1 //===-- IntegerDivision.cpp - Expand integer division ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains an implementation of 32bit and 64bit scalar integer
10 // division for targets that don't have native support. It's largely derived
11 // from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
12 // but hand-tuned for targets that prefer less control flow.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Utils/IntegerDivision.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/IRBuilder.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/Intrinsics.h"
21
22 using namespace llvm;
23
24 #define DEBUG_TYPE "integer-division"
25
26 /// Generate code to compute the remainder of two signed integers. Returns the
27 /// remainder, which will have the sign of the dividend. Builder's insert point
28 /// should be pointing where the caller wants code generated, e.g. at the srem
29 /// instruction. This will generate a urem in the process, and Builder's insert
30 /// point will be pointing at the uren (if present, i.e. not folded), ready to
31 /// be expanded if the user wishes
generateSignedRemainderCode(Value * Dividend,Value * Divisor,IRBuilder<> & Builder)32 static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
33 IRBuilder<> &Builder) {
34 unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
35 ConstantInt *Shift;
36
37 if (BitWidth == 64) {
38 Shift = Builder.getInt64(63);
39 } else {
40 assert(BitWidth == 32 && "Unexpected bit width");
41 Shift = Builder.getInt32(31);
42 }
43
44 // Following instructions are generated for both i32 (shift 31) and
45 // i64 (shift 63).
46
47 // ; %dividend_sgn = ashr i32 %dividend, 31
48 // ; %divisor_sgn = ashr i32 %divisor, 31
49 // ; %dvd_xor = xor i32 %dividend, %dividend_sgn
50 // ; %dvs_xor = xor i32 %divisor, %divisor_sgn
51 // ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn
52 // ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn
53 // ; %urem = urem i32 %dividend, %divisor
54 // ; %xored = xor i32 %urem, %dividend_sgn
55 // ; %srem = sub i32 %xored, %dividend_sgn
56 Value *DividendSign = Builder.CreateAShr(Dividend, Shift);
57 Value *DivisorSign = Builder.CreateAShr(Divisor, Shift);
58 Value *DvdXor = Builder.CreateXor(Dividend, DividendSign);
59 Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign);
60 Value *UDividend = Builder.CreateSub(DvdXor, DividendSign);
61 Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign);
62 Value *URem = Builder.CreateURem(UDividend, UDivisor);
63 Value *Xored = Builder.CreateXor(URem, DividendSign);
64 Value *SRem = Builder.CreateSub(Xored, DividendSign);
65
66 if (Instruction *URemInst = dyn_cast<Instruction>(URem))
67 Builder.SetInsertPoint(URemInst);
68
69 return SRem;
70 }
71
72
73 /// Generate code to compute the remainder of two unsigned integers. Returns the
74 /// remainder. Builder's insert point should be pointing where the caller wants
75 /// code generated, e.g. at the urem instruction. This will generate a udiv in
76 /// the process, and Builder's insert point will be pointing at the udiv (if
77 /// present, i.e. not folded), ready to be expanded if the user wishes
generatedUnsignedRemainderCode(Value * Dividend,Value * Divisor,IRBuilder<> & Builder)78 static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
79 IRBuilder<> &Builder) {
80 // Remainder = Dividend - Quotient*Divisor
81
82 // Following instructions are generated for both i32 and i64
83
84 // ; %quotient = udiv i32 %dividend, %divisor
85 // ; %product = mul i32 %divisor, %quotient
86 // ; %remainder = sub i32 %dividend, %product
87 Value *Quotient = Builder.CreateUDiv(Dividend, Divisor);
88 Value *Product = Builder.CreateMul(Divisor, Quotient);
89 Value *Remainder = Builder.CreateSub(Dividend, Product);
90
91 if (Instruction *UDiv = dyn_cast<Instruction>(Quotient))
92 Builder.SetInsertPoint(UDiv);
93
94 return Remainder;
95 }
96
97 /// Generate code to divide two signed integers. Returns the quotient, rounded
98 /// towards 0. Builder's insert point should be pointing where the caller wants
99 /// code generated, e.g. at the sdiv instruction. This will generate a udiv in
100 /// the process, and Builder's insert point will be pointing at the udiv (if
101 /// present, i.e. not folded), ready to be expanded if the user wishes.
generateSignedDivisionCode(Value * Dividend,Value * Divisor,IRBuilder<> & Builder)102 static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
103 IRBuilder<> &Builder) {
104 // Implementation taken from compiler-rt's __divsi3 and __divdi3
105
106 unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
107 ConstantInt *Shift;
108
109 if (BitWidth == 64) {
110 Shift = Builder.getInt64(63);
111 } else {
112 assert(BitWidth == 32 && "Unexpected bit width");
113 Shift = Builder.getInt32(31);
114 }
115
116 // Following instructions are generated for both i32 (shift 31) and
117 // i64 (shift 63).
