1 //===-- IntegerDivision.cpp - Expand integer division ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains an implementation of 32bit and 64bit scalar integer 11 // division for targets that don't have native support. It's largely derived 12 // from compiler-rt's implementations of __udivsi3 and __udivmoddi4, 13 // but hand-tuned for targets that prefer less control flow. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/IntegerDivision.h" 18 #include "llvm/IR/Function.h" 19 #include "llvm/IR/IRBuilder.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/Intrinsics.h" 22 #include <utility> 23 24 using namespace llvm; 25 26 #define DEBUG_TYPE "integer-division" 27 28 /// Generate code to compute the remainder of two signed integers. Returns the 29 /// remainder, which will have the sign of the dividend. Builder's insert point 30 /// should be pointing where the caller wants code generated, e.g. at the srem 31 /// instruction. This will generate a urem in the process, and Builder's insert 32 /// point will be pointing at the uren (if present, i.e. not folded), ready to 33 /// be expanded if the user wishes 34 static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor, 35 IRBuilder<> &Builder) { 36 unsigned BitWidth = Dividend->getType()->getIntegerBitWidth(); 37 ConstantInt *Shift; 38 39 if (BitWidth == 64) { 40 Shift = Builder.getInt64(63); 41 } else { 42 assert(BitWidth == 32 && "Unexpected bit width"); 43 Shift = Builder.getInt32(31); 44 } 45 46 // Following instructions are generated for both i32 (shift 31) and 47 // i64 (shift 63). 48 49 // ; %dividend_sgn = ashr i32 %dividend, 31 50 // ; %divisor_sgn = ashr i32 %divisor, 31 51 // ; %dvd_xor = xor i32 %dividend, %dividend_sgn 52 // ; %dvs_xor = xor i32 %divisor, %divisor_sgn 53 // ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn 54 // ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn 55 // ; %urem = urem i32 %dividend, %divisor 56 // ; %xored = xor i32 %urem, %dividend_sgn 57 // ; %srem = sub i32 %xored, %dividend_sgn 58 Value *DividendSign = Builder.CreateAShr(Dividend, Shift); 59 Value *DivisorSign = Builder.CreateAShr(Divisor, Shift); 60 Value *DvdXor = Builder.CreateXor(Dividend, DividendSign); 61 Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign); 62 Value *UDividend = Builder.CreateSub(DvdXor, DividendSign); 63 Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign); 64 Value *URem = Builder.CreateURem(UDividend, UDivisor); 65 Value *Xored = Builder.CreateXor(URem, DividendSign); 66 Value *SRem = Builder.CreateSub(Xored, DividendSign); 67 68 if (Instruction *URemInst = dyn_cast<Instruction>(URem)) 69 Builder.SetInsertPoint(URemInst); 70 71 return SRem; 72 } 73 74 75 /// Generate code to compute the remainder of two unsigned integers. Returns the 76 /// remainder. Builder's insert point should be pointing where the caller wants 77 /// code generated, e.g. at the urem instruction. This will generate a udiv in 78 /// the process, and Builder's insert point will be pointing at the udiv (if 79 /// present, i.e. not folded), ready to be expanded if the user wishes 80 static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor, 81 IRBuilder<> &Builder) { 82 // Remainder = Dividend - Quotient*Divisor 83 84 // Following instructions are generated for both i32 and i64 85 86 // ; %quotient = udiv i32 %dividend, %divisor 87 // ; %product = mul i32 %divisor, %quotient 88 // ; %remainder = sub i32 %dividend, %product 89 Value *Quotient = Builder.CreateUDiv(Dividend, Divisor); 90 Value *Product = Builder.CreateMul(Divisor, Quotient); 91 Value *Remainder = Builder.CreateSub(Dividend, Product); 92 93 if (Instruction *UDiv = dyn_cast<Instruction>(Quotient)) 94 Builder.SetInsertPoint(UDiv); 95 96 return Remainder; 97 } 98 99 /// Generate code to divide two signed integers. Returns the quotient, rounded 100 /// towards 0. Builder's insert point should be pointing where the caller wants 101 /// code generated, e.g. at the sdiv instruction. This will generate a udiv in 102 /// the process, and Builder's insert point will be pointing at the udiv (if 103 /// present, i.e. not folded), ready to be expanded if the user wishes. 