1 //===- FunctionComparator.h - Function Comparator -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the FunctionComparator and GlobalNumberState classes 11 // which are used by the MergeFunctions pass for comparing functions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/FunctionComparator.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/IR/Attributes.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/InstrTypes.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/Compiler.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <cassert> 47 #include <cstddef> 48 #include <cstdint> 49 #include <utility> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "functioncomparator" 54 55 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 56 if (L < R) return -1; 57 if (L > R) return 1; 58 return 0; 59 } 60 61 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { 62 if ((int)L < (int)R) return -1; 63 if ((int)L > (int)R) return 1; 64 return 0; 65 } 66 67 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 68 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 69 return Res; 70 if (L.ugt(R)) return 1; 71 if (R.ugt(L)) return -1; 72 return 0; 73 } 74 75 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 76 // Floats are ordered first by semantics (i.e. float, double, half, etc.), 77 // then by value interpreted as a bitstring (aka APInt). 78 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); 79 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), 80 APFloat::semanticsPrecision(SR))) 81 return Res; 82 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), 83 APFloat::semanticsMaxExponent(SR))) 84 return Res; 85 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), 86 APFloat::semanticsMinExponent(SR))) 87 return Res; 88 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), 89 APFloat::semanticsSizeInBits(SR))) 90 return Res; 91 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 92 } 93 94 int FunctionComparator::cmpMem(StringRef L, StringRef R) const { 95 // Prevent heavy comparison, compare sizes first. 96 if (int Res = cmpNumbers(L.size(), R.size())) 97 return Res; 98 99 // Compare strings lexicographically only when it is necessary: only when 100 // strings are equal in size. 101 return L.compare(R); 102 } 103 104 int FunctionComparator::cmpAttrs(const AttributeList L, 105 const AttributeList R) const { 106 if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets())) 107 return Res; 108 109 for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) { 110 AttributeSet LAS = L.getAttributes(i); 111 AttributeSet RAS = R.getAttributes(i); 112 AttributeSet::iterator LI = LAS.begin(), LE = LAS.end(); 113 AttributeSet::iterator RI = RAS.begin(), RE = RAS.end(); 114 for (; LI != LE && RI != RE; ++LI, ++RI) { 115 Attribute LA = *LI; 116 Attribute RA = *RI; 117 if (LA < RA) 118 return -1; 119 if (RA < LA) 120 return 1; 121 } 122 if (LI != LE) 123 return 1; 124 if (RI != RE) 125 return -1; 126 } 127 return 0; 128 } 129 130 int FunctionComparator::cmpRangeMetadata(const MDNode *L, 131 const MDNode *R) const { 132 if (L == R) 133 return 0; 134 if (!L) 135 return -1; 136 if (!R) 137 return 1; 138 // Range metadata is a sequence of numbers. Make sure they are the same 139 // sequence. 140 // TODO: Note that as this is metadata, it is possible to drop and/or merge 141 // this data when considering functions to merge. Thus this comparison would 142 // return 0 (i.e. equivalent), but merging would become more complicated 143 // because the ranges would need to be unioned. It is not likely that 144 // functions differ ONLY in this metadata if they are actually the same 145 // function semantically. 146 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 147 return Res; 148 for (size_t I = 0; I < L->getNumOperands(); ++I) { 149 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); 150 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); 151 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) 152 return Res; 153 } 154 return 0; 155 } 156 157 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L, 158 const Instruction *R) const { 159 ImmutableCallSite LCS(L); 160 ImmutableCallSite RCS(R); 161 162 assert(LCS && RCS && "Must be calls or invokes!"); 163 assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!"); 164 165 if (int Res = 166 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) 167 return Res; 168 169 for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) { 170 auto OBL = LCS.getOperandBundleAt(i); 171 auto OBR = RCS.getOperandBundleAt(i); 172 173 if (int Res = OBL.getTagName().compare(OBR.getTagName())) 174 return Res; 175 176 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) 177 return Res; 178 } 179 180 return 0; 181 } 182 183 /// Constants comparison: 184 /// 1. Check whether type of L constant could be losslessly bitcasted to R 185 /// type. 186 /// 2. Compare constant contents. 