1 //===- FunctionComparator.h - Function Comparator -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the FunctionComparator and GlobalNumberState classes 11 // which are used by the MergeFunctions pass for comparing functions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/FunctionComparator.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/IR/CallSite.h" 18 #include "llvm/IR/Instructions.h" 19 #include "llvm/IR/InlineAsm.h" 20 #include "llvm/IR/Module.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 24 using namespace llvm; 25 26 #define DEBUG_TYPE "functioncomparator" 27 28 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 29 if (L < R) return -1; 30 if (L > R) return 1; 31 return 0; 32 } 33 34 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { 35 if ((int)L < (int)R) return -1; 36 if ((int)L > (int)R) return 1; 37 return 0; 38 } 39 40 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 41 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 42 return Res; 43 if (L.ugt(R)) return 1; 44 if (R.ugt(L)) return -1; 45 return 0; 46 } 47 48 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 49 // Floats are ordered first by semantics (i.e. float, double, half, etc.), 50 // then by value interpreted as a bitstring (aka APInt). 51 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); 52 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), 53 APFloat::semanticsPrecision(SR))) 54 return Res; 55 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), 56 APFloat::semanticsMaxExponent(SR))) 57 return Res; 58 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), 59 APFloat::semanticsMinExponent(SR))) 60 return Res; 61 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), 62 APFloat::semanticsSizeInBits(SR))) 63 return Res; 64 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 65 } 66 67 int FunctionComparator::cmpMem(StringRef L, StringRef R) const { 68 // Prevent heavy comparison, compare sizes first. 69 if (int Res = cmpNumbers(L.size(), R.size())) 70 return Res; 71 72 // Compare strings lexicographically only when it is necessary: only when 73 // strings are equal in size. 74 return L.compare(R); 75 } 76 77 int FunctionComparator::cmpAttrs(const AttributeSet L, 78 const AttributeSet R) const { 79 if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots())) 80 return Res; 81 82 for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) { 83 AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i), 84 RE = R.end(i); 85 for (; LI != LE && RI != RE; ++LI, ++RI) { 86 Attribute LA = *LI; 87 Attribute RA = *RI; 88 if (LA < RA) 89 return -1; 90 if (RA < LA) 91 return 1; 92 } 93 if (LI != LE) 94 return 1; 95 if (RI != RE) 96 return -1; 97 } 98 return 0; 99 } 100 101 int FunctionComparator::cmpRangeMetadata(const MDNode *L, 102 const MDNode *R) const { 103 if (L == R) 104 return 0; 105 if (!L) 106 return -1; 107 if (!R) 108 return 1; 109 // Range metadata is a sequence of numbers. Make sure they are the same 110 // sequence. 111 // TODO: Note that as this is metadata, it is possible to drop and/or merge 112 // this data when considering functions to merge. Thus this comparison would 113 // return 0 (i.e. equivalent), but merging would become more complicated 114 // because the ranges would need to be unioned. It is not likely that 115 // functions differ ONLY in this metadata if they are actually the same 116 // function semantically. 117 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 118 return Res; 119 for (size_t I = 0; I < L->getNumOperands(); ++I) { 120 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); 121 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); 122 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) 123 return Res; 124 } 125 return 0; 126 } 127 128 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L, 129 const Instruction *R) const { 130 ImmutableCallSite LCS(L); 131 ImmutableCallSite RCS(R); 132 133 assert(LCS && RCS && "Must be calls or invokes!"); 134 assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!"); 135 136 if (int Res = 137 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) 138 return Res; 139 140 for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) { 141 auto OBL = LCS.getOperandBundleAt(i); 142 auto OBR = RCS.getOperandBundleAt(i); 143 144 if (int Res = OBL.getTagName().compare(OBR.getTagName())) 145 return Res; 146 147 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) 148 return Res; 149 } 150 151 return 0; 152 } 153 154 /// Constants comparison: 155 /// 1. Check whether type of L constant could be losslessly bitcasted to R 156 /// type. 157 /// 2. Compare constant contents. 