1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/PatternMatch.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/Verifier.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
64 #include <cassert>
65 #include <cstdint>
66 #include <iterator>
67 #include <map>
68 #include <utility>
69 #include <vector>
70
71 using namespace llvm;
72 using namespace llvm::PatternMatch;
73 using ProfileCount = Function::ProfileCount;
74
75 #define DEBUG_TYPE "code-extractor"
76
77 // Provide a command-line option to aggregate function arguments into a struct
78 // for functions produced by the code extractor. This is useful when converting
79 // extracted functions to pthread-based code, as only one argument (void*) can
80 // be passed in to pthread_create().
81 static cl::opt<bool>
82 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
83 cl::desc("Aggregate arguments to code-extracted functions"));
84
85 /// Test whether a block is valid for extraction.
isBlockValidForExtraction(const BasicBlock & BB,const SetVector<BasicBlock * > & Result,bool AllowVarArgs,bool AllowAlloca)86 static bool isBlockValidForExtraction(const BasicBlock &BB,
87 const SetVector<BasicBlock *> &Result,
88 bool AllowVarArgs, bool AllowAlloca) {
89 // taking the address of a basic block moved to another function is illegal
90 if (BB.hasAddressTaken())
91 return false;
92
93 // don't hoist code that uses another basicblock address, as it's likely to
94 // lead to unexpected behavior, like cross-function jumps
95 SmallPtrSet<User const *, 16> Visited;
96 SmallVector<User const *, 16> ToVisit;
97
98 for (Instruction const &Inst : BB)
99 ToVisit.push_back(&Inst);
100
101 while (!ToVisit.empty()) {
102 User const *Curr = ToVisit.pop_back_val();
103 if (!Visited.insert(Curr).second)
104 continue;
105 if (isa<BlockAddress const>(Curr))
106 return false; // even a reference to self is likely to be not compatible
107
108 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
109 continue;
110
111 for (auto const &U : Curr->operands()) {
112 if (auto *UU = dyn_cast<User>(U))
113 ToVisit.push_back(UU);
114 }
115 }
116
117 // If explicitly requested, allow vastart and alloca. For invoke instructions
118 // verify that extraction is valid.
119 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
120 if (isa<AllocaInst>(I)) {
121 if (!AllowAlloca)
122 return false;
123 continue;
124 }
125
126 if (const auto *II = dyn_cast<InvokeInst>(I)) {
127 // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
128 // must be a part of the subgraph which is being extracted.
129 if (auto *UBB = II->getUnwindDest())
130 if (!Result.count(UBB))
131 return false;
132 continue;
133 }
134
135 // All catch handlers of a catchswitch instruction as well as the unwind
136 // destination must be in the subgraph.
137 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
138 if (auto *UBB = CSI->getUnwindDest())
139 if (!Result.count(UBB))
140 return false;
141 for (auto *HBB : CSI->handlers())
142 if (!Result.count(const_cast<BasicBlock*>(HBB)))
143 return false;
144 continue;
145 }
146
147 // Make sure that entire catch handler is within subgraph. It is sufficient
148 // to check that catch return's block is in the list.
149 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
150 for (const auto *U : CPI->users())
151 if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
152 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
153 return false;
154 continue;
155 }
156
157 // And do similar checks for cleanup handler - the entire handler must be
158 // in subgraph which is going to be extracted. For cleanup return should
159 // additionally check that the unwind destination is also in the subgraph.
160 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
161 for (const auto *U : CPI->users())
162 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
163 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
164 return false;
165 continue;
166 }
167 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
168 if (auto *UBB = CRI->getUnwindDest())
169 if (!Result.count(UBB))
170 return false;
171 continue;
172 }
173
174 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
175 if (const Function *F = CI->getCalledFunction()) {
176 auto IID = F->getIntrinsicID();
177 if (IID == Intrinsic::vastart) {
178 if (AllowVarArgs)
179 continue;
180 else
181 return false;
182 }
183
184 // Currently, we miscompile outlined copies of eh_typid_for. There are
185 // proposals for fixing this in llvm.org/PR39545.
186 if (IID == Intrinsic::eh_typeid_for)
187 return false;
188 }
189 }
190 }
191
192 return true;
193 }
194
195 /// Build a set of blocks to extract if the input blocks are viable.
196 static SetVector<BasicBlock *>
buildExtractionBlockSet(ArrayRef<BasicBlock * > BBs,DominatorTree * DT,bool AllowVarArgs,bool AllowAlloca)197 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
198 bool AllowVarArgs, bool AllowAlloca) {
199 assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
200 SetVector<BasicBlock *> Result;
201
202 // Loop over the blocks, adding them to our set-vector, and aborting with an
203 // empty set if we encounter invalid blocks.
204 for (BasicBlock *BB : BBs) {
205 // If this block is dead, don't process it.
206 if (DT && !DT->isReachableFromEntry(BB))
207 continue;
208
209 if (!Result.insert(BB))
210 llvm_unreachable("Repeated basic blocks in extraction input");
211 }
212
213 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
214 << '\n');
215
216 for (auto *BB : Result) {
217 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
218 return {};
219
220 // Make sure that the first block is not a landing pad.
221 if (BB == Result.front()) {
222 if (BB->isEHPad()) {
223 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
224 return {};
225 }
226 continue;
227 }
228
229 // All blocks other than the first must not have predecessors outside of
230 // the subgraph which is being extracted.
231 for (auto *PBB : predecessors(BB))
232 if (!Result.count(PBB)) {
233 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
234 "outside the region except for the first block!\n"
235 << "Problematic source BB: " << BB->getName() << "\n"
236 << "Problematic destination BB: " << PBB->getName()
237 << "\n");
238 return {};
239 }
240 }
241
242 return Result;
243 }
244
CodeExtractor(ArrayRef<BasicBlock * > BBs,DominatorTree * DT,bool AggregateArgs,BlockFrequencyInfo * BFI,BranchProbabilityInfo * BPI,AssumptionCache * AC,bool AllowVarArgs,bool AllowAlloca,BasicBlock * AllocationBlock,std::string Suffix)245 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
246 bool AggregateArgs, BlockFrequencyInfo *BFI,
247 BranchProbabilityInfo *BPI, AssumptionCache *AC,
248 bool AllowVarArgs, bool AllowAlloca,
249 BasicBlock *AllocationBlock, std::string Suffix)
250 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
251 BPI(BPI), AC(AC), AllocationBlock(AllocationBlock),
252 AllowVarArgs(AllowVarArgs),
253 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
254 Suffix(Suffix) {}
255
CodeExtractor(DominatorTree & DT,Loop & L,bool AggregateArgs,BlockFrequencyInfo * BFI,BranchProbabilityInfo * BPI,AssumptionCache * AC,std::string Suffix)256 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
257 BlockFrequencyInfo *BFI,
258 BranchProbabilityInfo *BPI, AssumptionCache *AC,
259 std::string Suffix)
260 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
261 BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false),
262 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
263 /* AllowVarArgs */ false,
264 /* AllowAlloca */ false)),
265 Suffix(Suffix) {}
266
267 /// definedInRegion - Return true if the specified value is defined in the
268 /// extracted region.
definedInRegion(const SetVector<BasicBlock * > & Blocks,Value * V)269 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
270 if (Instruction *I = dyn_cast<Instruction>(V))
271 if (Blocks.count(I->getParent()))
272 return true;
273 return false;
274 }
275
276 /// definedInCaller - Return true if the specified value is defined in the
277 /// function being code extracted, but not in the region being extracted.
278 /// These values must be passed in as live-ins to the function.
definedInCaller(const SetVector<BasicBlock * > & Blocks,Value * V)279 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
280 if (isa<Argument>(V)) return true;
281 if (Instruction *I = dyn_cast<Instruction>(V))
282 if (!Blocks.count(I->getParent()))
283 return true;
284 return false;
285 }
286
getCommonExitBlock(const SetVector<BasicBlock * > & Blocks)287 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
288 BasicBlock *CommonExitBlock = nullptr;
289 auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
290 for (auto *Succ : successors(Block)) {
291 // Internal edges, ok.
