1 //===- FunctionComparator.h - Function Comparator -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the FunctionComparator and GlobalNumberState classes 11 // which are used by the MergeFunctions pass for comparing functions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/FunctionComparator.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/IR/CallSite.h" 18 #include "llvm/IR/Instructions.h" 19 #include "llvm/IR/InlineAsm.h" 20 #include "llvm/IR/Module.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 24 using namespace llvm; 25 26 #define DEBUG_TYPE "functioncomparator" 27 28 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 29 if (L < R) return -1; 30 if (L > R) return 1; 31 return 0; 32 } 33 34 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { 35 if ((int)L < (int)R) return -1; 36 if ((int)L > (int)R) return 1; 37 return 0; 38 } 39 40 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 41 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 42 return Res; 43 if (L.ugt(R)) return 1; 44 if (R.ugt(L)) return -1; 45 return 0; 46 } 47 48 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 49 // Floats are ordered first by semantics (i.e. float, double, half, etc.), 50 // then by value interpreted as a bitstring (aka APInt). 51 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); 52 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), 53 APFloat::semanticsPrecision(SR))) 54 return Res; 55 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), 56 APFloat::semanticsMaxExponent(SR))) 57 return Res; 58 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), 59 APFloat::semanticsMinExponent(SR))) 60 return Res; 61 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), 62 APFloat::semanticsSizeInBits(SR))) 63 return Res; 64 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 65 } 66 67 int FunctionComparator::cmpMem(StringRef L, StringRef R) const { 68 // Prevent heavy comparison, compare sizes first. 69 if (int Res = cmpNumbers(L.size(), R.size())) 70 return Res; 71 72 // Compare strings lexicographically only when it is necessary: only when 73 // strings are equal in size. 74 return L.compare(R); 75 } 76 77 int FunctionComparator::cmpAttrs(const AttributeSet L, 78 const AttributeSet R) const { 79 if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots())) 80 return Res; 81 82 for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) { 83 AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i), 84 RE = R.end(i); 85 for (; LI != LE && RI != RE; ++LI, ++RI) { 86 Attribute LA = *LI; 87 Attribute RA = *RI; 88 if (LA < RA) 89 return -1; 90 if (RA < LA) 91 return 1; 92 } 93 if (LI != LE) 94 return 1; 95 if (RI != RE) 96 return -1; 97 } 98 return 0; 99 } 100 101 int FunctionComparator::cmpRangeMetadata(const MDNode *L, 102 const MDNode *R) const { 103 if (L == R) 104 return 0; 105 if (!L) 106 return -1; 107 if (!R) 108 return 1; 109 // Range metadata is a sequence of numbers. Make sure they are the same 110 // sequence. 111 // TODO: Note that as this is metadata, it is possible to drop and/or merge 112 // this data when considering functions to merge. Thus this comparison would 113 // return 0 (i.e. equivalent), but merging would become more complicated 114 // because the ranges would need to be unioned. It is not likely that 115 // functions differ ONLY in this metadata if they are actually the same 116 // function semantically. 117 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 118 return Res; 119 for (size_t I = 0; I < L->getNumOperands(); ++I) { 120 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); 121 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); 122 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) 123 return Res; 124 } 125 return 0; 126 } 127 128 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L, 129 const Instruction *R) const { 130 ImmutableCallSite LCS(L); 131 ImmutableCallSite RCS(R); 132 133 assert(LCS && RCS && "Must be calls or invokes!"); 134 assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!"); 135 136 if (int Res = 137 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) 138 return Res; 139 140 for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) { 141 auto OBL = LCS.getOperandBundleAt(i); 142 auto OBR = RCS.getOperandBundleAt(i); 143 144 if (int Res = OBL.getTagName().compare(OBR.getTagName())) 145 return Res; 146 147 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) 148 return Res; 149 } 150 151 return 0; 152 } 153 154 /// Constants comparison: 155 /// 1. Check whether type of L constant could be losslessly bitcasted to R 156 /// type. 157 /// 2. Compare constant contents. 