158 /// For more details see declaration comments. 159 int FunctionComparator::cmpConstants(const Constant *L, 160 const Constant *R) const { 161 162 Type *TyL = L->getType(); 163 Type *TyR = R->getType(); 164 165 // Check whether types are bitcastable. This part is just re-factored 166 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 167 // we also pack into result which type is "less" for us. 168 int TypesRes = cmpTypes(TyL, TyR); 169 if (TypesRes != 0) { 170 // Types are different, but check whether we can bitcast them. 171 if (!TyL->isFirstClassType()) { 172 if (TyR->isFirstClassType()) 173 return -1; 174 // Neither TyL nor TyR are values of first class type. Return the result 175 // of comparing the types 176 return TypesRes; 177 } 178 if (!TyR->isFirstClassType()) { 179 if (TyL->isFirstClassType()) 180 return 1; 181 return TypesRes; 182 } 183 184 // Vector -> Vector conversions are always lossless if the two vector types 185 // have the same size, otherwise not. 186 unsigned TyLWidth = 0; 187 unsigned TyRWidth = 0; 188 189 if (auto *VecTyL = dyn_cast<VectorType>(TyL)) 190 TyLWidth = VecTyL->getBitWidth(); 191 if (auto *VecTyR = dyn_cast<VectorType>(TyR)) 192 TyRWidth = VecTyR->getBitWidth(); 193 194 if (TyLWidth != TyRWidth) 195 return cmpNumbers(TyLWidth, TyRWidth); 196 197 // Zero bit-width means neither TyL nor TyR are vectors. 198 if (!TyLWidth) { 199 PointerType *PTyL = dyn_cast<PointerType>(TyL); 200 PointerType *PTyR = dyn_cast<PointerType>(TyR); 201 if (PTyL && PTyR) { 202 unsigned AddrSpaceL = PTyL->getAddressSpace(); 203 unsigned AddrSpaceR = PTyR->getAddressSpace(); 204 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 205 return Res; 206 } 207 if (PTyL) 208 return 1; 209 if (PTyR) 210 return -1; 211 212 // TyL and TyR aren't vectors, nor pointers. We don't know how to 213 // bitcast them. 214 return TypesRes; 215 } 216 } 217 218 // OK, types are bitcastable, now check constant contents. 219 220 if (L->isNullValue() && R->isNullValue()) 221 return TypesRes; 222 if (L->isNullValue() && !R->isNullValue()) 223 return 1; 224 if (!L->isNullValue() && R->isNullValue()) 225 return -1; 226 227 auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L)); 228 auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R)); 229 if (GlobalValueL && GlobalValueR) { 230 return cmpGlobalValues(GlobalValueL, GlobalValueR); 231 } 232 233 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 234 return Res; 235 236 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { 237 const auto *SeqR = cast<ConstantDataSequential>(R); 238 // This handles ConstantDataArray and ConstantDataVector. Note that we 239 // compare the two raw data arrays, which might differ depending on the host 240 // endianness. This isn't a problem though, because the endiness of a module 241 // will affect the order of the constants, but this order is the same 242 // for a given input module and host platform. 243 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); 244 } 245 246 switch (L->getValueID()) { 247 case Value::UndefValueVal: 248 case Value::ConstantTokenNoneVal: 249 return TypesRes; 250 case Value::ConstantIntVal: { 251 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 252 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 253 return cmpAPInts(LInt, RInt); 254 } 255 case Value::ConstantFPVal: { 256 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 257 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 258 return cmpAPFloats(LAPF, RAPF); 259 } 260 case Value::ConstantArrayVal: { 261 const ConstantArray *LA = cast<ConstantArray>(L); 262 const ConstantArray *RA = cast<ConstantArray>(R); 263 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 264 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 265 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 266 return Res; 267 for (uint64_t i = 0; i < NumElementsL; ++i) { 268 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 269 cast<Constant>(RA->getOperand(i)))) 270 return Res; 271 } 272 return 0; 273 } 274 case Value::ConstantStructVal: { 275 const ConstantStruct *LS = cast<ConstantStruct>(L); 276 const ConstantStruct *RS = cast<ConstantStruct>(R); 277 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 278 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 279 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 