187 /// For more details see declaration comments. 188 int FunctionComparator::cmpConstants(const Constant *L, 189 const Constant *R) const { 190 Type *TyL = L->getType(); 191 Type *TyR = R->getType(); 192 193 // Check whether types are bitcastable. This part is just re-factored 194 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 195 // we also pack into result which type is "less" for us. 196 int TypesRes = cmpTypes(TyL, TyR); 197 if (TypesRes != 0) { 198 // Types are different, but check whether we can bitcast them. 199 if (!TyL->isFirstClassType()) { 200 if (TyR->isFirstClassType()) 201 return -1; 202 // Neither TyL nor TyR are values of first class type. Return the result 203 // of comparing the types 204 return TypesRes; 205 } 206 if (!TyR->isFirstClassType()) { 207 if (TyL->isFirstClassType()) 208 return 1; 209 return TypesRes; 210 } 211 212 // Vector -> Vector conversions are always lossless if the two vector types 213 // have the same size, otherwise not. 214 unsigned TyLWidth = 0; 215 unsigned TyRWidth = 0; 216 217 if (auto *VecTyL = dyn_cast<VectorType>(TyL)) 218 TyLWidth = VecTyL->getBitWidth(); 219 if (auto *VecTyR = dyn_cast<VectorType>(TyR)) 220 TyRWidth = VecTyR->getBitWidth(); 221 222 if (TyLWidth != TyRWidth) 223 return cmpNumbers(TyLWidth, TyRWidth); 224 225 // Zero bit-width means neither TyL nor TyR are vectors. 226 if (!TyLWidth) { 227 PointerType *PTyL = dyn_cast<PointerType>(TyL); 228 PointerType *PTyR = dyn_cast<PointerType>(TyR); 229 if (PTyL && PTyR) { 230 unsigned AddrSpaceL = PTyL->getAddressSpace(); 231 unsigned AddrSpaceR = PTyR->getAddressSpace(); 232 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 233 return Res; 234 } 235 if (PTyL) 236 return 1; 237 if (PTyR) 238 return -1; 239 240 // TyL and TyR aren't vectors, nor pointers. We don't know how to 241 // bitcast them. 242 return TypesRes; 243 } 244 } 245 246 // OK, types are bitcastable, now check constant contents. 247 248 if (L->isNullValue() && R->isNullValue()) 249 return TypesRes; 250 if (L->isNullValue() && !R->isNullValue()) 251 return 1; 252 if (!L->isNullValue() && R->isNullValue()) 253 return -1; 254 255 auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L)); 256 auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R)); 257 if (GlobalValueL && GlobalValueR) { 258 return cmpGlobalValues(GlobalValueL, GlobalValueR); 259 } 260 261 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 262 return Res; 263 264 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { 265 const auto *SeqR = cast<ConstantDataSequential>(R); 266 // This handles ConstantDataArray and ConstantDataVector. Note that we 267 // compare the two raw data arrays, which might differ depending on the host 268 // endianness. This isn't a problem though, because the endiness of a module 269 // will affect the order of the constants, but this order is the same 270 // for a given input module and host platform. 271 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); 272 } 273 274 switch (L->getValueID()) { 275 case Value::UndefValueVal: 276 case Value::ConstantTokenNoneVal: 277 return TypesRes; 278 case Value::ConstantIntVal: { 279 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 280 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 281 return cmpAPInts(LInt, RInt); 282 } 283 case Value::ConstantFPVal: { 284 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 285 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 286 return cmpAPFloats(LAPF, RAPF); 287 } 288 case Value::ConstantArrayVal: { 289 const ConstantArray *LA = cast<ConstantArray>(L); 290 const ConstantArray *RA = cast<ConstantArray>(R); 291 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 292 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 293 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 294 return Res; 295 for (uint64_t i = 0; i < NumElementsL; ++i) { 296 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 297 cast<Constant>(RA->getOperand(i)))) 298 return Res; 299 } 300 return 0; 301 } 302 case Value::ConstantStructVal: { 303 const