158 /// For more details see declaration comments. 159 int FunctionComparator::cmpConstants(const Constant *L, 160 const Constant *R) const { 161 162 Type *TyL = L->getType(); 163 Type *TyR = R->getType(); 164 165 // Check whether types are bitcastable. This part is just re-factored 166 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 167 // we also pack into result which type is "less" for us. 168 int TypesRes = cmpTypes(TyL, TyR); 169 if (TypesRes != 0) { 170 // Types are different, but check whether we can bitcast them. 171 if (!TyL->isFirstClassType()) { 172 if (TyR->isFirstClassType()) 173 return -1; 174 // Neither TyL nor TyR are values of first class type. Return the result 175 // of comparing the types 176 return TypesRes; 177 } 178 if (!TyR->isFirstClassType()) { 179 if (TyL->isFirstClassType()) 180 return 1; 181 return TypesRes; 182 } 183 184 // Vector -> Vector conversions are always lossless if the two vector types 185 // have the same size, otherwise not. 186 unsigned TyLWidth = 0; 187 unsigned TyRWidth = 0; 188 189 if (auto *VecTyL = dyn_cast<VectorType>(TyL)) 190 TyLWidth = VecTyL->getBitWidth(); 191 if (auto *VecTyR = dyn_cast<VectorType>(TyR)) 192 TyRWidth = VecTyR->getBitWidth(); 193 194 if (TyLWidth != TyRWidth) 195 return cmpNumbers(TyLWidth, TyRWidth); 196 197 // Zero bit-width means neither TyL nor TyR are vectors. 198 if (!TyLWidth) { 199 PointerType *PTyL = dyn_cast<PointerType>(TyL); 200 PointerType *PTyR = dyn_cast<PointerType>(TyR); 201 if (PTyL && PTyR) { 202 unsigned AddrSpaceL = PTyL->getAddressSpace(); 203 unsigned AddrSpaceR = PTyR->getAddressSpace(); 204 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 205 return Res; 206 } 207 if (PTyL) 208 return 1; 209 if (PTyR) 210 return -1; 211 212 // TyL and TyR aren't vectors, nor pointers. We don't know how to 213 // bitcast them. 214 return TypesRes; 215 } 216 } 217 218 // OK, types are bitcastable, now check constant contents. 219 220 if (L->isNullValue() && R->isNullValue()) 221 return TypesRes; 222 if (L->isNullValue() && !R->isNullValue()) 223 return 1; 224 if (!L->isNullValue() && R->isNullValue()) 225 return -1; 226 227 auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L)); 228 auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R)); 229 if (GlobalValueL && GlobalValueR) { 230 return cmpGlobalValues(GlobalValueL, GlobalValueR); 231 } 232 233 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 234 return Res; 235 236 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { 237 const auto *SeqR = cast<ConstantDataSequential>(R); 238 // This handles ConstantDataArray and ConstantDataVector. Note that we 239 // compare the two raw data arrays, which might differ depending on the host 240 // endianness. This isn't a problem though, because the endiness of a module 241 // will affect the order of the constants, but this order is the same 242 // for a given input module and host platform. 243 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); 244 } 245 246 switch (L->getValueID()) { 247 case Value::UndefValueVal: 248 case Value::ConstantTokenNoneVal: 249 return TypesRes; 250 case Value::ConstantIntVal: { 251 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 252 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 253 return cmpAPInts(LInt, RInt); 254 } 255 case Value::ConstantFPVal: { 256 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 257 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 258 return cmpAPFloats(LAPF, RAPF); 259 } 260 case Value::ConstantArrayVal: { 261 const ConstantArray *LA = cast<ConstantArray>(L); 262 const ConstantArray *RA = cast<ConstantArray>(R); 263 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 264 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 265 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 266 return Res; 267 for (uint64_t i = 0; i < NumElementsL; ++i) { 268 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 269 cast<Constant>(RA->getOperand(i)))) 270 return Res; 271 } 272 return 0; 273 } 274 case Value::ConstantStructVal: { 275 const ConstantStruct *LS = cast<ConstantStruct>(L); 276 const ConstantStruct *RS = cast<ConstantStruct>(R); 277 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 278 