1 //===- FunctionComparator.h - Function Comparator -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the FunctionComparator and GlobalNumberState classes 10 // which are used by the MergeFunctions pass for comparing functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/FunctionComparator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/IR/Attributes.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalValue.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <cstddef> 46 #include <cstdint> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "functioncomparator" 52 53 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 54 if (L < R) 55 return -1; 56 if (L > R) 57 return 1; 58 return 0; 59 } 60 61 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { 62 if ((int)L < (int)R) 63 return -1; 64 if ((int)L > (int)R) 65 return 1; 66 return 0; 67 } 68 69 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 70 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 71 return Res; 72 if (L.ugt(R)) 73 return 1; 74 if (R.ugt(L)) 75 return -1; 76 return 0; 77 } 78 79 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 80 // Floats are ordered first by semantics (i.e. float, double, half, etc.), 81 // then by value interpreted as a bitstring (aka APInt). 82 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); 83 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), 84 APFloat::semanticsPrecision(SR))) 85 return Res; 86 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), 87 APFloat::semanticsMaxExponent(SR))) 88 return Res; 89 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), 90 APFloat::semanticsMinExponent(SR))) 91 return Res; 92 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), 93 APFloat::semanticsSizeInBits(SR))) 94 return Res; 95 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 96 } 97 98 int FunctionComparator::cmpMem(StringRef L, StringRef R) const { 99 // Prevent heavy comparison, compare sizes first. 100 if (int Res = cmpNumbers(L.size(), R.size())) 101 return Res; 102 103 // Compare strings lexicographically only when it is necessary: only when 104 // strings are equal in size. 105 return L.compare(R); 106 } 107 108 int FunctionComparator::cmpAttrs(const AttributeList L, 109 const AttributeList R) const { 110 if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets())) 111 return Res; 112 113 for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) { 114 AttributeSet LAS = L.getAttributes(i); 115 AttributeSet RAS = R.getAttributes(i); 116 AttributeSet::iterator LI = LAS.begin(), LE = LAS.end(); 117 AttributeSet::iterator RI = RAS.begin(), RE = RAS.end(); 118 for (; LI != LE && RI != RE; ++LI, ++RI) { 119 Attribute LA = *LI; 120 Attribute RA = *RI; 121 if (LA.isTypeAttribute() && RA.isTypeAttribute()) { 122 if (LA.getKindAsEnum() != RA.getKindAsEnum()) 123 return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum()); 124 125 Type *TyL = LA.getValueAsType(); 126 Type *TyR = RA.getValueAsType(); 127 if (TyL && TyR) 128 return cmpTypes(TyL, TyR); 129 130 // Two pointers, at least one null, so the comparison result is 131 // independent of the value of a real pointer. 132 return cmpNumbers((uint64_t)TyL, (uint64_t)TyR); 133 } 134 if (LA < RA) 135 return -1; 136 if (RA < LA) 137 return 1; 138 } 139 if (LI != LE) 140 return 1; 141 if (RI != RE) 142 return -1; 143 } 144 return 0; 145 } 146 147 int FunctionComparator::cmpRangeMetadata(const MDNode *L, 148 const MDNode *R) const { 149 if (L == R) 150 return 0; 151 if (!L) 152 return -1; 153 if (!R) 154 return 1; 155 // Range metadata is a sequence of numbers. Make sure they are the same 156 // sequence. 157 // TODO: Note that as this is metadata, it is possible to drop and/or merge 158 // this data when considering functions to merge. Thus this comparison would 159 // return 0 (i.e. equivalent), but merging would become more complicated 160 // because the ranges would need to be unioned. It is not likely that 161 // functions differ ONLY in this metadata if they are actually the same 162 // function semantically. 