ConstantStruct *LS = cast<ConstantStruct>(L); 304 const ConstantStruct *RS = cast<ConstantStruct>(R); 305 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 306 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 307 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 308 return Res; 309 for (unsigned i = 0; i != NumElementsL; ++i) { 310 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 311 cast<Constant>(RS->getOperand(i)))) 312 return Res; 313 } 314 return 0; 315 } 316 case Value::ConstantVectorVal: { 317 const ConstantVector *LV = cast<ConstantVector>(L); 318 const ConstantVector *RV = cast<ConstantVector>(R); 319 unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements(); 320 unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements(); 321 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 322 return Res; 323 for (uint64_t i = 0; i < NumElementsL; ++i) { 324 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 325 cast<Constant>(RV->getOperand(i)))) 326 return Res; 327 } 328 return 0; 329 } 330 case Value::ConstantExprVal: { 331 const ConstantExpr *LE = cast<ConstantExpr>(L); 332 const ConstantExpr *RE = cast<ConstantExpr>(R); 333 unsigned NumOperandsL = LE->getNumOperands(); 334 unsigned NumOperandsR = RE->getNumOperands(); 335 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 336 return Res; 337 for (unsigned i = 0; i < NumOperandsL; ++i) { 338 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 339 cast<Constant>(RE->getOperand(i)))) 340 return Res; 341 } 342 return 0; 343 } 344 case Value::BlockAddressVal: { 345 const BlockAddress *LBA = cast<BlockAddress>(L); 346 const BlockAddress *RBA = cast<BlockAddress>(R); 347 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) 348 return Res; 349 if (LBA->getFunction() == RBA->getFunction()) { 350 // They are BBs in the same function. Order by which comes first in the 351 // BB order of the function. This order is deterministic. 352 Function* F = LBA->getFunction(); 353 BasicBlock *LBB = LBA->getBasicBlock(); 354 BasicBlock *RBB = RBA->getBasicBlock(); 355 if (LBB == RBB) 356 return 0; 357 for(BasicBlock &BB : F->getBasicBlockList()) { 358 if (&BB == LBB) { 359 assert(&BB != RBB); 360 return -1; 361 } 362 if (&BB == RBB) 363 return 1; 364 } 365 llvm_unreachable("Basic Block Address does not point to a basic block in " 366 "its function."); 367 return -1; 368 } else { 369 // cmpValues said the functions are the same. So because they aren't 370 // literally the same pointer, they must respectively be the left and 371 // right functions. 372 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); 373 // cmpValues will tell us if these are equivalent BasicBlocks, in the 374 // context of their respective functions. 375 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); 376 } 377 } 378 default: // Unknown constant, abort. 379 LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); 380 llvm_unreachable("Constant ValueID not recognized."); 381 return -1; 382 } 383 } 384 385 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { 386 uint64_t LNumber = GlobalNumbers->getNumber(L); 387 uint64_t RNumber = GlobalNumbers->getNumber(R); 388 return cmpNumbers(LNumber, RNumber); 389 } 390 391 /// cmpType - compares two types, 392 /// defines total ordering among the types set. 393 /// See method declaration comments for more details. 394 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 395 PointerType *PTyL = dyn_cast<PointerType>(TyL); 396 PointerType *PTyR = dyn_cast<PointerType>(TyR); 397 398 const DataLayout &DL = FnL->getParent()->getDataLayout(); 399 if (PTyL && PTyL->getAddressSpace() == 0) 400 TyL = DL.getIntPtrType(TyL); 401 if (PTyR && PTyR->getAddressSpace() == 0) 402 TyR = DL.getIntPtrType(TyR); 403 404 if (TyL == TyR) 405 return 0; 406 407 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 408 return Res; 409 410 switch (TyL->getTypeID()) { 411 default: 412 llvm_unreachable("Unknown type!"); 413 // Fall through in Release mode. 414 LLVM_FALLTHROUGH; 415 case Type::IntegerTyID: 416 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), 417 cast<IntegerType>(TyR)->getBitWidth()); 418 // TyL == TyR would have returned true earlier, because types are uniqued. 