1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/LLVMContext.h" 22 #include "llvm/Module.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Analysis/Dominators.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/Verifier.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/ADT/SetVector.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include <algorithm> 35 #include <set> 36 using namespace llvm; 37 38 // Provide a command-line option to aggregate function arguments into a struct 39 // for functions produced by the code extractor. This is useful when converting 40 // extracted functions to pthread-based code, as only one argument (void*) can 41 // be passed in to pthread_create(). 42 static cl::opt<bool> 43 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 44 cl::desc("Aggregate arguments to code-extracted functions")); 45 46 namespace { 47 class CodeExtractor { 48 typedef SetVector<Value*> Values; 49 SetVector<BasicBlock*> BlocksToExtract; 50 DominatorTree* DT; 51 bool AggregateArgs; 52 unsigned NumExitBlocks; 53 const Type *RetTy; 54 public: 55 CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false) 56 : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {} 57 58 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 59 60 bool isEligible(const std::vector<BasicBlock*> &code); 61 62 private: 63 /// definedInRegion - Return true if the specified value is defined in the 64 /// extracted region. 65 bool definedInRegion(Value *V) const { 66 if (Instruction *I = dyn_cast<Instruction>(V)) 67 if (BlocksToExtract.count(I->getParent())) 68 return true; 69 return false; 70 } 71 72 /// definedInCaller - Return true if the specified value is defined in the 73 /// function being code extracted, but not in the region being extracted. 74 /// These values must be passed in as live-ins to the function. 75 bool definedInCaller(Value *V) const { 76 if (isa<Argument>(V)) return true; 77 if (Instruction *I = dyn_cast<Instruction>(V)) 78 if (!BlocksToExtract.count(I->getParent())) 79 return true; 80 return false; 81 } 82 83 void severSplitPHINodes(BasicBlock *&Header); 84 void splitReturnBlocks(); 85 void findInputsOutputs(Values &inputs, Values &outputs); 86 87 Function *constructFunction(const Values &inputs, 88 const Values &outputs, 89 BasicBlock *header, 90 BasicBlock *newRootNode, BasicBlock *newHeader, 91 Function *oldFunction, Module *M); 92 93 void moveCodeToFunction(Function *newFunction); 94 95 void emitCallAndSwitchStatement(Function *newFunction, 96 BasicBlock *newHeader, 97 Values &inputs, 98 Values &outputs); 99 100 }; 101 } 102 103 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 104 /// region, we need to split the entry block of the region so that the PHI node 105 /// is easier to deal with. 106 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 107 unsigned NumPredsFromRegion = 0; 108 unsigned NumPredsOutsideRegion = 0; 109 110 if (Header != &Header->getParent()->getEntryBlock()) { 111 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 112 if (!PN) return; // No PHI nodes. 113 114 // If the header node contains any PHI nodes, check to see if there is more 115 // than one entry from outside the region. If so, we need to sever the 116 // header block into two. 117 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 118 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 119 ++NumPredsFromRegion; 120 else 121 ++NumPredsOutsideRegion; 122 123 // If there is one (or fewer) predecessor from outside the region, we don't 124 // need to do anything special. 125 if (NumPredsOutsideRegion <= 1) return; 126 } 127 128 // Otherwise, we need to split the header block into two pieces: one 129 // containing PHI nodes merging values from outside of the region, and a 130 // second that contains all of the code for the block and merges back any 131 // incoming values from inside of the region. 132 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI(); 133 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 134 Header->getName()+".ce"); 135 136 // We only want to code extract the second block now, and it becomes the new 137 // header of the region. 138 BasicBlock *OldPred = Header; 139 BlocksToExtract.remove(OldPred); 140 BlocksToExtract.insert(NewBB); 141 Header = NewBB; 142 143 // Okay, update dominator sets. The blocks that dominate the new one are the 144 // blocks that dominate TIBB plus the new block itself. 145 if (DT) 146 DT->splitBlock(NewBB); 147 148 // Okay, now we need to adjust the PHI nodes and any branches from within the 149 // region to go to the new header block instead of the old header block. 