292 if (Blocks.count(Succ))
293 continue;
294 if (!CommonExitBlock) {
295 CommonExitBlock = Succ;
296 continue;
297 }
298 if (CommonExitBlock != Succ)
299 return true;
300 }
301 return false;
302 };
303
304 if (any_of(Blocks, hasNonCommonExitSucc))
305 return nullptr;
306
307 return CommonExitBlock;
308 }
309
CodeExtractorAnalysisCache(Function & F)310 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
311 for (BasicBlock &BB : F) {
312 for (Instruction &II : BB.instructionsWithoutDebug())
313 if (auto *AI = dyn_cast<AllocaInst>(&II))
314 Allocas.push_back(AI);
315
316 findSideEffectInfoForBlock(BB);
317 }
318 }
319
findSideEffectInfoForBlock(BasicBlock & BB)320 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
321 for (Instruction &II : BB.instructionsWithoutDebug()) {
322 unsigned Opcode = II.getOpcode();
323 Value *MemAddr = nullptr;
324 switch (Opcode) {
325 case Instruction::Store:
326 case Instruction::Load: {
327 if (Opcode == Instruction::Store) {
328 StoreInst *SI = cast<StoreInst>(&II);
329 MemAddr = SI->getPointerOperand();
330 } else {
331 LoadInst *LI = cast<LoadInst>(&II);
332 MemAddr = LI->getPointerOperand();
333 }
334 // Global variable can not be aliased with locals.
335 if (isa<Constant>(MemAddr))
336 break;
337 Value *Base = MemAddr->stripInBoundsConstantOffsets();
338 if (!isa<AllocaInst>(Base)) {
339 SideEffectingBlocks.insert(&BB);
340 return;
341 }
342 BaseMemAddrs[&BB].insert(Base);
343 break;
344 }
345 default: {
346 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
347 if (IntrInst) {
348 if (IntrInst->isLifetimeStartOrEnd())
349 break;
350 SideEffectingBlocks.insert(&BB);
351 return;
352 }
353 // Treat all the other cases conservatively if it has side effects.
354 if (II.mayHaveSideEffects()) {
355 SideEffectingBlocks.insert(&BB);
356 return;
357 }
358 }
359 }
360 }
361 }
362
doesBlockContainClobberOfAddr(BasicBlock & BB,AllocaInst * Addr) const363 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
364 BasicBlock &BB, AllocaInst *Addr) const {
365 if (SideEffectingBlocks.count(&BB))
366 return true;
367 auto It = BaseMemAddrs.find(&BB);
368 if (It != BaseMemAddrs.end())
369 return It->second.count(Addr);
370 return false;
371 }
372
isLegalToShrinkwrapLifetimeMarkers(const CodeExtractorAnalysisCache & CEAC,Instruction * Addr) const373 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
374 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
375 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
376 Function *Func = (*Blocks.begin())->getParent();
377 for (BasicBlock &BB : *Func) {
378 if (Blocks.count(&BB))
379 continue;
380 if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
381 return false;
382 }
383 return true;
384 }
385
386 BasicBlock *
findOrCreateBlockForHoisting(BasicBlock * CommonExitBlock)387 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
388 BasicBlock *SinglePredFromOutlineRegion = nullptr;
389 assert(!Blocks.count(CommonExitBlock) &&
390 "Expect a block outside the region!");
391 for (auto *Pred : predecessors(CommonExitBlock)) {
392 if (!Blocks.count(Pred))
393 continue;
394 if (!SinglePredFromOutlineRegion) {
395 SinglePredFromOutlineRegion = Pred;
396 } else if (SinglePredFromOutlineRegion != Pred) {
397 SinglePredFromOutlineRegion = nullptr;
398 break;
399 }
400 }
401
402 if (SinglePredFromOutlineRegion)
403 return SinglePredFromOutlineRegion;
404
405 #ifndef NDEBUG
406 auto getFirstPHI = [](BasicBlock *BB) {
407 BasicBlock::iterator I = BB->begin();
408 PHINode *FirstPhi = nullptr;
409 while (I != BB->end()) {
410 PHINode *Phi = dyn_cast<PHINode>(I);
411 if (!Phi)
412 break;
413 if (!FirstPhi) {
414 FirstPhi = Phi;
415 break;
416 }
417 }
418 return FirstPhi;
419 };
420 // If there are any phi nodes, the single pred either exists or has already
421 // be created before code extraction.
422 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
423 #endif
424
425 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
426 CommonExitBlock->getFirstNonPHI()->getIterator());
427
428 for (BasicBlock *Pred :
429 llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
430 if (Blocks.count(Pred))
431 continue;
432 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
433 }
434 // Now add the old exit block to the outline region.
435 Blocks.insert(CommonExitBlock);
436 OldTargets.push_back(NewExitBlock);
437 return CommonExitBlock;
438 }
439
440 // Find the pair of life time markers for address 'Addr' that are either
441 // defined inside the outline region or can legally be shrinkwrapped into the
442 // outline region. If there are not other untracked uses of the address, return
443 // the pair of markers if found; otherwise return a pair of nullptr.
444 CodeExtractor::LifetimeMarkerInfo
getLifetimeMarkers(const CodeExtractorAnalysisCache & CEAC,Instruction * Addr,BasicBlock * ExitBlock) const445 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
446 Instruction *Addr,
447 BasicBlock *ExitBlock) const {
448 LifetimeMarkerInfo Info;
449
450 for (User *U : Addr->users()) {
451 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
452 if (IntrInst) {
453 // We don't model addresses with multiple start/end markers, but the
454 // markers do not need to be in the region.
455 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
456 if (Info.LifeStart)
457 return {};
458 Info.LifeStart = IntrInst;
459 continue;
460 }
461 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
462 if (Info.LifeEnd)
463 return {};
464 Info.LifeEnd = IntrInst;
465 continue;
466 }
467 // At this point, permit debug uses outside of the region.
468 // This is fixed in a later call to fixupDebugInfoPostExtraction().
469 if (isa<DbgInfoIntrinsic>(IntrInst))
470 continue;
471 }
472 // Find untracked uses of the address, bail.
473 if (!definedInRegion(Blocks, U))
474 return {};
475 }
476
477 if (!Info.LifeStart || !Info.LifeEnd)
478 return {};
479
480 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
481 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
482 // Do legality check.
483 if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
484 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
485 return {};
486
487 // Check to see if we have a place to do hoisting, if not, bail.
488 if (Info.HoistLifeEnd && !ExitBlock)
489 return {};
490
491 return Info;
492 }
493
findAllocas(const CodeExtractorAnalysisCache & CEAC,ValueSet & SinkCands,ValueSet & HoistCands,BasicBlock * & ExitBlock) const494 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
495 ValueSet &SinkCands, ValueSet &HoistCands,
496 BasicBlock *&ExitBlock) const {
497 Function *Func = (*Blocks.begin())->getParent();
498 ExitBlock = getCommonExitBlock(Blocks);
499
500 auto moveOrIgnoreLifetimeMarkers =
501 [&](const LifetimeMarkerInfo &LMI) -> bool {
502 if (!LMI.LifeStart)
503 return false;
504 if (LMI.SinkLifeStart) {
505 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
506 << "\n");
507 SinkCands.insert(LMI.LifeStart);
508 }
509 if (LMI.HoistLifeEnd) {
510 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
511 HoistCands.insert(LMI.LifeEnd);
512 }
513 return true;
514 };
515
516 // Look up allocas in the original function in CodeExtractorAnalysisCache, as
517 // this is much faster than walking all the instructions.
518 for (AllocaInst *AI : CEAC.getAllocas()) {
519 BasicBlock *BB = AI->getParent();
520 if (Blocks.count(BB))
521 continue;
522
523 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
524 // check whether it is actually still in the original function.
525 Function *AIFunc = BB->getParent();
526 if (AIFunc != Func)
527 continue;
528
529 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
530 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
531 if (Moved) {
532 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
533 SinkCands.insert(AI);
534 continue;
535 }
536
537 // Find bitcasts in the outlined region that have lifetime marker users
538 // outside that region. Replace the lifetime marker use with an
539 // outside region bitcast to avoid unnecessary alloca/reload instructions
540 // and extra lifetime markers.