104 static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor, 105 IRBuilder<> &Builder) { 106 // Implementation taken from compiler-rt's __divsi3 and __divdi3 107 108 unsigned BitWidth = Dividend->getType()->getIntegerBitWidth(); 109 ConstantInt *Shift; 110 111 if (BitWidth == 64) { 112 Shift = Builder.getInt64(63); 113 } else { 114 assert(BitWidth == 32 && "Unexpected bit width"); 115 Shift = Builder.getInt32(31); 116 } 117 118 // Following instructions are generated for both i32 (shift 31) and 119 // i64 (shift 63). 120 121 // ; %tmp = ashr i32 %dividend, 31 122 // ; %tmp1 = ashr i32 %divisor, 31 123 // ; %tmp2 = xor i32 %tmp, %dividend 124 // ; %u_dvnd = sub nsw i32 %tmp2, %tmp 125 // ; %tmp3 = xor i32 %tmp1, %divisor 126 // ; %u_dvsr = sub nsw i32 %tmp3, %tmp1 127 // ; %q_sgn = xor i32 %tmp1, %tmp 128 // ; %q_mag = udiv i32 %u_dvnd, %u_dvsr 129 // ; %tmp4 = xor i32 %q_mag, %q_sgn 130 // ; %q = sub i32 %tmp4, %q_sgn 131 Value *Tmp = Builder.CreateAShr(Dividend, Shift); 132 Value *Tmp1 = Builder.CreateAShr(Divisor, Shift); 133 Value *Tmp2 = Builder.CreateXor(Tmp, Dividend); 134 Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp); 135 Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor); 136 Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1); 137 Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp); 138 Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr); 139 Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn); 140 Value *Q = Builder.CreateSub(Tmp4, Q_Sgn); 141 142 if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag)) 143 Builder.SetInsertPoint(UDiv); 144 145 return Q; 146 } 147 148 /// Generates code to divide two unsigned scalar 32-bit or 64-bit integers. 149 /// Returns the quotient, rounded towards 0. Builder's insert point should 150 /// point where the caller wants code generated, e.g. at the udiv instruction. 151 static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor, 152 IRBuilder<> &Builder) { 153 // The basic algorithm can be found in the compiler-rt project's 154 // implementation of __udivsi3.c. Here, we do a lower-level IR based approach 155 // that's been hand-tuned to lessen the amount of control flow involved. 156 157 // Some helper values 158 IntegerType *DivTy = cast<IntegerType>(Dividend->getType()); 159 unsigned BitWidth = DivTy->getBitWidth(); 160 161 ConstantInt *Zero; 162 ConstantInt *One; 163 ConstantInt *NegOne; 164 ConstantInt *MSB; 165 166 if (BitWidth == 64) { 167 Zero = Builder.getInt64(0); 168 One = Builder.getInt64(1); 169 NegOne = ConstantInt::getSigned(DivTy, -1); 170 MSB = Builder.getInt64(63); 171 } else { 172 assert(BitWidth == 32 && "Unexpected bit width"); 173 Zero = Builder.getInt32(0); 174 One = Builder.getInt32(1); 175 NegOne = ConstantInt::getSigned(DivTy, -1); 176 MSB = Builder.getInt32(31); 177 } 178 179 ConstantInt *True = Builder.getTrue(); 180 181 BasicBlock *IBB = Builder.GetInsertBlock(); 182 Function *F = IBB->getParent(); 183 Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz, 184 DivTy); 185 186 // Our CFG is going to look like: 187 // +---------------------+ 188 // | special-cases | 189 // | ... | 190 // +---------------------+ 191 // | | 192 // | +----------+ 193 // | | bb1 | 194 // | | ... | 195 // | +----------+ 196 // | | | 197 // | | +------------+ 198 // | | | preheader | 199 // | | | ... | 200 // | | +------------+ 201 // | | | 202 // | | | +---+ 203 // | | | | | 204 // | | +------------+ | 205 // | | | do-while | | 206 // | | | ... | | 207 // | | +------------+ | 208 // | | | | | 209 // | +-----------+ +---+ 210 // | | loop-exit | 211 // | | ... | 212 // | +-----------+ 213 // | | 214 // +-------+ 215 // | ... | 216 // | end | 217 // +-------+ 218 BasicBlock *SpecialCases = Builder.GetInsertBlock(); 219 SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases")); 220 BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(), 221 "udiv-end"); 222 BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(), 223 "udiv-loop-exit", F, End); 224 BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(), 225 "udiv-do-while", F, End); 226 BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(), 227 "udiv-preheader", F, End); 228 BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(), 229 "udiv-bb1", F, End); 230 231 // We'll be overwriting the terminator to insert our extra blocks 232 SpecialCases->getTerminator()->eraseFromParent(); 233 234 // Same instructions are generated for both i32 (msb 31) and i64 (msb 63). 