419 case Type::VoidTyID: 420 case Type::FloatTyID: 421 case Type::DoubleTyID: 422 case Type::X86_FP80TyID: 423 case Type::FP128TyID: 424 case Type::PPC_FP128TyID: 425 case Type::LabelTyID: 426 case Type::MetadataTyID: 427 case Type::TokenTyID: 428 return 0; 429 430 case Type::PointerTyID: 431 assert(PTyL && PTyR && "Both types must be pointers here."); 432 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 433 434 case Type::StructTyID: { 435 StructType *STyL = cast<StructType>(TyL); 436 StructType *STyR = cast<StructType>(TyR); 437 if (STyL->getNumElements() != STyR->getNumElements()) 438 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 439 440 if (STyL->isPacked() != STyR->isPacked()) 441 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 442 443 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 444 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 445 return Res; 446 } 447 return 0; 448 } 449 450 case Type::FunctionTyID: { 451 FunctionType *FTyL = cast<FunctionType>(TyL); 452 FunctionType *FTyR = cast<FunctionType>(TyR); 453 if (FTyL->getNumParams() != FTyR->getNumParams()) 454 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 455 456 if (FTyL->isVarArg() != FTyR->isVarArg()) 457 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 458 459 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 460 return Res; 461 462 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 463 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 464 return Res; 465 } 466 return 0; 467 } 468 469 case Type::ArrayTyID: 470 case Type::VectorTyID: { 471 auto *STyL = cast<SequentialType>(TyL); 472 auto *STyR = cast<SequentialType>(TyR); 473 if (STyL->getNumElements() != STyR->getNumElements()) 474 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 475 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 476 } 477 } 478 } 479 480 // Determine whether the two operations are the same except that pointer-to-A 481 // and pointer-to-B are equivalent. This should be kept in sync with 482 // Instruction::isSameOperationAs. 483 // Read method declaration comments for more details. 484 int FunctionComparator::cmpOperations(const Instruction *L, 485 const Instruction *R, 486 bool &needToCmpOperands) const { 487 needToCmpOperands = true; 488 if (int Res = cmpValues(L, R)) 489 return Res; 490 491 // Differences from Instruction::isSameOperationAs: 492 // * replace type comparison with calls to cmpTypes. 493 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. 494 // * because of the above, we don't test for the tail bit on calls later on. 495 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 496 return Res; 497 498 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) { 499 needToCmpOperands = false; 500 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R); 501 if (int Res = 502 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 503 return Res; 504 return cmpGEPs(GEPL, GEPR); 505 } 506 507 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 508 return Res; 509 510 if (int Res = cmpTypes(L->getType(), R->getType())) 511 return Res; 512 513 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 514 R->getRawSubclassOptionalData())) 515 return Res; 516 517 // We have two instructions of identical opcode and #operands. Check to see 518 // if all operands are the same type 519 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 520 if (int Res = 521 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 522 return Res; 523 } 524 525 // Check special state that is a part of some instructions. 526 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 527 if (int Res = cmpTypes(AI->getAllocatedType(), 528 cast<AllocaInst>(R)->getAllocatedType())) 529 return Res; 530 return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()); 531 } 532 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 533 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 534 return Res; 535 if (int Res = 536 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) 537 return Res; 538 if (int Res = 539 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 540 return Res; 541 if (int Res = cmpNumbers(LI->getSyncScopeID(), 542 cast<LoadInst>(R)->getSyncScopeID())) 543 return Res; 544 return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range), 545 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); 546 } 547 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 548 if (int Res = 549 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 550 return Res; 551 if (int Res = 552 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) 553 return Res; 554 if (int Res = 555 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 556 return Res; 557 return cmpNumbers(SI->getSyncScopeID(), 558 cast<StoreInst>(R)->getSyncScopeID()); 