541 SmallVector<Instruction *, 2> LifetimeBitcastUsers;
542 for (User *U : AI->users()) {
543 if (!definedInRegion(Blocks, U))
544 continue;
545
546 if (U->stripInBoundsConstantOffsets() != AI)
547 continue;
548
549 Instruction *Bitcast = cast<Instruction>(U);
550 for (User *BU : Bitcast->users()) {
551 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
552 if (!IntrInst)
553 continue;
554
555 if (!IntrInst->isLifetimeStartOrEnd())
556 continue;
557
558 if (definedInRegion(Blocks, IntrInst))
559 continue;
560
561 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
562 << *Bitcast << " in out-of-region lifetime marker "
563 << *IntrInst << "\n");
564 LifetimeBitcastUsers.push_back(IntrInst);
565 }
566 }
567
568 for (Instruction *I : LifetimeBitcastUsers) {
569 Module *M = AIFunc->getParent();
570 LLVMContext &Ctx = M->getContext();
571 auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
572 CastInst *CastI =
573 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I);
574 I->replaceUsesOfWith(I->getOperand(1), CastI);
575 }
576
577 // Follow any bitcasts.
578 SmallVector<Instruction *, 2> Bitcasts;
579 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
580 for (User *U : AI->users()) {
581 if (U->stripInBoundsConstantOffsets() == AI) {
582 Instruction *Bitcast = cast<Instruction>(U);
583 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
584 if (LMI.LifeStart) {
585 Bitcasts.push_back(Bitcast);
586 BitcastLifetimeInfo.push_back(LMI);
587 continue;
588 }
589 }
590
591 // Found unknown use of AI.
592 if (!definedInRegion(Blocks, U)) {
593 Bitcasts.clear();
594 break;
595 }
596 }
597
598 // Either no bitcasts reference the alloca or there are unknown uses.
599 if (Bitcasts.empty())
600 continue;
601
602 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
603 SinkCands.insert(AI);
604 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
605 Instruction *BitcastAddr = Bitcasts[I];
606 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
607 assert(LMI.LifeStart &&
608 "Unsafe to sink bitcast without lifetime markers");
609 moveOrIgnoreLifetimeMarkers(LMI);
610 if (!definedInRegion(Blocks, BitcastAddr)) {
611 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
612 << "\n");
613 SinkCands.insert(BitcastAddr);
614 }
615 }
616 }
617 }
618
isEligible() const619 bool CodeExtractor::isEligible() const {
620 if (Blocks.empty())
621 return false;
622 BasicBlock *Header = *Blocks.begin();
623 Function *F = Header->getParent();
624
625 // For functions with varargs, check that varargs handling is only done in the
626 // outlined function, i.e vastart and vaend are only used in outlined blocks.
627 if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
628 auto containsVarArgIntrinsic = [](const Instruction &I) {
629 if (const CallInst *CI = dyn_cast<CallInst>(&I))
630 if (const Function *Callee = CI->getCalledFunction())
631 return Callee->getIntrinsicID() == Intrinsic::vastart ||
632 Callee->getIntrinsicID() == Intrinsic::vaend;
633 return false;
634 };
635
636 for (auto &BB : *F) {
637 if (Blocks.count(&BB))
638 continue;
639 if (llvm::any_of(BB, containsVarArgIntrinsic))
640 return false;
641 }
642 }
643 return true;
644 }
645
findInputsOutputs(ValueSet & Inputs,ValueSet & Outputs,const ValueSet & SinkCands) const646 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
647 const ValueSet &SinkCands) const {
648 for (BasicBlock *BB : Blocks) {
649 // If a used value is defined outside the region, it's an input. If an
650 // instruction is used outside the region, it's an output.
651 for (Instruction &II : *BB) {
652 for (auto &OI : II.operands()) {
653 Value *V = OI;
654 if (!SinkCands.count(V) && definedInCaller(Blocks, V))
655 Inputs.insert(V);
656 }
657
658 for (User *U : II.users())
659 if (!definedInRegion(Blocks, U)) {
660 Outputs.insert(&II);
661 break;
662 }
663 }
664 }
665 }
666
667 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
668 /// of the region, we need to split the entry block of the region so that the
669 /// PHI node is easier to deal with.
severSplitPHINodesOfEntry(BasicBlock * & Header)670 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
671 unsigned NumPredsFromRegion = 0;
672 unsigned NumPredsOutsideRegion = 0;
673
674 if (Header != &Header->getParent()->getEntryBlock()) {
675 PHINode *PN = dyn_cast<PHINode>(Header->begin());
676 if (!PN) return; // No PHI nodes.
677
678 // If the header node contains any PHI nodes, check to see if there is more
679 // than one entry from outside the region. If so, we need to sever the
680 // header block into two.
681 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
682 if (Blocks.count(PN->getIncomingBlock(i)))
683 ++NumPredsFromRegion;
684 else
685 ++NumPredsOutsideRegion;
686
687 // If there is one (or fewer) predecessor from outside the region, we don't
688 // need to do anything special.
689 if (NumPredsOutsideRegion <= 1) return;
690 }
691
692 // Otherwise, we need to split the header block into two pieces: one
693 // containing PHI nodes merging values from outside of the region, and a
694 // second that contains all of the code for the block and merges back any
695 // incoming values from inside of the region.
696 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
697
698 // We only want to code extract the second block now, and it becomes the new
699 // header of the region.
700 BasicBlock *OldPred = Header;
701 Blocks.remove(OldPred);
702 Blocks.insert(NewBB);
703 Header = NewBB;
704
705 // Okay, now we need to adjust the PHI nodes and any branches from within the
706 // region to go to the new header block instead of the old header block.
707 if (NumPredsFromRegion) {
708 PHINode *PN = cast<PHINode>(OldPred->begin());
709 // Loop over all of the predecessors of OldPred that are in the region,
710 // changing them to branch to NewBB instead.
711 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
712 if (Blocks.count(PN->getIncomingBlock(i))) {
713 Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
714 TI->replaceUsesOfWith(OldPred, NewBB);
715 }
716
717 // Okay, everything within the region is now branching to the right block, we
718 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
719 BasicBlock::iterator AfterPHIs;
720 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
721 PHINode *PN = cast<PHINode>(AfterPHIs);
722 // Create a new PHI node in the new region, which has an incoming value
723 // from OldPred of PN.
724 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
725 PN->getName() + ".ce", &NewBB->front());
726 PN->replaceAllUsesWith(NewPN);
727 NewPN->addIncoming(PN, OldPred);
728
729 // Loop over all of the incoming value in PN, moving them to NewPN if they
730 // are from the extracted region.
731 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
732 if (Blocks.count(PN->getIncomingBlock(i))) {
733 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
734 PN->removeIncomingValue(i);
735 --i;
736 }
737 }
738 }
739 }
740 }
741
742 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
743 /// outlined region, we split these PHIs on two: one with inputs from region
744 /// and other with remaining incoming blocks; then first PHIs are placed in
745 /// outlined region.
severSplitPHINodesOfExits(const SmallPtrSetImpl<BasicBlock * > & Exits)746 void CodeExtractor::severSplitPHINodesOfExits(
747 const SmallPtrSetImpl<BasicBlock *> &Exits) {
748 for (BasicBlock *ExitBB : Exits) {
749 BasicBlock *NewBB = nullptr;
750
751 for (PHINode &PN : ExitBB->phis()) {
752 // Find all incoming values from the outlining region.
753 SmallVector<unsigned, 2> IncomingVals;
754 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
755 if (Blocks.count(PN.getIncomingBlock(i)))
756 IncomingVals.push_back(i);
757
758 // Do not process PHI if there is one (or fewer) predecessor from region.
759 // If PHI has exactly one predecessor from region, only this one incoming
760 // will be replaced on codeRepl block, so it should be safe to skip PHI.
761 if (IncomingVals.size() <= 1)
762 continue;
763
764 // Create block for new PHIs and add it to the list of outlined if it
765 // wasn't done before.
