1 //===- FunctionComparator.h - Function Comparator -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the FunctionComparator and GlobalNumberState classes
10 // which are used by the MergeFunctions pass for comparing functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/FunctionComparator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Metadata.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <cstddef>
46 #include <cstdint>
47 #include <utility>
48
49 using namespace llvm;
50
51 #define DEBUG_TYPE "functioncomparator"
52
cmpNumbers(uint64_t L,uint64_t R) const53 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
54 if (L < R)
55 return -1;
56 if (L > R)
57 return 1;
58 return 0;
59 }
60
cmpAligns(Align L,Align R) const61 int FunctionComparator::cmpAligns(Align L, Align R) const {
62 if (L.value() < R.value())
63 return -1;
64 if (L.value() > R.value())
65 return 1;
66 return 0;
67 }
68
cmpOrderings(AtomicOrdering L,AtomicOrdering R) const69 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
70 if ((int)L < (int)R)
71 return -1;
72 if ((int)L > (int)R)
73 return 1;
74 return 0;
75 }
76
cmpAPInts(const APInt & L,const APInt & R) const77 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
78 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
79 return Res;
80 if (L.ugt(R))
81 return 1;
82 if (R.ugt(L))
83 return -1;
84 return 0;
85 }
86
cmpAPFloats(const APFloat & L,const APFloat & R) const87 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
88 // Floats are ordered first by semantics (i.e. float, double, half, etc.),
89 // then by value interpreted as a bitstring (aka APInt).
90 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
91 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
92 APFloat::semanticsPrecision(SR)))
93 return Res;
94 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
95 APFloat::semanticsMaxExponent(SR)))
96 return Res;
97 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
98 APFloat::semanticsMinExponent(SR)))
99 return Res;
100 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
101 APFloat::semanticsSizeInBits(SR)))
102 return Res;
103 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
104 }
105
cmpMem(StringRef L,StringRef R) const106 int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
107 // Prevent heavy comparison, compare sizes first.
108 if (int Res = cmpNumbers(L.size(), R.size()))
109 return Res;
110
111 // Compare strings lexicographically only when it is necessary: only when
112 // strings are equal in size.
113 return L.compare(R);
114 }
115
cmpAttrs(const AttributeList L,const AttributeList R) const116 int FunctionComparator::cmpAttrs(const AttributeList L,
117 const AttributeList R) const {
118 if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
119 return Res;
120
121 for (unsigned i : L.indexes()) {
122 AttributeSet LAS = L.getAttributes(i);
123 AttributeSet RAS = R.getAttributes(i);
124 AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
125 AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
126 for (; LI != LE && RI != RE; ++LI, ++RI) {
127 Attribute LA = *LI;
128 Attribute RA = *RI;
129 if (LA.isTypeAttribute() && RA.isTypeAttribute()) {
130 if (LA.getKindAsEnum() != RA.getKindAsEnum())
131 return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum());
132
133 Type *TyL = LA.getValueAsType();
134 Type *TyR = RA.getValueAsType();
135 if (TyL && TyR) {
136 if (int Res = cmpTypes(TyL, TyR))
137 return Res;
138 continue;
139 }
140
141 // Two pointers, at least one null, so the comparison result is
142 // independent of the value of a real pointer.
143 if (int Res = cmpNumbers((uint64_t)TyL, (uint64_t)TyR))
144 return Res;
145 continue;
146 }
147 if (LA < RA)
148 return -1;
149 if (RA < LA)
150 return 1;
151 }
152 if (LI != LE)
153 return 1;
154 if (RI != RE)
155 return -1;
156 }
157 return 0;
158 }
159
cmpRangeMetadata(const MDNode * L,const MDNode * R) const160 int FunctionComparator::cmpRangeMetadata(const MDNode *L,
161 const MDNode *R) const {
162 if (L == R)
163 return 0;
164 if (!L)
165 return -1;
166 if (!R)
167 return 1;
168 // Range metadata is a sequence of numbers. Make sure they are the same
169 // sequence.
170 // TODO: Note that as this is metadata, it is possible to drop and/or merge
171 // this data when considering functions to merge. Thus this comparison would
172 // return 0 (i.e. equivalent), but merging would become more complicated
173 // because the ranges would need to be unioned. It is not likely that
174 // functions differ ONLY in this metadata if they are actually the same
175 // function semantically.