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 279 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 280 return Res; 281 for (unsigned i = 0; i != NumElementsL; ++i) { 282 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 283 cast<Constant>(RS->getOperand(i)))) 284 return Res; 285 } 286 return 0; 287 } 288 case Value::ConstantVectorVal: { 289 const ConstantVector *LV = cast<ConstantVector>(L); 290 const ConstantVector *RV = cast<ConstantVector>(R); 291 unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements(); 292 unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements(); 293 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 294 return Res; 295 for (uint64_t i = 0; i < NumElementsL; ++i) { 296 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 297 cast<Constant>(RV->getOperand(i)))) 298 return Res; 299 } 300 return 0; 301 } 302 case Value::ConstantExprVal: { 303 const ConstantExpr *LE = cast<ConstantExpr>(L); 304 const ConstantExpr *RE = cast<ConstantExpr>(R); 305 unsigned NumOperandsL = LE->getNumOperands(); 306 unsigned NumOperandsR = RE->getNumOperands(); 307 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 308 return Res; 309 for (unsigned i = 0; i < NumOperandsL; ++i) { 310 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 311 cast<Constant>(RE->getOperand(i)))) 312 return Res; 313 } 314 return 0; 315 } 316 case Value::BlockAddressVal: { 317 const BlockAddress *LBA = cast<BlockAddress>(L); 318 const BlockAddress *RBA = cast<BlockAddress>(R); 319 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) 320 return Res; 321 if (LBA->getFunction() == RBA->getFunction()) { 322 // They are BBs in the same function. Order by which comes first in the 323 // BB order of the function. This order is deterministic. 324 Function* F = LBA->getFunction(); 325 BasicBlock *LBB = LBA->getBasicBlock(); 326 BasicBlock *RBB = RBA->getBasicBlock(); 327 if (LBB == RBB) 328 return 0; 329 for(BasicBlock &BB : F->getBasicBlockList()) { 330 if (&BB == LBB) { 331 assert(&BB != RBB); 332 return -1; 333 } 334 if (&BB == RBB) 335 return 1; 336 } 337 llvm_unreachable("Basic Block Address does not point to a basic block in " 338 "its function."); 339 return -1; 340 } else { 341 // cmpValues said the functions are the same. So because they aren't 342 // literally the same pointer, they must respectively be the left and 343 // right functions. 344 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); 345 // cmpValues will tell us if these are equivalent BasicBlocks, in the 346 // context of their respective functions. 347 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); 348 } 349 } 350 default: // Unknown constant, abort. 351 DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); 352 llvm_unreachable("Constant ValueID not recognized."); 353 return -1; 354 } 355 } 356 357 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { 358 uint64_t LNumber = GlobalNumbers->getNumber(L); 359 uint64_t RNumber = GlobalNumbers->getNumber(R); 360 return cmpNumbers(LNumber, RNumber); 361 } 362 363 /// cmpType - compares two types, 364 /// defines total ordering among the types set. 365 /// See method declaration comments for more details. 366 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 367 PointerType *PTyL = dyn_cast<PointerType>(TyL); 368 PointerType *PTyR = dyn_cast<PointerType>(TyR); 369 370 const DataLayout &DL = FnL->getParent()->getDataLayout(); 371 if (PTyL && PTyL->getAddressSpace() == 0) 372 TyL = DL.getIntPtrType(TyL); 373 if (PTyR && PTyR->getAddressSpace() == 0) 374 TyR = DL.getIntPtrType(TyR); 375 376 if (TyL == TyR) 377 return 0; 378 379 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 380 return Res; 381 382 switch (TyL->getTypeID()) { 383 default: 384 llvm_unreachable("Unknown type!"); 385 // Fall through in Release mode. 386 LLVM_FALLTHROUGH; 387 case Type::IntegerTyID: 388 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), 389 cast<IntegerType>(TyR)->getBitWidth()); 390 // TyL == TyR would have returned true earlier, because types are uniqued. 