1 //===- FunctionComparator.h - Function Comparator -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the FunctionComparator and GlobalNumberState classes 10 // which are used by the MergeFunctions pass for comparing functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/FunctionComparator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/IR/Attributes.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalValue.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <cstddef> 46 #include <cstdint> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "functioncomparator" 52 53 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 54 if (L < R) 55 return -1; 56 if (L > R) 57 return 1; 58 return 0; 59 } 60 61 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { 62 if ((int)L < (int)R) 63 return -1; 64 if ((int)L > (int)R) 65 return 1; 66 return 0; 67 } 68 69 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 70 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 71 return Res; 72 if (L.ugt(R)) 73 return 1; 74 if (R.ugt(L)) 75 return -1; 76 return 0; 77 } 78 79 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 80 // Floats are ordered first by semantics (i.e. float, double, half, etc.), 81 // then by value interpreted as a bitstring (aka APInt). 82 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); 83 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), 84 APFloat::semanticsPrecision(SR))) 85 return Res; 86 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), 87 APFloat::semanticsMaxExponent(SR))) 88 return Res; 89 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), 90 APFloat::semanticsMinExponent(SR))) 91 return Res; 92 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), 93 APFloat::semanticsSizeInBits(SR))) 94 return Res; 95 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 96 } 97 98 int FunctionComparator::cmpMem(StringRef L, StringRef R) const { 99 // Prevent heavy comparison, compare sizes first. 100 if (int Res = cmpNumbers(L.size(), R.size())) 101 return Res; 102 103 // Compare strings lexicographically only when it is necessary: only when 104 // strings are equal in size. 105 return L.compare(R); 106 } 107 108 int FunctionComparator::cmpAttrs(const AttributeList L, 109 const AttributeList R) const { 110 if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets())) 111 return Res; 112 113 for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) { 114 AttributeSet LAS = L.getAttributes(i); 115 AttributeSet RAS = R.getAttributes(i); 116 AttributeSet::iterator LI = LAS.begin(), LE = LAS.end(); 117 AttributeSet::iterator RI = RAS.begin(), RE = RAS.end(); 118 for (; LI != LE && RI != RE; ++LI, ++RI) { 119 Attribute LA = *LI; 120 Attribute RA = *RI; 121 if (LA.isTypeAttribute() && RA.isTypeAttribute()) { 122 if (LA.getKindAsEnum() != RA.getKindAsEnum()) 123 return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum()); 124 125 Type *TyL = LA.getValueAsType(); 126 Type *TyR = RA.getValueAsType(); 127 if (TyL && TyR) 128 return cmpTypes(TyL, TyR); 129 130 // Two pointers, at least one null, so the comparison result is 131 // independent of the value of a real pointer. 132 return cmpNumbers((uint64_t)TyL, (uint64_t)TyR); 133 } 134 if (LA < RA) 135 return -1; 136 if (RA < LA) 137 return 1; 138 } 139 if (LI != LE) 140 return 1; 141 if (RI != RE) 142 return -1; 143 } 144 return 0; 145 } 146 147 int FunctionComparator::cmpRangeMetadata(const MDNode *L, 148 const MDNode *R) const { 149 if (L == R) 150 return 0; 151 if (!L) 152 return -1; 153 if (!R) 154 return 1; 155 // Range metadata is a sequence of numbers. Make sure they are the same 156 // sequence. 157 // TODO: Note that as this is metadata, it is possible to drop and/or merge 158 // this data when considering functions to merge. Thus this comparison would 159 // return 0 (i.e. equivalent), but merging would become more complicated 160 // because the ranges would need to be unioned. It is not likely that 161 // functions differ ONLY in this metadata if they are actually the same 162 // function semantically. 