150 if (NumPredsFromRegion) { 151 PHINode *PN = cast<PHINode>(OldPred->begin()); 152 // Loop over all of the predecessors of OldPred that are in the region, 153 // changing them to branch to NewBB instead. 154 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 155 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 156 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 157 TI->replaceUsesOfWith(OldPred, NewBB); 158 } 159 160 // Okay, everthing within the region is now branching to the right block, we 161 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 162 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 163 PHINode *PN = cast<PHINode>(AfterPHIs); 164 // Create a new PHI node in the new region, which has an incoming value 165 // from OldPred of PN. 166 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce", 167 NewBB->begin()); 168 NewPN->reserveOperandSpace(1+NumPredsFromRegion); 169 NewPN->addIncoming(PN, OldPred); 170 171 // Loop over all of the incoming value in PN, moving them to NewPN if they 172 // are from the extracted region. 173 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 174 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 175 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 176 PN->removeIncomingValue(i); 177 --i; 178 } 179 } 180 } 181 } 182 } 183 184 void CodeExtractor::splitReturnBlocks() { 185 for (SetVector<BasicBlock*>::iterator I = BlocksToExtract.begin(), 186 E = BlocksToExtract.end(); I != E; ++I) 187 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) { 188 BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 189 if (DT) { 190 // Old dominates New. New node dominates all other nodes dominated 191 // by Old. 192 DomTreeNode *OldNode = DT->getNode(*I); 193 SmallVector<DomTreeNode*, 8> Children; 194 for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end(); 195 DI != DE; ++DI) 196 Children.push_back(*DI); 197 198 DomTreeNode *NewNode = DT->addNewBlock(New, *I); 199 200 for (SmallVector<DomTreeNode*, 8>::iterator I = Children.begin(), 201 E = Children.end(); I != E; ++I) 202 DT->changeImmediateDominator(*I, NewNode); 203 } 204 } 205 } 206 207 // findInputsOutputs - Find inputs to, outputs from the code region. 208 // 209 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 210 std::set<BasicBlock*> ExitBlocks; 211 for (SetVector<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 212 ce = BlocksToExtract.end(); ci != ce; ++ci) { 213 BasicBlock *BB = *ci; 214 215 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 216 // If a used value is defined outside the region, it's an input. If an 217 // instruction is used outside the region, it's an output. 218 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 219 if (definedInCaller(*O)) 220 inputs.insert(*O); 221 222 // Consider uses of this instruction (outputs). 223 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 224 UI != E; ++UI) 225 if (!definedInRegion(*UI)) { 226 outputs.insert(I); 227 break; 228 } 229 } // for: insts 230 231 // Keep track of the exit blocks from the region. 232 TerminatorInst *TI = BB->getTerminator(); 233 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 234 if (!BlocksToExtract.count(TI->getSuccessor(i))) 235 ExitBlocks.insert(TI->getSuccessor(i)); 236 } // for: basic blocks 237 238 NumExitBlocks = ExitBlocks.size(); 239 } 240 241 /// constructFunction - make a function based on inputs and outputs, as follows: 242 /// f(in0, ..., inN, out0, ..., outN) 243 /// 244 Function *CodeExtractor::constructFunction(const Values &inputs, 245 const Values &outputs, 246 BasicBlock *header, 247 BasicBlock *newRootNode, 248 BasicBlock *newHeader, 249 Function *oldFunction, 250 Module *M) { 251 DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 252 DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 253 254 // This function returns unsigned, outputs will go back by reference. 255 switch (NumExitBlocks) { 256 case 0: 257 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 258 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 259 default: RetTy = Type::getInt16Ty(header->getContext()); break; 260 } 261 262 std::vector<const Type*> paramTy; 263 264 // Add the types of the input values to the function's argument list 265 for (Values::const_iterator i = inputs.begin(), 266 e = inputs.end(); i != e; ++i) { 267 const Value *value = *i; 268 DEBUG(dbgs() << "value used in func: " << *value << "\n"); 269 paramTy.push_back(value->getType()); 270 } 271 272 // Add the types of the output values to the function's argument list. 273 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 274 I != E; ++I) { 275 DEBUG(dbgs() << "instr used in func: " << **I << "\n"); 276 if (AggregateArgs) 277 paramTy.push_back((*I)->getType()); 278 else 279 paramTy.push_back(PointerType::getUnqual((*I)->getType())); 