176 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
177 return Res;
178 for (size_t I = 0; I < L->getNumOperands(); ++I) {
179 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
180 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
181 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
182 return Res;
183 }
184 return 0;
185 }
186
cmpOperandBundlesSchema(const CallBase & LCS,const CallBase & RCS) const187 int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS,
188 const CallBase &RCS) const {
189 assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!");
190
191 if (int Res =
192 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
193 return Res;
194
195 for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) {
196 auto OBL = LCS.getOperandBundleAt(I);
197 auto OBR = RCS.getOperandBundleAt(I);
198
199 if (int Res = OBL.getTagName().compare(OBR.getTagName()))
200 return Res;
201
202 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
203 return Res;
204 }
205
206 return 0;
207 }
208
209 /// Constants comparison:
210 /// 1. Check whether type of L constant could be losslessly bitcasted to R
211 /// type.
212 /// 2. Compare constant contents.
213 /// For more details see declaration comments.
cmpConstants(const Constant * L,const Constant * R) const214 int FunctionComparator::cmpConstants(const Constant *L,
215 const Constant *R) const {
216 Type *TyL = L->getType();
217 Type *TyR = R->getType();
218
219 // Check whether types are bitcastable. This part is just re-factored
220 // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
221 // we also pack into result which type is "less" for us.
222 int TypesRes = cmpTypes(TyL, TyR);
223 if (TypesRes != 0) {
224 // Types are different, but check whether we can bitcast them.
225 if (!TyL->isFirstClassType()) {
226 if (TyR->isFirstClassType())
227 return -1;
228 // Neither TyL nor TyR are values of first class type. Return the result
229 // of comparing the types
230 return TypesRes;
231 }
232 if (!TyR->isFirstClassType()) {
233 if (TyL->isFirstClassType())
234 return 1;
235 return TypesRes;
236 }
237
238 // Vector -> Vector conversions are always lossless if the two vector types
239 // have the same size, otherwise not.
240 unsigned TyLWidth = 0;
241 unsigned TyRWidth = 0;
242
243 if (auto *VecTyL = dyn_cast<VectorType>(TyL))
244 TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedSize();
245 if (auto *VecTyR = dyn_cast<VectorType>(TyR))
246 TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedSize();
247
248 if (TyLWidth != TyRWidth)
249 return cmpNumbers(TyLWidth, TyRWidth);
250
251 // Zero bit-width means neither TyL nor TyR are vectors.
252 if (!TyLWidth) {
253 PointerType *PTyL = dyn_cast<PointerType>(TyL);
254 PointerType *PTyR = dyn_cast<PointerType>(TyR);
255 if (PTyL && PTyR) {
256 unsigned AddrSpaceL = PTyL->getAddressSpace();
257 unsigned AddrSpaceR = PTyR->getAddressSpace();
258 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
259 return Res;
260 }
261 if (PTyL)
262 return 1;
263 if (PTyR)
264 return -1;
265
266 // TyL and TyR aren't vectors, nor pointers. We don't know how to
267 // bitcast them.
268 return TypesRes;
269 }
270 }
271
272 // OK, types are bitcastable, now check constant contents.
273
274 if (L->isNullValue() && R->isNullValue())
275 return TypesRes;
276 if (L->isNullValue() && !R->isNullValue())
277 return 1;
278 if (!L->isNullValue() && R->isNullValue())
279 return -1;
280
281 auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L));
282 auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R));
283 if (GlobalValueL && GlobalValueR) {
284 return cmpGlobalValues(GlobalValueL, GlobalValueR);
285 }
286
287 if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
288 return Res;
289
290 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
291 const auto *SeqR = cast<ConstantDataSequential>(R);
292 // This handles ConstantDataArray and ConstantDataVector. Note that we
293 // compare the two raw data arrays, which might differ depending on the host
294 // endianness. This isn't a problem though, because the endiness of a module
295 // will affect the order of the constants, but this order is the same
296 // for a given input module and host platform.