163 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 164 return Res; 165 for (size_t I = 0; I < L->getNumOperands(); ++I) { 166 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); 167 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); 168 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) 169 return Res; 170 } 171 return 0; 172 } 173 174 // FIXME(CallSite): the parameters should be CallBase 175 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L, 176 const Instruction *R) const { 177 const CallBase *LCS = cast<CallBase>(L); 178 const CallBase *RCS = cast<CallBase>(R); 179 180 assert(LCS->getOpcode() == RCS->getOpcode() && "Can't compare otherwise!"); 181 182 if (int Res = 183 cmpNumbers(LCS->getNumOperandBundles(), RCS->getNumOperandBundles())) 184 return Res; 185 186 for (unsigned i = 0, e = LCS->getNumOperandBundles(); i != e; ++i) { 187 auto OBL = LCS->getOperandBundleAt(i); 188 auto OBR = RCS->getOperandBundleAt(i); 189 190 if (int Res = OBL.getTagName().compare(OBR.getTagName())) 191 return Res; 192 193 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) 194 return Res; 195 } 196 197 return 0; 198 } 199 200 /// Constants comparison: 201 /// 1. Check whether type of L constant could be losslessly bitcasted to R 202 /// type. 203 /// 2. Compare constant contents. 204 /// For more details see declaration comments. 205 int FunctionComparator::cmpConstants(const Constant *L, 206 const Constant *R) const { 207 Type *TyL = L->getType(); 208 Type *TyR = R->getType(); 209 210 // Check whether types are bitcastable. This part is just re-factored 211 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 212 // we also pack into result which type is "less" for us. 213 int TypesRes = cmpTypes(TyL, TyR); 214 if (TypesRes != 0) { 215 // Types are different, but check whether we can bitcast them. 216 if (!TyL->isFirstClassType()) { 217 if (TyR->isFirstClassType()) 218 return -1; 219 // Neither TyL nor TyR are values of first class type. Return the result 220 // of comparing the types 221 return TypesRes; 222 } 223 if (!TyR->isFirstClassType()) { 224 if (TyL->isFirstClassType()) 225 return 1; 226 return TypesRes; 227 } 228 229 // Vector -> Vector conversions are always lossless if the two vector types 230 // have the same size, otherwise not. 231 unsigned TyLWidth = 0; 232 unsigned TyRWidth = 0; 233 234 if (auto *VecTyL = dyn_cast<VectorType>(TyL)) 235 TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedSize(); 236 if (auto *VecTyR = dyn_cast<VectorType>(TyR)) 237 TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedSize(); 238 239 if (TyLWidth != TyRWidth) 240 return cmpNumbers(TyLWidth, TyRWidth); 241 242 // Zero bit-width means neither TyL nor TyR are vectors. 243 if (!TyLWidth) { 244 PointerType *PTyL = dyn_cast<PointerType>(TyL); 245 PointerType *PTyR = dyn_cast<PointerType>(TyR); 246 if (PTyL && PTyR) { 247 unsigned AddrSpaceL = PTyL->getAddressSpace(); 248 unsigned AddrSpaceR = PTyR->getAddressSpace(); 249 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 250 return Res; 251 } 252 if (PTyL) 253 return 1; 254 if (PTyR) 255 return -1; 256 257 // TyL and TyR aren't vectors, nor pointers. We don't know how to 258 // bitcast them. 259 return TypesRes; 260 } 261 } 262 263 // OK, types are bitcastable, now check constant contents. 264 265 if (L->isNullValue() && R->isNullValue()) 266 return TypesRes; 267 if (L->isNullValue() && !R->isNullValue()) 268 return 1; 269 if (!L->isNullValue() && R->isNullValue()) 270 return -1; 271 272 auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L)); 273 auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R)); 274 if (GlobalValueL && GlobalValueR) { 275 return cmpGlobalValues(GlobalValueL, GlobalValueR); 276 } 277 278 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 279 return Res; 280 281 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { 282 const auto *SeqR = cast<ConstantDataSequential>(R); 283 // This handles ConstantDataArray and ConstantDataVector. Note that we 284 // compare the two raw data arrays, which might differ depending on the host 285 // endianness. This isn't a problem though, because the endiness of a module 286 // will affect the order of the constants, but this order is the same 287 // for a given input module and host platform. 288 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); 289 } 290 291 switch (L->getValueID()) { 292 case Value::UndefValueVal: 293 case Value::ConstantTokenNoneVal: 294 return TypesRes; 295 case Value::ConstantIntVal: { 296 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 297 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 298 return cmpAPInts(LInt, RInt); 299 } 300 case Value::ConstantFPVal: { 301 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 302 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 303 return cmpAPFloats(LAPF, RAPF); 304 } 305 case Value::ConstantArrayVal: { 306 const ConstantArray *LA = cast<ConstantArray>(L); 307 const ConstantArray *RA = cast<ConstantArray>(R); 308 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 