280 return Res; 281 for (unsigned i = 0; i != NumElementsL; ++i) { 282 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 283 cast<Constant>(RS->getOperand(i)))) 284 return Res; 285 } 286 return 0; 287 } 288 case Value::ConstantVectorVal: { 289 const ConstantVector *LV = cast<ConstantVector>(L); 290 const ConstantVector *RV = cast<ConstantVector>(R); 291 unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements(); 292 unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements(); 293 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 294 return Res; 295 for (uint64_t i = 0; i < NumElementsL; ++i) { 296 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 297 cast<Constant>(RV->getOperand(i)))) 298 return Res; 299 } 300 return 0; 301 } 302 case Value::ConstantExprVal: { 303 const ConstantExpr *LE = cast<ConstantExpr>(L); 304 const ConstantExpr *RE = cast<ConstantExpr>(R); 305 unsigned NumOperandsL = LE->getNumOperands(); 306 unsigned NumOperandsR = RE->getNumOperands(); 307 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 308 return Res; 309 for (unsigned i = 0; i < NumOperandsL; ++i) { 310 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 311 cast<Constant>(RE->getOperand(i)))) 312 return Res; 313 } 314 return 0; 315 } 316 case Value::BlockAddressVal: { 317 const BlockAddress *LBA = cast<BlockAddress>(L); 318 const BlockAddress *RBA = cast<BlockAddress>(R); 319 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) 320 return Res; 321 if (LBA->getFunction() == RBA->getFunction()) { 322 // They are BBs in the same function. Order by which comes first in the 323 // BB order of the function. This order is deterministic. 324 Function* F = LBA->getFunction(); 325 BasicBlock *LBB = LBA->getBasicBlock(); 326 BasicBlock *RBB = RBA->getBasicBlock(); 327 if (LBB == RBB) 328 return 0; 329 for(BasicBlock &BB : F->getBasicBlockList()) { 330 if (&BB == LBB) { 331 assert(&BB != RBB); 332 return -1; 333 } 334 if (&BB == RBB) 335 return 1; 336 } 337 llvm_unreachable("Basic Block Address does not point to a basic block in " 338 "its function."); 339 return -1; 340 } else { 341 // cmpValues said the functions are the same. So because they aren't 342 // literally the same pointer, they must respectively be the left and 343 // right functions. 344 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); 345 // cmpValues will tell us if these are equivalent BasicBlocks, in the 346 // context of their respective functions. 347 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); 348 } 349 } 350 default: // Unknown constant, abort. 351 DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); 352 llvm_unreachable("Constant ValueID not recognized."); 353 return -1; 354 } 355 } 356 357 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { 358 uint64_t LNumber = GlobalNumbers->getNumber(L); 359 uint64_t RNumber = GlobalNumbers->getNumber(R); 360 return cmpNumbers(LNumber, RNumber); 361 } 362 363 /// cmpType - compares two types, 364 /// defines total ordering among the types set. 365 /// See method declaration comments for more details. 366 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 367 PointerType *PTyL = dyn_cast<PointerType>(TyL); 368 PointerType *PTyR = dyn_cast<PointerType>(TyR); 369 370 const DataLayout &DL = FnL->getParent()->getDataLayout(); 371 if (PTyL && PTyL->getAddressSpace() == 0) 372 TyL = DL.getIntPtrType(TyL); 373 if (PTyR && PTyR->getAddressSpace() == 0) 374 TyR = DL.getIntPtrType(TyR); 375 376 if (TyL == TyR) 377 return 0; 378 379 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 380 return Res; 381 382 switch (TyL->getTypeID()) { 383 default: 384 llvm_unreachable("Unknown type!"); 385 // Fall through in Release mode. 386 LLVM_FALLTHROUGH; 387 case Type::IntegerTyID: 388 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), 389 cast<IntegerType>(TyR)->getBitWidth()); 390 case Type::VectorTyID: { 391 VectorType *VTyL = cast<VectorType>(TyL), *VTyR = cast<VectorType>(TyR); 392 if (int Res = cmpNumbers(VTyL->getNumElements(), VTyR->getNumElements())) 393 return Res; 394 return cmpTypes(VTyL->getElementType(), VTyR->getElementType()); 395 } 396 // TyL == TyR would have returned true earlier, because types are uniqued. 