118
119 // ; %tmp = ashr i32 %dividend, 31
120 // ; %tmp1 = ashr i32 %divisor, 31
121 // ; %tmp2 = xor i32 %tmp, %dividend
122 // ; %u_dvnd = sub nsw i32 %tmp2, %tmp
123 // ; %tmp3 = xor i32 %tmp1, %divisor
124 // ; %u_dvsr = sub nsw i32 %tmp3, %tmp1
125 // ; %q_sgn = xor i32 %tmp1, %tmp
126 // ; %q_mag = udiv i32 %u_dvnd, %u_dvsr
127 // ; %tmp4 = xor i32 %q_mag, %q_sgn
128 // ; %q = sub i32 %tmp4, %q_sgn
129 Value *Tmp = Builder.CreateAShr(Dividend, Shift);
130 Value *Tmp1 = Builder.CreateAShr(Divisor, Shift);
131 Value *Tmp2 = Builder.CreateXor(Tmp, Dividend);
132 Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
133 Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor);
134 Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1);
135 Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp);
136 Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr);
137 Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn);
138 Value *Q = Builder.CreateSub(Tmp4, Q_Sgn);
139
140 if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag))
141 Builder.SetInsertPoint(UDiv);
142
143 return Q;
144 }
145
146 /// Generates code to divide two unsigned scalar 32-bit or 64-bit integers.
147 /// Returns the quotient, rounded towards 0. Builder's insert point should
148 /// point where the caller wants code generated, e.g. at the udiv instruction.
generateUnsignedDivisionCode(Value * Dividend,Value * Divisor,IRBuilder<> & Builder)149 static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
150 IRBuilder<> &Builder) {
151 // The basic algorithm can be found in the compiler-rt project's
152 // implementation of __udivsi3.c. Here, we do a lower-level IR based approach
153 // that's been hand-tuned to lessen the amount of control flow involved.
154
155 // Some helper values
156 IntegerType *DivTy = cast<IntegerType>(Dividend->getType());
157 unsigned BitWidth = DivTy->getBitWidth();
158
159 ConstantInt *Zero;
160 ConstantInt *One;
161 ConstantInt *NegOne;
162 ConstantInt *MSB;
163
164 if (BitWidth == 64) {
165 Zero = Builder.getInt64(0);
166 One = Builder.getInt64(1);
167 NegOne = ConstantInt::getSigned(DivTy, -1);
168 MSB = Builder.getInt64(63);
169 } else {
170 assert(BitWidth == 32 && "Unexpected bit width");
171 Zero = Builder.getInt32(0);
172 One = Builder.getInt32(1);
173 NegOne = ConstantInt::getSigned(DivTy, -1);
174 MSB = Builder.getInt32(31);
175 }
176
177 ConstantInt *True = Builder.getTrue();
178
179 BasicBlock *IBB = Builder.GetInsertBlock();
180 Function *F = IBB->getParent();
181 Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
182 DivTy);
183
184 // Our CFG is going to look like:
185 // +---------------------+
186 // | special-cases |
187 // | ... |
188 // +---------------------+
189 // | |
190 // | +----------+
191 // | | bb1 |
192 // | | ... |
193 // | +----------+
194 // | | |
195 // | | +------------+
196 // | | | preheader |
197 // | | | ... |
198 // | | +------------+
199 // | | |
200 // | | | +---+
201 // | | | | |
202 // | | +------------+ |
203 // | | | do-while | |
204 // | | | ... | |
205 // | | +------------+ |
206 // | | | | |
207 // | +-----------+ +---+
208 // | | loop-exit |
209 // | | ... |
210 // | +-----------+
211 // | |
212 // +-------+
213 // | ... |
214 // | end |
215 // +-------+
216 BasicBlock *SpecialCases = Builder.GetInsertBlock();
217 SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases"));
218 BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(),
219 "udiv-end");
220 BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(),
221 "udiv-loop-exit", F, End);
222 BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(),
223 "udiv-do-while", F, End);
224 BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(),
225 "udiv-preheader", F, End);
226 BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(),
227 "udiv-bb1", F, End);
228
229 // We'll be overwriting the terminator to insert our extra blocks
230 SpecialCases->getTerminator()->eraseFromParent();
231
232 // Same instructions are generated for both i32 (msb 31) and i64 (msb 63).