280 } 281 282 DEBUG(dbgs() << "Function type: " << *RetTy << " f("); 283 for (std::vector<const Type*>::iterator i = paramTy.begin(), 284 e = paramTy.end(); i != e; ++i) 285 DEBUG(dbgs() << **i << ", "); 286 DEBUG(dbgs() << ")\n"); 287 288 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 289 PointerType *StructPtr = 290 PointerType::getUnqual(StructType::get(M->getContext(), paramTy)); 291 paramTy.clear(); 292 paramTy.push_back(StructPtr); 293 } 294 const FunctionType *funcType = 295 FunctionType::get(RetTy, paramTy, false); 296 297 // Create the new function 298 Function *newFunction = Function::Create(funcType, 299 GlobalValue::InternalLinkage, 300 oldFunction->getName() + "_" + 301 header->getName(), M); 302 // If the old function is no-throw, so is the new one. 303 if (oldFunction->doesNotThrow()) 304 newFunction->setDoesNotThrow(true); 305 306 newFunction->getBasicBlockList().push_back(newRootNode); 307 308 // Create an iterator to name all of the arguments we inserted. 309 Function::arg_iterator AI = newFunction->arg_begin(); 310 311 // Rewrite all users of the inputs in the extracted region to use the 312 // arguments (or appropriate addressing into struct) instead. 313 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 314 Value *RewriteVal; 315 if (AggregateArgs) { 316 Value *Idx[2]; 317 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 318 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 319 TerminatorInst *TI = newFunction->begin()->getTerminator(); 320 GetElementPtrInst *GEP = 321 GetElementPtrInst::Create(AI, Idx, Idx+2, 322 "gep_" + inputs[i]->getName(), TI); 323 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 324 } else 325 RewriteVal = AI++; 326 327 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 328 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 329 use != useE; ++use) 330 if (Instruction* inst = dyn_cast<Instruction>(*use)) 331 if (BlocksToExtract.count(inst->getParent())) 332 inst->replaceUsesOfWith(inputs[i], RewriteVal); 333 } 334 335 // Set names for input and output arguments. 336 if (!AggregateArgs) { 337 AI = newFunction->arg_begin(); 338 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 339 AI->setName(inputs[i]->getName()); 340 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 341 AI->setName(outputs[i]->getName()+".out"); 342 } 343 344 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 345 // within the new function. This must be done before we lose track of which 346 // blocks were originally in the code region. 347 std::vector<User*> Users(header->use_begin(), header->use_end()); 348 for (unsigned i = 0, e = Users.size(); i != e; ++i) 349 // The BasicBlock which contains the branch is not in the region 350 // modify the branch target to a new block 351 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 352 if (!BlocksToExtract.count(TI->getParent()) && 353 TI->getParent()->getParent() == oldFunction) 354 TI->replaceUsesOfWith(header, newHeader); 355 356 return newFunction; 357 } 358 359 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI 360 /// that uses the value within the basic block, and return the predecessor 361 /// block associated with that use, or return 0 if none is found. 362 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) { 363 for (Value::use_iterator UI = Used->use_begin(), 364 UE = Used->use_end(); UI != UE; ++UI) { 365 PHINode *P = dyn_cast<PHINode>(*UI); 366 if (P && P->getParent() == BB) 367 return P->getIncomingBlock(UI); 368 } 369 370 return 0; 371 } 372 373 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 374 /// the call instruction, splitting any PHI nodes in the header block as 375 /// necessary. 376 void CodeExtractor:: 377 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 378 Values &inputs, Values &outputs) { 379 // Emit a call to the new function, passing in: *pointer to struct (if 380 // aggregating parameters), or plan inputs and allocated memory for outputs 381 std::vector<Value*> params, StructValues, ReloadOutputs, Reloads; 382 383 LLVMContext &Context = newFunction->getContext(); 384 385 // Add inputs as params, or to be filled into the struct 386 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 387 if (AggregateArgs) 388 StructValues.push_back(*i); 389 else 390 params.push_back(*i); 391 392 // Create allocas for the outputs 393 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 394 if (AggregateArgs) { 395 StructValues.push_back(*i); 396 } else { 397 AllocaInst *alloca = 398 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 399 codeReplacer->getParent()->begin()->begin()); 400 ReloadOutputs.push_back(alloca); 401 params.push_back(alloca); 402 } 403 } 404 405 AllocaInst *Struct = 0; 406 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 407 std::vector<const Type*> ArgTypes; 408 for (Values::iterator v = StructValues.begin(), 409 ve = StructValues.end(); v != ve; ++v) 410 ArgTypes.push_back((*v)->getType()); 411 412 // Allocate a struct at the beginning of this function 413 Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 414 Struct = 415 new AllocaInst(StructArgTy, 0, "structArg", 416 codeReplacer->getParent()->begin()->begin()); 417 params.push_back(Struct); 418 419 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 420 Value *Idx[2]; 421 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 422 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 423 GetElementPtrInst *GEP = 424 GetElementPtrInst::Create(Struct, Idx, Idx + 2, 425 "gep_" + StructValues[i]->getName()); 426 codeReplacer->getInstList().push_back(GEP); 427 StoreInst *SI = new StoreInst(StructValues[i], GEP); 428 codeReplacer->getInstList().push_back(SI); 429 } 430 } 431 432 // Emit the call to the function 433 CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(), 434 NumExitBlocks > 1 ? "targetBlock" : ""); 435 codeReplacer->getInstList().push_back(call); 436 437 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 438 unsigned FirstOut = inputs.size(); 439 if (!AggregateArgs) 440 std::advance(OutputArgBegin, inputs.size()); 441 442 // Reload the outputs passed in by reference 443 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 444 Value *Output = 0; 445 if (AggregateArgs) { 446 Value *Idx[2]; 447 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 448 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 449 GetElementPtrInst *GEP 450 = GetElementPtrInst::Create(Struct, Idx, Idx + 2, 451 "gep_reload_" + outputs[i]->getName()); 452 codeReplacer->getInstList().push_back(GEP); 453 Output = GEP; 454 } else { 455 Output = ReloadOutputs[i]; 456 } 457 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 458 Reloads.push_back(load); 459 codeReplacer->getInstList().push_back(load); 460 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 461 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 462 Instruction *inst = cast<Instruction>(Users[u]); 463 if (!BlocksToExtract.count(inst->getParent())) 464 inst->replaceUsesOfWith(outputs[i], load); 465 } 466 } 467 468 // Now we can emit a switch statement using the call as a value. 469 SwitchInst *TheSwitch = 470 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 471 codeReplacer, 0, codeReplacer); 472 473 // Since there may be multiple exits from the original region, make the new 474 // function return an unsigned, switch on that number. This loop iterates 475 // over all of the blocks in the extracted region, updating any terminator 476 // instructions in the to-be-extracted region that branch to blocks that are 477 // not in the region to be extracted. 478 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 479 480 unsigned switchVal = 0; 481 for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 482 e = BlocksToExtract.end(); i != e; ++i) { 483 TerminatorInst *TI = (*i)->getTerminator(); 484 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 485 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 486 BasicBlock *OldTarget = TI->getSuccessor(i); 487 // add a new basic block which returns the appropriate value 488 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 489 if (!NewTarget) { 490 // If we don't already have an exit stub for this non-extracted 491 // destination, create one now! 492 NewTarget = BasicBlock::Create(Context, 493 OldTarget->getName() + ".exitStub", 494 newFunction); 495 unsigned SuccNum = switchVal++; 496 497 Value *brVal = 0; 498 switch (NumExitBlocks) { 499 case 0: 500 case 1: break; // No value needed. 501 case 2: // Conditional branch, return a bool 502 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 503 break; 504 default: 505 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 506 break; 507 } 508 509 ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget); 510 511 // Update the switch instruction. 512 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 513 SuccNum), 514 OldTarget); 515 516 // Restore values just before we exit 517 Function::arg_iterator OAI = OutputArgBegin; 518 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 519 // For an invoke, the normal destination is the only one that is 520 // dominated by the result of the invocation 521 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 522 523 bool DominatesDef = true; 524 525 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 526 DefBlock = Invoke->getNormalDest(); 527 528 // Make sure we are looking at the original successor block, not 529 // at a newly inserted exit block, which won't be in the dominator 530 // info. 531 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 532 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 533 if (DefBlock == I->second) { 534 DefBlock = I->first; 535 break; 536 } 537 538 // In the extract block case, if the block we are extracting ends 539 // with an invoke instruction, make sure that we don't emit a 540 // store of the invoke value for the unwind block. 