163 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 164 return Res; 165 for (size_t I = 0; I < L->getNumOperands(); ++I) { 166 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); 167 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); 168 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) 169 return Res; 170 } 171 return 0; 172 } 173 174 // FIXME(CallSite): the parameters should be CallBase 175 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L, 176 const Instruction *R) const { 177 const CallBase *LCS = cast<CallBase>(L); 178 const CallBase *RCS = cast<CallBase>(R); 179 180 assert(LCS->getOpcode() == RCS->getOpcode() && "Can't compare otherwise!"); 181 182 if (int Res = 183 cmpNumbers(LCS->getNumOperandBundles(), RCS->getNumOperandBundles())) 184 return Res; 185 186 for (unsigned i = 0, e = LCS->getNumOperandBundles(); i != e; ++i) { 187 auto OBL = LCS->getOperandBundleAt(i); 188 auto OBR = RCS->getOperandBundleAt(i); 189 190 if (int Res = OBL.getTagName().compare(OBR.getTagName())) 191 return Res; 192 193 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) 194 return Res; 195 } 196 197 return 0; 198 } 199 200 /// Constants comparison: 201 /// 1. Check whether type of L constant could be losslessly bitcasted to R 202 /// type. 203 /// 2. Compare constant contents. 204 /// For more details see declaration comments. 205 int FunctionComparator::cmpConstants(const Constant *L, 206 const Constant *R) const { 207 Type *TyL = L->getType(); 208 Type *TyR = R->getType(); 209 210 // Check whether types are bitcastable. This part is just re-factored 211 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 212 // we also pack into result which type is "less" for us. 213 int TypesRes = cmpTypes(TyL, TyR); 214 if (TypesRes != 0) { 215 // Types are different, but check whether we can bitcast them. 216 if (!TyL->isFirstClassType()) { 217 if (TyR->isFirstClassType()) 218 return -1; 219 // Neither TyL nor TyR are values of first class type. Return the result 220 // of comparing the types 221 return TypesRes; 222 } 223 if (!TyR->isFirstClassType()) { 224 if (TyL->isFirstClassType()) 225 return 1; 226 return TypesRes; 227 } 228 229 // Vector -> Vector conversions are always lossless if the two vector types 230 // have the same size, otherwise not. 231 unsigned TyLWidth = 0; 232 unsigned TyRWidth = 0; 233 234 if (auto *VecTyL = dyn_cast<VectorType>(TyL)) 235 TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedSize(); 236 if (auto *VecTyR = dyn_cast<VectorType>(TyR)) 237 TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedSize(); 238 239 if (TyLWidth != TyRWidth) 240 return cmpNumbers(TyLWidth, TyRWidth); 241 242 // Zero bit-width means neither TyL nor TyR are vectors. 243 if (!TyLWidth) { 244 PointerType *PTyL = dyn_cast<PointerType>(TyL); 245 PointerType *PTyR = dyn_cast<PointerType>(TyR); 246 if (PTyL && PTyR) { 247 unsigned AddrSpaceL = PTyL->getAddressSpace(); 248 unsigned AddrSpaceR = PTyR->getAddressSpace(); 249 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 250 return Res; 251 } 252 if (PTyL) 253 return 1; 254 if (PTyR) 255 return -1; 256 257 // TyL and TyR aren't vectors, nor pointers. We don't know how to 258 // bitcast them. 259 return TypesRes; 260 } 261 } 262 263 // OK, types are bitcastable, now check constant contents. 264 265 if (L->isNullValue() && R->isNullValue()) 266 return TypesRes; 267 if (L->isNullValue() && !R->isNullValue()) 268 return 1; 269 if (!L->isNullValue() && R->isNullValue()) 270 return -1; 271 272 auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L)); 273 auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R)); 274 if (GlobalValueL && GlobalValueR) { 275 return cmpGlobalValues(GlobalValueL, GlobalValueR); 276 } 277 278 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 279 return Res; 280 281 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { 282 const auto *SeqR = cast<ConstantDataSequential>(R); 283 // This handles ConstantDataArray and ConstantDataVector. Note that we 284 // compare the two raw data arrays, which might differ depending on the host 285 // endianness. This isn't a problem though, because the endiness of a module 286 // will affect the order of the constants, but this order is the same 287 // for a given input module and host platform. 288 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); 289 } 290 291 switch (L->getValueID()) { 292 case Value::UndefValueVal: 293 case Value::ConstantTokenNoneVal: 294 return TypesRes; 295 case Value::ConstantIntVal: { 296 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 297 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 298 return cmpAPInts(LInt, RInt); 299 } 300 case Value::ConstantFPVal: { 301 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 302 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 303 return cmpAPFloats(LAPF, RAPF); 304 } 305 case Value::ConstantArrayVal: { 306 const ConstantArray *LA = cast<ConstantArray>(L); 307 const ConstantArray *RA = cast<ConstantArray>(R); 308 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 309 