391 case Type::VoidTyID: 392 case Type::FloatTyID: 393 case Type::DoubleTyID: 394 case Type::X86_FP80TyID: 395 case Type::FP128TyID: 396 case Type::PPC_FP128TyID: 397 case Type::LabelTyID: 398 case Type::MetadataTyID: 399 case Type::TokenTyID: 400 return 0; 401 402 case Type::PointerTyID: { 403 assert(PTyL && PTyR && "Both types must be pointers here."); 404 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 405 } 406 407 case Type::StructTyID: { 408 StructType *STyL = cast<StructType>(TyL); 409 StructType *STyR = cast<StructType>(TyR); 410 if (STyL->getNumElements() != STyR->getNumElements()) 411 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 412 413 if (STyL->isPacked() != STyR->isPacked()) 414 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 415 416 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 417 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 418 return Res; 419 } 420 return 0; 421 } 422 423 case Type::FunctionTyID: { 424 FunctionType *FTyL = cast<FunctionType>(TyL); 425 FunctionType *FTyR = cast<FunctionType>(TyR); 426 if (FTyL->getNumParams() != FTyR->getNumParams()) 427 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 428 429 if (FTyL->isVarArg() != FTyR->isVarArg()) 430 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 431 432 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 433 return Res; 434 435 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 436 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 437 return Res; 438 } 439 return 0; 440 } 441 442 case Type::ArrayTyID: 443 case Type::VectorTyID: { 444 auto *STyL = cast<SequentialType>(TyL); 445 auto *STyR = cast<SequentialType>(TyR); 446 if (STyL->getNumElements() != STyR->getNumElements()) 447 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 448 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 449 } 450 } 451 } 452 453 // Determine whether the two operations are the same except that pointer-to-A 454 // and pointer-to-B are equivalent. This should be kept in sync with 455 // Instruction::isSameOperationAs. 456 // Read method declaration comments for more details. 457 int FunctionComparator::cmpOperations(const Instruction *L, 458 const Instruction *R, 459 bool &needToCmpOperands) const { 460 needToCmpOperands = true; 461 if (int Res = cmpValues(L, R)) 462 return Res; 463 464 // Differences from Instruction::isSameOperationAs: 465 // * replace type comparison with calls to cmpTypes. 466 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. 467 // * because of the above, we don't test for the tail bit on calls later on. 468 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 469 return Res; 470 471 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) { 472 needToCmpOperands = false; 473 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R); 474 if (int Res = 475 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 476 return Res; 477 return cmpGEPs(GEPL, GEPR); 478 } 479 480 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 481 return Res; 482 483 if (int Res = cmpTypes(L->getType(), R->getType())) 484 return Res; 485 486 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 487 R->getRawSubclassOptionalData())) 488 return Res; 489 490 // We have two instructions of identical opcode and #operands. Check to see 491 // if all operands are the same type 492 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 493 if (int Res = 494 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 495 return Res; 496 } 497 498 // Check special state that is a part of some instructions. 499 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 500 if (int Res = cmpTypes(AI->getAllocatedType(), 501 cast<AllocaInst>(R)->getAllocatedType())) 502 return Res; 503 return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()); 504 } 505 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 506 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 507 return Res; 508 if (int Res = 509 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) 510 return Res; 511 if (int Res = 512 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 513 return Res; 514 if (int Res = 515 cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope())) 516 return Res; 517 return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range), 518 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); 519 } 520 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 521 if (int Res = 522 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 523 return Res; 524 if (int Res = 525 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) 526 return Res; 527 if (int Res = 528 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 529 return Res; 530 return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope()); 531 } 532 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 533 