309 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 310 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 311 return Res; 312 for (uint64_t i = 0; i < NumElementsL; ++i) { 313 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 314 cast<Constant>(RA->getOperand(i)))) 315 return Res; 316 } 317 return 0; 318 } 319 case Value::ConstantStructVal: { 320 const ConstantStruct *LS = cast<ConstantStruct>(L); 321 const ConstantStruct *RS = cast<ConstantStruct>(R); 322 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 323 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 324 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 325 return Res; 326 for (unsigned i = 0; i != NumElementsL; ++i) { 327 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 328 cast<Constant>(RS->getOperand(i)))) 329 return Res; 330 } 331 return 0; 332 } 333 case Value::ConstantVectorVal: { 334 const ConstantVector *LV = cast<ConstantVector>(L); 335 const ConstantVector *RV = cast<ConstantVector>(R); 336 unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements(); 337 unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements(); 338 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 339 return Res; 340 for (uint64_t i = 0; i < NumElementsL; ++i) { 341 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 342 cast<Constant>(RV->getOperand(i)))) 343 return Res; 344 } 345 return 0; 346 } 347 case Value::ConstantExprVal: { 348 const ConstantExpr *LE = cast<ConstantExpr>(L); 349 const ConstantExpr *RE = cast<ConstantExpr>(R); 350 unsigned NumOperandsL = LE->getNumOperands(); 351 unsigned NumOperandsR = RE->getNumOperands(); 352 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 353 return Res; 354 for (unsigned i = 0; i < NumOperandsL; ++i) { 355 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 356 cast<Constant>(RE->getOperand(i)))) 357 return Res; 358 } 359 return 0; 360 } 361 case Value::BlockAddressVal: { 362 const BlockAddress *LBA = cast<BlockAddress>(L); 363 const BlockAddress *RBA = cast<BlockAddress>(R); 364 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) 365 return Res; 366 if (LBA->getFunction() == RBA->getFunction()) { 367 // They are BBs in the same function. Order by which comes first in the 368 // BB order of the function. This order is deterministic. 369 Function *F = LBA->getFunction(); 370 BasicBlock *LBB = LBA->getBasicBlock(); 371 BasicBlock *RBB = RBA->getBasicBlock(); 372 if (LBB == RBB) 373 return 0; 374 for (BasicBlock &BB : F->getBasicBlockList()) { 375 if (&BB == LBB) { 376 assert(&BB != RBB); 377 return -1; 378 } 379 if (&BB == RBB) 380 return 1; 381 } 382 llvm_unreachable("Basic Block Address does not point to a basic block in " 383 "its function."); 384 return -1; 385 } else { 386 // cmpValues said the functions are the same. So because they aren't 387 // literally the same pointer, they must respectively be the left and 388 // right functions. 389 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); 390 // cmpValues will tell us if these are equivalent BasicBlocks, in the 391 // context of their respective functions. 392 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); 393 } 394 } 395 default: // Unknown constant, abort. 396 LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); 397 llvm_unreachable("Constant ValueID not recognized."); 398 return -1; 399 } 400 } 401 402 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { 403 uint64_t LNumber = GlobalNumbers->getNumber(L); 404 uint64_t RNumber = GlobalNumbers->getNumber(R); 405 return cmpNumbers(LNumber, RNumber); 406 } 407 408 /// cmpType - compares two types, 409 /// defines total ordering among the types set. 410 /// See method declaration comments for more details. 411 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 412 PointerType *PTyL = dyn_cast<PointerType>(TyL); 413 PointerType *PTyR = dyn_cast<PointerType>(TyR); 414 415 const DataLayout &DL = FnL->getParent()->getDataLayout(); 416 if (PTyL && PTyL->getAddressSpace() == 0) 417 TyL = DL.getIntPtrType(TyL); 418 if (PTyR && PTyR->getAddressSpace() == 0) 419 TyR = DL.getIntPtrType(TyR); 420 421 if (TyL == TyR) 422 return 0; 423 424 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 425 return Res; 426 427 switch (TyL->getTypeID()) { 428 default: 429 llvm_unreachable("Unknown type!"); 430 case Type::IntegerTyID: 431 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), 432 cast<IntegerType>(TyR)->getBitWidth()); 433 // TyL == TyR would have returned true earlier, because types are uniqued. 