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 310 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 311 return Res; 312 for (uint64_t i = 0; i < NumElementsL; ++i) { 313 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 314 cast<Constant>(RA->getOperand(i)))) 315 return Res; 316 } 317 return 0; 318 } 319 case Value::ConstantStructVal: { 320 const ConstantStruct *LS = cast<ConstantStruct>(L); 321 const ConstantStruct *RS = cast<ConstantStruct>(R); 322 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 323 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 324 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 325 return Res; 326 for (unsigned i = 0; i != NumElementsL; ++i) { 327 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 328 cast<Constant>(RS->getOperand(i)))) 329 return Res; 330 } 331 return 0; 332 } 333 case Value::ConstantVectorVal: { 334 const ConstantVector *LV = cast<ConstantVector>(L); 335 const ConstantVector *RV = cast<ConstantVector>(R); 336 unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements(); 337 unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements(); 338 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 339 return Res; 340 for (uint64_t i = 0; i < NumElementsL; ++i) { 341 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 342 cast<Constant>(RV->getOperand(i)))) 343 return Res; 344 } 345 return 0; 346 } 347 case Value::ConstantExprVal: { 348 const ConstantExpr *LE = cast<ConstantExpr>(L); 349 const ConstantExpr *RE = cast<ConstantExpr>(R); 350 unsigned NumOperandsL = LE->getNumOperands(); 351 unsigned NumOperandsR = RE->getNumOperands(); 352 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 353 return Res; 354 for (unsigned i = 0; i < NumOperandsL; ++i) { 355 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 356 cast<Constant>(RE->getOperand(i)))) 357 return Res; 358 } 359 return 0; 360 } 361 case Value::BlockAddressVal: { 362 const BlockAddress *LBA = cast<BlockAddress>(L); 363 const BlockAddress *RBA = cast<BlockAddress>(R); 364 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) 365 return Res; 366 if (LBA->getFunction() == RBA->getFunction()) { 367 // They are BBs in the same function. Order by which comes first in the 368 // BB order of the function. This order is deterministic. 369 Function *F = LBA->getFunction(); 370 BasicBlock *LBB = LBA->getBasicBlock(); 371 BasicBlock *RBB = RBA->getBasicBlock(); 372 if (LBB == RBB) 373 return 0; 374 for (BasicBlock &BB : F->getBasicBlockList()) { 375 if (&BB == LBB) { 376 assert(&BB != RBB); 377 return -1; 378 } 379 if (&BB == RBB) 380 return 1; 381 } 382 llvm_unreachable("Basic Block Address does not point to a basic block in " 383 "its function."); 384 return -1; 385 } else { 386 // cmpValues said the functions are the same. So because they aren't 387 // literally the same pointer, they must respectively be the left and 388 // right functions. 389 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); 390 // cmpValues will tell us if these are equivalent BasicBlocks, in the 391 // context of their respective functions. 392 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); 393 } 394 } 395 default: // Unknown constant, abort. 396 LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); 397 llvm_unreachable("Constant ValueID not recognized."); 398 return -1; 399 } 400 } 401 402 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { 403 uint64_t LNumber = GlobalNumbers->getNumber(L); 404 uint64_t RNumber = GlobalNumbers->getNumber(R); 405 return cmpNumbers(LNumber, RNumber); 406 } 407 408 /// cmpType - compares two types, 409 /// defines total ordering among the types set. 410 /// See method declaration comments for more details. 411 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 412 PointerType *PTyL = dyn_cast<PointerType>(TyL); 413 PointerType *PTyR = dyn_cast<PointerType>(TyR); 414 415 const DataLayout &DL = FnL->getParent()->getDataLayout(); 416 if (PTyL && PTyL->getAddressSpace() == 0) 417 TyL = DL.getIntPtrType(TyL); 418 if (PTyR && PTyR->getAddressSpace() == 0) 419 TyR = DL.getIntPtrType(TyR); 420 421 if (TyL == TyR) 422 return 0; 423 424 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 425 return Res; 426 427 switch (TyL->getTypeID()) { 428 default: 429 llvm_unreachable("Unknown type!"); 430 case Type::IntegerTyID: 431 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), 432 cast<IntegerType>(TyR)->getBitWidth()); 433 // TyL == TyR would have returned true earlier, because types are uniqued. 