397 case Type::VoidTyID: 398 case Type::FloatTyID: 399 case Type::DoubleTyID: 400 case Type::X86_FP80TyID: 401 case Type::FP128TyID: 402 case Type::PPC_FP128TyID: 403 case Type::LabelTyID: 404 case Type::MetadataTyID: 405 case Type::TokenTyID: 406 return 0; 407 408 case Type::PointerTyID: { 409 assert(PTyL && PTyR && "Both types must be pointers here."); 410 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 411 } 412 413 case Type::StructTyID: { 414 StructType *STyL = cast<StructType>(TyL); 415 StructType *STyR = cast<StructType>(TyR); 416 if (STyL->getNumElements() != STyR->getNumElements()) 417 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 418 419 if (STyL->isPacked() != STyR->isPacked()) 420 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 421 422 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 423 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 424 return Res; 425 } 426 return 0; 427 } 428 429 case Type::FunctionTyID: { 430 FunctionType *FTyL = cast<FunctionType>(TyL); 431 FunctionType *FTyR = cast<FunctionType>(TyR); 432 if (FTyL->getNumParams() != FTyR->getNumParams()) 433 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 434 435 if (FTyL->isVarArg() != FTyR->isVarArg()) 436 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 437 438 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 439 return Res; 440 441 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 442 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 443 return Res; 444 } 445 return 0; 446 } 447 448 case Type::ArrayTyID: { 449 ArrayType *ATyL = cast<ArrayType>(TyL); 450 ArrayType *ATyR = cast<ArrayType>(TyR); 451 if (ATyL->getNumElements() != ATyR->getNumElements()) 452 return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements()); 453 return cmpTypes(ATyL->getElementType(), ATyR->getElementType()); 454 } 455 } 456 } 457 458 // Determine whether the two operations are the same except that pointer-to-A 459 // and pointer-to-B are equivalent. This should be kept in sync with 460 // Instruction::isSameOperationAs. 461 // Read method declaration comments for more details. 462 int FunctionComparator::cmpOperations(const Instruction *L, 463 const Instruction *R, 464 bool &needToCmpOperands) const { 465 needToCmpOperands = true; 466 if (int Res = cmpValues(L, R)) 467 return Res; 468 469 // Differences from Instruction::isSameOperationAs: 470 // * replace type comparison with calls to cmpTypes. 471 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. 472 // * because of the above, we don't test for the tail bit on calls later on. 473 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 474 return Res; 475 476 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) { 477 needToCmpOperands = false; 478 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R); 479 if (int Res = 480 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 481 return Res; 482 return cmpGEPs(GEPL, GEPR); 483 } 484 485 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 486 return Res; 487 488 if (int Res = cmpTypes(L->getType(), R->getType())) 489 return Res; 490 491 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 492 R->getRawSubclassOptionalData())) 493 return Res; 494 495 // We have two instructions of identical opcode and #operands. Check to see 496 // if all operands are the same type 497 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 498 if (int Res = 499 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 500 return Res; 501 } 502 503 // Check special state that is a part of some instructions. 504 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 505 if (int Res = cmpTypes(AI->getAllocatedType(), 506 cast<AllocaInst>(R)->getAllocatedType())) 507 return Res; 508 return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()); 509 } 510 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 511 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 512 return Res; 513 if (int Res = 514 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) 515 return Res; 516 if (int Res = 517 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 518 return Res; 519 if (int Res = 520 cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope())) 521 return Res; 522 return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range), 523 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); 524 } 525 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 526 if (int Res = 527 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 528 return Res; 529 if (int Res = 530 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) 531 return Res; 532 if (int Res = 533 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 534 return Res; 535 return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope()); 