235 236 // First off, check for special cases: dividend or divisor is zero, divisor 237 // is greater than dividend, and divisor is 1. 238 // ; special-cases: 239 // ; %ret0_1 = icmp eq i32 %divisor, 0 240 // ; %ret0_2 = icmp eq i32 %dividend, 0 241 // ; %ret0_3 = or i1 %ret0_1, %ret0_2 242 // ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true) 243 // ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true) 244 // ; %sr = sub nsw i32 %tmp0, %tmp1 245 // ; %ret0_4 = icmp ugt i32 %sr, 31 246 // ; %ret0 = or i1 %ret0_3, %ret0_4 247 // ; %retDividend = icmp eq i32 %sr, 31 248 // ; %retVal = select i1 %ret0, i32 0, i32 %dividend 249 // ; %earlyRet = or i1 %ret0, %retDividend 250 // ; br i1 %earlyRet, label %end, label %bb1 251 Builder.SetInsertPoint(SpecialCases); 252 Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero); 253 Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero); 254 Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2); 255 Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True}); 256 Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True}); 257 Value *SR = Builder.CreateSub(Tmp0, Tmp1); 258 Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB); 259 Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4); 260 Value *RetDividend = Builder.CreateICmpEQ(SR, MSB); 261 Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend); 262 Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend); 263 Builder.CreateCondBr(EarlyRet, End, BB1); 264 265 // ; bb1: ; preds = %special-cases 266 // ; %sr_1 = add i32 %sr, 1 267 // ; %tmp2 = sub i32 31, %sr 268 // ; %q = shl i32 %dividend, %tmp2 269 // ; %skipLoop = icmp eq i32 %sr_1, 0 270 // ; br i1 %skipLoop, label %loop-exit, label %preheader 271 Builder.SetInsertPoint(BB1); 272 Value *SR_1 = Builder.CreateAdd(SR, One); 273 Value *Tmp2 = Builder.CreateSub(MSB, SR); 274 Value *Q = Builder.CreateShl(Dividend, Tmp2); 275 Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero); 276 Builder.CreateCondBr(SkipLoop, LoopExit, Preheader); 277 278 // ; preheader: ; preds = %bb1 279 // ; %tmp3 = lshr i32 %dividend, %sr_1 280 // ; %tmp4 = add i32 %divisor, -1 281 // ; br label %do-while 282 Builder.SetInsertPoint(Preheader); 283 Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1); 284 Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne); 285 Builder.CreateBr(DoWhile); 286 287 // ; do-while: ; preds = %do-while, %preheader 288 // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ] 289 // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ] 290 // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ] 291 // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ] 292 // ; %tmp5 = shl i32 %r_1, 1 293 // ; %tmp6 = lshr i32 %q_2, 31 294 // ; %tmp7 = or i32 %tmp5, %tmp6 295 // ; %tmp8 = shl i32 %q_2, 1 296 // ; %q_1 = or i32 %carry_1, %tmp8 297 // ; %tmp9 = sub i32 %tmp4, %tmp7 298 // ; %tmp10 = ashr i32 %tmp9, 31 299 // ; %carry = and i32 %tmp10, 1 300 // ; %tmp11 = and i32 %tmp10, %divisor 301 // ; %r = sub i32 %tmp7, %tmp11 302 // ; %sr_2 = add i32 %sr_3, -1 303 // ; %tmp12 = icmp eq i32 %sr_2, 0 304 // ; br i1 %tmp12, label %loop-exit, label %do-while 305 Builder.SetInsertPoint(DoWhile); 306 PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2); 307 PHINode *SR_3 = Builder.CreatePHI(DivTy, 2); 308 PHINode *R_1 = Builder.CreatePHI(DivTy, 2); 309 PHINode *Q_2 = Builder.CreatePHI(DivTy, 2); 310 Value *Tmp5 = Builder.CreateShl(R_1, One); 311 Value *Tmp6 = Builder.CreateLShr(Q_2, MSB); 312 Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6); 313 Value *Tmp8 = Builder.CreateShl(Q_2, One); 314 Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8); 315 Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7); 316 Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB); 317 Value *Carry = Builder.CreateAnd(Tmp10, One); 318 Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor); 319 Value *R = Builder.CreateSub(Tmp7, Tmp11); 320 Value *SR_2 = Builder.CreateAdd(SR_3, NegOne); 321 Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero); 322 Builder.CreateCondBr(Tmp12, LoopExit, DoWhile); 323 324 // ; loop-exit: ; preds = %do-while, %bb1 325 // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ] 326 // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ] 327 // ; %tmp13 = shl i32 %q_3, 1 328 // ; %q_4 = or i32 %carry_2, %tmp13 329 // ; br label %end 330 Builder.SetInsertPoint(LoopExit); 331 PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2); 332 PHINode *Q_3 = Builder.CreatePHI(DivTy, 2); 333 Value *Tmp13 = Builder.CreateShl(Q_3, One); 334 Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13); 335 Builder.CreateBr(End); 336 337 // ; end: ; preds = %loop-exit, %special-cases 338 // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ] 339 // ; ret i32 %q_5 340 Builder.SetInsertPoint(End, End->begin()); 341 PHINode *Q_5 = Builder.CreatePHI(DivTy, 2); 342 343 // Populate the Phis, since all values have now been created. Our Phis were: 344 // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ] 345 Carry_1->addIncoming(Zero, Preheader); 346 Carry_1->addIncoming(Carry, DoWhile); 347 // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ] 348 SR_3->addIncoming(SR_1, Preheader); 349 SR_3->addIncoming(SR_2, DoWhile); 350 // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ] 351 R_1->addIncoming(Tmp3, Preheader); 352 R_1->addIncoming(R, DoWhile); 353 // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ] 354 Q_2->addIncoming(Q, Preheader); 355 Q_2->addIncoming(Q_1, DoWhile); 356 // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ] 357 Carry_2->addIncoming(Zero, BB1); 358 Carry_2->addIncoming(Carry, DoWhile); 359 // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ] 360 Q_3->addIncoming(Q, BB1); 361 Q_3->addIncoming(Q_1, DoWhile); 362 // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ] 363 Q_5->addIncoming(Q_4, LoopExit); 364 Q_5->addIncoming(RetVal, SpecialCases); 365 366 return Q_5; 367 } 368 369 /// Generate code to calculate the remainder of two integers, replacing Rem with 370 /// the generated code. This currently generates code using the udiv expansion, 371 /// but future work includes generating more specialized code, e.g. when more 372 /// information about the operands are known. Implements both 32bit and 64bit 373 /// scalar division. 374 /// 375 /// @brief Replace Rem with generated code. 376 bool llvm::expandRemainder(BinaryOperator *Rem) { 377 assert((Rem->getOpcode() == Instruction::SRem || 378 Rem->getOpcode() == Instruction::URem) && 379 "Trying to expand remainder from a non-remainder function"); 380 381 IRBuilder<> Builder(Rem); 382 383 assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported"); 384 assert((Rem->getType()->getIntegerBitWidth() == 32 || 385 Rem->getType()->getIntegerBitWidth() == 64) && 386 "Div of bitwidth other than 32 or 64 not supported"); 387 388 // First prepare the sign if it's a signed remainder 389 if (Rem->getOpcode() == Instruction::SRem) { 390 Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0), 391 Rem->getOperand(1), Builder); 392 393 Rem->replaceAllUsesWith(Remainder); 394 Rem->dropAllReferences(); 395 Rem->eraseFromParent(); 396 397 // If we didn't actually generate an urem instruction, we're done 398 // This happens for example if the input were constant. In this case the 399 // Builder insertion point was unchanged 400 if (Rem == Builder.GetInsertPoint().getNodePtrUnchecked()) 401 return true; 402 403 BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint()); 404 Rem = BO; 405 } 406 407 Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0), 408 Rem->getOperand(1), 409 Builder); 410 411 Rem->replaceAllUsesWith(Remainder); 412 Rem->dropAllReferences(); 413 Rem->eraseFromParent(); 414 415 // Expand the udiv 416 if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) { 417 assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?"); 418 expandDivision(UDiv); 419 } 420 421 return true; 422 } 423 424 425 /// Generate code to divide two integers, replacing Div with the generated 426 /// code. This currently generates code similarly to compiler-rt's 427 /// implementations, but future work includes generating more specialized code 428 /// when more information about the operands are known. Implements both 429 /// 32bit and 64bit scalar division. 