1 //===- FunctionComparator.h - Function Comparator -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the FunctionComparator and GlobalNumberState classes 11 // which are used by the MergeFunctions pass for comparing functions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/FunctionComparator.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/IR/CallSite.h" 18 #include "llvm/IR/Instructions.h" 19 #include "llvm/IR/InlineAsm.h" 20 #include "llvm/IR/Module.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 24 using namespace llvm; 25 26 #define DEBUG_TYPE "functioncomparator" 27 28 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 29 if (L < R) return -1; 30 if (L > R) return 1; 31 return 0; 32 } 33 34 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { 35 if ((int)L < (int)R) return -1; 36 if ((int)L > (int)R) return 1; 37 return 0; 38 } 39 40 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 41 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 42 return Res; 43 if (L.ugt(R)) return 1; 44 if (R.ugt(L)) return -1; 45 return 0; 46 } 47 48 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 49 // Floats are ordered first by semantics (i.e. float, double, half, etc.), 50 // then by value interpreted as a bitstring (aka APInt). 51 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); 52 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), 53 APFloat::semanticsPrecision(SR))) 54 return Res; 55 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), 56 APFloat::semanticsMaxExponent(SR))) 57 return Res; 58 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), 59 APFloat::semanticsMinExponent(SR))) 60 return Res; 61 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), 62 APFloat::semanticsSizeInBits(SR))) 63 return Res; 64 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 65 } 66 67 int FunctionComparator::cmpMem(StringRef L, StringRef R) const { 68 // Prevent heavy comparison, compare sizes first. 69 if (int Res = cmpNumbers(L.size(), R.size())) 70 return Res; 71 72 // Compare strings lexicographically only when it is necessary: only when 73 // strings are equal in size. 74 return L.compare(R); 75 } 76 77 int FunctionComparator::cmpAttrs(const AttributeList L, 78 const AttributeList R) const { 79 if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets())) 80 return Res; 81 82 for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) { 83 AttributeSet LAS = L.getAttributes(i); 84 AttributeSet RAS = R.getAttributes(i); 85 AttributeSet::iterator LI = LAS.begin(), LE = LAS.end(); 86 AttributeSet::iterator RI = RAS.begin(), RE = RAS.end(); 87 for (; LI != LE && RI != RE; ++LI, ++RI) { 88 Attribute LA = *LI; 89 Attribute RA = *RI; 90 if (LA < RA) 91 return -1; 92 if (RA < LA) 93 return 1; 94 } 95 if (LI != LE) 96 return 1; 97 if (RI != RE) 98 return -1; 99 } 100 return 0; 101 } 102 103 int FunctionComparator::cmpRangeMetadata(const MDNode *L, 104 const MDNode *R) const { 105 if (L == R) 106 return 0; 107 if (!L) 108 return -1; 109 if (!R) 110 return 1; 111 // Range metadata is a sequence of numbers. Make sure they are the same 112 // sequence. 113 // TODO: Note that as this is metadata, it is possible to drop and/or merge 114 // this data when considering functions to merge. Thus this comparison would 115 // return 0 (i.e. equivalent), but merging would become more complicated 116 // because the ranges would need to be unioned. It is not likely that 117 // functions differ ONLY in this metadata if they are actually the same 118 // function semantically. 119 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 120 return Res; 121 for (size_t I = 0; I < L->getNumOperands(); ++I) { 122 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); 123 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); 124 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) 125 return Res; 126 } 127 return 0; 128 } 129 130 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L, 131 const Instruction *R) const { 132 ImmutableCallSite LCS(L); 133 ImmutableCallSite RCS(R); 134 135 assert(LCS && RCS && "Must be calls or invokes!"); 136 assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!"); 137 138 if (int Res = 139 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) 140 return Res; 141 142 for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) { 143 auto OBL = LCS.getOperandBundleAt(i); 144 auto OBR = RCS.getOperandBundleAt(i); 145 146 if (int Res = OBL.getTagName().compare(OBR.getTagName())) 147 return Res; 148 149 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) 150 return Res; 151 } 152 153 return 0; 154 } 155 156 /// Constants comparison: 157 /// 1. Check whether type of L constant could be losslessly bitcasted to R 158 /// type. 159 /// 2. Compare constant contents. 