233
234 // First off, check for special cases: dividend or divisor is zero, divisor
235 // is greater than dividend, and divisor is 1.
236 // ; special-cases:
237 // ; %ret0_1 = icmp eq i32 %divisor, 0
238 // ; %ret0_2 = icmp eq i32 %dividend, 0
239 // ; %ret0_3 = or i1 %ret0_1, %ret0_2
240 // ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true)
241 // ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true)
242 // ; %sr = sub nsw i32 %tmp0, %tmp1
243 // ; %ret0_4 = icmp ugt i32 %sr, 31
244 // ; %ret0 = or i1 %ret0_3, %ret0_4
245 // ; %retDividend = icmp eq i32 %sr, 31
246 // ; %retVal = select i1 %ret0, i32 0, i32 %dividend
247 // ; %earlyRet = or i1 %ret0, %retDividend
248 // ; br i1 %earlyRet, label %end, label %bb1
249 Builder.SetInsertPoint(SpecialCases);
250 Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero);
251 Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero);
252 Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2);
253 Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True});
254 Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True});
255 Value *SR = Builder.CreateSub(Tmp0, Tmp1);
256 Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB);
257 Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4);
258 Value *RetDividend = Builder.CreateICmpEQ(SR, MSB);
259 Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend);
260 Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend);
261 Builder.CreateCondBr(EarlyRet, End, BB1);
262
263 // ; bb1: ; preds = %special-cases
264 // ; %sr_1 = add i32 %sr, 1
265 // ; %tmp2 = sub i32 31, %sr
266 // ; %q = shl i32 %dividend, %tmp2
267 // ; %skipLoop = icmp eq i32 %sr_1, 0
268 // ; br i1 %skipLoop, label %loop-exit, label %preheader
269 Builder.SetInsertPoint(BB1);
270 Value *SR_1 = Builder.CreateAdd(SR, One);
271 Value *Tmp2 = Builder.CreateSub(MSB, SR);
272 Value *Q = Builder.CreateShl(Dividend, Tmp2);
273 Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
274 Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
275
276 // ; preheader: ; preds = %bb1
277 // ; %tmp3 = lshr i32 %dividend, %sr_1
278 // ; %tmp4 = add i32 %divisor, -1
279 // ; br label %do-while
280 Builder.SetInsertPoint(Preheader);
281 Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1);
282 Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne);
283 Builder.CreateBr(DoWhile);
284
285 // ; do-while: ; preds = %do-while, %preheader
286 // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
287 // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
288 // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
289 // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
290 // ; %tmp5 = shl i32 %r_1, 1
291 // ; %tmp6 = lshr i32 %q_2, 31
292 // ; %tmp7 = or i32 %tmp5, %tmp6
293 // ; %tmp8 = shl i32 %q_2, 1
294 // ; %q_1 = or i32 %carry_1, %tmp8
295 // ; %tmp9 = sub i32 %tmp4, %tmp7
296 // ; %tmp10 = ashr i32 %tmp9, 31
297 // ; %carry = and i32 %tmp10, 1
298 // ; %tmp11 = and i32 %tmp10, %divisor
299 // ; %r = sub i32 %tmp7, %tmp11
300 // ; %sr_2 = add i32 %sr_3, -1
301 // ; %tmp12 = icmp eq i32 %sr_2, 0
302 // ; br i1 %tmp12, label %loop-exit, label %do-while
303 Builder.SetInsertPoint(DoWhile);
304 PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2);
305 PHINode *SR_3 = Builder.CreatePHI(DivTy, 2);
306 PHINode *R_1 = Builder.CreatePHI(DivTy, 2);
307 PHINode *Q_2 = Builder.CreatePHI(DivTy, 2);
308 Value *Tmp5 = Builder.CreateShl(R_1, One);
309 Value *Tmp6 = Builder.CreateLShr(Q_2, MSB);
310 Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6);
311 Value *Tmp8 = Builder.CreateShl(Q_2, One);
312 Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8);
313 Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7);
314 Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB);
315 Value *Carry = Builder.CreateAnd(Tmp10, One);
316 Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
317 Value *R = Builder.CreateSub(Tmp7, Tmp11);
318 Value *SR_2 = Builder.CreateAdd(SR_3, NegOne);
319 Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero);
320 Builder.CreateCondBr(Tmp12, LoopExit, DoWhile);
321
322 // ; loop-exit: ; preds = %do-while, %bb1
323 // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
