1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary. For example, it turns
11 // the left into the right code:
12 //
13 // for (...) for (...)
14 // if (c) if (c)
15 // X1 = ... X1 = ...
16 // else else
17 // X2 = ... X2 = ...
18 // X3 = phi(X1, X2) X3 = phi(X1, X2)
19 // ... = X3 + 4 X4 = phi(X3)
20 // ... = X4 + 4
21 //
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine. The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/MemorySSA.h"
39 #include "llvm/Analysis/ScalarEvolution.h"
40 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/PredIteratorCache.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Transforms/Utils.h"
51 #include "llvm/Transforms/Utils/LoopUtils.h"
52 #include "llvm/Transforms/Utils/SSAUpdater.h"
53 using namespace llvm;
54
55 #define DEBUG_TYPE "lcssa"
56
57 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
58
59 #ifdef EXPENSIVE_CHECKS
60 static bool VerifyLoopLCSSA = true;
61 #else
62 static bool VerifyLoopLCSSA = false;
63 #endif
64 static cl::opt<bool, true>
65 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
66 cl::Hidden,
67 cl::desc("Verify loop lcssa form (time consuming)"));
68
69 /// Return true if the specified block is in the list.
isExitBlock(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & ExitBlocks)70 static bool isExitBlock(BasicBlock *BB,
71 const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
72 return is_contained(ExitBlocks, BB);
73 }
74
75 /// For every instruction from the worklist, check to see if it has any uses
76 /// that are outside the current loop. If so, insert LCSSA PHI nodes and
77 /// rewrite the uses.
formLCSSAForInstructions(SmallVectorImpl<Instruction * > & Worklist,const DominatorTree & DT,const LoopInfo & LI,ScalarEvolution * SE,IRBuilderBase & Builder,SmallVectorImpl<PHINode * > * PHIsToRemove)78 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
79 const DominatorTree &DT, const LoopInfo &LI,
80 ScalarEvolution *SE, IRBuilderBase &Builder,
81 SmallVectorImpl<PHINode *> *PHIsToRemove) {
82 SmallVector<Use *, 16> UsesToRewrite;
83 SmallSetVector<PHINode *, 16> LocalPHIsToRemove;
84 PredIteratorCache PredCache;
85 bool Changed = false;
86
87 IRBuilderBase::InsertPointGuard InsertPtGuard(Builder);
88
89 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of
90 // instructions within the same loops, computing the exit blocks is
91 // expensive, and we're not mutating the loop structure.
92 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
93
94 while (!Worklist.empty()) {
95 UsesToRewrite.clear();
96
97 Instruction *I = Worklist.pop_back_val();
98 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
99 BasicBlock *InstBB = I->getParent();
100 Loop *L = LI.getLoopFor(InstBB);
101 assert(L && "Instruction belongs to a BB that's not part of a loop");
102 if (!LoopExitBlocks.count(L))
103 L->getExitBlocks(LoopExitBlocks[L]);
104 assert(LoopExitBlocks.count(L));
105 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
106
107 if (ExitBlocks.empty())
108 continue;
109
110 for (Use &U : I->uses()) {
111 Instruction *User = cast<Instruction>(U.getUser());
112 BasicBlock *UserBB = User->getParent();
113
114 // For practical purposes, we consider that the use in a PHI
115 // occurs in the respective predecessor block. For more info,
116 // see the `phi` doc in LangRef and the LCSSA doc.
117 if (auto *PN = dyn_cast<PHINode>(User))
118 UserBB = PN->getIncomingBlock(U);
119
120 if (InstBB != UserBB && !L->contains(UserBB))
121 UsesToRewrite.push_back(&U);
122 }
123
124 // If there are no uses outside the loop, exit with no change.
125 if (UsesToRewrite.empty())
126 continue;
127
128 ++NumLCSSA; // We are applying the transformation
129
130 // Invoke instructions are special in that their result value is not
131 // available along their unwind edge. The code below tests to see whether
132 // DomBB dominates the value, so adjust DomBB to the normal destination
133 // block, which is effectively where the value is first usable.
134 BasicBlock *DomBB = InstBB;
135 if (auto *Inv = dyn_cast<InvokeInst>(I))
136 DomBB = Inv->getNormalDest();
137
138 const DomTreeNode *DomNode = DT.getNode(DomBB);
139
140 SmallVector<PHINode *, 16> AddedPHIs;
141 SmallVector<PHINode *, 8> PostProcessPHIs;
142
143 SmallVector<PHINode *, 4> InsertedPHIs;
144 SSAUpdater SSAUpdate(&InsertedPHIs);
145 SSAUpdate.Initialize(I->getType(), I->getName());
146
147 // Force re-computation of I, as some users now need to use the new PHI
148 // node.