160 /// For more details see declaration comments. 161 int FunctionComparator::cmpConstants(const Constant *L, 162 const Constant *R) const { 163 164 Type *TyL = L->getType(); 165 Type *TyR = R->getType(); 166 167 // Check whether types are bitcastable. This part is just re-factored 168 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 169 // we also pack into result which type is "less" for us. 170 int TypesRes = cmpTypes(TyL, TyR); 171 if (TypesRes != 0) { 172 // Types are different, but check whether we can bitcast them. 173 if (!TyL->isFirstClassType()) { 174 if (TyR->isFirstClassType()) 175 return -1; 176 // Neither TyL nor TyR are values of first class type. Return the result 177 // of comparing the types 178 return TypesRes; 179 } 180 if (!TyR->isFirstClassType()) { 181 if (TyL->isFirstClassType()) 182 return 1; 183 return TypesRes; 184 } 185 186 // Vector -> Vector conversions are always lossless if the two vector types 187 // have the same size, otherwise not. 188 unsigned TyLWidth = 0; 189 unsigned TyRWidth = 0; 190 191 if (auto *VecTyL = dyn_cast<VectorType>(TyL)) 192 TyLWidth = VecTyL->getBitWidth(); 193 if (auto *VecTyR = dyn_cast<VectorType>(TyR)) 194 TyRWidth = VecTyR->getBitWidth(); 195 196 if (TyLWidth != TyRWidth) 197 return cmpNumbers(TyLWidth, TyRWidth); 198 199 // Zero bit-width means neither TyL nor TyR are vectors. 200 if (!TyLWidth) { 201 PointerType *PTyL = dyn_cast<PointerType>(TyL); 202 PointerType *PTyR = dyn_cast<PointerType>(TyR); 203 if (PTyL && PTyR) { 204 unsigned AddrSpaceL = PTyL->getAddressSpace(); 205 unsigned AddrSpaceR = PTyR->getAddressSpace(); 206 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 207 return Res; 208 } 209 if (PTyL) 210 return 1; 211 if (PTyR) 212 return -1; 213 214 // TyL and TyR aren't vectors, nor pointers. We don't know how to 215 // bitcast them. 216 return TypesRes; 217 } 218 } 219 220 // OK, types are bitcastable, now check constant contents. 221 222 if (L->isNullValue() && R->isNullValue()) 223 return TypesRes; 224 if (L->isNullValue() && !R->isNullValue()) 225 return 1; 226 if (!L->isNullValue() && R->isNullValue()) 227 return -1; 228 229 auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L)); 230 auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R)); 231 if (GlobalValueL && GlobalValueR) { 232 return cmpGlobalValues(GlobalValueL, GlobalValueR); 233 } 234 235 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 236 return Res; 237 238 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { 239 const auto *SeqR = cast<ConstantDataSequential>(R); 240 // This handles ConstantDataArray and ConstantDataVector. Note that we 241 // compare the two raw data arrays, which might differ depending on the host 242 // endianness. This isn't a problem though, because the endiness of a module 243 // will affect the order of the constants, but this order is the same 244 // for a given input module and host platform. 245 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); 246 } 247 248 switch (L->getValueID()) { 249 case Value::UndefValueVal: 250 case Value::ConstantTokenNoneVal: 251 return TypesRes; 252 case Value::ConstantIntVal: { 253 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 254 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 255 return cmpAPInts(LInt, RInt); 256 } 257 case Value::ConstantFPVal: { 258 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 259 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 260 return cmpAPFloats(LAPF, RAPF); 261 } 262 case Value::ConstantArrayVal: { 263 const ConstantArray *LA = cast<ConstantArray>(L); 264 const ConstantArray *RA = cast<ConstantArray>(R); 265 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 266 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 267 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 268 return Res; 269 for (uint64_t i = 0; i < NumElementsL; ++i) { 270 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 271 cast<Constant>(RA->getOperand(i)))) 272 return Res; 273 } 274 return 0; 275 } 276 case Value::ConstantStructVal: { 277 const ConstantStruct *LS = cast<ConstantStruct>(L); 278 const ConstantStruct *RS = cast<ConstantStruct>(R); 279 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 280 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 281 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 282 return Res; 283 for (unsigned i = 0; i != NumElementsL; ++i) { 284 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 285 cast<Constant>(RS->getOperand(i)))) 286 return Res; 287 } 288 return 0; 289 } 290 case Value::ConstantVectorVal: { 291 const ConstantVector *LV = cast<ConstantVector>(L); 292 const ConstantVector *RV = cast<ConstantVector>(R); 293 unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements(); 294 unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements(); 295 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 296 return Res; 297 for (uint64_t i = 0; i < NumElementsL; ++i) { 298 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 299 cast<Constant>(RV->getOperand(i)))) 300 return Res; 301 } 302 return 0; 303 } 304 case Value::ConstantExprVal: { 305 const ConstantExpr *LE = cast<ConstantExpr>(L); 306 const ConstantExpr *RE = cast<ConstantExpr>(R); 307 unsigned NumOperandsL = LE->getNumOperands(); 308 unsigned NumOperandsR = RE->getNumOperands(); 309 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 310 return Res; 311 for (unsigned i = 0; i < NumOperandsL; ++i) { 312 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 313 cast<Constant>(RE->getOperand(i)))) 314 return Res; 315 } 316 return 0; 317 } 318 case Value::BlockAddressVal: { 319 const BlockAddress *LBA = cast<BlockAddress>(L); 320 const BlockAddress *RBA = cast<BlockAddress>(R); 321 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) 322 return Res; 323 if (LBA->getFunction() == RBA->getFunction()) { 324 // They are BBs in the same function. Order by which comes first in the 325 // BB order of the function. This order is deterministic. 326 Function* F = LBA->getFunction(); 327 BasicBlock *LBB = LBA->getBasicBlock(); 328 BasicBlock *RBB = RBA->getBasicBlock(); 329 if (LBB == RBB) 330 return 0; 331 for(BasicBlock &BB : F->getBasicBlockList()) { 332 if (&BB == LBB) { 333 assert(&BB != RBB); 334 return -1; 335 } 336 if (&BB == RBB) 337 return 1; 338 } 339 llvm_unreachable("Basic Block Address does not point to a basic block in " 340 "its function."); 341 return -1; 342 } else { 343 // cmpValues said the functions are the same. So because they aren't 344 // literally the same pointer, they must respectively be the left and 345 // right functions. 346 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); 347 // cmpValues will tell us if these are equivalent BasicBlocks, in the 348 // context of their respective functions. 349 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); 350 } 351 } 352 default: // Unknown constant, abort. 353 DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); 354 llvm_unreachable("Constant ValueID not recognized."); 355 return -1; 356 } 357 } 358 359 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { 360 uint64_t LNumber = GlobalNumbers->getNumber(L); 361 uint64_t RNumber = GlobalNumbers->getNumber(R); 362 return cmpNumbers(LNumber, RNumber); 363 } 364 365 /// cmpType - compares two types, 366 /// defines total ordering among the types set. 367 /// See method declaration comments for more details. 368 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 369 PointerType *PTyL = dyn_cast<PointerType>(TyL); 370 PointerType *PTyR = dyn_cast<PointerType>(TyR); 371 372 const DataLayout &DL = FnL->getParent()->getDataLayout(); 373 if (PTyL && PTyL->getAddressSpace() == 0) 374 TyL = DL.getIntPtrType(TyL); 375 if (PTyR && PTyR->getAddressSpace() == 0) 376 TyR = DL.getIntPtrType(TyR); 377 378 if (TyL == TyR) 379 return 0; 380 381 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 382 return Res; 383 384 switch (TyL->getTypeID()) { 385 default: 386 llvm_unreachable("Unknown type!"); 387 // Fall through in Release mode. 388 LLVM_FALLTHROUGH; 389 case Type::IntegerTyID: 390 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), 391 cast<IntegerType>(TyR)->getBitWidth()); 392 // TyL == TyR would have returned true earlier, because types are uniqued. 