324 // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
325 // ; %tmp13 = shl i32 %q_3, 1
326 // ; %q_4 = or i32 %carry_2, %tmp13
327 // ; br label %end
328 Builder.SetInsertPoint(LoopExit);
329 PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2);
330 PHINode *Q_3 = Builder.CreatePHI(DivTy, 2);
331 Value *Tmp13 = Builder.CreateShl(Q_3, One);
332 Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13);
333 Builder.CreateBr(End);
334
335 // ; end: ; preds = %loop-exit, %special-cases
336 // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
337 // ; ret i32 %q_5
338 Builder.SetInsertPoint(End, End->begin());
339 PHINode *Q_5 = Builder.CreatePHI(DivTy, 2);
340
341 // Populate the Phis, since all values have now been created. Our Phis were:
342 // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
343 Carry_1->addIncoming(Zero, Preheader);
344 Carry_1->addIncoming(Carry, DoWhile);
345 // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
346 SR_3->addIncoming(SR_1, Preheader);
347 SR_3->addIncoming(SR_2, DoWhile);
348 // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
349 R_1->addIncoming(Tmp3, Preheader);
350 R_1->addIncoming(R, DoWhile);
351 // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
352 Q_2->addIncoming(Q, Preheader);
353 Q_2->addIncoming(Q_1, DoWhile);
354 // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
355 Carry_2->addIncoming(Zero, BB1);
356 Carry_2->addIncoming(Carry, DoWhile);
357 // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
358 Q_3->addIncoming(Q, BB1);
359 Q_3->addIncoming(Q_1, DoWhile);
360 // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
361 Q_5->addIncoming(Q_4, LoopExit);
362 Q_5->addIncoming(RetVal, SpecialCases);
363
364 return Q_5;
365 }
366
367 /// Generate code to calculate the remainder of two integers, replacing Rem with
368 /// the generated code. This currently generates code using the udiv expansion,
369 /// but future work includes generating more specialized code, e.g. when more
370 /// information about the operands are known. Implements both 32bit and 64bit
371 /// scalar division.
372 ///
373 /// Replace Rem with generated code.
expandRemainder(BinaryOperator * Rem)374 bool llvm::expandRemainder(BinaryOperator *Rem) {
375 assert((Rem->getOpcode() == Instruction::SRem ||
376 Rem->getOpcode() == Instruction::URem) &&
377 "Trying to expand remainder from a non-remainder function");
378
379 IRBuilder<> Builder(Rem);
380
381 assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported");
382 assert((Rem->getType()->getIntegerBitWidth() == 32 ||
383 Rem->getType()->getIntegerBitWidth() == 64) &&
384 "Div of bitwidth other than 32 or 64 not supported");
385
386 // First prepare the sign if it's a signed remainder
387 if (Rem->getOpcode() == Instruction::SRem) {
388 Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
389 Rem->getOperand(1), Builder);
390
391 // Check whether this is the insert point while Rem is still valid.
392 bool IsInsertPoint = Rem->getIterator() == Builder.GetInsertPoint();
393 Rem->replaceAllUsesWith(Remainder);
394 Rem->dropAllReferences();
395 Rem->eraseFromParent();
396
397 // If we didn't actually generate an urem instruction, we're done
398 // This happens for example if the input were constant. In this case the
399 // Builder insertion point was unchanged
400 if (IsInsertPoint)
401 return true;
402
403 BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
404 Rem = BO;
405 }
406
407 Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0),
408 Rem->getOperand(1),
409 Builder);
410
411 Rem->replaceAllUsesWith(Remainder);
412 Rem->dropAllReferences();
413 Rem->eraseFromParent();
414
415 // Expand the udiv
416 if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) {
417 assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?");
418 expandDivision(UDiv);
419 }
420
421 return true;
422 }
423
424
425 /// Generate code to divide two integers, replacing Div with the generated
426 /// code. This currently generates code similarly to compiler-rt's
427 /// implementations, but future work includes generating more specialized code
428 /// when more information about the operands are known. Implements both
429 /// 32bit and 64bit scalar division.