434 case Type::VoidTyID: 435 case Type::FloatTyID: 436 case Type::DoubleTyID: 437 case Type::X86_FP80TyID: 438 case Type::FP128TyID: 439 case Type::PPC_FP128TyID: 440 case Type::LabelTyID: 441 case Type::MetadataTyID: 442 case Type::TokenTyID: 443 return 0; 444 445 case Type::PointerTyID: 446 assert(PTyL && PTyR && "Both types must be pointers here."); 447 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 448 449 case Type::StructTyID: { 450 StructType *STyL = cast<StructType>(TyL); 451 StructType *STyR = cast<StructType>(TyR); 452 if (STyL->getNumElements() != STyR->getNumElements()) 453 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 454 455 if (STyL->isPacked() != STyR->isPacked()) 456 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 457 458 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 459 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 460 return Res; 461 } 462 return 0; 463 } 464 465 case Type::FunctionTyID: { 466 FunctionType *FTyL = cast<FunctionType>(TyL); 467 FunctionType *FTyR = cast<FunctionType>(TyR); 468 if (FTyL->getNumParams() != FTyR->getNumParams()) 469 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 470 471 if (FTyL->isVarArg() != FTyR->isVarArg()) 472 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 473 474 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 475 return Res; 476 477 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 478 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 479 return Res; 480 } 481 return 0; 482 } 483 484 case Type::ArrayTyID: { 485 auto *STyL = cast<ArrayType>(TyL); 486 auto *STyR = cast<ArrayType>(TyR); 487 if (STyL->getNumElements() != STyR->getNumElements()) 488 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 489 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 490 } 491 case Type::VectorTyID: { 492 auto *STyL = cast<VectorType>(TyL); 493 auto *STyR = cast<VectorType>(TyR); 494 if (STyL->getElementCount().Scalable != STyR->getElementCount().Scalable) 495 return cmpNumbers(STyL->getElementCount().Scalable, 496 STyR->getElementCount().Scalable); 497 if (STyL->getElementCount().Min != STyR->getElementCount().Min) 498 return cmpNumbers(STyL->getElementCount().Min, 499 STyR->getElementCount().Min); 500 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 501 } 502 } 503 } 504 505 // Determine whether the two operations are the same except that pointer-to-A 506 // and pointer-to-B are equivalent. This should be kept in sync with 507 // Instruction::isSameOperationAs. 508 // Read method declaration comments for more details. 509 int FunctionComparator::cmpOperations(const Instruction *L, 510 const Instruction *R, 511 bool &needToCmpOperands) const { 512 needToCmpOperands = true; 513 if (int Res = cmpValues(L, R)) 514 return Res; 515 516 // Differences from Instruction::isSameOperationAs: 517 // * replace type comparison with calls to cmpTypes. 518 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. 519 // * because of the above, we don't test for the tail bit on calls later on. 520 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 521 return Res; 522 523 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) { 524 needToCmpOperands = false; 525 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R); 526 if (int Res = 527 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 528 return Res; 529 return cmpGEPs(GEPL, GEPR); 530 } 531 532 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 533 return Res; 534 535 if (int Res = cmpTypes(L->getType(), R->getType())) 536 return Res; 537 538 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 539 R->getRawSubclassOptionalData())) 540 return Res; 541 542 // We have two instructions of identical opcode and #operands. Check to see 543 // if all operands are the same type 544 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 545 if (int Res = 546 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 547 return Res; 548 } 549 550 // Check special state that is a part of some instructions. 