766 if (!NewBB) {
767 NewBB = BasicBlock::Create(ExitBB->getContext(),
768 ExitBB->getName() + ".split",
769 ExitBB->getParent(), ExitBB);
770 SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
771 for (BasicBlock *PredBB : Preds)
772 if (Blocks.count(PredBB))
773 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
774 BranchInst::Create(ExitBB, NewBB);
775 Blocks.insert(NewBB);
776 }
777
778 // Split this PHI.
779 PHINode *NewPN =
780 PHINode::Create(PN.getType(), IncomingVals.size(),
781 PN.getName() + ".ce", NewBB->getFirstNonPHI());
782 for (unsigned i : IncomingVals)
783 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
784 for (unsigned i : reverse(IncomingVals))
785 PN.removeIncomingValue(i, false);
786 PN.addIncoming(NewPN, NewBB);
787 }
788 }
789 }
790
splitReturnBlocks()791 void CodeExtractor::splitReturnBlocks() {
792 for (BasicBlock *Block : Blocks)
793 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
794 BasicBlock *New =
795 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
796 if (DT) {
797 // Old dominates New. New node dominates all other nodes dominated
798 // by Old.
799 DomTreeNode *OldNode = DT->getNode(Block);
800 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
801 OldNode->end());
802
803 DomTreeNode *NewNode = DT->addNewBlock(New, Block);
804
805 for (DomTreeNode *I : Children)
806 DT->changeImmediateDominator(I, NewNode);
807 }
808 }
809 }
810
811 /// constructFunction - make a function based on inputs and outputs, as follows:
812 /// f(in0, ..., inN, out0, ..., outN)
constructFunction(const ValueSet & inputs,const ValueSet & outputs,BasicBlock * header,BasicBlock * newRootNode,BasicBlock * newHeader,Function * oldFunction,Module * M)813 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
814 const ValueSet &outputs,
815 BasicBlock *header,
816 BasicBlock *newRootNode,
817 BasicBlock *newHeader,
818 Function *oldFunction,
819 Module *M) {
820 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
821 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
822
823 // This function returns unsigned, outputs will go back by reference.
824 switch (NumExitBlocks) {
825 case 0:
826 case 1: RetTy = Type::getVoidTy(header->getContext()); break;
827 case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
828 default: RetTy = Type::getInt16Ty(header->getContext()); break;
829 }
830
831 std::vector<Type *> ParamTy;
832 std::vector<Type *> AggParamTy;
833 ValueSet StructValues;
834
835 // Add the types of the input values to the function's argument list
836 for (Value *value : inputs) {
837 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
838 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
839 AggParamTy.push_back(value->getType());
840 StructValues.insert(value);
841 } else
842 ParamTy.push_back(value->getType());
843 }
844
845 // Add the types of the output values to the function's argument list.
846 for (Value *output : outputs) {
847 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
848 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
849 AggParamTy.push_back(output->getType());
850 StructValues.insert(output);
851 } else
852 ParamTy.push_back(PointerType::getUnqual(output->getType()));
853 }
854
855 assert(
856 (ParamTy.size() + AggParamTy.size()) ==
857 (inputs.size() + outputs.size()) &&
858 "Number of scalar and aggregate params does not match inputs, outputs");
859 assert((StructValues.empty() || AggregateArgs) &&
860 "Expeced StructValues only with AggregateArgs set");
861
862 // Concatenate scalar and aggregate params in ParamTy.
863 size_t NumScalarParams = ParamTy.size();
864 StructType *StructTy = nullptr;
865 if (AggregateArgs && !AggParamTy.empty()) {
866 StructTy = StructType::get(M->getContext(), AggParamTy);
867 ParamTy.push_back(PointerType::getUnqual(StructTy));
868 }
869
870 LLVM_DEBUG({
871 dbgs() << "Function type: " << *RetTy << " f(";
872 for (Type *i : ParamTy)
873 dbgs() << *i << ", ";
874 dbgs() << ")\n";
875 });
876
877 FunctionType *funcType = FunctionType::get(
878 RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
879
880 std::string SuffixToUse =
881 Suffix.empty()
882 ? (header->getName().empty() ? "extracted" : header->getName().str())
883 : Suffix;
884 // Create the new function
885 Function *newFunction = Function::Create(
886 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
887 oldFunction->getName() + "." + SuffixToUse, M);
888
889 // Inherit all of the target dependent attributes and white-listed
890 // target independent attributes.
891 // (e.g. If the extracted region contains a call to an x86.sse
892 // instruction we need to make sure that the extracted region has the
893 // "target-features" attribute allowing it to be lowered.
894 // FIXME: This should be changed to check to see if a specific
895 // attribute can not be inherited.
896 for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
897 if (Attr.isStringAttribute()) {
898 if (Attr.getKindAsString() == "thunk")
899 continue;
900 } else
901 switch (Attr.getKindAsEnum()) {
902 // Those attributes cannot be propagated safely. Explicitly list them
903 // here so we get a warning if new attributes are added.
904 case Attribute::AllocSize:
905 case Attribute::ArgMemOnly:
906 case Attribute::Builtin:
907 case Attribute::Convergent:
908 case Attribute::InaccessibleMemOnly:
909 case Attribute::InaccessibleMemOrArgMemOnly:
910 case Attribute::JumpTable:
911 case Attribute::Naked:
912 case Attribute::NoBuiltin:
913 case Attribute::NoMerge:
914 case Attribute::NoReturn:
915 case Attribute::NoSync:
916 case Attribute::ReadNone:
917 case Attribute::ReadOnly:
918 case Attribute::ReturnsTwice:
919 case Attribute::Speculatable:
920 case Attribute::StackAlignment:
921 case Attribute::WillReturn:
922 case Attribute::WriteOnly:
923 case Attribute::AllocKind:
924 case Attribute::PresplitCoroutine:
925 continue;
926 // Those attributes should be safe to propagate to the extracted function.
927 case Attribute::AlwaysInline:
928 case Attribute::Cold:
929 case Attribute::DisableSanitizerInstrumentation:
930 case Attribute::FnRetThunkExtern:
931 case Attribute::Hot:
932 case Attribute::NoRecurse:
933 case Attribute::InlineHint:
934 case Attribute::MinSize:
935 case Attribute::NoCallback:
936 case Attribute::NoDuplicate:
937 case Attribute::NoFree:
938 case Attribute::NoImplicitFloat:
939 case Attribute::NoInline:
940 case Attribute::NonLazyBind:
941 case Attribute::NoRedZone:
942 case Attribute::NoUnwind:
943 case Attribute::NoSanitizeBounds:
944 case Attribute::NoSanitizeCoverage:
945 case Attribute::NullPointerIsValid:
946 case Attribute::OptForFuzzing:
947 case Attribute::OptimizeNone:
948 case Attribute::OptimizeForSize:
949 case Attribute::SafeStack:
950 case Attribute::ShadowCallStack:
951 case Attribute::SanitizeAddress:
952 case Attribute::SanitizeMemory:
953 case Attribute::SanitizeThread:
954 case Attribute::SanitizeHWAddress:
955 case Attribute::SanitizeMemTag:
956 case Attribute::SpeculativeLoadHardening:
957 case Attribute::StackProtect:
958 case Attribute::StackProtectReq:
959 case Attribute::StackProtectStrong:
960 case Attribute::StrictFP:
961 case Attribute::UWTable:
962 case Attribute::VScaleRange:
963 case Attribute::NoCfCheck:
964 case Attribute::MustProgress:
965 case Attribute::NoProfile:
966 break;
967 // These attributes cannot be applied to functions.
968 case Attribute::Alignment:
969 case Attribute::AllocatedPointer:
970 case Attribute::AllocAlign:
971 case Attribute::ByVal:
972 case Attribute::Dereferenceable:
973 case Attribute::DereferenceableOrNull:
974 case Attribute::ElementType:
975 case Attribute::InAlloca:
976 case Attribute::InReg:
977 case Attribute::Nest:
978 case Attribute::NoAlias:
979 case Attribute::NoCapture:
980 case Attribute::NoUndef:
981 case Attribute::NonNull:
982 case Attribute::Preallocated:
983 case Attribute::Returned:
984 case Attribute::SExt:
985 case Attribute::StructRet:
986 case Attribute::SwiftError:
987 case Attribute::SwiftSelf:
988 case Attribute::SwiftAsync:
989 case Attribute::ZExt:
990 case Attribute::ImmArg:
991 case Attribute::ByRef:
992 // These are not really attributes.