393 case Type::VoidTyID: 394 case Type::FloatTyID: 395 case Type::DoubleTyID: 396 case Type::X86_FP80TyID: 397 case Type::FP128TyID: 398 case Type::PPC_FP128TyID: 399 case Type::LabelTyID: 400 case Type::MetadataTyID: 401 case Type::TokenTyID: 402 return 0; 403 404 case Type::PointerTyID: { 405 assert(PTyL && PTyR && "Both types must be pointers here."); 406 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 407 } 408 409 case Type::StructTyID: { 410 StructType *STyL = cast<StructType>(TyL); 411 StructType *STyR = cast<StructType>(TyR); 412 if (STyL->getNumElements() != STyR->getNumElements()) 413 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 414 415 if (STyL->isPacked() != STyR->isPacked()) 416 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 417 418 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 419 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 420 return Res; 421 } 422 return 0; 423 } 424 425 case Type::FunctionTyID: { 426 FunctionType *FTyL = cast<FunctionType>(TyL); 427 FunctionType *FTyR = cast<FunctionType>(TyR); 428 if (FTyL->getNumParams() != FTyR->getNumParams()) 429 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 430 431 if (FTyL->isVarArg() != FTyR->isVarArg()) 432 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 433 434 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 435 return Res; 436 437 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 438 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 439 return Res; 440 } 441 return 0; 442 } 443 444 case Type::ArrayTyID: 445 case Type::VectorTyID: { 446 auto *STyL = cast<SequentialType>(TyL); 447 auto *STyR = cast<SequentialType>(TyR); 448 if (STyL->getNumElements() != STyR->getNumElements()) 449 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 450 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 451 } 452 } 453 } 454 455 // Determine whether the two operations are the same except that pointer-to-A 456 // and pointer-to-B are equivalent. This should be kept in sync with 457 // Instruction::isSameOperationAs. 458 // Read method declaration comments for more details. 459 int FunctionComparator::cmpOperations(const Instruction *L, 460 const Instruction *R, 461 bool &needToCmpOperands) const { 462 needToCmpOperands = true; 463 if (int Res = cmpValues(L, R)) 464 return Res; 465 466 // Differences from Instruction::isSameOperationAs: 467 // * replace type comparison with calls to cmpTypes. 468 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. 469 // * because of the above, we don't test for the tail bit on calls later on. 470 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 471 return Res; 472 473 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) { 474 needToCmpOperands = false; 475 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R); 476 if (int Res = 477 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 478 return Res; 479 return cmpGEPs(GEPL, GEPR); 480 } 481 482 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 483 return Res; 484 485 if (int Res = cmpTypes(L->getType(), R->getType())) 486 return Res; 487 488 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 489 R->getRawSubclassOptionalData())) 490 return Res; 491 492 // We have two instructions of identical opcode and #operands. Check to see 493 // if all operands are the same type 494 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 495 if (int Res = 496 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 497 return Res; 498 } 499 500 // Check special state that is a part of some instructions. 501 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 502 if (int Res = cmpTypes(AI->getAllocatedType(), 503 cast<AllocaInst>(R)->getAllocatedType())) 504 return Res; 505 return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()); 506 } 507 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 508 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 509 return Res; 510 if (int Res = 511 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) 512 return Res; 513 if (int Res = 514 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 515 return Res; 516 if (int Res = 517 cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope())) 518 return Res; 519 return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range), 520 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); 521 } 522 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 523 if (int Res = 524 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 525 return Res; 526 if (int Res = 527 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) 528 return Res; 529 if (int Res = 530 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 531 return Res; 532 return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope()); 533 } 534 