297 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
298 }
299
300 switch (L->getValueID()) {
301 case Value::UndefValueVal:
302 case Value::PoisonValueVal:
303 case Value::ConstantTokenNoneVal:
304 return TypesRes;
305 case Value::ConstantIntVal: {
306 const APInt &LInt = cast<ConstantInt>(L)->getValue();
307 const APInt &RInt = cast<ConstantInt>(R)->getValue();
308 return cmpAPInts(LInt, RInt);
309 }
310 case Value::ConstantFPVal: {
311 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
312 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
313 return cmpAPFloats(LAPF, RAPF);
314 }
315 case Value::ConstantArrayVal: {
316 const ConstantArray *LA = cast<ConstantArray>(L);
317 const ConstantArray *RA = cast<ConstantArray>(R);
318 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
319 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
320 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
321 return Res;
322 for (uint64_t i = 0; i < NumElementsL; ++i) {
323 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
324 cast<Constant>(RA->getOperand(i))))
325 return Res;
326 }
327 return 0;
328 }
329 case Value::ConstantStructVal: {
330 const ConstantStruct *LS = cast<ConstantStruct>(L);
331 const ConstantStruct *RS = cast<ConstantStruct>(R);
332 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
333 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
334 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
335 return Res;
336 for (unsigned i = 0; i != NumElementsL; ++i) {
337 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
338 cast<Constant>(RS->getOperand(i))))
339 return Res;
340 }
341 return 0;
342 }
343 case Value::ConstantVectorVal: {
344 const ConstantVector *LV = cast<ConstantVector>(L);
345 const ConstantVector *RV = cast<ConstantVector>(R);
346 unsigned NumElementsL = cast<FixedVectorType>(TyL)->getNumElements();
347 unsigned NumElementsR = cast<FixedVectorType>(TyR)->getNumElements();
348 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
349 return Res;
350 for (uint64_t i = 0; i < NumElementsL; ++i) {
351 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
352 cast<Constant>(RV->getOperand(i))))
353 return Res;
354 }
355 return 0;
356 }
357 case Value::ConstantExprVal: {
358 const ConstantExpr *LE = cast<ConstantExpr>(L);
359 const ConstantExpr *RE = cast<ConstantExpr>(R);
360 unsigned NumOperandsL = LE->getNumOperands();
361 unsigned NumOperandsR = RE->getNumOperands();
362 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
363 return Res;
364 for (unsigned i = 0; i < NumOperandsL; ++i) {
365 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
366 cast<Constant>(RE->getOperand(i))))
367 return Res;
368 }
369 return 0;
370 }
371 case Value::BlockAddressVal: {
372 const BlockAddress *LBA = cast<BlockAddress>(L);
373 const BlockAddress *RBA = cast<BlockAddress>(R);
374 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
375 return Res;
376 if (LBA->getFunction() == RBA->getFunction()) {
377 // They are BBs in the same function. Order by which comes first in the
378 // BB order of the function. This order is deterministic.
379 Function *F = LBA->getFunction();
380 BasicBlock *LBB = LBA->getBasicBlock();
381 BasicBlock *RBB = RBA->getBasicBlock();
382 if (LBB == RBB)
383 return 0;
384 for (BasicBlock &BB : F->getBasicBlockList()) {
385 if (&BB == LBB) {
386 assert(&BB != RBB);
387 return -1;
388 }
389 if (&BB == RBB)
390 return 1;
391 }
392 llvm_unreachable("Basic Block Address does not point to a basic block in "
393 "its function.");
394 return -1;
395 } else {
396 // cmpValues said the functions are the same. So because they aren't
397 // literally the same pointer, they must respectively be the left and
398 // right functions.
399 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
400 // cmpValues will tell us if these are equivalent BasicBlocks, in the
401 // context of their respective functions.
402 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
403 }
404 }
405 default: // Unknown constant, abort.
406 LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
407 llvm_unreachable("Constant ValueID not recognized.");
408 return -1;
409 }
410 }
411
cmpGlobalValues(GlobalValue * L,GlobalValue * R) const412 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
413 uint64_t LNumber = GlobalNumbers->getNumber(L);
414 uint64_t RNumber = GlobalNumbers->getNumber(R);
415 return cmpNumbers(LNumber, RNumber);
416 }
417
418 /// cmpType - compares two types,
419 /// defines total ordering among the types set.