993 case Attribute::None:
994 case Attribute::EndAttrKinds:
995 case Attribute::EmptyKey:
996 case Attribute::TombstoneKey:
997 llvm_unreachable("Not a function attribute");
998 }
999
1000 newFunction->addFnAttr(Attr);
1001 }
1002 newFunction->getBasicBlockList().push_back(newRootNode);
1003
1004 // Create scalar and aggregate iterators to name all of the arguments we
1005 // inserted.
1006 Function::arg_iterator ScalarAI = newFunction->arg_begin();
1007 Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams);
1008
1009 // Rewrite all users of the inputs in the extracted region to use the
1010 // arguments (or appropriate addressing into struct) instead.
1011 for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1012 Value *RewriteVal;
1013 if (AggregateArgs && StructValues.contains(inputs[i])) {
1014 Value *Idx[2];
1015 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1016 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1017 Instruction *TI = newFunction->begin()->getTerminator();
1018 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1019 StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI);
1020 RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP,
1021 "loadgep_" + inputs[i]->getName(), TI);
1022 ++aggIdx;
1023 } else
1024 RewriteVal = &*ScalarAI++;
1025
1026 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1027 for (User *use : Users)
1028 if (Instruction *inst = dyn_cast<Instruction>(use))
1029 if (Blocks.count(inst->getParent()))
1030 inst->replaceUsesOfWith(inputs[i], RewriteVal);
1031 }
1032
1033 // Set names for input and output arguments.
1034 if (NumScalarParams) {
1035 ScalarAI = newFunction->arg_begin();
1036 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI)
1037 if (!StructValues.contains(inputs[i]))
1038 ScalarAI->setName(inputs[i]->getName());
1039 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI)
1040 if (!StructValues.contains(outputs[i]))
1041 ScalarAI->setName(outputs[i]->getName() + ".out");
1042 }
1043
1044 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1045 // within the new function. This must be done before we lose track of which
1046 // blocks were originally in the code region.
1047 std::vector<User *> Users(header->user_begin(), header->user_end());
1048 for (auto &U : Users)
1049 // The BasicBlock which contains the branch is not in the region
1050 // modify the branch target to a new block
1051 if (Instruction *I = dyn_cast<Instruction>(U))
1052 if (I->isTerminator() && I->getFunction() == oldFunction &&
1053 !Blocks.count(I->getParent()))
1054 I->replaceUsesOfWith(header, newHeader);
1055
1056 return newFunction;
1057 }
1058
1059 /// Erase lifetime.start markers which reference inputs to the extraction
1060 /// region, and insert the referenced memory into \p LifetimesStart.
1061 ///
1062 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1063 /// of allocas which will be moved from the caller function into the extracted
1064 /// function (\p SunkAllocas).
eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock * > & Blocks,const SetVector<Value * > & SunkAllocas,SetVector<Value * > & LifetimesStart)1065 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1066 const SetVector<Value *> &SunkAllocas,
1067 SetVector<Value *> &LifetimesStart) {
1068 for (BasicBlock *BB : Blocks) {
1069 for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1070 auto *II = dyn_cast<IntrinsicInst>(&I);
1071 if (!II || !II->isLifetimeStartOrEnd())
1072 continue;
1073
1074 // Get the memory operand of the lifetime marker. If the underlying
1075 // object is a sunk alloca, or is otherwise defined in the extraction
1076 // region, the lifetime marker must not be erased.
1077 Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1078 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1079 continue;
1080
1081 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1082 LifetimesStart.insert(Mem);
1083 II->eraseFromParent();
1084 }
1085 }
1086 }
1087
1088 /// Insert lifetime start/end markers surrounding the call to the new function
1089 /// for objects defined in the caller.
insertLifetimeMarkersSurroundingCall(Module * M,ArrayRef<Value * > LifetimesStart,ArrayRef<Value * > LifetimesEnd,CallInst * TheCall)1090 static void insertLifetimeMarkersSurroundingCall(
1091 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1092 CallInst *TheCall) {
1093 LLVMContext &Ctx = M->getContext();
1094 auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
1095 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1096 Instruction *Term = TheCall->getParent()->getTerminator();
1097
1098 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
1099 // needed to satisfy this requirement so they may be reused.
1100 DenseMap<Value *, Value *> Bitcasts;
1101
1102 // Emit lifetime markers for the pointers given in \p Objects. Insert the
1103 // markers before the call if \p InsertBefore, and after the call otherwise.
1104 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
1105 bool InsertBefore) {
1106 for (Value *Mem : Objects) {
1107 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1108 TheCall->getFunction()) &&
1109 "Input memory not defined in original function");
1110 Value *&MemAsI8Ptr = Bitcasts[Mem];
1111 if (!MemAsI8Ptr) {
1112 if (Mem->getType() == Int8PtrTy)
1113 MemAsI8Ptr = Mem;
1114 else
1115 MemAsI8Ptr =
1116 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
1117 }
1118
1119 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
1120 if (InsertBefore)
1121 Marker->insertBefore(TheCall);
1122 else
1123 Marker->insertBefore(Term);
1124 }
1125 };
1126
1127 if (!LifetimesStart.empty()) {
1128 auto StartFn = llvm::Intrinsic::getDeclaration(
1129 M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
1130 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
1131 }
1132
1133 if (!LifetimesEnd.empty()) {
1134 auto EndFn = llvm::Intrinsic::getDeclaration(
1135 M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
1136 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
1137 }
1138 }
1139
1140 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1141 /// the call instruction, splitting any PHI nodes in the header block as
1142 /// necessary.
emitCallAndSwitchStatement(Function * newFunction,BasicBlock * codeReplacer,ValueSet & inputs,ValueSet & outputs)1143 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1144 BasicBlock *codeReplacer,
1145 ValueSet &inputs,
1146 ValueSet &outputs) {
1147 // Emit a call to the new function, passing in: *pointer to struct (if
1148 // aggregating parameters), or plan inputs and allocated memory for outputs
1149 std::vector<Value *> params, ReloadOutputs, Reloads;
1150 ValueSet StructValues;
1151
1152 Module *M = newFunction->getParent();
1153 LLVMContext &Context = M->getContext();
1154 const DataLayout &DL = M->getDataLayout();
1155 CallInst *call = nullptr;
1156
1157 // Add inputs as params, or to be filled into the struct
1158 unsigned ScalarInputArgNo = 0;
1159 SmallVector<unsigned, 1> SwiftErrorArgs;
1160 for (Value *input : inputs) {
1161 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input))
1162 StructValues.insert(input);
1163 else {
1164 params.push_back(input);
1165 if (input->isSwiftError())
1166 SwiftErrorArgs.push_back(ScalarInputArgNo);
1167 }
1168 ++ScalarInputArgNo;
1169 }
1170
1171 // Create allocas for the outputs
1172 unsigned ScalarOutputArgNo = 0;
1173 for (Value *output : outputs) {
1174 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
1175 StructValues.insert(output);
1176 } else {
1177 AllocaInst *alloca =
1178 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1179 nullptr, output->getName() + ".loc",
1180 &codeReplacer->getParent()->front().front());
1181 ReloadOutputs.push_back(alloca);
1182 params.push_back(alloca);
1183 ++ScalarOutputArgNo;
1184 }
1185 }
1186
1187 StructType *StructArgTy = nullptr;
1188 AllocaInst *Struct = nullptr;
1189 unsigned NumAggregatedInputs = 0;
1190 if (AggregateArgs && !StructValues.empty()) {
1191 std::vector<Type *> ArgTypes;
1192 for (Value *V : StructValues)
1193 ArgTypes.push_back(V->getType());
1194
1195 // Allocate a struct at the beginning of this function
1196 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1197 Struct = new AllocaInst(
1198 StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg",
1199 AllocationBlock ? &*AllocationBlock->getFirstInsertionPt()
1200 : &codeReplacer->getParent()->front().front());
1201 params.push_back(Struct);
1202
1203 // Store aggregated inputs in the struct.