536 } 537 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 538 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 539 if (const CallInst *CI = dyn_cast<CallInst>(L)) { 540 if (int Res = cmpNumbers(CI->getCallingConv(), 541 cast<CallInst>(R)->getCallingConv())) 542 return Res; 543 if (int Res = 544 cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes())) 545 return Res; 546 if (int Res = cmpOperandBundlesSchema(CI, R)) 547 return Res; 548 return cmpRangeMetadata( 549 CI->getMetadata(LLVMContext::MD_range), 550 cast<CallInst>(R)->getMetadata(LLVMContext::MD_range)); 551 } 552 if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) { 553 if (int Res = cmpNumbers(II->getCallingConv(), 554 cast<InvokeInst>(R)->getCallingConv())) 555 return Res; 556 if (int Res = 557 cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes())) 558 return Res; 559 if (int Res = cmpOperandBundlesSchema(II, R)) 560 return Res; 561 return cmpRangeMetadata( 562 II->getMetadata(LLVMContext::MD_range), 563 cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range)); 564 } 565 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 566 ArrayRef<unsigned> LIndices = IVI->getIndices(); 567 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 568 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 569 return Res; 570 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 571 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 572 return Res; 573 } 574 return 0; 575 } 576 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 577 ArrayRef<unsigned> LIndices = EVI->getIndices(); 578 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 579 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 580 return Res; 581 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 582 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 583 return Res; 584 } 585 } 586 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 587 if (int Res = 588 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 589 return Res; 590 return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope()); 591 } 592 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 593 if (int Res = cmpNumbers(CXI->isVolatile(), 594 cast<AtomicCmpXchgInst>(R)->isVolatile())) 595 return Res; 596 if (int Res = cmpNumbers(CXI->isWeak(), 597 cast<AtomicCmpXchgInst>(R)->isWeak())) 598 return Res; 599 if (int Res = 600 cmpOrderings(CXI->getSuccessOrdering(), 601 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 602 return Res; 603 if (int Res = 604 cmpOrderings(CXI->getFailureOrdering(), 605 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 606 return Res; 607 return cmpNumbers(CXI->getSynchScope(), 608 cast<AtomicCmpXchgInst>(R)->getSynchScope()); 609 } 610 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 611 if (int Res = cmpNumbers(RMWI->getOperation(), 612 cast<AtomicRMWInst>(R)->getOperation())) 613 return Res; 614 if (int Res = cmpNumbers(RMWI->isVolatile(), 615 cast<AtomicRMWInst>(R)->isVolatile())) 616 return Res; 617 if (int Res = cmpOrderings(RMWI->getOrdering(), 618 cast<AtomicRMWInst>(R)->getOrdering())) 619 return Res; 620 return cmpNumbers(RMWI->getSynchScope(), 621 cast<AtomicRMWInst>(R)->getSynchScope()); 622 } 623 if (const PHINode *PNL = dyn_cast<PHINode>(L)) { 624 const PHINode *PNR = cast<PHINode>(R); 625 // Ensure that in addition to the incoming values being identical 626 // (checked by the caller of this function), the incoming blocks 627 // are also identical. 628 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { 629 if (int Res = 630 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) 631 return Res; 632 } 633 } 634 return 0; 635 } 636 637 // Determine whether two GEP operations perform the same underlying arithmetic. 638 // Read method declaration comments for more details. 639 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 640 const GEPOperator *GEPR) const { 641 642 unsigned int ASL = GEPL->getPointerAddressSpace(); 643 unsigned int ASR = GEPR->getPointerAddressSpace(); 644 645 if (int Res = cmpNumbers(ASL, ASR)) 646 return Res; 647 648 // When we have target data, we can reduce the GEP down to the value in bytes 649 // added to the address. 