541 if (!DT && DefBlock != OldTarget) 542 DominatesDef = false; 543 } 544 545 if (DT) { 546 DominatesDef = DT->dominates(DefBlock, OldTarget); 547 548 // If the output value is used by a phi in the target block, 549 // then we need to test for dominance of the phi's predecessor 550 // instead. Unfortunately, this a little complicated since we 551 // have already rewritten uses of the value to uses of the reload. 552 BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out], 553 OldTarget); 554 if (pred && DT && DT->dominates(DefBlock, pred)) 555 DominatesDef = true; 556 } 557 558 if (DominatesDef) { 559 if (AggregateArgs) { 560 Value *Idx[2]; 561 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 562 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), 563 FirstOut+out); 564 GetElementPtrInst *GEP = 565 GetElementPtrInst::Create(OAI, Idx, Idx + 2, 566 "gep_" + outputs[out]->getName(), 567 NTRet); 568 new StoreInst(outputs[out], GEP, NTRet); 569 } else { 570 new StoreInst(outputs[out], OAI, NTRet); 571 } 572 } 573 // Advance output iterator even if we don't emit a store 574 if (!AggregateArgs) ++OAI; 575 } 576 } 577 578 // rewrite the original branch instruction with this new target 579 TI->setSuccessor(i, NewTarget); 580 } 581 } 582 583 // Now that we've done the deed, simplify the switch instruction. 584 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 585 switch (NumExitBlocks) { 586 case 0: 587 // There are no successors (the block containing the switch itself), which 588 // means that previously this was the last part of the function, and hence 589 // this should be rewritten as a `ret' 590 591 // Check if the function should return a value 592 if (OldFnRetTy->isVoidTy()) { 593 ReturnInst::Create(Context, 0, TheSwitch); // Return void 594 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 595 // return what we have 596 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 597 } else { 598 // Otherwise we must have code extracted an unwind or something, just 599 // return whatever we want. 600 ReturnInst::Create(Context, 601 Constant::getNullValue(OldFnRetTy), TheSwitch); 602 } 603 604 TheSwitch->eraseFromParent(); 605 break; 606 case 1: 607 // Only a single destination, change the switch into an unconditional 608 // branch. 609 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 610 TheSwitch->eraseFromParent(); 611 break; 612 case 2: 613 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 614 call, TheSwitch); 615 TheSwitch->eraseFromParent(); 616 break; 617 default: 618 // Otherwise, make the default destination of the switch instruction be one 619 // of the other successors. 620 TheSwitch->setOperand(0, call); 621 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 622 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 623 break; 624 } 625 } 626 627 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 628 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 629 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 630 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 631 632 for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 633 e = BlocksToExtract.end(); i != e; ++i) { 634 // Delete the basic block from the old function, and the list of blocks 635 oldBlocks.remove(*i); 636 637 // Insert this basic block into the new function 638 newBlocks.push_back(*i); 639 } 640 } 641 642 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 643 /// new function. Returns pointer to the new function. 644 /// 645 /// algorithm: 646 /// 647 /// find inputs and outputs for the region 648 /// 649 /// for inputs: add to function as args, map input instr* to arg# 650 /// for outputs: add allocas for scalars, 651 /// add to func as args, map output instr* to arg# 652 /// 653 /// rewrite func to use argument #s instead of instr* 654 /// 655 /// for each scalar output in the function: at every exit, store intermediate 656 /// computed result back into memory. 657 /// 658 Function *CodeExtractor:: 659 ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 660 if (!isEligible(code)) 661 return 0; 662 663 // 1) Find inputs, outputs 664 // 2) Construct new function 665 // * Add allocas for defs, pass as args by reference 666 // * Pass in uses as args 667 // 3) Move code region, add call instr to func 668 // 669 BlocksToExtract.insert(code.begin(), code.end()); 670 671 Values inputs, outputs; 672 673 // Assumption: this is a single-entry code region, and the header is the first 674 // block in the region. 