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 535 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 536 if (const CallInst *CI = dyn_cast<CallInst>(L)) { 537 if (int Res = cmpNumbers(CI->getCallingConv(), 538 cast<CallInst>(R)->getCallingConv())) 539 return Res; 540 if (int Res = 541 cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes())) 542 return Res; 543 if (int Res = cmpOperandBundlesSchema(CI, R)) 544 return Res; 545 return cmpRangeMetadata( 546 CI->getMetadata(LLVMContext::MD_range), 547 cast<CallInst>(R)->getMetadata(LLVMContext::MD_range)); 548 } 549 if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) { 550 if (int Res = cmpNumbers(II->getCallingConv(), 551 cast<InvokeInst>(R)->getCallingConv())) 552 return Res; 553 if (int Res = 554 cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes())) 555 return Res; 556 if (int Res = cmpOperandBundlesSchema(II, R)) 557 return Res; 558 return cmpRangeMetadata( 559 II->getMetadata(LLVMContext::MD_range), 560 cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range)); 561 } 562 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 563 ArrayRef<unsigned> LIndices = IVI->getIndices(); 564 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 565 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 566 return Res; 567 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 568 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 569 return Res; 570 } 571 return 0; 572 } 573 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 574 ArrayRef<unsigned> LIndices = EVI->getIndices(); 575 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 576 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 577 return Res; 578 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 579 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 580 return Res; 581 } 582 } 583 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 584 if (int Res = 585 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 586 return Res; 587 return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope()); 588 } 589 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 590 if (int Res = cmpNumbers(CXI->isVolatile(), 591 cast<AtomicCmpXchgInst>(R)->isVolatile())) 592 return Res; 593 if (int Res = cmpNumbers(CXI->isWeak(), 594 cast<AtomicCmpXchgInst>(R)->isWeak())) 595 return Res; 596 if (int Res = 597 cmpOrderings(CXI->getSuccessOrdering(), 598 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 599 return Res; 600 if (int Res = 601 cmpOrderings(CXI->getFailureOrdering(), 602 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 603 return Res; 604 return cmpNumbers(CXI->getSynchScope(), 605 cast<AtomicCmpXchgInst>(R)->getSynchScope()); 606 } 607 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 608 if (int Res = cmpNumbers(RMWI->getOperation(), 609 cast<AtomicRMWInst>(R)->getOperation())) 610 return Res; 611 if (int Res = cmpNumbers(RMWI->isVolatile(), 612 cast<AtomicRMWInst>(R)->isVolatile())) 613 return Res; 614 if (int Res = cmpOrderings(RMWI->getOrdering(), 615 cast<AtomicRMWInst>(R)->getOrdering())) 616 return Res; 617 return cmpNumbers(RMWI->getSynchScope(), 618 cast<AtomicRMWInst>(R)->getSynchScope()); 619 } 620 if (const PHINode *PNL = dyn_cast<PHINode>(L)) { 621 const PHINode *PNR = cast<PHINode>(R); 622 // Ensure that in addition to the incoming values being identical 623 // (checked by the caller of this function), the incoming blocks 624 // are also identical. 625 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { 626 if (int Res = 627 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) 628 return Res; 629 } 630 } 631 return 0; 632 } 633 634 // Determine whether two GEP operations perform the same underlying arithmetic. 635 // Read method declaration comments for more details. 636 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 637 const GEPOperator *GEPR) const { 638 639 unsigned int ASL = GEPL->getPointerAddressSpace(); 640 unsigned int ASR = GEPR->getPointerAddressSpace(); 641 642 if (int Res = cmpNumbers(ASL, ASR)) 643 return Res; 644 645 // When we have target data, we can reduce the GEP down to the value in bytes 646 // added to the address. 