650 const DataLayout &DL = FnL->getParent()->getDataLayout(); 651 unsigned BitWidth = DL.getPointerSizeInBits(ASL); 652 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); 653 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 654 GEPR->accumulateConstantOffset(DL, OffsetR)) 655 return cmpAPInts(OffsetL, OffsetR); 656 if (int Res = cmpTypes(GEPL->getSourceElementType(), 657 GEPR->getSourceElementType())) 658 return Res; 659 660 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 661 return Res; 662 663 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 664 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 665 return Res; 666 } 667 668 return 0; 669 } 670 671 int FunctionComparator::cmpInlineAsm(const InlineAsm *L, 672 const InlineAsm *R) const { 673 // InlineAsm's are uniqued. If they are the same pointer, obviously they are 674 // the same, otherwise compare the fields. 675 if (L == R) 676 return 0; 677 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) 678 return Res; 679 if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) 680 return Res; 681 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) 682 return Res; 683 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) 684 return Res; 685 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) 686 return Res; 687 if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) 688 return Res; 689 llvm_unreachable("InlineAsm blocks were not uniqued."); 690 return 0; 691 } 692 693 /// Compare two values used by the two functions under pair-wise comparison. If 694 /// this is the first time the values are seen, they're added to the mapping so 695 /// that we will detect mismatches on next use. 696 /// See comments in declaration for more details. 697 int FunctionComparator::cmpValues(const Value *L, const Value *R) const { 698 // Catch self-reference case. 699 if (L == FnL) { 700 if (R == FnR) 701 return 0; 702 return -1; 703 } 704 if (R == FnR) { 705 if (L == FnL) 706 return 0; 707 return 1; 708 } 709 710 const Constant *ConstL = dyn_cast<Constant>(L); 711 const Constant *ConstR = dyn_cast<Constant>(R); 712 if (ConstL && ConstR) { 713 if (L == R) 714 return 0; 715 return cmpConstants(ConstL, ConstR); 716 } 717 718 if (ConstL) 719 return 1; 720 if (ConstR) 721 return -1; 722 723 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 724 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 725 726 if (InlineAsmL && InlineAsmR) 727 return cmpInlineAsm(InlineAsmL, InlineAsmR); 728 if (InlineAsmL) 729 return 1; 730 if (InlineAsmR) 731 return -1; 732 733 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 734 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 735 736 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 737 } 738 739 // Test whether two basic blocks have equivalent behaviour. 740 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, 741 const BasicBlock *BBR) const { 742 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 743 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 744 745 do { 746 bool needToCmpOperands = true; 747 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) 748 return Res; 749 if (needToCmpOperands) { 750 assert(InstL->getNumOperands() == InstR->getNumOperands()); 751 752 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 753 Value *OpL = InstL->getOperand(i); 754 Value *OpR = InstR->getOperand(i); 755 if (int Res = cmpValues(OpL, OpR)) 756 return Res; 757 // cmpValues should ensure this is true. 758 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); 759 } 760 } 761 762 ++InstL; 763 ++InstR; 764 } while (InstL != InstLE && InstR != InstRE); 765 766 if (InstL != InstLE && InstR == InstRE) 767 return 1; 768 if (InstL == InstLE && InstR != InstRE) 769 return -1; 770 return 0; 771 } 772 773 int FunctionComparator::compareSignature() const { 774 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 775 return Res; 776 777 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 778 return Res; 779 780 if (FnL->hasGC()) { 781 if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) 782 return Res; 783 } 784 785 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 786 return Res; 787 788 if (FnL->hasSection()) { 789 if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) 790 return Res; 791 } 792 793 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 794 return Res; 795 796 // TODO: if it's internal and only used in direct calls, we could handle this 797 // case too. 798 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 799 return Res; 800 801 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 802 return Res; 803 804 assert(FnL->arg_size() == FnR->arg_size() && 805 "Identically typed functions have different numbers of args!"); 806 807 // Visit the arguments so that they get enumerated in the order they're 808 // passed in. 809 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 810 ArgRI = FnR->arg_begin(), 811 ArgLE = FnL->arg_end(); 812 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 813 if (cmpValues(&*ArgLI, &*ArgRI) != 0) 814 llvm_unreachable("Arguments repeat!"); 815 } 816 return 0; 817 } 818 819 // Test whether the two functions have equivalent behaviour. 