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 534 if (const CallInst *CI = dyn_cast<CallInst>(L)) { 535 if (int Res = cmpNumbers(CI->getCallingConv(), 536 cast<CallInst>(R)->getCallingConv())) 537 return Res; 538 if (int Res = 539 cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes())) 540 return Res; 541 if (int Res = cmpOperandBundlesSchema(CI, R)) 542 return Res; 543 return cmpRangeMetadata( 544 CI->getMetadata(LLVMContext::MD_range), 545 cast<CallInst>(R)->getMetadata(LLVMContext::MD_range)); 546 } 547 if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) { 548 if (int Res = cmpNumbers(II->getCallingConv(), 549 cast<InvokeInst>(R)->getCallingConv())) 550 return Res; 551 if (int Res = 552 cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes())) 553 return Res; 554 if (int Res = cmpOperandBundlesSchema(II, R)) 555 return Res; 556 return cmpRangeMetadata( 557 II->getMetadata(LLVMContext::MD_range), 558 cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range)); 559 } 560 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 561 ArrayRef<unsigned> LIndices = IVI->getIndices(); 562 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 563 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 564 return Res; 565 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 566 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 567 return Res; 568 } 569 return 0; 570 } 571 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 572 ArrayRef<unsigned> LIndices = EVI->getIndices(); 573 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 574 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 575 return Res; 576 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 577 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 578 return Res; 579 } 580 } 581 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 582 if (int Res = 583 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 584 return Res; 585 return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope()); 586 } 587 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 588 if (int Res = cmpNumbers(CXI->isVolatile(), 589 cast<AtomicCmpXchgInst>(R)->isVolatile())) 590 return Res; 591 if (int Res = cmpNumbers(CXI->isWeak(), 592 cast<AtomicCmpXchgInst>(R)->isWeak())) 593 return Res; 594 if (int Res = 595 cmpOrderings(CXI->getSuccessOrdering(), 596 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 597 return Res; 598 if (int Res = 599 cmpOrderings(CXI->getFailureOrdering(), 600 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 601 return Res; 602 return cmpNumbers(CXI->getSynchScope(), 603 cast<AtomicCmpXchgInst>(R)->getSynchScope()); 604 } 605 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 606 if (int Res = cmpNumbers(RMWI->getOperation(), 607 cast<AtomicRMWInst>(R)->getOperation())) 608 return Res; 609 if (int Res = cmpNumbers(RMWI->isVolatile(), 610 cast<AtomicRMWInst>(R)->isVolatile())) 611 return Res; 612 if (int Res = cmpOrderings(RMWI->getOrdering(), 613 cast<AtomicRMWInst>(R)->getOrdering())) 614 return Res; 615 return cmpNumbers(RMWI->getSynchScope(), 616 cast<AtomicRMWInst>(R)->getSynchScope()); 617 } 618 if (const PHINode *PNL = dyn_cast<PHINode>(L)) { 619 const PHINode *PNR = cast<PHINode>(R); 620 // Ensure that in addition to the incoming values being identical 621 // (checked by the caller of this function), the incoming blocks 622 // are also identical. 623 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { 624 if (int Res = 625 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) 626 return Res; 627 } 628 } 629 return 0; 630 } 631 632 // Determine whether two GEP operations perform the same underlying arithmetic. 633 // Read method declaration comments for more details. 634 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 635 const GEPOperator *GEPR) const { 636 637 unsigned int ASL = GEPL->getPointerAddressSpace(); 638 unsigned int ASR = GEPR->getPointerAddressSpace(); 639 640 if (int Res = cmpNumbers(ASL, ASR)) 641 return Res; 642 643 // When we have target data, we can reduce the GEP down to the value in bytes 644 // added to the address. 