149 if (SE)
150 SE->forgetValue(I);
151
152 // Insert the LCSSA phi's into all of the exit blocks dominated by the
153 // value, and add them to the Phi's map.
154 for (BasicBlock *ExitBB : ExitBlocks) {
155 if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
156 continue;
157
158 // If we already inserted something for this BB, don't reprocess it.
159 if (SSAUpdate.HasValueForBlock(ExitBB))
160 continue;
161 Builder.SetInsertPoint(&ExitBB->front());
162 PHINode *PN = Builder.CreatePHI(I->getType(), PredCache.size(ExitBB),
163 I->getName() + ".lcssa");
164 // Get the debug location from the original instruction.
165 PN->setDebugLoc(I->getDebugLoc());
166
167 // Add inputs from inside the loop for this PHI. This is valid
168 // because `I` dominates `ExitBB` (checked above). This implies
169 // that every incoming block/edge is dominated by `I` as well,
170 // i.e. we can add uses of `I` to those incoming edges/append to the incoming
171 // blocks without violating the SSA dominance property.
172 for (BasicBlock *Pred : PredCache.get(ExitBB)) {
173 PN->addIncoming(I, Pred);
174
175 // If the exit block has a predecessor not within the loop, arrange for
176 // the incoming value use corresponding to that predecessor to be
177 // rewritten in terms of a different LCSSA PHI.
178 if (!L->contains(Pred))
179 UsesToRewrite.push_back(
180 &PN->getOperandUse(PN->getOperandNumForIncomingValue(
181 PN->getNumIncomingValues() - 1)));
182 }
183
184 AddedPHIs.push_back(PN);
185
186 // Remember that this phi makes the value alive in this block.
187 SSAUpdate.AddAvailableValue(ExitBB, PN);
188
189 // LoopSimplify might fail to simplify some loops (e.g. when indirect
190 // branches are involved). In such situations, it might happen that an
191 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
192 // create PHIs in such an exit block, we are also inserting PHIs into L2's
193 // header. This could break LCSSA form for L2 because these inserted PHIs
194 // can also have uses outside of L2. Remember all PHIs in such situation
195 // as to revisit than later on. FIXME: Remove this if indirectbr support
196 // into LoopSimplify gets improved.
197 if (auto *OtherLoop = LI.getLoopFor(ExitBB))
198 if (!L->contains(OtherLoop))
199 PostProcessPHIs.push_back(PN);
200 }
201
202 // Rewrite all uses outside the loop in terms of the new PHIs we just
203 // inserted.
204 for (Use *UseToRewrite : UsesToRewrite) {
205 Instruction *User = cast<Instruction>(UseToRewrite->getUser());
206 BasicBlock *UserBB = User->getParent();
207
208 // For practical purposes, we consider that the use in a PHI
209 // occurs in the respective predecessor block. For more info,
210 // see the `phi` doc in LangRef and the LCSSA doc.
211 if (auto *PN = dyn_cast<PHINode>(User))
212 UserBB = PN->getIncomingBlock(*UseToRewrite);
213
214 // If this use is in an exit block, rewrite to use the newly inserted PHI.
215 // This is required for correctness because SSAUpdate doesn't handle uses
216 // in the same block. It assumes the PHI we inserted is at the end of the
217 // block.
218 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
219 UseToRewrite->set(&UserBB->front());
220 continue;
221 }
222
223 // If we added a single PHI, it must dominate all uses and we can directly
224 // rename it.
225 if (AddedPHIs.size() == 1) {
226 UseToRewrite->set(AddedPHIs[0]);
227 continue;
228 }
229
230 // Otherwise, do full PHI insertion.
231 SSAUpdate.RewriteUse(*UseToRewrite);
232 }
233
234 SmallVector<DbgValueInst *, 4> DbgValues;
235 llvm::findDbgValues(DbgValues, I);
236
237 // Update pre-existing debug value uses that reside outside the loop.
238 for (auto DVI : DbgValues) {
239 BasicBlock *UserBB = DVI->getParent();
240 if (InstBB == UserBB || L->contains(UserBB))
241 continue;
242 // We currently only handle debug values residing in blocks that were
243 // traversed while rewriting the uses. If we inserted just a single PHI,
244 // we will handle all relevant debug values.
245 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
246 : SSAUpdate.FindValueForBlock(UserBB);
247 if (V)
248 DVI->replaceVariableLocationOp(I, V);
249 }
250
251 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
252 // to post-process them to keep LCSSA form.
253 for (PHINode *InsertedPN : InsertedPHIs) {
254 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
255 if (!L->contains(OtherLoop))
256 PostProcessPHIs.push_back(InsertedPN);
257 }
258
259 // Post process PHI instructions that were inserted into another disjoint
260 // loop and update their exits properly.