551 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 552 if (int Res = cmpTypes(AI->getAllocatedType(), 553 cast<AllocaInst>(R)->getAllocatedType())) 554 return Res; 555 return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()); 556 } 557 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 558 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 559 return Res; 560 if (int Res = 561 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) 562 return Res; 563 if (int Res = 564 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 565 return Res; 566 if (int Res = cmpNumbers(LI->getSyncScopeID(), 567 cast<LoadInst>(R)->getSyncScopeID())) 568 return Res; 569 return cmpRangeMetadata( 570 LI->getMetadata(LLVMContext::MD_range), 571 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); 572 } 573 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 574 if (int Res = 575 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 576 return Res; 577 if (int Res = 578 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) 579 return Res; 580 if (int Res = 581 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 582 return Res; 583 return cmpNumbers(SI->getSyncScopeID(), 584 cast<StoreInst>(R)->getSyncScopeID()); 585 } 586 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 587 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 588 if (auto *CBL = dyn_cast<CallBase>(L)) { 589 auto *CBR = cast<CallBase>(R); 590 if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv())) 591 return Res; 592 if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes())) 593 return Res; 594 if (int Res = cmpOperandBundlesSchema(L, R)) 595 return Res; 596 if (const CallInst *CI = dyn_cast<CallInst>(L)) 597 if (int Res = cmpNumbers(CI->getTailCallKind(), 598 cast<CallInst>(R)->getTailCallKind())) 599 return Res; 600 return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range), 601 R->getMetadata(LLVMContext::MD_range)); 602 } 603 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 604 ArrayRef<unsigned> LIndices = IVI->getIndices(); 605 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 606 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 607 return Res; 608 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 609 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 610 return Res; 611 } 612 return 0; 613 } 614 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 615 ArrayRef<unsigned> LIndices = EVI->getIndices(); 616 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 617 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 618 return Res; 619 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 620 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 621 return Res; 622 } 623 } 624 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 625 if (int Res = 626 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 627 return Res; 628 return cmpNumbers(FI->getSyncScopeID(), 629 cast<FenceInst>(R)->getSyncScopeID()); 630 } 631 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 632 if (int Res = cmpNumbers(CXI->isVolatile(), 633 cast<AtomicCmpXchgInst>(R)->isVolatile())) 634 return Res; 635 if (int Res = 636 cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak())) 637 return Res; 638 if (int Res = 639 cmpOrderings(CXI->getSuccessOrdering(), 640 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 641 return Res; 642 if (int Res = 643 cmpOrderings(CXI->getFailureOrdering(), 644 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 645 return Res; 646 return cmpNumbers(CXI->getSyncScopeID(), 647 cast<AtomicCmpXchgInst>(R)->getSyncScopeID()); 648 } 649 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 650 if (int Res = cmpNumbers(RMWI->getOperation(), 651 cast<AtomicRMWInst>(R)->getOperation())) 652 return Res; 653 if (int Res = cmpNumbers(RMWI->isVolatile(), 654 cast<AtomicRMWInst>(R)->isVolatile())) 655 return Res; 656 if (int Res = cmpOrderings(RMWI->getOrdering(), 657 cast<AtomicRMWInst>(R)->getOrdering())) 658 return Res; 659 return cmpNumbers(RMWI->getSyncScopeID(), 660 cast<AtomicRMWInst>(R)->getSyncScopeID()); 661 } 662 if (const PHINode *PNL = dyn_cast<PHINode>(L)) { 663 const PHINode *PNR = cast<PHINode>(R); 664 // Ensure that in addition to the incoming values being identical 665 // (checked by the caller of this function), the incoming blocks 666 // are also identical. 667 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { 668 if (int Res = 669 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) 670 return Res; 671 } 672 } 673 return 0; 674 } 675 676 // Determine whether two GEP operations perform the same underlying arithmetic. 677 // Read method declaration comments for more details. 678 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 679 const GEPOperator *GEPR) const { 680 unsigned int ASL = GEPL->getPointerAddressSpace(); 681 unsigned int ASR = GEPR->getPointerAddressSpace(); 682 683 if (int Res = cmpNumbers(ASL, ASR)) 684 return Res; 685 686 // When we have target data, we can reduce the GEP down to the value in bytes 687 // added to the address. 