645 const DataLayout &DL = FnL->getParent()->getDataLayout(); 646 unsigned BitWidth = DL.getPointerSizeInBits(ASL); 647 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); 648 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 649 GEPR->accumulateConstantOffset(DL, OffsetR)) 650 return cmpAPInts(OffsetL, OffsetR); 651 if (int Res = cmpTypes(GEPL->getSourceElementType(), 652 GEPR->getSourceElementType())) 653 return Res; 654 655 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 656 return Res; 657 658 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 659 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 660 return Res; 661 } 662 663 return 0; 664 } 665 666 int FunctionComparator::cmpInlineAsm(const InlineAsm *L, 667 const InlineAsm *R) const { 668 // InlineAsm's are uniqued. If they are the same pointer, obviously they are 669 // the same, otherwise compare the fields. 670 if (L == R) 671 return 0; 672 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) 673 return Res; 674 if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) 675 return Res; 676 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) 677 return Res; 678 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) 679 return Res; 680 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) 681 return Res; 682 if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) 683 return Res; 684 llvm_unreachable("InlineAsm blocks were not uniqued."); 685 return 0; 686 } 687 688 /// Compare two values used by the two functions under pair-wise comparison. If 689 /// this is the first time the values are seen, they're added to the mapping so 690 /// that we will detect mismatches on next use. 691 /// See comments in declaration for more details. 692 int FunctionComparator::cmpValues(const Value *L, const Value *R) const { 693 // Catch self-reference case. 694 if (L == FnL) { 695 if (R == FnR) 696 return 0; 697 return -1; 698 } 699 if (R == FnR) { 700 if (L == FnL) 701 return 0; 702 return 1; 703 } 704 705 const Constant *ConstL = dyn_cast<Constant>(L); 706 const Constant *ConstR = dyn_cast<Constant>(R); 707 if (ConstL && ConstR) { 708 if (L == R) 709 return 0; 710 return cmpConstants(ConstL, ConstR); 711 } 712 713 if (ConstL) 714 return 1; 715 if (ConstR) 716 return -1; 717 718 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 719 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 720 721 if (InlineAsmL && InlineAsmR) 722 return cmpInlineAsm(InlineAsmL, InlineAsmR); 723 if (InlineAsmL) 724 return 1; 725 if (InlineAsmR) 726 return -1; 727 728 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 729 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 730 731 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 732 } 733 734 // Test whether two basic blocks have equivalent behaviour. 735 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, 736 const BasicBlock *BBR) const { 737 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 738 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 739 740 do { 741 bool needToCmpOperands = true; 742 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) 743 return Res; 744 if (needToCmpOperands) { 745 assert(InstL->getNumOperands() == InstR->getNumOperands()); 746 747 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 748 Value *OpL = InstL->getOperand(i); 749 Value *OpR = InstR->getOperand(i); 750 if (int Res = cmpValues(OpL, OpR)) 751 return Res; 752 // cmpValues should ensure this is true. 753 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); 754 } 755 } 756 757 ++InstL; 758 ++InstR; 759 } while (InstL != InstLE && InstR != InstRE); 760 761 if (InstL != InstLE && InstR == InstRE) 762 return 1; 763 if (InstL == InstLE && InstR != InstRE) 764 return -1; 765 return 0; 766 } 767 768 int FunctionComparator::compareSignature() const { 769 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 770 return Res; 771 772 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 773 return Res; 774 775 if (FnL->hasGC()) { 776 if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) 777 return Res; 778 } 779 780 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 781 return Res; 782 783 if (FnL->hasSection()) { 784 if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) 785 return Res; 786 } 787 788 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 789 return Res; 790 791 // TODO: if it's internal and only used in direct calls, we could handle this 792 // case too. 793 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 794 return Res; 795 796 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 797 return Res; 798 799 assert(FnL->arg_size() == FnR->arg_size() && 800 "Identically typed functions have different numbers of args!"); 801 802 // Visit the arguments so that they get enumerated in the order they're 803 // passed in. 804 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 805 ArgRI = FnR->arg_begin(), 806 ArgLE = FnL->arg_end(); 807 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 808 if (cmpValues(&*ArgLI, &*ArgRI) != 0) 809 llvm_unreachable("Arguments repeat!"); 810 } 811 return 0; 812 } 813 814 // Test whether the two functions have equivalent behaviour. 