647 const DataLayout &DL = FnL->getParent()->getDataLayout(); 648 unsigned BitWidth = DL.getPointerSizeInBits(ASL); 649 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); 650 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 651 GEPR->accumulateConstantOffset(DL, OffsetR)) 652 return cmpAPInts(OffsetL, OffsetR); 653 if (int Res = cmpTypes(GEPL->getSourceElementType(), 654 GEPR->getSourceElementType())) 655 return Res; 656 657 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 658 return Res; 659 660 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 661 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 662 return Res; 663 } 664 665 return 0; 666 } 667 668 int FunctionComparator::cmpInlineAsm(const InlineAsm *L, 669 const InlineAsm *R) const { 670 // InlineAsm's are uniqued. If they are the same pointer, obviously they are 671 // the same, otherwise compare the fields. 672 if (L == R) 673 return 0; 674 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) 675 return Res; 676 if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) 677 return Res; 678 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) 679 return Res; 680 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) 681 return Res; 682 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) 683 return Res; 684 if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) 685 return Res; 686 llvm_unreachable("InlineAsm blocks were not uniqued."); 687 return 0; 688 } 689 690 /// Compare two values used by the two functions under pair-wise comparison. If 691 /// this is the first time the values are seen, they're added to the mapping so 692 /// that we will detect mismatches on next use. 693 /// See comments in declaration for more details. 694 int FunctionComparator::cmpValues(const Value *L, const Value *R) const { 695 // Catch self-reference case. 696 if (L == FnL) { 697 if (R == FnR) 698 return 0; 699 return -1; 700 } 701 if (R == FnR) { 702 if (L == FnL) 703 return 0; 704 return 1; 705 } 706 707 const Constant *ConstL = dyn_cast<Constant>(L); 708 const Constant *ConstR = dyn_cast<Constant>(R); 709 if (ConstL && ConstR) { 710 if (L == R) 711 return 0; 712 return cmpConstants(ConstL, ConstR); 713 } 714 715 if (ConstL) 716 return 1; 717 if (ConstR) 718 return -1; 719 720 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 721 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 722 723 if (InlineAsmL && InlineAsmR) 724 return cmpInlineAsm(InlineAsmL, InlineAsmR); 725 if (InlineAsmL) 726 return 1; 727 if (InlineAsmR) 728 return -1; 729 730 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 731 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 732 733 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 734 } 735 736 // Test whether two basic blocks have equivalent behaviour. 737 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, 738 const BasicBlock *BBR) const { 739 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 740 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 741 742 do { 743 bool needToCmpOperands = true; 744 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) 745 return Res; 746 if (needToCmpOperands) { 747 assert(InstL->getNumOperands() == InstR->getNumOperands()); 748 749 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 750 Value *OpL = InstL->getOperand(i); 751 Value *OpR = InstR->getOperand(i); 752 if (int Res = cmpValues(OpL, OpR)) 753 return Res; 754 // cmpValues should ensure this is true. 755 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); 756 } 757 } 758 759 ++InstL; 760 ++InstR; 761 } while (InstL != InstLE && InstR != InstRE); 762 763 if (InstL != InstLE && InstR == InstRE) 764 return 1; 765 if (InstL == InstLE && InstR != InstRE) 766 return -1; 767 return 0; 768 } 769 770 int FunctionComparator::compareSignature() const { 771 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 772 return Res; 773 774 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 775 return Res; 776 777 if (FnL->hasGC()) { 778 if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) 779 return Res; 780 } 781 782 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 783 return Res; 784 785 if (FnL->hasSection()) { 786 if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) 787 return Res; 788 } 789 790 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 791 return Res; 792 793 // TODO: if it's internal and only used in direct calls, we could handle this 794 // case too. 795 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 796 return Res; 797 798 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 799 return Res; 800 801 assert(FnL->arg_size() == FnR->arg_size() && 802 "Identically typed functions have different numbers of args!"); 803 804 // Visit the arguments so that they get enumerated in the order they're 805 // passed in. 806 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 807 ArgRI = FnR->arg_begin(), 808 ArgLE = FnL->arg_end(); 809 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 810 if (cmpValues(&*ArgLI, &*ArgRI) != 0) 811 llvm_unreachable("Arguments repeat!"); 812 } 813 return 0; 814 } 815 816 // Test whether the two functions have equivalent behaviour. 