434 case Type::VoidTyID: 435 case Type::FloatTyID: 436 case Type::DoubleTyID: 437 case Type::X86_FP80TyID: 438 case Type::FP128TyID: 439 case Type::PPC_FP128TyID: 440 case Type::LabelTyID: 441 case Type::MetadataTyID: 442 case Type::TokenTyID: 443 return 0; 444 445 case Type::PointerTyID: 446 assert(PTyL && PTyR && "Both types must be pointers here."); 447 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 448 449 case Type::StructTyID: { 450 StructType *STyL = cast<StructType>(TyL); 451 StructType *STyR = cast<StructType>(TyR); 452 if (STyL->getNumElements() != STyR->getNumElements()) 453 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 454 455 if (STyL->isPacked() != STyR->isPacked()) 456 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 457 458 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 459 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 460 return Res; 461 } 462 return 0; 463 } 464 465 case Type::FunctionTyID: { 466 FunctionType *FTyL = cast<FunctionType>(TyL); 467 FunctionType *FTyR = cast<FunctionType>(TyR); 468 if (FTyL->getNumParams() != FTyR->getNumParams()) 469 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 470 471 if (FTyL->isVarArg() != FTyR->isVarArg()) 472 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 473 474 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 475 return Res; 476 477 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 478 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 479 return Res; 480 } 481 return 0; 482 } 483 484 case Type::ArrayTyID: { 485 auto *STyL = cast<ArrayType>(TyL); 486 auto *STyR = cast<ArrayType>(TyR); 487 if (STyL->getNumElements() != STyR->getNumElements()) 488 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 489 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 490 } 491 case Type::FixedVectorTyID: 492 case Type::ScalableVectorTyID: { 493 auto *STyL = cast<VectorType>(TyL); 494 auto *STyR = cast<VectorType>(TyR); 495 if (STyL->getElementCount().Scalable != STyR->getElementCount().Scalable) 496 return cmpNumbers(STyL->getElementCount().Scalable, 497 STyR->getElementCount().Scalable); 498 if (STyL->getElementCount().Min != STyR->getElementCount().Min) 499 return cmpNumbers(STyL->getElementCount().Min, 500 STyR->getElementCount().Min); 501 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 502 } 503 } 504 } 505 506 // Determine whether the two operations are the same except that pointer-to-A 507 // and pointer-to-B are equivalent. This should be kept in sync with 508 // Instruction::isSameOperationAs. 509 // Read method declaration comments for more details. 510 int FunctionComparator::cmpOperations(const Instruction *L, 511 const Instruction *R, 512 bool &needToCmpOperands) const { 513 needToCmpOperands = true; 514 if (int Res = cmpValues(L, R)) 515 return Res; 516 517 // Differences from Instruction::isSameOperationAs: 518 // * replace type comparison with calls to cmpTypes. 519 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. 520 // * because of the above, we don't test for the tail bit on calls later on. 521 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 522 return Res; 523 524 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) { 525 needToCmpOperands = false; 526 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R); 527 if (int Res = 528 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 529 return Res; 530 return cmpGEPs(GEPL, GEPR); 531 } 532 533 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 534 return Res; 535 536 if (int Res = cmpTypes(L->getType(), R->getType())) 537 return Res; 538 539 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 540 R->getRawSubclassOptionalData())) 541 return Res; 542 543 // We have two instructions of identical opcode and #operands. Check to see 544 // if all operands are the same type 545 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 546 if (int Res = 547 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 548 return Res; 549 } 550 551 // Check special state that is a part of some instructions. 