559 } 560 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 561 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 562 if (const CallInst *CI = dyn_cast<CallInst>(L)) { 563 if (int Res = cmpNumbers(CI->getCallingConv(), 564 cast<CallInst>(R)->getCallingConv())) 565 return Res; 566 if (int Res = 567 cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes())) 568 return Res; 569 if (int Res = cmpOperandBundlesSchema(CI, R)) 570 return Res; 571 return cmpRangeMetadata( 572 CI->getMetadata(LLVMContext::MD_range), 573 cast<CallInst>(R)->getMetadata(LLVMContext::MD_range)); 574 } 575 if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) { 576 if (int Res = cmpNumbers(II->getCallingConv(), 577 cast<InvokeInst>(R)->getCallingConv())) 578 return Res; 579 if (int Res = 580 cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes())) 581 return Res; 582 if (int Res = cmpOperandBundlesSchema(II, R)) 583 return Res; 584 return cmpRangeMetadata( 585 II->getMetadata(LLVMContext::MD_range), 586 cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range)); 587 } 588 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 589 ArrayRef<unsigned> LIndices = IVI->getIndices(); 590 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 591 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 592 return Res; 593 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 594 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 595 return Res; 596 } 597 return 0; 598 } 599 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 600 ArrayRef<unsigned> LIndices = EVI->getIndices(); 601 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 602 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 603 return Res; 604 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 605 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 606 return Res; 607 } 608 } 609 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 610 if (int Res = 611 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 612 return Res; 613 return cmpNumbers(FI->getSyncScopeID(), 614 cast<FenceInst>(R)->getSyncScopeID()); 615 } 616 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 617 if (int Res = cmpNumbers(CXI->isVolatile(), 618 cast<AtomicCmpXchgInst>(R)->isVolatile())) 619 return Res; 620 if (int Res = cmpNumbers(CXI->isWeak(), 621 cast<AtomicCmpXchgInst>(R)->isWeak())) 622 return Res; 623 if (int Res = 624 cmpOrderings(CXI->getSuccessOrdering(), 625 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 626 return Res; 627 if (int Res = 628 cmpOrderings(CXI->getFailureOrdering(), 629 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 630 return Res; 631 return cmpNumbers(CXI->getSyncScopeID(), 632 cast<AtomicCmpXchgInst>(R)->getSyncScopeID()); 633 } 634 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 635 if (int Res = cmpNumbers(RMWI->getOperation(), 636 cast<AtomicRMWInst>(R)->getOperation())) 637 return Res; 638 if (int Res = cmpNumbers(RMWI->isVolatile(), 639 cast<AtomicRMWInst>(R)->isVolatile())) 640 return Res; 641 if (int Res = cmpOrderings(RMWI->getOrdering(), 642 cast<AtomicRMWInst>(R)->getOrdering())) 643 return Res; 644 return cmpNumbers(RMWI->getSyncScopeID(), 645 cast<AtomicRMWInst>(R)->getSyncScopeID()); 646 } 647 if (const PHINode *PNL = dyn_cast<PHINode>(L)) { 648 const PHINode *PNR = cast<PHINode>(R); 649 // Ensure that in addition to the incoming values being identical 650 // (checked by the caller of this function), the incoming blocks 651 // are also identical. 652 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { 653 if (int Res = 654 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) 655 return Res; 656 } 657 } 658 return 0; 659 } 660 661 // Determine whether two GEP operations perform the same underlying arithmetic. 662 // Read method declaration comments for more details. 663 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 664 const GEPOperator *GEPR) const { 665 unsigned int ASL = GEPL->getPointerAddressSpace(); 666 unsigned int ASR = GEPR->getPointerAddressSpace(); 667 668 if (int Res = cmpNumbers(ASL, ASR)) 669 return Res; 670 671 // When we have target data, we can reduce the GEP down to the value in bytes 672 // added to the address. 