1204 for (unsigned i = 0, e = StructValues.size(); i != e; ++i) {
1205 if (inputs.contains(StructValues[i])) {
1206 Value *Idx[2];
1207 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1208 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1209 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1210 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1211 codeReplacer->getInstList().push_back(GEP);
1212 new StoreInst(StructValues[i], GEP, codeReplacer);
1213 NumAggregatedInputs++;
1214 }
1215 }
1216 }
1217
1218 // Emit the call to the function
1219 call = CallInst::Create(newFunction, params,
1220 NumExitBlocks > 1 ? "targetBlock" : "");
1221 // Add debug location to the new call, if the original function has debug
1222 // info. In that case, the terminator of the entry block of the extracted
1223 // function contains the first debug location of the extracted function,
1224 // set in extractCodeRegion.
1225 if (codeReplacer->getParent()->getSubprogram()) {
1226 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1227 call->setDebugLoc(DL);
1228 }
1229 codeReplacer->getInstList().push_back(call);
1230
1231 // Set swifterror parameter attributes.
1232 for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1233 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1234 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1235 }
1236
1237 // Reload the outputs passed in by reference, use the struct if output is in
1238 // the aggregate or reload from the scalar argument.
1239 for (unsigned i = 0, e = outputs.size(), scalarIdx = 0,
1240 aggIdx = NumAggregatedInputs;
1241 i != e; ++i) {
1242 Value *Output = nullptr;
1243 if (AggregateArgs && StructValues.contains(outputs[i])) {
1244 Value *Idx[2];
1245 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1246 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1247 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1248 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1249 codeReplacer->getInstList().push_back(GEP);
1250 Output = GEP;
1251 ++aggIdx;
1252 } else {
1253 Output = ReloadOutputs[scalarIdx];
1254 ++scalarIdx;
1255 }
1256 LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1257 outputs[i]->getName() + ".reload",
1258 codeReplacer);
1259 Reloads.push_back(load);
1260 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1261 for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1262 Instruction *inst = cast<Instruction>(Users[u]);
1263 if (!Blocks.count(inst->getParent()))
1264 inst->replaceUsesOfWith(outputs[i], load);
1265 }
1266 }
1267
1268 // Now we can emit a switch statement using the call as a value.
1269 SwitchInst *TheSwitch =
1270 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1271 codeReplacer, 0, codeReplacer);
1272
1273 // Since there may be multiple exits from the original region, make the new
1274 // function return an unsigned, switch on that number. This loop iterates
1275 // over all of the blocks in the extracted region, updating any terminator
1276 // instructions in the to-be-extracted region that branch to blocks that are
1277 // not in the region to be extracted.
1278 std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1279
1280 // Iterate over the previously collected targets, and create new blocks inside
1281 // the function to branch to.
1282 unsigned switchVal = 0;
1283 for (BasicBlock *OldTarget : OldTargets) {
1284 if (Blocks.count(OldTarget))
1285 continue;
1286 BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1287 if (NewTarget)
1288 continue;
1289
1290 // If we don't already have an exit stub for this non-extracted
1291 // destination, create one now!
1292 NewTarget = BasicBlock::Create(Context,
1293 OldTarget->getName() + ".exitStub",
1294 newFunction);
1295 unsigned SuccNum = switchVal++;
1296
1297 Value *brVal = nullptr;
1298 assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1299 switch (NumExitBlocks) {
1300 case 0:
1301 case 1: break; // No value needed.
1302 case 2: // Conditional branch, return a bool
1303 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1304 break;
1305 default:
1306 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1307 break;
1308 }
1309
1310 ReturnInst::Create(Context, brVal, NewTarget);
1311
1312 // Update the switch instruction.
1313 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1314 SuccNum),
1315 OldTarget);
1316 }
1317
1318 for (BasicBlock *Block : Blocks) {
1319 Instruction *TI = Block->getTerminator();
1320 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1321 if (Blocks.count(TI->getSuccessor(i)))
1322 continue;
1323 BasicBlock *OldTarget = TI->getSuccessor(i);
1324 // add a new basic block which returns the appropriate value
1325 BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1326 assert(NewTarget && "Unknown target block!");
1327
1328 // rewrite the original branch instruction with this new target
1329 TI->setSuccessor(i, NewTarget);
1330 }
1331 }
1332
1333 // Store the arguments right after the definition of output value.
1334 // This should be proceeded after creating exit stubs to be ensure that invoke
1335 // result restore will be placed in the outlined function.
1336 Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin();
1337 std::advance(ScalarOutputArgBegin, ScalarInputArgNo);
1338 Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin();
1339 std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo);
1340
1341 for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e;
1342 ++i) {
1343 auto *OutI = dyn_cast<Instruction>(outputs[i]);
1344 if (!OutI)
1345 continue;
1346
1347 // Find proper insertion point.
1348 BasicBlock::iterator InsertPt;
1349 // In case OutI is an invoke, we insert the store at the beginning in the
1350 // 'normal destination' BB. Otherwise we insert the store right after OutI.
1351 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1352 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1353 else if (auto *Phi = dyn_cast<PHINode>(OutI))
1354 InsertPt = Phi->getParent()->getFirstInsertionPt();
1355 else
1356 InsertPt = std::next(OutI->getIterator());
1357
1358 Instruction *InsertBefore = &*InsertPt;
1359 assert((InsertBefore->getFunction() == newFunction ||
1360 Blocks.count(InsertBefore->getParent())) &&
1361 "InsertPt should be in new function");
1362 if (AggregateArgs && StructValues.contains(outputs[i])) {
1363 assert(AggOutputArgBegin != newFunction->arg_end() &&
1364 "Number of aggregate output arguments should match "
1365 "the number of defined values");
1366 Value *Idx[2];
1367 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1368 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1369 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1370 StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(),
1371 InsertBefore);
1372 new StoreInst(outputs[i], GEP, InsertBefore);
1373 ++aggIdx;
1374 // Since there should be only one struct argument aggregating
1375 // all the output values, we shouldn't increment AggOutputArgBegin, which
1376 // always points to the struct argument, in this case.
1377 } else {
1378 assert(ScalarOutputArgBegin != newFunction->arg_end() &&
1379 "Number of scalar output arguments should match "
1380 "the number of defined values");
1381 new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore);
1382 ++ScalarOutputArgBegin;
1383 }
1384 }
1385
1386 // Now that we've done the deed, simplify the switch instruction.
1387 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1388 switch (NumExitBlocks) {
1389 case 0:
1390 // There are no successors (the block containing the switch itself), which
1391 // means that previously this was the last part of the function, and hence
1392 // this should be rewritten as a `ret'
1393
1394 // Check if the function should return a value
1395 if (OldFnRetTy->isVoidTy()) {
1396 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void
1397 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1398 // return what we have
1399 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1400 } else {
1401 // Otherwise we must have code extracted an unwind or something, just
1402 // return whatever we want.
1403 ReturnInst::Create(Context,
1404 Constant::getNullValue(OldFnRetTy), TheSwitch);
1405 }
1406
1407 TheSwitch->eraseFromParent();
1408 break;
1409 case 1:
1410 // Only a single destination, change the switch into an unconditional
1411 // branch.
1412 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1413 TheSwitch->eraseFromParent();
1414 break;
1415 case 2:
1416 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1417 call, TheSwitch);
1418 TheSwitch->eraseFromParent();
1419 break;
1420 default:
1421 // Otherwise, make the default destination of the switch instruction be one
1422 // of the other successors.
1423 TheSwitch->setCondition(call);
1424 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1425 // Remove redundant case
1426 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1427 break;
1428 }
1429
1430 // Insert lifetime markers around the reloads of any output values. The
1431 // allocas output values are stored in are only in-use in the codeRepl block.