552 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 553 if (int Res = cmpTypes(AI->getAllocatedType(), 554 cast<AllocaInst>(R)->getAllocatedType())) 555 return Res; 556 return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()); 557 } 558 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 559 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 560 return Res; 561 if (int Res = 562 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) 563 return Res; 564 if (int Res = 565 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 566 return Res; 567 if (int Res = cmpNumbers(LI->getSyncScopeID(), 568 cast<LoadInst>(R)->getSyncScopeID())) 569 return Res; 570 return cmpRangeMetadata( 571 LI->getMetadata(LLVMContext::MD_range), 572 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); 573 } 574 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 575 if (int Res = 576 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 577 return Res; 578 if (int Res = 579 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) 580 return Res; 581 if (int Res = 582 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 583 return Res; 584 return cmpNumbers(SI->getSyncScopeID(), 585 cast<StoreInst>(R)->getSyncScopeID()); 586 } 587 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 588 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 589 if (auto *CBL = dyn_cast<CallBase>(L)) { 590 auto *CBR = cast<CallBase>(R); 591 if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv())) 592 return Res; 593 if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes())) 594 return Res; 595 if (int Res = cmpOperandBundlesSchema(L, R)) 596 return Res; 597 if (const CallInst *CI = dyn_cast<CallInst>(L)) 598 if (int Res = cmpNumbers(CI->getTailCallKind(), 599 cast<CallInst>(R)->getTailCallKind())) 600 return Res; 601 return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range), 602 R->getMetadata(LLVMContext::MD_range)); 603 } 604 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 605 ArrayRef<unsigned> LIndices = IVI->getIndices(); 606 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 607 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 608 return Res; 609 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 610 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 611 return Res; 612 } 613 return 0; 614 } 615 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 616 ArrayRef<unsigned> LIndices = EVI->getIndices(); 617 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 618 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 619 return Res; 620 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 621 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 622 return Res; 623 } 624 } 625 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 626 if (int Res = 627 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 628 return Res; 629 return cmpNumbers(FI->getSyncScopeID(), 630 cast<FenceInst>(R)->getSyncScopeID()); 631 } 632 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 633 if (int Res = cmpNumbers(CXI->isVolatile(), 634 cast<AtomicCmpXchgInst>(R)->isVolatile())) 635 return Res; 636 if (int Res = 637 cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak())) 638 return Res; 639 if (int Res = 640 cmpOrderings(CXI->getSuccessOrdering(), 641 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 642 return Res; 643 if (int Res = 644 cmpOrderings(CXI->getFailureOrdering(), 645 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 646 return Res; 647 return cmpNumbers(CXI->getSyncScopeID(), 648 cast<AtomicCmpXchgInst>(R)->getSyncScopeID()); 649 } 650 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 651 if (int Res = cmpNumbers(RMWI->getOperation(), 652 cast<AtomicRMWInst>(R)->getOperation())) 653 return Res; 654 if (int Res = cmpNumbers(RMWI->isVolatile(), 655 cast<AtomicRMWInst>(R)->isVolatile())) 656 return Res; 657 if (int Res = cmpOrderings(RMWI->getOrdering(), 658 cast<AtomicRMWInst>(R)->getOrdering())) 659 return Res; 660 return cmpNumbers(RMWI->getSyncScopeID(), 661 cast<AtomicRMWInst>(R)->getSyncScopeID()); 662 } 663 if (const PHINode *PNL = dyn_cast<PHINode>(L)) { 664 const PHINode *PNR = cast<PHINode>(R); 665 // Ensure that in addition to the incoming values being identical 666 // (checked by the caller of this function), the incoming blocks 667 // are also identical. 668 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { 669 if (int Res = 670 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) 671 return Res; 672 } 673 } 674 return 0; 675 } 676 677 // Determine whether two GEP operations perform the same underlying arithmetic. 678 // Read method declaration comments for more details. 679 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 680 const GEPOperator *GEPR) const { 681 unsigned int ASL = GEPL->getPointerAddressSpace(); 682 unsigned int ASR = GEPR->getPointerAddressSpace(); 683 684 if (int Res = cmpNumbers(ASL, ASR)) 685 return Res; 686 687 // When we have target data, we can reduce the GEP down to the value in bytes 688 // added to the address. 