420 /// See method declaration comments for more details.
cmpTypes(Type * TyL,Type * TyR) const421 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
422 PointerType *PTyL = dyn_cast<PointerType>(TyL);
423 PointerType *PTyR = dyn_cast<PointerType>(TyR);
424
425 const DataLayout &DL = FnL->getParent()->getDataLayout();
426 if (PTyL && PTyL->getAddressSpace() == 0)
427 TyL = DL.getIntPtrType(TyL);
428 if (PTyR && PTyR->getAddressSpace() == 0)
429 TyR = DL.getIntPtrType(TyR);
430
431 if (TyL == TyR)
432 return 0;
433
434 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
435 return Res;
436
437 switch (TyL->getTypeID()) {
438 default:
439 llvm_unreachable("Unknown type!");
440 case Type::IntegerTyID:
441 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
442 cast<IntegerType>(TyR)->getBitWidth());
443 // TyL == TyR would have returned true earlier, because types are uniqued.
444 case Type::VoidTyID:
445 case Type::FloatTyID:
446 case Type::DoubleTyID:
447 case Type::X86_FP80TyID:
448 case Type::FP128TyID:
449 case Type::PPC_FP128TyID:
450 case Type::LabelTyID:
451 case Type::MetadataTyID:
452 case Type::TokenTyID:
453 return 0;
454
455 case Type::PointerTyID:
456 assert(PTyL && PTyR && "Both types must be pointers here.");
457 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
458
459 case Type::StructTyID: {
460 StructType *STyL = cast<StructType>(TyL);
461 StructType *STyR = cast<StructType>(TyR);
462 if (STyL->getNumElements() != STyR->getNumElements())
463 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
464
465 if (STyL->isPacked() != STyR->isPacked())
466 return cmpNumbers(STyL->isPacked(), STyR->isPacked());
467
468 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
469 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
470 return Res;
471 }
472 return 0;
473 }
474
475 case Type::FunctionTyID: {
476 FunctionType *FTyL = cast<FunctionType>(TyL);
477 FunctionType *FTyR = cast<FunctionType>(TyR);
478 if (FTyL->getNumParams() != FTyR->getNumParams())
479 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
480
481 if (FTyL->isVarArg() != FTyR->isVarArg())
482 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
483
484 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
485 return Res;
486
487 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
488 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
489 return Res;
490 }
491 return 0;
492 }
493
494 case Type::ArrayTyID: {
495 auto *STyL = cast<ArrayType>(TyL);
496 auto *STyR = cast<ArrayType>(TyR);
497 if (STyL->getNumElements() != STyR->getNumElements())
498 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
499 return cmpTypes(STyL->getElementType(), STyR->getElementType());
500 }
501 case Type::FixedVectorTyID:
502 case Type::ScalableVectorTyID: {
503 auto *STyL = cast<VectorType>(TyL);
504 auto *STyR = cast<VectorType>(TyR);
505 if (STyL->getElementCount().isScalable() !=
506 STyR->getElementCount().isScalable())
507 return cmpNumbers(STyL->getElementCount().isScalable(),
508 STyR->getElementCount().isScalable());
509 if (STyL->getElementCount() != STyR->getElementCount())
510 return cmpNumbers(STyL->getElementCount().getKnownMinValue(),
511 STyR->getElementCount().getKnownMinValue());
512 return cmpTypes(STyL->getElementType(), STyR->getElementType());
513 }
514 }
515 }
516
517 // Determine whether the two operations are the same except that pointer-to-A
518 // and pointer-to-B are equivalent. This should be kept in sync with
519 // Instruction::isSameOperationAs.
520 // Read method declaration comments for more details.
cmpOperations(const Instruction * L,const Instruction * R,bool & needToCmpOperands) const521 int FunctionComparator::cmpOperations(const Instruction *L,
522 const Instruction *R,
523 bool &needToCmpOperands) const {
524 needToCmpOperands = true;
525 if (int Res = cmpValues(L, R))
526 return Res;
527
528 // Differences from Instruction::isSameOperationAs:
529 // * replace type comparison with calls to cmpTypes.
530 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
531 // * because of the above, we don't test for the tail bit on calls later on.
532 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
533 return Res;
534
535 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
536 needToCmpOperands = false;
537 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
538 if (int Res =
539 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
540 return Res;
541 return cmpGEPs(GEPL, GEPR);
542 }
543
544 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
545 return Res;
546
547 if (int Res = cmpTypes(L->getType(), R->getType()))
548 return Res;
549
550 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
551 R->getRawSubclassOptionalData()))
552 return Res;
553
554 // We have two instructions of identical opcode and #operands. Check to see
555 // if all operands are the same type
556 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
557 if (int Res =
558 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
559 return Res;
560 }
561
562 // Check special state that is a part of some instructions.
