()) 262 PHIsToRemove.insert(PN); 263 else 264 NeedDbgValues.push_back(PN); 265 insertDebugValuesForPHIs(InstBB, NeedDbgValues); 266 Changed = true; 267 } 268 // Remove PHI nodes that did not have any uses rewritten. We need to redo the 269 // use_empty() check here, because even if the PHI node wasn't used when added 270 // to PHIsToRemove, later added PHI nodes can be using it. This cleanup is 271 // not guaranteed to handle trees/cycles of PHI nodes that only are used by 272 // each other. Such situations has only been noticed when the input IR 273 // contains unreachable code, and leaving some extra redundant PHI nodes in 274 // such situations is considered a minor problem. 275 for (PHINode *PN : PHIsToRemove) 276 if (PN->use_empty()) 277 PN->eraseFromParent(); 278 return Changed; 279 } 280 281 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. 282 static void computeBlocksDominatingExits( 283 Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks, 284 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { 285 SmallVector<BasicBlock *, 8> BBWorklist; 286 287 // We start from the exit blocks, as every block trivially dominates itself 288 // (not strictly). 289 for (BasicBlock *BB : ExitBlocks) 290 BBWorklist.push_back(BB); 291 292 while (!BBWorklist.empty()) { 293 BasicBlock *BB = BBWorklist.pop_back_val(); 294 295 // Check if this is a loop header. If this is the case, we're done. 296 if (L.getHeader() == BB) 297 continue; 298 299 // Otherwise, add its immediate predecessor in the dominator tree to the 300 // worklist, unless we visited it already. 301 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); 302 303 // Exit blocks can have an immediate dominator not beloinging to the 304 // loop. For an exit block to be immediately dominated by another block 305 // outside the loop, it implies not all paths from that dominator, to the 306 // exit block, go through the loop. 307 // Example: 308 // 309 // |---- A 310 // | | 311 // | B<-- 312 // | | | 313 // |---> C -- 314 // | 315 // D 316 // 317 // C is the exit block of the loop and it's immediately dominated by A, 318 // which doesn't belong to the loop. 319 if (!L.contains(IDomBB)) 320 continue; 321 322 if (BlocksDominatingExits.insert(IDomBB)) 323 BBWorklist.push_back(IDomBB); 324 } 325 } 326 327 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, 328 ScalarEvolution *SE) { 329 bool Changed = false; 330 331 #ifdef EXPENSIVE_CHECKS 332 // Verify all sub-loops are in LCSSA form already. 333 for (Loop *SubLoop: L) 334 assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!"); 335 #endif 336 337 SmallVector<BasicBlock *, 8> ExitBlocks; 338 L.getExitBlocks(ExitBlocks); 339 if (ExitBlocks.empty()) 340 return false; 341 342 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; 343 344 // We want to avoid use-scanning leveraging dominance informations. 345 // If a block doesn't dominate any of the loop exits, the none of the values 346 // defined in the loop can be used outside. 347 // We compute the set of blocks fullfilling the conditions in advance 348 // walking the dominator tree upwards until we hit a loop header. 349 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); 350 351 SmallVector<Instruction *, 8> Worklist; 352 353 // Look at all the instructions in the loop, checking to see if they have uses 354 // outside the loop. If so, put them into the worklist to rewrite those uses. 355 for (BasicBlock *BB : BlocksDominatingExits) { 356 // Skip blocks that are part of any sub-loops, they must be in LCSSA 357 // already. 358 if (LI->getLoopFor(BB) != &L) 359 continue; 360 for (Instruction &I : *BB) { 361 // Reject two common cases fast: instructions with no uses (like stores) 362 // and instructions with one use that is in the same block as this. 363 if (I.use_empty() || 364 (I.hasOneUse() && I.user_back()->getParent() == BB && 365 !isa<PHINode>(I.user_back()))) 366 continue; 367 368 // Tokens cannot be used in PHI nodes, so we skip over them. 369 // We can run into tokens which are live out of a loop with catchswitch 370 // instructions in Windows EH if the catchswitch has one catchpad which 371 // is inside the loop and another which is not. 372 if (I.getType()->isTokenTy()) 373 continue; 374 375 Worklist.push_back(&I); 376 } 377 } 378 Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE); 379 380 // If we modified the code, remove any caches about the loop from SCEV to 381 // avoid dangling entries. 