430 /// 431 /// @brief Replace Div with generated code. 432 bool llvm::expandDivision(BinaryOperator *Div) { 433 assert((Div->getOpcode() == Instruction::SDiv || 434 Div->getOpcode() == Instruction::UDiv) && 435 "Trying to expand division from a non-division function"); 436 437 IRBuilder<> Builder(Div); 438 439 assert(!Div->getType()->isVectorTy() && "Div over vectors not supported"); 440 assert((Div->getType()->getIntegerBitWidth() == 32 || 441 Div->getType()->getIntegerBitWidth() == 64) && 442 "Div of bitwidth other than 32 or 64 not supported"); 443 444 // First prepare the sign if it's a signed division 445 if (Div->getOpcode() == Instruction::SDiv) { 446 // Lower the code to unsigned division, and reset Div to point to the udiv. 447 Value *Quotient = generateSignedDivisionCode(Div->getOperand(0), 448 Div->getOperand(1), Builder); 449 Div->replaceAllUsesWith(Quotient); 450 Div->dropAllReferences(); 451 Div->eraseFromParent(); 452 453 // If we didn't actually generate an udiv instruction, we're done 454 // This happens for example if the input were constant. In this case the 455 // Builder insertion point was unchanged 456 if (Div == Builder.GetInsertPoint().getNodePtrUnchecked()) 457 return true; 458 459 BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint()); 460 Div = BO; 461 } 462 463 // Insert the unsigned division code 464 Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0), 465 Div->getOperand(1), 466 Builder); 467 Div->replaceAllUsesWith(Quotient); 468 Div->dropAllReferences(); 469 Div->eraseFromParent(); 470 471 return true; 472 } 473 474 /// Generate code to compute the remainder of two integers of bitwidth up to 475 /// 32 bits. Uses the above routines and extends the inputs/truncates the 476 /// outputs to operate in 32 bits; that is, these routines are good for targets 477 /// that have no or very little suppport for smaller than 32 bit integer 478 /// arithmetic. 479 /// 480 /// @brief Replace Rem with emulation code. 481 bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) { 482 assert((Rem->getOpcode() == Instruction::SRem || 483 Rem->getOpcode() == Instruction::URem) && 484 "Trying to expand remainder from a non-remainder function"); 485 486 Type *RemTy = Rem->getType(); 487 assert(!RemTy->isVectorTy() && "Div over vectors not supported"); 488 489 unsigned RemTyBitWidth = RemTy->getIntegerBitWidth(); 490 491 assert(RemTyBitWidth <= 32 && 492 "Div of bitwidth greater than 32 not supported"); 493 494 if (RemTyBitWidth == 32) 495 return expandRemainder(Rem); 496 497 // If bitwidth smaller than 32 extend inputs, extend output and proceed 498 // with 32 bit division. 499 IRBuilder<> Builder(Rem); 500 501 Value *ExtDividend; 502 Value *ExtDivisor; 503 Value *ExtRem; 504 Value *Trunc; 505 Type *Int32Ty = Builder.getInt32Ty(); 506 507 if (Rem->getOpcode() == Instruction::SRem) { 508 ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty); 509 ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty); 510 ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor); 511 } else { 512 ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty); 513 ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty); 514 ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor); 515 } 516 Trunc = Builder.CreateTrunc(ExtRem, RemTy); 517 518 Rem->replaceAllUsesWith(Trunc); 519 Rem->dropAllReferences(); 520 Rem->eraseFromParent(); 521 522 return expandRemainder(cast<BinaryOperator>(ExtRem)); 523 } 524 525 /// Generate code to compute the remainder of two integers of bitwidth up to 526 /// 64 bits. Uses the above routines and extends the inputs/truncates the 527 /// outputs to operate in 64 bits. 528 /// 529 /// @brief Replace Rem with emulation code. 530 bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) { 531 assert((Rem->getOpcode() == Instruction::SRem || 532 Rem->getOpcode() == Instruction::URem) && 533 "Trying to expand remainder from a non-remainder function"); 534 535 Type *RemTy = Rem->getType(); 536 assert(!RemTy->isVectorTy() && "Div over vectors not supported"); 537 538 unsigned RemTyBitWidth = RemTy->getIntegerBitWidth(); 539 540 assert(RemTyBitWidth <= 64 && "Div of bitwidth greater than 64 not supported"); 541 542 if (RemTyBitWidth == 64) 543 return expandRemainder(Rem); 544 545 // If bitwidth smaller than 64 extend inputs, extend output and proceed 546 // with 64 bit division. 