673 const DataLayout &DL = FnL->getParent()->getDataLayout(); 674 unsigned BitWidth = DL.getPointerSizeInBits(ASL); 675 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); 676 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 677 GEPR->accumulateConstantOffset(DL, OffsetR)) 678 return cmpAPInts(OffsetL, OffsetR); 679 if (int Res = cmpTypes(GEPL->getSourceElementType(), 680 GEPR->getSourceElementType())) 681 return Res; 682 683 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 684 return Res; 685 686 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 687 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 688 return Res; 689 } 690 691 return 0; 692 } 693 694 int FunctionComparator::cmpInlineAsm(const InlineAsm *L, 695 const InlineAsm *R) const { 696 // InlineAsm's are uniqued. If they are the same pointer, obviously they are 697 // the same, otherwise compare the fields. 698 if (L == R) 699 return 0; 700 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) 701 return Res; 702 if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) 703 return Res; 704 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) 705 return Res; 706 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) 707 return Res; 708 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) 709 return Res; 710 if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) 711 return Res; 712 assert(L->getFunctionType() != R->getFunctionType()); 713 return 0; 714 } 715 716 /// Compare two values used by the two functions under pair-wise comparison. If 717 /// this is the first time the values are seen, they're added to the mapping so 718 /// that we will detect mismatches on next use. 719 /// See comments in declaration for more details. 720 int FunctionComparator::cmpValues(const Value *L, const Value *R) const { 721 // Catch self-reference case. 722 if (L == FnL) { 723 if (R == FnR) 724 return 0; 725 return -1; 726 } 727 if (R == FnR) { 728 if (L == FnL) 729 return 0; 730 return 1; 731 } 732 733 const Constant *ConstL = dyn_cast<Constant>(L); 734 const Constant *ConstR = dyn_cast<Constant>(R); 735 if (ConstL && ConstR) { 736 if (L == R) 737 return 0; 738 return cmpConstants(ConstL, ConstR); 739 } 740 741 if (ConstL) 742 return 1; 743 if (ConstR) 744 return -1; 745 746 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 747 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 748 749 if (InlineAsmL && InlineAsmR) 750 return cmpInlineAsm(InlineAsmL, InlineAsmR); 751 if (InlineAsmL) 752 return 1; 753 if (InlineAsmR) 754 return -1; 755 756 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 757 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 758 759 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 760 } 761 762 // Test whether two basic blocks have equivalent behaviour. 763 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, 764 const BasicBlock *BBR) const { 765 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 766 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 767 768 do { 769 bool needToCmpOperands = true; 770 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) 771 return Res; 772 if (needToCmpOperands) { 773 assert(InstL->getNumOperands() == InstR->getNumOperands()); 774 775 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 776 Value *OpL = InstL->getOperand(i); 777 Value *OpR = InstR->getOperand(i); 778 if (int Res = cmpValues(OpL, OpR)) 779 return Res; 780 // cmpValues should ensure this is true. 781 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); 782 } 783 } 784 785 ++InstL; 786 ++InstR; 787 } while (InstL != InstLE && InstR != InstRE); 788 789 if (InstL != InstLE && InstR == InstRE) 790 return 1; 791 if (InstL == InstLE && InstR != InstRE) 792 return -1; 793 return 0; 794 } 795 796 int FunctionComparator::compareSignature() const { 797 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 798 return Res; 799 800 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 801 return Res; 802 803 if (FnL->hasGC()) { 804 if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) 805 return Res; 806 } 807 808 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 809 return Res; 810 811 if (FnL->hasSection()) { 812 if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) 813 return Res; 814 } 815 816 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 817 return Res; 818 819 // TODO: if it's internal and only used in direct calls, we could handle this 820 // case too. 821 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 822 return Res; 823 824 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 825 return Res; 826 827 assert(FnL->arg_size() == FnR->arg_size() && 828 "Identically typed functions have different numbers of args!"); 829 830 // Visit the arguments so that they get enumerated in the order they're 831 // passed in. 832 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 833 ArgRI = FnR->arg_begin(), 834 ArgLE = FnL->arg_end(); 835 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 836 if (cmpValues(&*ArgLI, &*ArgRI) != 0) 837 llvm_unreachable("Arguments repeat!"); 838 } 839 return 0; 840 } 841 842 // Test whether the two functions have equivalent behaviour. 