261 for (auto *PostProcessPN : PostProcessPHIs)
262 if (!PostProcessPN->use_empty())
263 Worklist.push_back(PostProcessPN);
264
265 // Keep track of PHI nodes that we want to remove because they did not have
266 // any uses rewritten.
267 for (PHINode *PN : AddedPHIs)
268 if (PN->use_empty())
269 LocalPHIsToRemove.insert(PN);
270
271 Changed = true;
272 }
273
274 // Remove PHI nodes that did not have any uses rewritten or add them to
275 // PHIsToRemove, so the caller can remove them after some additional cleanup.
276 // We need to redo the use_empty() check here, because even if the PHI node
277 // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
278 // using it. This cleanup is not guaranteed to handle trees/cycles of PHI
279 // nodes that only are used by each other. Such situations has only been
280 // noticed when the input IR contains unreachable code, and leaving some extra
281 // redundant PHI nodes in such situations is considered a minor problem.
282 if (PHIsToRemove) {
283 PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end());
284 } else {
285 for (PHINode *PN : LocalPHIsToRemove)
286 if (PN->use_empty())
287 PN->eraseFromParent();
288 }
289 return Changed;
290 }
291
292 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
computeBlocksDominatingExits(Loop & L,const DominatorTree & DT,SmallVector<BasicBlock *,8> & ExitBlocks,SmallSetVector<BasicBlock *,8> & BlocksDominatingExits)293 static void computeBlocksDominatingExits(
294 Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
295 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
296 // We start from the exit blocks, as every block trivially dominates itself
297 // (not strictly).
298 SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks);
299
300 while (!BBWorklist.empty()) {
301 BasicBlock *BB = BBWorklist.pop_back_val();
302
303 // Check if this is a loop header. If this is the case, we're done.
304 if (L.getHeader() == BB)
305 continue;
306
307 // Otherwise, add its immediate predecessor in the dominator tree to the
308 // worklist, unless we visited it already.
309 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
310
311 // Exit blocks can have an immediate dominator not belonging to the
312 // loop. For an exit block to be immediately dominated by another block
313 // outside the loop, it implies not all paths from that dominator, to the
314 // exit block, go through the loop.
315 // Example:
316 //
317 // |---- A
318 // | |
319 // | B<--
320 // | | |
321 // |---> C --
322 // |
323 // D
324 //
325 // C is the exit block of the loop and it's immediately dominated by A,
326 // which doesn't belong to the loop.
327 if (!L.contains(IDomBB))
328 continue;
329
330 if (BlocksDominatingExits.insert(IDomBB))
331 BBWorklist.push_back(IDomBB);
332 }
333 }
334
formLCSSA(Loop & L,const DominatorTree & DT,const LoopInfo * LI,ScalarEvolution * SE)335 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
336 ScalarEvolution *SE) {
337 bool Changed = false;
338
339 #ifdef EXPENSIVE_CHECKS
340 // Verify all sub-loops are in LCSSA form already.
341 for (Loop *SubLoop: L) {
342 (void)SubLoop; // Silence unused variable warning.
343 assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
344 }
345 #endif
346
347 SmallVector<BasicBlock *, 8> ExitBlocks;
348 L.getExitBlocks(ExitBlocks);
349 if (ExitBlocks.empty())
350 return false;
351
352 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
353
354 // We want to avoid use-scanning leveraging dominance informations.
355 // If a block doesn't dominate any of the loop exits, the none of the values
356 // defined in the loop can be used outside.
357 // We compute the set of blocks fullfilling the conditions in advance
358 // walking the dominator tree upwards until we hit a loop header.
359 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
360
361 SmallVector<Instruction *, 8> Worklist;
362
363 // Look at all the instructions in the loop, checking to see if they have uses
364 // outside the loop. If so, put them into the worklist to rewrite those uses.
365 for (BasicBlock *BB : BlocksDominatingExits) {
366 // Skip blocks that are part of any sub-loops, they must be in LCSSA
367 // already.
368 if (LI->getLoopFor(BB) != &L)
369 continue;
370 for (Instruction &I : *BB) {
371 // Reject two common cases fast: instructions with no uses (like stores)
372 // and instructions with one use that is in the same block as this.
373 if (I.use_empty() ||
374 (I.hasOneUse() && I.user_back()->getParent() == BB &&
375 !isa<PHINode>(I.user_back())))
376 continue;
377
378 // Tokens cannot be used in PHI nodes, so we skip over them.
379 // We can run into tokens which are live out of a loop with catchswitch
380 // instructions in Windows EH if the catchswitch has one catchpad which
381 // is inside the loop and another which is not.
382 if (I.getType()->isTokenTy())
383 continue;
384
385 Worklist.push_back(&I);
386 }
387 }
388
389 IRBuilder<> Builder(L.getHeader()->getContext());
390 Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE, Builder);
391
392 // If we modified the code, remove any caches about the loop from SCEV to
393 // avoid dangling entries.