547 IRBuilder<> Builder(Rem); 548 549 Value *ExtDividend; 550 Value *ExtDivisor; 551 Value *ExtRem; 552 Value *Trunc; 553 Type *Int64Ty = Builder.getInt64Ty(); 554 555 if (Rem->getOpcode() == Instruction::SRem) { 556 ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty); 557 ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty); 558 ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor); 559 } else { 560 ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty); 561 ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty); 562 ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor); 563 } 564 Trunc = Builder.CreateTrunc(ExtRem, RemTy); 565 566 Rem->replaceAllUsesWith(Trunc); 567 Rem->dropAllReferences(); 568 Rem->eraseFromParent(); 569 570 return expandRemainder(cast<BinaryOperator>(ExtRem)); 571 } 572 573 /// Generate code to divide two integers of bitwidth up to 32 bits. Uses the 574 /// above routines and extends the inputs/truncates the outputs to operate 575 /// in 32 bits; that is, these routines are good for targets that have no 576 /// or very little support for smaller than 32 bit integer arithmetic. 577 /// 578 /// @brief Replace Div with emulation code. 579 bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) { 580 assert((Div->getOpcode() == Instruction::SDiv || 581 Div->getOpcode() == Instruction::UDiv) && 582 "Trying to expand division from a non-division function"); 583 584 Type *DivTy = Div->getType(); 585 assert(!DivTy->isVectorTy() && "Div over vectors not supported"); 586 587 unsigned DivTyBitWidth = DivTy->getIntegerBitWidth(); 588 589 assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported"); 590 591 if (DivTyBitWidth == 32) 592 return expandDivision(Div); 593 594 // If bitwidth smaller than 32 extend inputs, extend output and proceed 595 // with 32 bit division. 596 IRBuilder<> Builder(Div); 597 598 Value *ExtDividend; 599 Value *ExtDivisor; 600 Value *ExtDiv; 601 Value *Trunc; 602 Type *Int32Ty = Builder.getInt32Ty(); 603 604 if (Div->getOpcode() == Instruction::SDiv) { 605 ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty); 606 ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty); 607 ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor); 608 } else { 609 ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty); 610 ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty); 611 ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor); 612 } 613 Trunc = Builder.CreateTrunc(ExtDiv, DivTy); 614 615 Div->replaceAllUsesWith(Trunc); 616 Div->dropAllReferences(); 617 Div->eraseFromParent(); 618 619 return expandDivision(cast<BinaryOperator>(ExtDiv)); 620 } 621 622 /// Generate code to divide two integers of bitwidth up to 64 bits. Uses the 623 /// above routines and extends the inputs/truncates the outputs to operate 624 /// in 64 bits. 625 /// 626 /// @brief Replace Div with emulation code. 627 bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) { 628 assert((Div->getOpcode() == Instruction::SDiv || 629 Div->getOpcode() == Instruction::UDiv) && 630 "Trying to expand division from a non-division function"); 631 632 Type *DivTy = Div->getType(); 633 assert(!DivTy->isVectorTy() && "Div over vectors not supported"); 634 635 unsigned DivTyBitWidth = DivTy->getIntegerBitWidth(); 636 637 assert(DivTyBitWidth <= 64 && 638 "Div of bitwidth greater than 64 not supported"); 639 640 if (DivTyBitWidth == 64) 641 return expandDivision(Div); 642 643 // If bitwidth smaller than 64 extend inputs, extend output and proceed 644 // with 64 bit division. 645 IRBuilder<> Builder(Div); 646 647 Value *ExtDividend; 648 Value *ExtDivisor; 649 Value *ExtDiv; 650 Value *Trunc; 651 Type *Int64Ty = Builder.getInt64Ty(); 652 653 if (Div->getOpcode() == Instruction::SDiv) { 654 ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty); 655 ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty); 656 ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor); 657 } else { 658 ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty); 659 ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty); 660 ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor); 661 } 662 Trunc = Builder.CreateTrunc(ExtDiv, DivTy); 663 664 Div->replaceAllUsesWith(Trunc); 665 Div->dropAllReferences(); 666 Div->eraseFromParent(); 667 668 return expandDivision(cast<BinaryOperator>(ExtDiv)); 669 } 670