675 BasicBlock *header = code[0]; 676 677 for (unsigned i = 1, e = code.size(); i != e; ++i) 678 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 679 PI != E; ++PI) 680 assert(BlocksToExtract.count(*PI) && 681 "No blocks in this region may have entries from outside the region" 682 " except for the first block!"); 683 684 // If we have to split PHI nodes or the entry block, do so now. 685 severSplitPHINodes(header); 686 687 // If we have any return instructions in the region, split those blocks so 688 // that the return is not in the region. 689 splitReturnBlocks(); 690 691 Function *oldFunction = header->getParent(); 692 693 // This takes place of the original loop 694 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 695 "codeRepl", oldFunction, 696 header); 697 698 // The new function needs a root node because other nodes can branch to the 699 // head of the region, but the entry node of a function cannot have preds. 700 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 701 "newFuncRoot"); 702 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 703 704 // Find inputs to, outputs from the code region. 705 findInputsOutputs(inputs, outputs); 706 707 // Construct new function based on inputs/outputs & add allocas for all defs. 708 Function *newFunction = constructFunction(inputs, outputs, header, 709 newFuncRoot, 710 codeReplacer, oldFunction, 711 oldFunction->getParent()); 712 713 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 714 715 moveCodeToFunction(newFunction); 716 717 // Loop over all of the PHI nodes in the header block, and change any 718 // references to the old incoming edge to be the new incoming edge. 719 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 720 PHINode *PN = cast<PHINode>(I); 721 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 722 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 723 PN->setIncomingBlock(i, newFuncRoot); 724 } 725 726 // Look at all successors of the codeReplacer block. If any of these blocks 727 // had PHI nodes in them, we need to update the "from" block to be the code 728 // replacer, not the original block in the extracted region. 729 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 730 succ_end(codeReplacer)); 731 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 732 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 733 PHINode *PN = cast<PHINode>(I); 734 std::set<BasicBlock*> ProcessedPreds; 735 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 736 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 737 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 738 PN->setIncomingBlock(i, codeReplacer); 739 else { 740 // There were multiple entries in the PHI for this block, now there 741 // is only one, so remove the duplicated entries. 742 PN->removeIncomingValue(i, false); 743 --i; --e; 744 } 745 } 746 } 747 748 //cerr << "NEW FUNCTION: " << *newFunction; 749 // verifyFunction(*newFunction); 750 751 // cerr << "OLD FUNCTION: " << *oldFunction; 752 // verifyFunction(*oldFunction); 753 754 DEBUG(if (verifyFunction(*newFunction)) 755 report_fatal_error("verifyFunction failed!")); 756 return newFunction; 757 } 758 759 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 760 // Deny code region if it contains allocas or vastarts. 761 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 762 BB != e; ++BB) 763 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 764 I != Ie; ++I) 765 if (isa<AllocaInst>(*I)) 766 return false; 767 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 768 if (const Function *F = CI->getCalledFunction()) 769 if (F->getIntrinsicID() == Intrinsic::vastart) 770 return false; 771 return true; 772 } 773 774 775 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 776 /// function 777 /// 778 Function* llvm::ExtractCodeRegion(DominatorTree &DT, 779 const std::vector<BasicBlock*> &code, 780 bool AggregateArgs) { 781 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code); 782 } 783 784 /// ExtractBasicBlock - slurp a natural loop into a brand new function 785 /// 786 Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) { 787 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 788 } 789 790 /// ExtractBasicBlock - slurp a basic block into a brand new function 791 /// 792 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 793 std::vector<BasicBlock*> Blocks; 794 Blocks.push_back(BB); 795 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 796 } 797