563 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
564 if (int Res = cmpTypes(AI->getAllocatedType(),
565 cast<AllocaInst>(R)->getAllocatedType()))
566 return Res;
567 return cmpAligns(AI->getAlign(), cast<AllocaInst>(R)->getAlign());
568 }
569 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
570 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
571 return Res;
572 if (int Res = cmpAligns(LI->getAlign(), cast<LoadInst>(R)->getAlign()))
573 return Res;
574 if (int Res =
575 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
576 return Res;
577 if (int Res = cmpNumbers(LI->getSyncScopeID(),
578 cast<LoadInst>(R)->getSyncScopeID()))
579 return Res;
580 return cmpRangeMetadata(
581 LI->getMetadata(LLVMContext::MD_range),
582 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
583 }
584 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
585 if (int Res =
586 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
587 return Res;
588 if (int Res = cmpAligns(SI->getAlign(), cast<StoreInst>(R)->getAlign()))
589 return Res;
590 if (int Res =
591 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
592 return Res;
593 return cmpNumbers(SI->getSyncScopeID(),
594 cast<StoreInst>(R)->getSyncScopeID());
595 }
596 if (const CmpInst *CI = dyn_cast<CmpInst>(L))
597 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
598 if (auto *CBL = dyn_cast<CallBase>(L)) {
599 auto *CBR = cast<CallBase>(R);
600 if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv()))
601 return Res;
602 if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes()))
603 return Res;
604 if (int Res = cmpOperandBundlesSchema(*CBL, *CBR))
605 return Res;
606 if (const CallInst *CI = dyn_cast<CallInst>(L))
607 if (int Res = cmpNumbers(CI->getTailCallKind(),
608 cast<CallInst>(R)->getTailCallKind()))
609 return Res;
610 return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range),
611 R->getMetadata(LLVMContext::MD_range));
612 }
613 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
614 ArrayRef<unsigned> LIndices = IVI->getIndices();
615 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
616 if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
617 return Res;
618 for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
619 if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
620 return Res;
621 }
622 return 0;
623 }
624 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
625 ArrayRef<unsigned> LIndices = EVI->getIndices();
626 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
627 if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
628 return Res;
629 for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
630 if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
631 return Res;
632 }
633 }
634 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
635 if (int Res =
636 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
637 return Res;
638 return cmpNumbers(FI->getSyncScopeID(),
639 cast<FenceInst>(R)->getSyncScopeID());
640 }
641 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
642 if (int Res = cmpNumbers(CXI->isVolatile(),
643 cast<AtomicCmpXchgInst>(R)->isVolatile()))
644 return Res;
645 if (int Res =
646 cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak()))
647 return Res;
648 if (int Res =
649 cmpOrderings(CXI->getSuccessOrdering(),
650 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
651 return Res;
652 if (int Res =
653 cmpOrderings(CXI->getFailureOrdering(),
654 cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
655 return Res;
656 return cmpNumbers(CXI->getSyncScopeID(),
657 cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
658 }
659 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
660 if (int Res = cmpNumbers(RMWI->getOperation(),
661 cast<AtomicRMWInst>(R)->getOperation()))
662 return Res;
663 if (int Res = cmpNumbers(RMWI->isVolatile(),
664 cast<AtomicRMWInst>(R)->isVolatile()))
665 return Res;
666 if (int Res = cmpOrderings(RMWI->getOrdering(),
667 cast<AtomicRMWInst>(R)->getOrdering()))
668 return Res;
669 return cmpNumbers(RMWI->getSyncScopeID(),
670 cast<AtomicRMWInst>(R)->getSyncScopeID());
671 }
672 if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(L)) {
673 ArrayRef<int> LMask = SVI->getShuffleMask();
674 ArrayRef<int> RMask = cast<ShuffleVectorInst>(R)->getShuffleMask();
675 if (int Res = cmpNumbers(LMask.size(), RMask.size()))
676 return Res;
677 for (size_t i = 0, e = LMask.size(); i != e; ++i) {
678 if (int Res = cmpNumbers(LMask[i], RMask[i]))
679 return Res;
680 }
681 }
682 if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
683 const PHINode *PNR = cast<PHINode>(R);
684 // Ensure that in addition to the incoming values being identical
685 // (checked by the caller of this function), the incoming blocks
686 // are also identical.