688 const DataLayout &DL = FnL->getParent()->getDataLayout(); 689 unsigned BitWidth = DL.getPointerSizeInBits(ASL); 690 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); 691 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 692 GEPR->accumulateConstantOffset(DL, OffsetR)) 693 return cmpAPInts(OffsetL, OffsetR); 694 if (int Res = 695 cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType())) 696 return Res; 697 698 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 699 return Res; 700 701 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 702 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 703 return Res; 704 } 705 706 return 0; 707 } 708 709 int FunctionComparator::cmpInlineAsm(const InlineAsm *L, 710 const InlineAsm *R) const { 711 // InlineAsm's are uniqued. If they are the same pointer, obviously they are 712 // the same, otherwise compare the fields. 713 if (L == R) 714 return 0; 715 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) 716 return Res; 717 if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) 718 return Res; 719 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) 720 return Res; 721 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) 722 return Res; 723 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) 724 return Res; 725 if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) 726 return Res; 727 assert(L->getFunctionType() != R->getFunctionType()); 728 return 0; 729 } 730 731 /// Compare two values used by the two functions under pair-wise comparison. If 732 /// this is the first time the values are seen, they're added to the mapping so 733 /// that we will detect mismatches on next use. 734 /// See comments in declaration for more details. 735 int FunctionComparator::cmpValues(const Value *L, const Value *R) const { 736 // Catch self-reference case. 737 if (L == FnL) { 738 if (R == FnR) 739 return 0; 740 return -1; 741 } 742 if (R == FnR) { 743 if (L == FnL) 744 return 0; 745 return 1; 746 } 747 748 const Constant *ConstL = dyn_cast<Constant>(L); 749 const Constant *ConstR = dyn_cast<Constant>(R); 750 if (ConstL && ConstR) { 751 if (L == R) 752 return 0; 753 return cmpConstants(ConstL, ConstR); 754 } 755 756 if (ConstL) 757 return 1; 758 if (ConstR) 759 return -1; 760 761 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 762 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 763 764 if (InlineAsmL && InlineAsmR) 765 return cmpInlineAsm(InlineAsmL, InlineAsmR); 766 if (InlineAsmL) 767 return 1; 768 if (InlineAsmR) 769 return -1; 770 771 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 772 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 773 774 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 775 } 776 777 // Test whether two basic blocks have equivalent behaviour. 778 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, 779 const BasicBlock *BBR) const { 780 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 781 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 782 783 do { 784 bool needToCmpOperands = true; 785 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) 786 return Res; 787 if (needToCmpOperands) { 788 assert(InstL->getNumOperands() == InstR->getNumOperands()); 789 790 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 791 Value *OpL = InstL->getOperand(i); 792 Value *OpR = InstR->getOperand(i); 793 if (int Res = cmpValues(OpL, OpR)) 794 return Res; 795 // cmpValues should ensure this is true. 796 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); 797 } 798 } 799 800 ++InstL; 801 ++InstR; 802 } while (InstL != InstLE && InstR != InstRE); 803 804 if (InstL != InstLE && InstR == InstRE) 805 return 1; 806 if (InstL == InstLE && InstR != InstRE) 807 return -1; 808 return 0; 809 } 810 811 int FunctionComparator::compareSignature() const { 812 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 813 return Res; 814 815 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 816 return Res; 817 818 if (FnL->hasGC()) { 819 if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) 820 return Res; 821 } 822 823 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 824 return Res; 825 826 if (FnL->hasSection()) { 827 if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) 828 return Res; 829 } 830 831 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 832 return Res; 833 834 // TODO: if it's internal and only used in direct calls, we could handle this 835 // case too. 836 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 837 return Res; 838 839 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 840 return Res; 841 842 assert(FnL->arg_size() == FnR->arg_size() && 843 "Identically typed functions have different numbers of args!"); 844 845 // Visit the arguments so that they get enumerated in the order they're 846 // passed in. 847 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 848 ArgRI = FnR->arg_begin(), 849 ArgLE = FnL->arg_end(); 850 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 851 if (cmpValues(&*ArgLI, &*ArgRI) != 0) 852 llvm_unreachable("Arguments repeat!"); 853 } 854 return 0; 855 } 856 857 // Test whether the two functions have equivalent behaviour. 