820 int FunctionComparator::compare() { 821 beginCompare(); 822 823 if (int Res = compareSignature()) 824 return Res; 825 826 // We do a CFG-ordered walk since the actual ordering of the blocks in the 827 // linked list is immaterial. Our walk starts at the entry block for both 828 // functions, then takes each block from each terminator in order. As an 829 // artifact, this also means that unreachable blocks are ignored. 830 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 831 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. 832 833 FnLBBs.push_back(&FnL->getEntryBlock()); 834 FnRBBs.push_back(&FnR->getEntryBlock()); 835 836 VisitedBBs.insert(FnLBBs[0]); 837 while (!FnLBBs.empty()) { 838 const BasicBlock *BBL = FnLBBs.pop_back_val(); 839 const BasicBlock *BBR = FnRBBs.pop_back_val(); 840 841 if (int Res = cmpValues(BBL, BBR)) 842 return Res; 843 844 if (int Res = cmpBasicBlocks(BBL, BBR)) 845 return Res; 846 847 const TerminatorInst *TermL = BBL->getTerminator(); 848 const TerminatorInst *TermR = BBR->getTerminator(); 849 850 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 851 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 852 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 853 continue; 854 855 FnLBBs.push_back(TermL->getSuccessor(i)); 856 FnRBBs.push_back(TermR->getSuccessor(i)); 857 } 858 } 859 return 0; 860 } 861 862 namespace { 863 864 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a 865 // hash of a sequence of 64bit ints, but the entire input does not need to be 866 // available at once. This interface is necessary for functionHash because it 867 // needs to accumulate the hash as the structure of the function is traversed 868 // without saving these values to an intermediate buffer. This form of hashing 869 // is not often needed, as usually the object to hash is just read from a 870 // buffer. 871 class HashAccumulator64 { 872 uint64_t Hash; 873 public: 874 // Initialize to random constant, so the state isn't zero. 875 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } 876 void add(uint64_t V) { 877 Hash = llvm::hashing::detail::hash_16_bytes(Hash, V); 878 } 879 // No finishing is required, because the entire hash value is used. 880 uint64_t getHash() { return Hash; } 881 }; 882 } // end anonymous namespace 883 884 // A function hash is calculated by considering only the number of arguments and 885 // whether a function is varargs, the order of basic blocks (given by the 886 // successors of each basic block in depth first order), and the order of 887 // opcodes of each instruction within each of these basic blocks. This mirrors 888 // the strategy compare() uses to compare functions by walking the BBs in depth 889 // first order and comparing each instruction in sequence. Because this hash 890 // does not look at the operands, it is insensitive to things such as the 891 // target of calls and the constants used in the function, which makes it useful 892 // when possibly merging functions which are the same modulo constants and call 893 // targets. 894 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { 895 HashAccumulator64 H; 896 H.add(F.isVarArg()); 897 H.add(F.arg_size()); 898 899 SmallVector<const BasicBlock *, 8> BBs; 900 SmallSet<const BasicBlock *, 16> VisitedBBs; 901 902 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), 903 // accumulating the hash of the function "structure." (BB and opcode sequence) 904 BBs.push_back(&F.getEntryBlock()); 905 VisitedBBs.insert(BBs[0]); 906 while (!BBs.empty()) { 907 const BasicBlock *BB = BBs.pop_back_val(); 908 // This random value acts as a block header, as otherwise the partition of 909 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes 910 H.add(45798); 911 for (auto &Inst : *BB) { 912 H.add(Inst.getOpcode()); 913 } 914 const TerminatorInst *Term = BB->getTerminator(); 915 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 916 if (!VisitedBBs.insert(Term->getSuccessor(i)).second) 917 continue; 918 BBs.push_back(Term->getSuccessor(i)); 919 } 920 } 921 return H.getHash(); 922 } 923 924 925