687 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
688 if (int Res =
689 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
690 return Res;
691 }
692 }
693 return 0;
694 }
695
696 // Determine whether two GEP operations perform the same underlying arithmetic.
697 // Read method declaration comments for more details.
cmpGEPs(const GEPOperator * GEPL,const GEPOperator * GEPR) const698 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
699 const GEPOperator *GEPR) const {
700 unsigned int ASL = GEPL->getPointerAddressSpace();
701 unsigned int ASR = GEPR->getPointerAddressSpace();
702
703 if (int Res = cmpNumbers(ASL, ASR))
704 return Res;
705
706 // When we have target data, we can reduce the GEP down to the value in bytes
707 // added to the address.
708 const DataLayout &DL = FnL->getParent()->getDataLayout();
709 unsigned BitWidth = DL.getPointerSizeInBits(ASL);
710 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
711 if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
712 GEPR->accumulateConstantOffset(DL, OffsetR))
713 return cmpAPInts(OffsetL, OffsetR);
714 if (int Res =
715 cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType()))
716 return Res;
717
718 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
719 return Res;
720
721 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
722 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
723 return Res;
724 }
725
726 return 0;
727 }
728
cmpInlineAsm(const InlineAsm * L,const InlineAsm * R) const729 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
730 const InlineAsm *R) const {
731 // InlineAsm's are uniqued. If they are the same pointer, obviously they are
732 // the same, otherwise compare the fields.
733 if (L == R)
734 return 0;
735 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
736 return Res;
737 if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
738 return Res;
739 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
740 return Res;
741 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
742 return Res;
743 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
744 return Res;
745 if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
746 return Res;
747 assert(L->getFunctionType() != R->getFunctionType());
748 return 0;
749 }
750
751 /// Compare two values used by the two functions under pair-wise comparison. If
752 /// this is the first time the values are seen, they're added to the mapping so
753 /// that we will detect mismatches on next use.
754 /// See comments in declaration for more details.
cmpValues(const Value * L,const Value * R) const755 int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
756 // Catch self-reference case.
757 if (L == FnL) {
758 if (R == FnR)
759 return 0;
760 return -1;
761 }
762 if (R == FnR) {
763 if (L == FnL)
764 return 0;
765 return 1;
766 }
767
768 const Constant *ConstL = dyn_cast<Constant>(L);
769 const Constant *ConstR = dyn_cast<Constant>(R);
770 if (ConstL && ConstR) {
771 if (L == R)
772 return 0;
773 return cmpConstants(ConstL, ConstR);
774 }
775
776 if (ConstL)
777 return 1;
778 if (ConstR)
779 return -1;
780
781 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
782 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
783
784 if (InlineAsmL && InlineAsmR)
785 return cmpInlineAsm(InlineAsmL, InlineAsmR);
786 if (InlineAsmL)
787 return 1;
788 if (InlineAsmR)
789 return -1;
790
791 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
792 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
793
794 return cmpNumbers(LeftSN.first->second, RightSN.first->second);
795 }
796
797 // Test whether two basic blocks have equivalent behaviour.
cmpBasicBlocks(const BasicBlock * BBL,const BasicBlock * BBR) const798 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
799 const BasicBlock *BBR) const {
800 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
801 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
802
803 do {
804 bool needToCmpOperands = true;
805 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
806 return Res;
807 if (needToCmpOperands) {
808 assert(InstL->getNumOperands() == InstR->getNumOperands());
809
810 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
811 Value *OpL = InstL->getOperand(i);
812 Value *OpR = InstR->getOperand(i);
813 if (int Res = cmpValues(OpL, OpR))
814 return Res;
815 // cmpValues should ensure this is true.
816 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
817 }
818 }
819
820 ++InstL;
821 ++InstR;
822 } while (InstL != InstLE && InstR != InstRE);
823
824 if (InstL != InstLE && InstR == InstRE)
825 return 1;
826 if (InstL == InstLE && InstR != InstRE)
827 return -1;
828 return 0;
829 }
830
compareSignature() const831 int FunctionComparator::compareSignature() const {
832 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
833 return Res;
834
835 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
836 return Res;
837
838 if (FnL->hasGC()) {
839 if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
840 return Res;
841 }
842
843 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
844 return Res;
845
846 if (FnL->hasSection()) {
847 if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
848 return Res;
849 }
850
851 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
852 return Res;
853
854 // TODO: if it's internal and only used in direct calls, we could handle this
855 // case too.