1432 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1433
1434 return call;
1435 }
1436
moveCodeToFunction(Function * newFunction)1437 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1438 Function *oldFunc = (*Blocks.begin())->getParent();
1439 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1440 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1441
1442 auto newFuncIt = newFunction->front().getIterator();
1443 for (BasicBlock *Block : Blocks) {
1444 // Delete the basic block from the old function, and the list of blocks
1445 oldBlocks.remove(Block);
1446
1447 // Insert this basic block into the new function
1448 // Insert the original blocks after the entry block created
1449 // for the new function. The entry block may be followed
1450 // by a set of exit blocks at this point, but these exit
1451 // blocks better be placed at the end of the new function.
1452 newFuncIt = newBlocks.insertAfter(newFuncIt, Block);
1453 }
1454 }
1455
calculateNewCallTerminatorWeights(BasicBlock * CodeReplacer,DenseMap<BasicBlock *,BlockFrequency> & ExitWeights,BranchProbabilityInfo * BPI)1456 void CodeExtractor::calculateNewCallTerminatorWeights(
1457 BasicBlock *CodeReplacer,
1458 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1459 BranchProbabilityInfo *BPI) {
1460 using Distribution = BlockFrequencyInfoImplBase::Distribution;
1461 using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1462
1463 // Update the branch weights for the exit block.
1464 Instruction *TI = CodeReplacer->getTerminator();
1465 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1466
1467 // Block Frequency distribution with dummy node.
1468 Distribution BranchDist;
1469
1470 SmallVector<BranchProbability, 4> EdgeProbabilities(
1471 TI->getNumSuccessors(), BranchProbability::getUnknown());
1472
1473 // Add each of the frequencies of the successors.
1474 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1475 BlockNode ExitNode(i);
1476 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1477 if (ExitFreq != 0)
1478 BranchDist.addExit(ExitNode, ExitFreq);
1479 else
1480 EdgeProbabilities[i] = BranchProbability::getZero();
1481 }
1482
1483 // Check for no total weight.
1484 if (BranchDist.Total == 0) {
1485 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1486 return;
1487 }
1488
1489 // Normalize the distribution so that they can fit in unsigned.
1490 BranchDist.normalize();
1491
1492 // Create normalized branch weights and set the metadata.
1493 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1494 const auto &Weight = BranchDist.Weights[I];
1495
1496 // Get the weight and update the current BFI.
1497 BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1498 BranchProbability BP(Weight.Amount, BranchDist.Total);
1499 EdgeProbabilities[Weight.TargetNode.Index] = BP;
1500 }
1501 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1502 TI->setMetadata(
1503 LLVMContext::MD_prof,
1504 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1505 }
1506
1507 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1508 /// \p F.
eraseDebugIntrinsicsWithNonLocalRefs(Function & F)1509 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1510 for (Instruction &I : instructions(F)) {
1511 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1512 findDbgUsers(DbgUsers, &I);
1513 for (DbgVariableIntrinsic *DVI : DbgUsers)
1514 if (DVI->getFunction() != &F)
1515 DVI->eraseFromParent();
1516 }
1517 }
1518
1519 /// Fix up the debug info in the old and new functions by pointing line
1520 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1521 /// intrinsics which point to values outside of the new function.
fixupDebugInfoPostExtraction(Function & OldFunc,Function & NewFunc,CallInst & TheCall)1522 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1523 CallInst &TheCall) {
1524 DISubprogram *OldSP = OldFunc.getSubprogram();
1525 LLVMContext &Ctx = OldFunc.getContext();
1526
1527 if (!OldSP) {
1528 // Erase any debug info the new function contains.
1529 stripDebugInfo(NewFunc);
1530 // Make sure the old function doesn't contain any non-local metadata refs.
1531 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1532 return;
1533 }
1534
1535 // Create a subprogram for the new function. Leave out a description of the
1536 // function arguments, as the parameters don't correspond to anything at the
1537 // source level.
1538 assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1539 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1540 OldSP->getUnit());
1541 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
1542 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1543 DISubprogram::SPFlagOptimized |
1544 DISubprogram::SPFlagLocalToUnit;
1545 auto NewSP = DIB.createFunction(
1546 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1547 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1548 NewFunc.setSubprogram(NewSP);
1549
1550 // Debug intrinsics in the new function need to be updated in one of two
1551 // ways:
1552 // 1) They need to be deleted, because they describe a value in the old
1553 // function.
1554 // 2) They need to point to fresh metadata, e.g. because they currently
1555 // point to a variable in the wrong scope.
1556 SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1557 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1558 for (Instruction &I : instructions(NewFunc)) {
1559 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1560 if (!DII)
1561 continue;
1562
1563 // Point the intrinsic to a fresh label within the new function.
1564 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1565 DILabel *OldLabel = DLI->getLabel();
1566 DINode *&NewLabel = RemappedMetadata[OldLabel];
1567 if (!NewLabel)
1568 NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(),
1569 OldLabel->getFile(), OldLabel->getLine());
1570 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
1571 continue;
1572 }
1573
1574 auto IsInvalidLocation = [&NewFunc](Value *Location) {
1575 // Location is invalid if it isn't a constant or an instruction, or is an
1576 // instruction but isn't in the new function.
1577 if (!Location ||
1578 (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1579 return true;
1580 Instruction *LocationInst = dyn_cast<Instruction>(Location);
1581 return LocationInst && LocationInst->getFunction() != &NewFunc;
1582 };
1583
1584 auto *DVI = cast<DbgVariableIntrinsic>(DII);
1585 // If any of the used locations are invalid, delete the intrinsic.
1586 if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1587 DebugIntrinsicsToDelete.push_back(DVI);
1588 continue;
1589 }
1590
1591 // Point the intrinsic to a fresh variable within the new function.
1592 DILocalVariable *OldVar = DVI->getVariable();
1593 DINode *&NewVar = RemappedMetadata[OldVar];
1594 if (!NewVar)
1595 NewVar = DIB.createAutoVariable(
1596 NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1597 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1598 OldVar->getAlignInBits());
1599 DVI->setVariable(cast<DILocalVariable>(NewVar));
1600 }
1601 for (auto *DII : DebugIntrinsicsToDelete)
1602 DII->eraseFromParent();
1603 DIB.finalizeSubprogram(NewSP);
1604
1605 // Fix up the scope information attached to the line locations in the new
1606 // function.
1607 for (Instruction &I : instructions(NewFunc)) {
1608 if (const DebugLoc &DL = I.getDebugLoc())
1609 I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP));
1610
1611 // Loop info metadata may contain line locations. Fix them up.
1612 auto updateLoopInfoLoc = [&Ctx, NewSP](Metadata *MD) -> Metadata * {
1613 if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1614 return DILocation::get(Ctx, Loc->getLine(), Loc->getColumn(), NewSP,
1615 nullptr);
1616 return MD;
1617 };
1618 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1619 }
1620 if (!TheCall.getDebugLoc())
1621 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1622
1623 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1624 }
1625
1626 Function *
extractCodeRegion(const CodeExtractorAnalysisCache & CEAC)1627 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1628 ValueSet Inputs, Outputs;
1629 return extractCodeRegion(CEAC, Inputs, Outputs);
1630 }
1631
1632 Function *
extractCodeRegion(const CodeExtractorAnalysisCache & CEAC,ValueSet & inputs,ValueSet & outputs)1633 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1634 ValueSet &inputs, ValueSet &outputs) {
1635 if (!isEligible())
1636 return nullptr;
1637
1638 // Assumption: this is a single-entry code region, and the header is the first
1639 // block in the region.
1640 BasicBlock *header = *Blocks.begin();
1641 Function *oldFunction = header->getParent();
1642
1643 // Calculate the entry frequency of the new function before we change the root
1644 // block.
1645 BlockFrequency EntryFreq;
1646 if (BFI) {
1647 assert(BPI && "Both BPI and BFI are required to preserve profile info");
1648 for (BasicBlock *Pred : predecessors(header)) {
1649 if (Blocks.count(Pred))
1650 continue;
1651 EntryFreq +=
1652 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1653 }
1654 }
1655
1656 // Remove @llvm.assume calls that will be moved to the new function from the
1657 // old function's assumption cache.