817 int FunctionComparator::compare() { 818 beginCompare(); 819 820 if (int Res = compareSignature()) 821 return Res; 822 823 // We do a CFG-ordered walk since the actual ordering of the blocks in the 824 // linked list is immaterial. Our walk starts at the entry block for both 825 // functions, then takes each block from each terminator in order. As an 826 // artifact, this also means that unreachable blocks are ignored. 827 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 828 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. 829 830 FnLBBs.push_back(&FnL->getEntryBlock()); 831 FnRBBs.push_back(&FnR->getEntryBlock()); 832 833 VisitedBBs.insert(FnLBBs[0]); 834 while (!FnLBBs.empty()) { 835 const BasicBlock *BBL = FnLBBs.pop_back_val(); 836 const BasicBlock *BBR = FnRBBs.pop_back_val(); 837 838 if (int Res = cmpValues(BBL, BBR)) 839 return Res; 840 841 if (int Res = cmpBasicBlocks(BBL, BBR)) 842 return Res; 843 844 const TerminatorInst *TermL = BBL->getTerminator(); 845 const TerminatorInst *TermR = BBR->getTerminator(); 846 847 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 848 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 849 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 850 continue; 851 852 FnLBBs.push_back(TermL->getSuccessor(i)); 853 FnRBBs.push_back(TermR->getSuccessor(i)); 854 } 855 } 856 return 0; 857 } 858 859 namespace { 860 861 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a 862 // hash of a sequence of 64bit ints, but the entire input does not need to be 863 // available at once. This interface is necessary for functionHash because it 864 // needs to accumulate the hash as the structure of the function is traversed 865 // without saving these values to an intermediate buffer. This form of hashing 866 // is not often needed, as usually the object to hash is just read from a 867 // buffer. 868 class HashAccumulator64 { 869 uint64_t Hash; 870 public: 871 // Initialize to random constant, so the state isn't zero. 872 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } 873 void add(uint64_t V) { 874 Hash = llvm::hashing::detail::hash_16_bytes(Hash, V); 875 } 876 // No finishing is required, because the entire hash value is used. 877 uint64_t getHash() { return Hash; } 878 }; 879 } // end anonymous namespace 880 881 // A function hash is calculated by considering only the number of arguments and 882 // whether a function is varargs, the order of basic blocks (given by the 883 // successors of each basic block in depth first order), and the order of 884 // opcodes of each instruction within each of these basic blocks. This mirrors 885 // the strategy compare() uses to compare functions by walking the BBs in depth 886 // first order and comparing each instruction in sequence. Because this hash 887 // does not look at the operands, it is insensitive to things such as the 888 // target of calls and the constants used in the function, which makes it useful 889 // when possibly merging functions which are the same modulo constants and call 890 // targets. 891 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { 892 HashAccumulator64 H; 893 H.add(F.isVarArg()); 894 H.add(F.arg_size()); 895 896 SmallVector<const BasicBlock *, 8> BBs; 897 SmallSet<const BasicBlock *, 16> VisitedBBs; 898 899 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), 900 // accumulating the hash of the function "structure." (BB and opcode sequence) 901 BBs.push_back(&F.getEntryBlock()); 902 VisitedBBs.insert(BBs[0]); 903 while (!BBs.empty()) { 904 const BasicBlock *BB = BBs.pop_back_val(); 905 // This random value acts as a block header, as otherwise the partition of 906 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes 907 H.add(45798); 908 for (auto &Inst : *BB) { 909 H.add(Inst.getOpcode()); 910 } 911 const TerminatorInst *Term = BB->getTerminator(); 912 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 913 if (!VisitedBBs.insert(Term->getSuccessor(i)).second) 914 continue; 915 BBs.push_back(Term->getSuccessor(i)); 916 } 917 } 918 return H.getHash(); 919 } 920 921 922