858 int FunctionComparator::compare() { 859 beginCompare(); 860 861 if (int Res = compareSignature()) 862 return Res; 863 864 // We do a CFG-ordered walk since the actual ordering of the blocks in the 865 // linked list is immaterial. Our walk starts at the entry block for both 866 // functions, then takes each block from each terminator in order. As an 867 // artifact, this also means that unreachable blocks are ignored. 868 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 869 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. 870 871 FnLBBs.push_back(&FnL->getEntryBlock()); 872 FnRBBs.push_back(&FnR->getEntryBlock()); 873 874 VisitedBBs.insert(FnLBBs[0]); 875 while (!FnLBBs.empty()) { 876 const BasicBlock *BBL = FnLBBs.pop_back_val(); 877 const BasicBlock *BBR = FnRBBs.pop_back_val(); 878 879 if (int Res = cmpValues(BBL, BBR)) 880 return Res; 881 882 if (int Res = cmpBasicBlocks(BBL, BBR)) 883 return Res; 884 885 const Instruction *TermL = BBL->getTerminator(); 886 const Instruction *TermR = BBR->getTerminator(); 887 888 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 889 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 890 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 891 continue; 892 893 FnLBBs.push_back(TermL->getSuccessor(i)); 894 FnRBBs.push_back(TermR->getSuccessor(i)); 895 } 896 } 897 return 0; 898 } 899 900 namespace { 901 902 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a 903 // hash of a sequence of 64bit ints, but the entire input does not need to be 904 // available at once. This interface is necessary for functionHash because it 905 // needs to accumulate the hash as the structure of the function is traversed 906 // without saving these values to an intermediate buffer. This form of hashing 907 // is not often needed, as usually the object to hash is just read from a 908 // buffer. 909 class HashAccumulator64 { 910 uint64_t Hash; 911 912 public: 913 // Initialize to random constant, so the state isn't zero. 914 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } 915 916 void add(uint64_t V) { Hash = hashing::detail::hash_16_bytes(Hash, V); } 917 918 // No finishing is required, because the entire hash value is used. 919 uint64_t getHash() { return Hash; } 920 }; 921 922 } // end anonymous namespace 923 924 // A function hash is calculated by considering only the number of arguments and 925 // whether a function is varargs, the order of basic blocks (given by the 926 // successors of each basic block in depth first order), and the order of 927 // opcodes of each instruction within each of these basic blocks. This mirrors 928 // the strategy compare() uses to compare functions by walking the BBs in depth 929 // first order and comparing each instruction in sequence. Because this hash 930 // does not look at the operands, it is insensitive to things such as the 931 // target of calls and the constants used in the function, which makes it useful 932 // when possibly merging functions which are the same modulo constants and call 933 // targets. 934 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { 935 HashAccumulator64 H; 936 H.add(F.isVarArg()); 937 H.add(F.arg_size()); 938 939 SmallVector<const BasicBlock *, 8> BBs; 940 SmallPtrSet<const BasicBlock *, 16> VisitedBBs; 941 942 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), 943 // accumulating the hash of the function "structure." (BB and opcode sequence) 944 BBs.push_back(&F.getEntryBlock()); 945 VisitedBBs.insert(BBs[0]); 946 while (!BBs.empty()) { 947 const BasicBlock *BB = BBs.pop_back_val(); 948 // This random value acts as a block header, as otherwise the partition of 949 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes 950 H.add(45798); 951 for (auto &Inst : *BB) { 952 H.add(Inst.getOpcode()); 953 } 954 const Instruction *Term = BB->getTerminator(); 955 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 956 if (!VisitedBBs.insert(Term->getSuccessor(i)).second) 957 continue; 958 BBs.push_back(Term->getSuccessor(i)); 959 } 960 } 961 return H.getHash(); 962 } 963