689 const DataLayout &DL = FnL->getParent()->getDataLayout(); 690 unsigned BitWidth = DL.getPointerSizeInBits(ASL); 691 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); 692 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 693 GEPR->accumulateConstantOffset(DL, OffsetR)) 694 return cmpAPInts(OffsetL, OffsetR); 695 if (int Res = 696 cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType())) 697 return Res; 698 699 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 700 return Res; 701 702 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 703 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 704 return Res; 705 } 706 707 return 0; 708 } 709 710 int FunctionComparator::cmpInlineAsm(const InlineAsm *L, 711 const InlineAsm *R) const { 712 // InlineAsm's are uniqued. If they are the same pointer, obviously they are 713 // the same, otherwise compare the fields. 714 if (L == R) 715 return 0; 716 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) 717 return Res; 718 if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) 719 return Res; 720 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) 721 return Res; 722 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) 723 return Res; 724 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) 725 return Res; 726 if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) 727 return Res; 728 assert(L->getFunctionType() != R->getFunctionType()); 729 return 0; 730 } 731 732 /// Compare two values used by the two functions under pair-wise comparison. If 733 /// this is the first time the values are seen, they're added to the mapping so 734 /// that we will detect mismatches on next use. 735 /// See comments in declaration for more details. 736 int FunctionComparator::cmpValues(const Value *L, const Value *R) const { 737 // Catch self-reference case. 738 if (L == FnL) { 739 if (R == FnR) 740 return 0; 741 return -1; 742 } 743 if (R == FnR) { 744 if (L == FnL) 745 return 0; 746 return 1; 747 } 748 749 const Constant *ConstL = dyn_cast<Constant>(L); 750 const Constant *ConstR = dyn_cast<Constant>(R); 751 if (ConstL && ConstR) { 752 if (L == R) 753 return 0; 754 return cmpConstants(ConstL, ConstR); 755 } 756 757 if (ConstL) 758 return 1; 759 if (ConstR) 760 return -1; 761 762 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 763 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 764 765 if (InlineAsmL && InlineAsmR) 766 return cmpInlineAsm(InlineAsmL, InlineAsmR); 767 if (InlineAsmL) 768 return 1; 769 if (InlineAsmR) 770 return -1; 771 772 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 773 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 774 775 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 776 } 777 778 // Test whether two basic blocks have equivalent behaviour. 779 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, 780 const BasicBlock *BBR) const { 781 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 782 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 783 784 do { 785 bool needToCmpOperands = true; 786 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) 787 return Res; 788 if (needToCmpOperands) { 789 assert(InstL->getNumOperands() == InstR->getNumOperands()); 790 791 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 792 Value *OpL = InstL->getOperand(i); 793 Value *OpR = InstR->getOperand(i); 794 if (int Res = cmpValues(OpL, OpR)) 795 return Res; 796 // cmpValues should ensure this is true. 797 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); 798 } 799 } 800 801 ++InstL; 802 ++InstR; 803 } while (InstL != InstLE && InstR != InstRE); 804 805 if (InstL != InstLE && InstR == InstRE) 806 return 1; 807 if (InstL == InstLE && InstR != InstRE) 808 return -1; 809 return 0; 810 } 811 812 int FunctionComparator::compareSignature() const { 813 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 814 return Res; 815 816 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 817 return Res; 818 819 if (FnL->hasGC()) { 820 if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) 821 return Res; 822 } 823 824 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 825 return Res; 826 827 if (FnL->hasSection()) { 828 if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) 829 return Res; 830 } 831 832 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 833 return Res; 834 835 // TODO: if it's internal and only used in direct calls, we could handle this 836 // case too. 837 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 838 return Res; 839 840 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 841 return Res; 842 843 assert(FnL->arg_size() == FnR->arg_size() && 844 "Identically typed functions have different numbers of args!"); 845 846 // Visit the arguments so that they get enumerated in the order they're 847 // passed in. 848 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 849 ArgRI = FnR->arg_begin(), 850 ArgLE = FnL->arg_end(); 851 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 852 if (cmpValues(&*ArgLI, &*ArgRI) != 0) 853 llvm_unreachable("Arguments repeat!"); 854 } 855 return 0; 856 } 857 858 // Test whether the two functions have equivalent behaviour. 