843 int FunctionComparator::compare() { 844 beginCompare(); 845 846 if (int Res = compareSignature()) 847 return Res; 848 849 // We do a CFG-ordered walk since the actual ordering of the blocks in the 850 // linked list is immaterial. Our walk starts at the entry block for both 851 // functions, then takes each block from each terminator in order. As an 852 // artifact, this also means that unreachable blocks are ignored. 853 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 854 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. 855 856 FnLBBs.push_back(&FnL->getEntryBlock()); 857 FnRBBs.push_back(&FnR->getEntryBlock()); 858 859 VisitedBBs.insert(FnLBBs[0]); 860 while (!FnLBBs.empty()) { 861 const BasicBlock *BBL = FnLBBs.pop_back_val(); 862 const BasicBlock *BBR = FnRBBs.pop_back_val(); 863 864 if (int Res = cmpValues(BBL, BBR)) 865 return Res; 866 867 if (int Res = cmpBasicBlocks(BBL, BBR)) 868 return Res; 869 870 const TerminatorInst *TermL = BBL->getTerminator(); 871 const TerminatorInst *TermR = BBR->getTerminator(); 872 873 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 874 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 875 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 876 continue; 877 878 FnLBBs.push_back(TermL->getSuccessor(i)); 879 FnRBBs.push_back(TermR->getSuccessor(i)); 880 } 881 } 882 return 0; 883 } 884 885 namespace { 886 887 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a 888 // hash of a sequence of 64bit ints, but the entire input does not need to be 889 // available at once. This interface is necessary for functionHash because it 890 // needs to accumulate the hash as the structure of the function is traversed 891 // without saving these values to an intermediate buffer. This form of hashing 892 // is not often needed, as usually the object to hash is just read from a 893 // buffer. 894 class HashAccumulator64 { 895 uint64_t Hash; 896 897 public: 898 // Initialize to random constant, so the state isn't zero. 899 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } 900 901 void add(uint64_t V) { 902 Hash = hashing::detail::hash_16_bytes(Hash, V); 903 } 904 905 // No finishing is required, because the entire hash value is used. 906 uint64_t getHash() { return Hash; } 907 }; 908 909 } // end anonymous namespace 910 911 // A function hash is calculated by considering only the number of arguments and 912 // whether a function is varargs, the order of basic blocks (given by the 913 // successors of each basic block in depth first order), and the order of 914 // opcodes of each instruction within each of these basic blocks. This mirrors 915 // the strategy compare() uses to compare functions by walking the BBs in depth 916 // first order and comparing each instruction in sequence. Because this hash 917 // does not look at the operands, it is insensitive to things such as the 918 // target of calls and the constants used in the function, which makes it useful 919 // when possibly merging functions which are the same modulo constants and call 920 // targets. 921 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { 922 HashAccumulator64 H; 923 H.add(F.isVarArg()); 924 H.add(F.arg_size()); 925 926 SmallVector<const BasicBlock *, 8> BBs; 927 SmallPtrSet<const BasicBlock *, 16> VisitedBBs; 928 929 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), 930 // accumulating the hash of the function "structure." (BB and opcode sequence) 931 BBs.push_back(&F.getEntryBlock()); 932 VisitedBBs.insert(BBs[0]); 933 while (!BBs.empty()) { 934 const BasicBlock *BB = BBs.pop_back_val(); 935 // This random value acts as a block header, as otherwise the partition of 936 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes 937 H.add(45798); 938 for (auto &Inst : *BB) { 939 H.add(Inst.getOpcode()); 940 } 941 const TerminatorInst *Term = BB->getTerminator(); 942 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 943 if (!VisitedBBs.insert(Term->getSuccessor(i)).second) 944 continue; 945 BBs.push_back(Term->getSuccessor(i)); 946 } 947 } 948 return H.getHash(); 949 } 950