815 int FunctionComparator::compare() { 816 beginCompare(); 817 818 if (int Res = compareSignature()) 819 return Res; 820 821 // We do a CFG-ordered walk since the actual ordering of the blocks in the 822 // linked list is immaterial. Our walk starts at the entry block for both 823 // functions, then takes each block from each terminator in order. As an 824 // artifact, this also means that unreachable blocks are ignored. 825 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 826 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. 827 828 FnLBBs.push_back(&FnL->getEntryBlock()); 829 FnRBBs.push_back(&FnR->getEntryBlock()); 830 831 VisitedBBs.insert(FnLBBs[0]); 832 while (!FnLBBs.empty()) { 833 const BasicBlock *BBL = FnLBBs.pop_back_val(); 834 const BasicBlock *BBR = FnRBBs.pop_back_val(); 835 836 if (int Res = cmpValues(BBL, BBR)) 837 return Res; 838 839 if (int Res = cmpBasicBlocks(BBL, BBR)) 840 return Res; 841 842 const TerminatorInst *TermL = BBL->getTerminator(); 843 const TerminatorInst *TermR = BBR->getTerminator(); 844 845 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 846 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 847 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 848 continue; 849 850 FnLBBs.push_back(TermL->getSuccessor(i)); 851 FnRBBs.push_back(TermR->getSuccessor(i)); 852 } 853 } 854 return 0; 855 } 856 857 namespace { 858 859 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a 860 // hash of a sequence of 64bit ints, but the entire input does not need to be 861 // available at once. This interface is necessary for functionHash because it 862 // needs to accumulate the hash as the structure of the function is traversed 863 // without saving these values to an intermediate buffer. This form of hashing 864 // is not often needed, as usually the object to hash is just read from a 865 // buffer. 866 class HashAccumulator64 { 867 uint64_t Hash; 868 public: 869 // Initialize to random constant, so the state isn't zero. 870 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } 871 void add(uint64_t V) { 872 Hash = llvm::hashing::detail::hash_16_bytes(Hash, V); 873 } 874 // No finishing is required, because the entire hash value is used. 875 uint64_t getHash() { return Hash; } 876 }; 877 } // end anonymous namespace 878 879 // A function hash is calculated by considering only the number of arguments and 880 // whether a function is varargs, the order of basic blocks (given by the 881 // successors of each basic block in depth first order), and the order of 882 // opcodes of each instruction within each of these basic blocks. This mirrors 883 // the strategy compare() uses to compare functions by walking the BBs in depth 884 // first order and comparing each instruction in sequence. Because this hash 885 // does not look at the operands, it is insensitive to things such as the 886 // target of calls and the constants used in the function, which makes it useful 887 // when possibly merging functions which are the same modulo constants and call 888 // targets. 889 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { 890 HashAccumulator64 H; 891 H.add(F.isVarArg()); 892 H.add(F.arg_size()); 893 894 SmallVector<const BasicBlock *, 8> BBs; 895 SmallSet<const BasicBlock *, 16> VisitedBBs; 896 897 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), 898 // accumulating the hash of the function "structure." (BB and opcode sequence) 899 BBs.push_back(&F.getEntryBlock()); 900 VisitedBBs.insert(BBs[0]); 901 while (!BBs.empty()) { 902 const BasicBlock *BB = BBs.pop_back_val(); 903 // This random value acts as a block header, as otherwise the partition of 904 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes 905 H.add(45798); 906 for (auto &Inst : *BB) { 907 H.add(Inst.getOpcode()); 908 } 909 const TerminatorInst *Term = BB->getTerminator(); 910 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 911 if (!VisitedBBs.insert(Term->getSuccessor(i)).second) 912 continue; 913 BBs.push_back(Term->getSuccessor(i)); 914 } 915 } 916 return H.getHash(); 917 } 918 919 920