859 int FunctionComparator::compare() { 860 beginCompare(); 861 862 if (int Res = compareSignature()) 863 return Res; 864 865 // We do a CFG-ordered walk since the actual ordering of the blocks in the 866 // linked list is immaterial. Our walk starts at the entry block for both 867 // functions, then takes each block from each terminator in order. As an 868 // artifact, this also means that unreachable blocks are ignored. 869 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 870 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. 871 872 FnLBBs.push_back(&FnL->getEntryBlock()); 873 FnRBBs.push_back(&FnR->getEntryBlock()); 874 875 VisitedBBs.insert(FnLBBs[0]); 876 while (!FnLBBs.empty()) { 877 const BasicBlock *BBL = FnLBBs.pop_back_val(); 878 const BasicBlock *BBR = FnRBBs.pop_back_val(); 879 880 if (int Res = cmpValues(BBL, BBR)) 881 return Res; 882 883 if (int Res = cmpBasicBlocks(BBL, BBR)) 884 return Res; 885 886 const Instruction *TermL = BBL->getTerminator(); 887 const Instruction *TermR = BBR->getTerminator(); 888 889 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 890 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 891 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 892 continue; 893 894 FnLBBs.push_back(TermL->getSuccessor(i)); 895 FnRBBs.push_back(TermR->getSuccessor(i)); 896 } 897 } 898 return 0; 899 } 900 901 namespace { 902 903 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a 904 // hash of a sequence of 64bit ints, but the entire input does not need to be 905 // available at once. This interface is necessary for functionHash because it 906 // needs to accumulate the hash as the structure of the function is traversed 907 // without saving these values to an intermediate buffer. This form of hashing 908 // is not often needed, as usually the object to hash is just read from a 909 // buffer. 910 class HashAccumulator64 { 911 uint64_t Hash; 912 913 public: 914 // Initialize to random constant, so the state isn't zero. 915 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } 916 917 void add(uint64_t V) { Hash = hashing::detail::hash_16_bytes(Hash, V); } 918 919 // No finishing is required, because the entire hash value is used. 920 uint64_t getHash() { return Hash; } 921 }; 922 923 } // end anonymous namespace 924 925 // A function hash is calculated by considering only the number of arguments and 926 // whether a function is varargs, the order of basic blocks (given by the 927 // successors of each basic block in depth first order), and the order of 928 // opcodes of each instruction within each of these basic blocks. This mirrors 929 // the strategy compare() uses to compare functions by walking the BBs in depth 930 // first order and comparing each instruction in sequence. Because this hash 931 // does not look at the operands, it is insensitive to things such as the 932 // target of calls and the constants used in the function, which makes it useful 933 // when possibly merging functions which are the same modulo constants and call 934 // targets. 935 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { 936 HashAccumulator64 H; 937 H.add(F.isVarArg()); 938 H.add(F.arg_size()); 939 940 SmallVector<const BasicBlock *, 8> BBs; 941 SmallPtrSet<const BasicBlock *, 16> VisitedBBs; 942 943 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), 944 // accumulating the hash of the function "structure." (BB and opcode sequence) 945 BBs.push_back(&F.getEntryBlock()); 946 VisitedBBs.insert(BBs[0]); 947 while (!BBs.empty()) { 948 const BasicBlock *BB = BBs.pop_back_val(); 949 // This random value acts as a block header, as otherwise the partition of 950 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes 951 H.add(45798); 952 for (auto &Inst : *BB) { 953 H.add(Inst.getOpcode()); 954 } 955 const Instruction *Term = BB->getTerminator(); 956 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 957 if (!VisitedBBs.insert(Term->getSuccessor(i)).second) 958 continue; 959 BBs.push_back(Term->getSuccessor(i)); 960 } 961 } 962 return H.getHash(); 963 } 964