430 ///
431 /// Replace Div with generated code.
expandDivision(BinaryOperator * Div)432 bool llvm::expandDivision(BinaryOperator *Div) {
433 assert((Div->getOpcode() == Instruction::SDiv ||
434 Div->getOpcode() == Instruction::UDiv) &&
435 "Trying to expand division from a non-division function");
436
437 IRBuilder<> Builder(Div);
438
439 assert(!Div->getType()->isVectorTy() && "Div over vectors not supported");
440 assert((Div->getType()->getIntegerBitWidth() == 32 ||
441 Div->getType()->getIntegerBitWidth() == 64) &&
442 "Div of bitwidth other than 32 or 64 not supported");
443
444 // First prepare the sign if it's a signed division
445 if (Div->getOpcode() == Instruction::SDiv) {
446 // Lower the code to unsigned division, and reset Div to point to the udiv.
447 Value *Quotient = generateSignedDivisionCode(Div->getOperand(0),
448 Div->getOperand(1), Builder);
449
450 // Check whether this is the insert point while Div is still valid.
451 bool IsInsertPoint = Div->getIterator() == Builder.GetInsertPoint();
452 Div->replaceAllUsesWith(Quotient);
453 Div->dropAllReferences();
454 Div->eraseFromParent();
455
456 // If we didn't actually generate an udiv instruction, we're done
457 // This happens for example if the input were constant. In this case the
458 // Builder insertion point was unchanged
459 if (IsInsertPoint)
460 return true;
461
462 BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
463 Div = BO;
464 }
465
466 // Insert the unsigned division code
467 Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0),
468 Div->getOperand(1),
469 Builder);
470 Div->replaceAllUsesWith(Quotient);
471 Div->dropAllReferences();
472 Div->eraseFromParent();
473
474 return true;
475 }
476
477 /// Generate code to compute the remainder of two integers of bitwidth up to
478 /// 32 bits. Uses the above routines and extends the inputs/truncates the
479 /// outputs to operate in 32 bits; that is, these routines are good for targets
480 /// that have no or very little suppport for smaller than 32 bit integer
481 /// arithmetic.
482 ///
483 /// Replace Rem with emulation code.
expandRemainderUpTo32Bits(BinaryOperator * Rem)484 bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
485 assert((Rem->getOpcode() == Instruction::SRem ||
486 Rem->getOpcode() == Instruction::URem) &&
487 "Trying to expand remainder from a non-remainder function");
488
489 Type *RemTy = Rem->getType();
490 assert(!RemTy->isVectorTy() && "Div over vectors not supported");
491
492 unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
493
494 assert(RemTyBitWidth <= 32 &&
495 "Div of bitwidth greater than 32 not supported");
496
497 if (RemTyBitWidth == 32)
498 return expandRemainder(Rem);
499
500 // If bitwidth smaller than 32 extend inputs, extend output and proceed
501 // with 32 bit division.
502 IRBuilder<> Builder(Rem);
503
504 Value *ExtDividend;
505 Value *ExtDivisor;
506 Value *ExtRem;
507 Value *Trunc;
508 Type *Int32Ty = Builder.getInt32Ty();
509
510 if (Rem->getOpcode() == Instruction::SRem) {
511 ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty);
512 ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty);
513 ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
514 } else {
515 ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty);
516 ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty);
517 ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
518 }
519 Trunc = Builder.CreateTrunc(ExtRem, RemTy);
520
521 Rem->replaceAllUsesWith(Trunc);
522 Rem->dropAllReferences();
523 Rem->eraseFromParent();
524
525 return expandRemainder(cast<BinaryOperator>(ExtRem));
526 }
527
528 /// Generate code to compute the remainder of two integers of bitwidth up to
529 /// 64 bits. Uses the above routines and extends the inputs/truncates the
530 /// outputs to operate in 64 bits.