1658 for (BasicBlock *Block : Blocks) {
1659 for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1660 if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1661 if (AC)
1662 AC->unregisterAssumption(AI);
1663 AI->eraseFromParent();
1664 }
1665 }
1666 }
1667
1668 // If we have any return instructions in the region, split those blocks so
1669 // that the return is not in the region.
1670 splitReturnBlocks();
1671
1672 // Calculate the exit blocks for the extracted region and the total exit
1673 // weights for each of those blocks.
1674 DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1675 SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1676 for (BasicBlock *Block : Blocks) {
1677 for (BasicBlock *Succ : successors(Block)) {
1678 if (!Blocks.count(Succ)) {
1679 // Update the branch weight for this successor.
1680 if (BFI) {
1681 BlockFrequency &BF = ExitWeights[Succ];
1682 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1683 }
1684 ExitBlocks.insert(Succ);
1685 }
1686 }
1687 }
1688 NumExitBlocks = ExitBlocks.size();
1689
1690 for (BasicBlock *Block : Blocks) {
1691 Instruction *TI = Block->getTerminator();
1692 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1693 if (Blocks.count(TI->getSuccessor(i)))
1694 continue;
1695 BasicBlock *OldTarget = TI->getSuccessor(i);
1696 OldTargets.push_back(OldTarget);
1697 }
1698 }
1699
1700 // If we have to split PHI nodes of the entry or exit blocks, do so now.
1701 severSplitPHINodesOfEntry(header);
1702 severSplitPHINodesOfExits(ExitBlocks);
1703
1704 // This takes place of the original loop
1705 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1706 "codeRepl", oldFunction,
1707 header);
1708
1709 // The new function needs a root node because other nodes can branch to the
1710 // head of the region, but the entry node of a function cannot have preds.
1711 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1712 "newFuncRoot");
1713 auto *BranchI = BranchInst::Create(header);
1714 // If the original function has debug info, we have to add a debug location
1715 // to the new branch instruction from the artificial entry block.
1716 // We use the debug location of the first instruction in the extracted
1717 // blocks, as there is no other equivalent line in the source code.
1718 if (oldFunction->getSubprogram()) {
1719 any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1720 return any_of(*BB, [&BranchI](const Instruction &I) {
1721 if (!I.getDebugLoc())
1722 return false;
1723 BranchI->setDebugLoc(I.getDebugLoc());
1724 return true;
1725 });
1726 });
1727 }
1728 newFuncRoot->getInstList().push_back(BranchI);
1729
1730 ValueSet SinkingCands, HoistingCands;
1731 BasicBlock *CommonExit = nullptr;
1732 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1733 assert(HoistingCands.empty() || CommonExit);
1734
1735 // Find inputs to, outputs from the code region.
1736 findInputsOutputs(inputs, outputs, SinkingCands);
1737
1738 // Now sink all instructions which only have non-phi uses inside the region.
1739 // Group the allocas at the start of the block, so that any bitcast uses of
1740 // the allocas are well-defined.
1741 AllocaInst *FirstSunkAlloca = nullptr;
1742 for (auto *II : SinkingCands) {
1743 if (auto *AI = dyn_cast<AllocaInst>(II)) {
1744 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1745 if (!FirstSunkAlloca)
1746 FirstSunkAlloca = AI;
1747 }
1748 }
1749 assert((SinkingCands.empty() || FirstSunkAlloca) &&
1750 "Did not expect a sink candidate without any allocas");
1751 for (auto *II : SinkingCands) {
1752 if (!isa<AllocaInst>(II)) {
1753 cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1754 }
1755 }
1756
1757 if (!HoistingCands.empty()) {
1758 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1759 Instruction *TI = HoistToBlock->getTerminator();
1760 for (auto *II : HoistingCands)
1761 cast<Instruction>(II)->moveBefore(TI);
1762 }
1763
1764 // Collect objects which are inputs to the extraction region and also
1765 // referenced by lifetime start markers within it. The effects of these
1766 // markers must be replicated in the calling function to prevent the stack
1767 // coloring pass from merging slots which store input objects.
1768 ValueSet LifetimesStart;
1769 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1770
1771 // Construct new function based on inputs/outputs & add allocas for all defs.
1772 Function *newFunction =
1773 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1774 oldFunction, oldFunction->getParent());
1775
1776 // Update the entry count of the function.
1777 if (BFI) {
1778 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1779 if (Count)
1780 newFunction->setEntryCount(
1781 ProfileCount(Count.value(), Function::PCT_Real)); // FIXME
1782 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1783 }
1784
1785 CallInst *TheCall =
1786 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1787
1788 moveCodeToFunction(newFunction);
1789
1790 // Replicate the effects of any lifetime start/end markers which referenced
1791 // input objects in the extraction region by placing markers around the call.
1792 insertLifetimeMarkersSurroundingCall(
1793 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1794
1795 // Propagate personality info to the new function if there is one.
1796 if (oldFunction->hasPersonalityFn())
1797 newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1798
1799 // Update the branch weights for the exit block.
1800 if (BFI && NumExitBlocks > 1)
1801 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1802
1803 // Loop over all of the PHI nodes in the header and exit blocks, and change
1804 // any references to the old incoming edge to be the new incoming edge.
1805 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1806 PHINode *PN = cast<PHINode>(I);
1807 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1808 if (!Blocks.count(PN->getIncomingBlock(i)))
1809 PN->setIncomingBlock(i, newFuncRoot);
1810 }
1811
1812 for (BasicBlock *ExitBB : ExitBlocks)
1813 for (PHINode &PN : ExitBB->phis()) {
1814 Value *IncomingCodeReplacerVal = nullptr;
1815 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1816 // Ignore incoming values from outside of the extracted region.
1817 if (!Blocks.count(PN.getIncomingBlock(i)))
1818 continue;
1819
1820 // Ensure that there is only one incoming value from codeReplacer.
1821 if (!IncomingCodeReplacerVal) {
1822 PN.setIncomingBlock(i, codeReplacer);
1823 IncomingCodeReplacerVal = PN.getIncomingValue(i);
1824 } else
1825 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1826 "PHI has two incompatbile incoming values from codeRepl");
1827 }
1828 }
1829
1830 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1831
1832 // Mark the new function `noreturn` if applicable. Terminators which resume
1833 // exception propagation are treated as returning instructions. This is to
1834 // avoid inserting traps after calls to outlined functions which unwind.
1835 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1836 const Instruction *Term = BB.getTerminator();
1837 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1838 });
1839 if (doesNotReturn)
1840 newFunction->setDoesNotReturn();
1841
1842 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1843 newFunction->dump();
1844 report_fatal_error("verification of newFunction failed!");
1845 });
1846 LLVM_DEBUG(if (verifyFunction(*oldFunction))
1847 report_fatal_error("verification of oldFunction failed!"));
1848 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1849 report_fatal_error("Stale Asumption cache for old Function!"));
1850 return newFunction;
1851 }
1852
verifyAssumptionCache(const Function & OldFunc,const Function & NewFunc,AssumptionCache * AC)1853 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1854 const Function &NewFunc,
1855 AssumptionCache *AC) {
1856 for (auto AssumeVH : AC->assumptions()) {
1857 auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
1858 if (!I)
1859 continue;
1860
1861 // There shouldn't be any llvm.assume intrinsics in the new function.
1862 if (I->getFunction() != &OldFunc)
1863 return true;
1864
1865 // There shouldn't be any stale affected values in the assumption cache
1866 // that were previously in the old function, but that have now been moved
1867 // to the new function.
1868 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1869 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1870 if (!AffectedCI)
1871 continue;
1872 if (AffectedCI->getFunction() != &OldFunc)
1873 return true;
1874 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1875 if (AssumedInst->getFunction() != &OldFunc)
1876 return true;
1877 }
1878 }
1879 return false;
1880 }
1881
excludeArgFromAggregate(Value * Arg)1882 void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
1883 ExcludeArgsFromAggregate.insert(Arg);
1884 }
1885