856 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
857 return Res;
858
859 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
860 return Res;
861
862 assert(FnL->arg_size() == FnR->arg_size() &&
863 "Identically typed functions have different numbers of args!");
864
865 // Visit the arguments so that they get enumerated in the order they're
866 // passed in.
867 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
868 ArgRI = FnR->arg_begin(),
869 ArgLE = FnL->arg_end();
870 ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
871 if (cmpValues(&*ArgLI, &*ArgRI) != 0)
872 llvm_unreachable("Arguments repeat!");
873 }
874 return 0;
875 }
876
877 // Test whether the two functions have equivalent behaviour.
compare()878 int FunctionComparator::compare() {
879 beginCompare();
880
881 if (int Res = compareSignature())
882 return Res;
883
884 // We do a CFG-ordered walk since the actual ordering of the blocks in the
885 // linked list is immaterial. Our walk starts at the entry block for both
886 // functions, then takes each block from each terminator in order. As an
887 // artifact, this also means that unreachable blocks are ignored.
888 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
889 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
890
891 FnLBBs.push_back(&FnL->getEntryBlock());
892 FnRBBs.push_back(&FnR->getEntryBlock());
893
894 VisitedBBs.insert(FnLBBs[0]);
895 while (!FnLBBs.empty()) {
896 const BasicBlock *BBL = FnLBBs.pop_back_val();
897 const BasicBlock *BBR = FnRBBs.pop_back_val();
898
899 if (int Res = cmpValues(BBL, BBR))
900 return Res;
901
902 if (int Res = cmpBasicBlocks(BBL, BBR))
903 return Res;
904
905 const Instruction *TermL = BBL->getTerminator();
906 const Instruction *TermR = BBR->getTerminator();
907
908 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
909 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
910 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
911 continue;
912
913 FnLBBs.push_back(TermL->getSuccessor(i));
914 FnRBBs.push_back(TermR->getSuccessor(i));
915 }
916 }
917 return 0;
918 }
919
920 namespace {
921
922 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
923 // hash of a sequence of 64bit ints, but the entire input does not need to be
924 // available at once. This interface is necessary for functionHash because it
925 // needs to accumulate the hash as the structure of the function is traversed
926 // without saving these values to an intermediate buffer. This form of hashing
927 // is not often needed, as usually the object to hash is just read from a
928 // buffer.
929 class HashAccumulator64 {
930 uint64_t Hash;
931
932 public:
933 // Initialize to random constant, so the state isn't zero.
HashAccumulator64()934 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
935
add(uint64_t V)936 void add(uint64_t V) { Hash = hashing::detail::hash_16_bytes(Hash, V); }
937
938 // No finishing is required, because the entire hash value is used.
getHash()939 uint64_t getHash() { return Hash; }
940 };
941
942 } // end anonymous namespace
943
944 // A function hash is calculated by considering only the number of arguments and
945 // whether a function is varargs, the order of basic blocks (given by the
946 // successors of each basic block in depth first order), and the order of
947 // opcodes of each instruction within each of these basic blocks. This mirrors
948 // the strategy compare() uses to compare functions by walking the BBs in depth
949 // first order and comparing each instruction in sequence. Because this hash
950 // does not look at the operands, it is insensitive to things such as the
951 // target of calls and the constants used in the function, which makes it useful
952 // when possibly merging functions which are the same modulo constants and call
953 // targets.
functionHash(Function & F)954 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
955 HashAccumulator64 H;
956 H.add(F.isVarArg());
957 H.add(F.arg_size());
958
959 SmallVector<const BasicBlock *, 8> BBs;
960 SmallPtrSet<const BasicBlock *, 16> VisitedBBs;
961
962 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
963 // accumulating the hash of the function "structure." (BB and opcode sequence)
964 BBs.push_back(&F.getEntryBlock());
965 VisitedBBs.insert(BBs[0]);
966 while (!BBs.empty()) {
967 const BasicBlock *BB = BBs.pop_back_val();
968 // This random value acts as a block header, as otherwise the partition of
969 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
970 H.add(45798);
971 for (auto &Inst : *BB) {
972 H.add(Inst.getOpcode());
973 }
974 const Instruction *Term = BB->getTerminator();
975 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
976 if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
977 continue;
978 BBs.push_back(Term->getSuccessor(i));
979 }
980 }
981 return H.getHash();
982 }
983