531 ///
532 /// Replace Rem with emulation code.
expandRemainderUpTo64Bits(BinaryOperator * Rem)533 bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) {
534 assert((Rem->getOpcode() == Instruction::SRem ||
535 Rem->getOpcode() == Instruction::URem) &&
536 "Trying to expand remainder from a non-remainder function");
537
538 Type *RemTy = Rem->getType();
539 assert(!RemTy->isVectorTy() && "Div over vectors not supported");
540
541 unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
542
543 assert(RemTyBitWidth <= 64 && "Div of bitwidth greater than 64 not supported");
544
545 if (RemTyBitWidth == 64)
546 return expandRemainder(Rem);
547
548 // If bitwidth smaller than 64 extend inputs, extend output and proceed
549 // with 64 bit division.
550 IRBuilder<> Builder(Rem);
551
552 Value *ExtDividend;
553 Value *ExtDivisor;
554 Value *ExtRem;
555 Value *Trunc;
556 Type *Int64Ty = Builder.getInt64Ty();
557
558 if (Rem->getOpcode() == Instruction::SRem) {
559 ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty);
560 ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty);
561 ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
562 } else {
563 ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty);
564 ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty);
565 ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
566 }
567 Trunc = Builder.CreateTrunc(ExtRem, RemTy);
568
569 Rem->replaceAllUsesWith(Trunc);
570 Rem->dropAllReferences();
571 Rem->eraseFromParent();
572
573 return expandRemainder(cast<BinaryOperator>(ExtRem));
574 }
575
576 /// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
577 /// above routines and extends the inputs/truncates the outputs to operate
578 /// in 32 bits; that is, these routines are good for targets that have no
579 /// or very little support for smaller than 32 bit integer arithmetic.
580 ///
581 /// Replace Div with emulation code.
expandDivisionUpTo32Bits(BinaryOperator * Div)582 bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
583 assert((Div->getOpcode() == Instruction::SDiv ||
584 Div->getOpcode() == Instruction::UDiv) &&
585 "Trying to expand division from a non-division function");
586
587 Type *DivTy = Div->getType();
588 assert(!DivTy->isVectorTy() && "Div over vectors not supported");
589
590 unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
591
592 assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported");
593
594 if (DivTyBitWidth == 32)
595 return expandDivision(Div);
596
597 // If bitwidth smaller than 32 extend inputs, extend output and proceed
598 // with 32 bit division.
599 IRBuilder<> Builder(Div);
600
601 Value *ExtDividend;
602 Value *ExtDivisor;
603 Value *ExtDiv;
604 Value *Trunc;
605 Type *Int32Ty = Builder.getInt32Ty();
606
607 if (Div->getOpcode() == Instruction::SDiv) {
608 ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty);
609 ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty);
610 ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
611 } else {
612 ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty);
613 ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty);
614 ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
615 }
616 Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
617
618 Div->replaceAllUsesWith(Trunc);
619 Div->dropAllReferences();
620 Div->eraseFromParent();
621
622 return expandDivision(cast<BinaryOperator>(ExtDiv));
623 }
624
625 /// Generate code to divide two integers of bitwidth up to 64 bits. Uses the
626 /// above routines and extends the inputs/truncates the outputs to operate
627 /// in 64 bits.
628 ///
629 /// Replace Div with emulation code.
expandDivisionUpTo64Bits(BinaryOperator * Div)630 bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) {
631 assert((Div->getOpcode() == Instruction::SDiv ||
632 Div->getOpcode() == Instruction::UDiv) &&
633 "Trying to expand division from a non-division function");
634
635 Type *DivTy = Div->getType();
636 assert(!DivTy->isVectorTy() && "Div over vectors not supported");
637
638 unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
639
640 assert(DivTyBitWidth <= 64 &&
641 "Div of bitwidth greater than 64 not supported");
642
643 if (DivTyBitWidth == 64)
644 return expandDivision(Div);
645
646 // If bitwidth smaller than 64 extend inputs, extend output and proceed
647 // with 64 bit division.
648 IRBuilder<> Builder(Div);
649
650 Value *ExtDividend;
651 Value *ExtDivisor;
652 Value *ExtDiv;
653 Value *Trunc;
654 Type *Int64Ty = Builder.getInt64Ty();
655
656 if (Div->getOpcode() == Instruction::SDiv) {
657 ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty);
658 ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty);
659 ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
660 } else {
661 ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty);
662 ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty);
663 ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
664 }
665 Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
666
667 Div->replaceAllUsesWith(Trunc);
668 Div->dropAllReferences();
669 Div->eraseFromParent();
670
671 return expandDivision(cast<BinaryOperator>(ExtDiv));
672 }
673