382 // FIXME: This is a big hammer, can we clear the cache more selectively? 383 if (SE && Changed) 384 SE->forgetLoop(&L); 385 386 assert(L.isLCSSAForm(DT)); 387 388 return Changed; 389 } 390 391 /// Process a loop nest depth first. 392 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, 393 ScalarEvolution *SE) { 394 bool Changed = false; 395 396 // Recurse depth-first through inner loops. 397 for (Loop *SubLoop : L.getSubLoops()) 398 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 399 400 Changed |= formLCSSA(L, DT, LI, SE); 401 return Changed; 402 } 403 404 /// Process all loops in the function, inner-most out. 405 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT, 406 ScalarEvolution *SE) { 407 bool Changed = false; 408 for (auto &L : *LI) 409 Changed |= formLCSSARecursively(*L, DT, LI, SE); 410 return Changed; 411 } 412 413 namespace { 414 struct LCSSAWrapperPass : public FunctionPass { 415 static char ID; // Pass identification, replacement for typeid 416 LCSSAWrapperPass() : FunctionPass(ID) { 417 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 418 } 419 420 // Cached analysis information for the current function. 421 DominatorTree *DT; 422 LoopInfo *LI; 423 ScalarEvolution *SE; 424 425 bool runOnFunction(Function &F) override; 426 void verifyAnalysis() const override { 427 // This check is very expensive. On the loop intensive compiles it may cause 428 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 429 // always does limited form of the LCSSA verification. Similar reasoning 430 // was used for the LoopInfo verifier. 431 if (VerifyLoopLCSSA) { 432 assert(all_of(*LI, 433 [&](Loop *L) { 434 return L->isRecursivelyLCSSAForm(*DT, *LI); 435 }) && 436 "LCSSA form is broken!"); 437 } 438 }; 439 440 /// This transformation requires natural loop information & requires that 441 /// loop preheaders be inserted into the CFG. It maintains both of these, 442 /// as well as the CFG. It also requires dominator information. 443 void getAnalysisUsage(AnalysisUsage &AU) const override { 444 AU.setPreservesCFG(); 445 446 AU.addRequired<DominatorTreeWrapperPass>(); 447 AU.addRequired<LoopInfoWrapperPass>(); 448 AU.addPreservedID(LoopSimplifyID); 449 AU.addPreserved<AAResultsWrapperPass>(); 450 AU.addPreserved<BasicAAWrapperPass>(); 451 AU.addPreserved<GlobalsAAWrapperPass>(); 452 AU.addPreserved<ScalarEvolutionWrapperPass>(); 453 AU.addPreserved<SCEVAAWrapperPass>(); 454 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 455 AU.addPreserved<MemorySSAWrapperPass>(); 456 457 // This is needed to perform LCSSA verification inside LPPassManager 458 AU.addRequired<LCSSAVerificationPass>(); 459 AU.addPreserved<LCSSAVerificationPass>(); 460 } 461 }; 462 } 463 464 char LCSSAWrapperPass::ID = 0; 465 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 466 false, false) 467 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 468 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 469 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 470 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 471 false, false) 472 473 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 474 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 475 476 /// Transform \p F into loop-closed SSA form. 477 bool LCSSAWrapperPass::runOnFunction(Function &F) { 478 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 479 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 480 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 481 SE = SEWP ? &SEWP->getSE() : nullptr; 482 483 return formLCSSAOnAllLoops(LI, *DT, SE); 484 } 485 486 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 487 auto &LI = AM.getResult<LoopAnalysis>(F); 488 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 489 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 490 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 491 return PreservedAnalyses::all(); 492 493 PreservedAnalyses PA; 494 PA.preserveSet<CFGAnalyses>(); 495 PA.preserve<BasicAA>(); 496 PA.preserve<GlobalsAA>(); 497 PA.preserve<SCEVAA>(); 498 PA.preserve<ScalarEvolutionAnalysis>(); 499 // BPI maps terminators to probabilities, since we don't modify the CFG, no 500 // updates are needed to preserve it. 501 PA.preserve<BranchProbabilityAnalysis>(); 502 PA.preserve<MemorySSAAnalysis>(); 503 return PA; 504 } 505