394 // FIXME: This is a big hammer, can we clear the cache more selectively?
395 if (SE && Changed)
396 SE->forgetLoop(&L);
397
398 assert(L.isLCSSAForm(DT));
399
400 return Changed;
401 }
402
403 /// Process a loop nest depth first.
formLCSSARecursively(Loop & L,const DominatorTree & DT,const LoopInfo * LI,ScalarEvolution * SE)404 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT,
405 const LoopInfo *LI, ScalarEvolution *SE) {
406 bool Changed = false;
407
408 // Recurse depth-first through inner loops.
409 for (Loop *SubLoop : L.getSubLoops())
410 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
411
412 Changed |= formLCSSA(L, DT, LI, SE);
413 return Changed;
414 }
415
416 /// Process all loops in the function, inner-most out.
formLCSSAOnAllLoops(const LoopInfo * LI,const DominatorTree & DT,ScalarEvolution * SE)417 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT,
418 ScalarEvolution *SE) {
419 bool Changed = false;
420 for (auto &L : *LI)
421 Changed |= formLCSSARecursively(*L, DT, LI, SE);
422 return Changed;
423 }
424
425 namespace {
426 struct LCSSAWrapperPass : public FunctionPass {
427 static char ID; // Pass identification, replacement for typeid
LCSSAWrapperPass__anon01ae9a340111::LCSSAWrapperPass428 LCSSAWrapperPass() : FunctionPass(ID) {
429 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
430 }
431
432 // Cached analysis information for the current function.
433 DominatorTree *DT;
434 LoopInfo *LI;
435 ScalarEvolution *SE;
436
437 bool runOnFunction(Function &F) override;
verifyAnalysis__anon01ae9a340111::LCSSAWrapperPass438 void verifyAnalysis() const override {
439 // This check is very expensive. On the loop intensive compiles it may cause
440 // up to 10x slowdown. Currently it's disabled by default. LPPassManager
441 // always does limited form of the LCSSA verification. Similar reasoning
442 // was used for the LoopInfo verifier.
443 if (VerifyLoopLCSSA) {
444 assert(all_of(*LI,
445 [&](Loop *L) {
446 return L->isRecursivelyLCSSAForm(*DT, *LI);
447 }) &&
448 "LCSSA form is broken!");
449 }
450 };
451
452 /// This transformation requires natural loop information & requires that
453 /// loop preheaders be inserted into the CFG. It maintains both of these,
454 /// as well as the CFG. It also requires dominator information.
getAnalysisUsage__anon01ae9a340111::LCSSAWrapperPass455 void getAnalysisUsage(AnalysisUsage &AU) const override {
456 AU.setPreservesCFG();
457
458 AU.addRequired<DominatorTreeWrapperPass>();
459 AU.addRequired<LoopInfoWrapperPass>();
460 AU.addPreservedID(LoopSimplifyID);
461 AU.addPreserved<AAResultsWrapperPass>();
462 AU.addPreserved<BasicAAWrapperPass>();
463 AU.addPreserved<GlobalsAAWrapperPass>();
464 AU.addPreserved<ScalarEvolutionWrapperPass>();
465 AU.addPreserved<SCEVAAWrapperPass>();
466 AU.addPreserved<BranchProbabilityInfoWrapperPass>();
467 AU.addPreserved<MemorySSAWrapperPass>();
468
469 // This is needed to perform LCSSA verification inside LPPassManager
470 AU.addRequired<LCSSAVerificationPass>();
471 AU.addPreserved<LCSSAVerificationPass>();
472 }
473 };
474 }
475
476 char LCSSAWrapperPass::ID = 0;
477 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
478 false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)479 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
480 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
481 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
482 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
483 false, false)
484
485 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
486 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
487
488 /// Transform \p F into loop-closed SSA form.
runOnFunction(Function & F)489 bool LCSSAWrapperPass::runOnFunction(Function &F) {
490 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
491 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
492 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
493 SE = SEWP ? &SEWP->getSE() : nullptr;
494
495 return formLCSSAOnAllLoops(LI, *DT, SE);
496 }
497
run(Function & F,FunctionAnalysisManager & AM)498 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
499 auto &LI = AM.getResult<LoopAnalysis>(F);
500 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
501 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
502 if (!formLCSSAOnAllLoops(&LI, DT, SE))
503 return PreservedAnalyses::all();
504
505 PreservedAnalyses PA;
506 PA.preserveSet<CFGAnalyses>();
507 PA.preserve<ScalarEvolutionAnalysis>();
508 // BPI maps terminators to probabilities, since we don't modify the CFG, no
509 // updates are needed to preserve it.
510 PA.preserve<BranchProbabilityAnalysis>();
511 PA.preserve<MemorySSAAnalysis>();
512 return PA;
513 }
514