1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/PatternMatch.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/IR/Verifier.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/BlockFrequency.h" 54 #include "llvm/Support/BranchProbability.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <map> 66 #include <set> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 using namespace llvm::PatternMatch; 72 using ProfileCount = Function::ProfileCount; 73 74 #define DEBUG_TYPE "code-extractor" 75 76 // Provide a command-line option to aggregate function arguments into a struct 77 // for functions produced by the code extractor. This is useful when converting 78 // extracted functions to pthread-based code, as only one argument (void*) can 79 // be passed in to pthread_create(). 80 static cl::opt<bool> 81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 82 cl::desc("Aggregate arguments to code-extracted functions")); 83 84 /// Test whether a block is valid for extraction. 85 static bool isBlockValidForExtraction(const BasicBlock &BB, 86 const SetVector<BasicBlock *> &Result, 87 bool AllowVarArgs, bool AllowAlloca) { 88 // taking the address of a basic block moved to another function is illegal 89 if (BB.hasAddressTaken()) 90 return false; 91 92 // don't hoist code that uses another basicblock address, as it's likely to 93 // lead to unexpected behavior, like cross-function jumps 94 SmallPtrSet<User const *, 16> Visited; 95 SmallVector<User const *, 16> ToVisit; 96 97 for (Instruction const &Inst : BB) 98 ToVisit.push_back(&Inst); 99 100 while (!ToVisit.empty()) { 101 User const *Curr = ToVisit.pop_back_val(); 102 if (!Visited.insert(Curr).second) 103 continue; 104 if (isa<BlockAddress const>(Curr)) 105 return false; // even a reference to self is likely to be not compatible 106 107 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 108 continue; 109 110 for (auto const &U : Curr->operands()) { 111 if (auto *UU = dyn_cast<User>(U)) 112 ToVisit.push_back(UU); 113 } 114 } 115 116 // If explicitly requested, allow vastart and alloca. For invoke instructions 117 // verify that extraction is valid. 118 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 119 if (isa<AllocaInst>(I)) { 120 if (!AllowAlloca) 121 return false; 122 continue; 123 } 124 125 if (const auto *II = dyn_cast<InvokeInst>(I)) { 126 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 127 // must be a part of the subgraph which is being extracted. 128 if (auto *UBB = II->getUnwindDest()) 129 if (!Result.count(UBB)) 130 return false; 131 continue; 132 } 133 134 // All catch handlers of a catchswitch instruction as well as the unwind 135 // destination must be in the subgraph. 136 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 137 if (auto *UBB = CSI->getUnwindDest()) 138 if (!Result.count(UBB)) 139 return false; 140 for (auto *HBB : CSI->handlers()) 141 if (!Result.count(const_cast<BasicBlock*>(HBB))) 142 return false; 143 continue; 144 } 145 146 // Make sure that entire catch handler is within subgraph. It is sufficient 147 // to check that catch return's block is in the list. 148 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 149 for (const auto *U : CPI->users()) 150 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 151 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 152 return false; 153 continue; 154 } 155 156 // And do similar checks for cleanup handler - the entire handler must be 157 // in subgraph which is going to be extracted. For cleanup return should 158 // additionally check that the unwind destination is also in the subgraph. 159 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 160 for (const auto *U : CPI->users()) 161 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 162 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 163 return false; 164 continue; 165 } 166 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 167 if (auto *UBB = CRI->getUnwindDest()) 168 if (!Result.count(UBB)) 169 return false; 170 continue; 171 } 172 173 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 174 if (const Function *F = CI->getCalledFunction()) { 175 auto IID = F->getIntrinsicID(); 176 if (IID == Intrinsic::vastart) { 177 if (AllowVarArgs) 178 continue; 179 else 180 return false; 181 } 182 183 // Currently, we miscompile outlined copies of eh_typid_for. There are 184 // proposals for fixing this in llvm.org/PR39545. 185 if (IID == Intrinsic::eh_typeid_for) 186 return false; 187 } 188 } 189 } 190 191 return true; 192 } 193 194 /// Build a set of blocks to extract if the input blocks are viable. 195 static SetVector<BasicBlock *> 196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 197 bool AllowVarArgs, bool AllowAlloca) { 198 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 199 SetVector<BasicBlock *> Result; 200 201 // Loop over the blocks, adding them to our set-vector, and aborting with an 202 // empty set if we encounter invalid blocks. 203 for (BasicBlock *BB : BBs) { 204 // If this block is dead, don't process it. 205 if (DT && !DT->isReachableFromEntry(BB)) 206 continue; 207 208 if (!Result.insert(BB)) 209 llvm_unreachable("Repeated basic blocks in extraction input"); 210 } 211 212 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 213 << '\n'); 214 215 for (auto *BB : Result) { 216 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 217 return {}; 218 219 // Make sure that the first block is not a landing pad. 220 if (BB == Result.front()) { 221 if (BB->isEHPad()) { 222 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 223 return {}; 224 } 225 continue; 226 } 227 228 // All blocks other than the first must not have predecessors outside of 229 // the subgraph which is being extracted. 230 for (auto *PBB : predecessors(BB)) 231 if (!Result.count(PBB)) { 232 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 233 "outside the region except for the first block!\n" 234 << "Problematic source BB: " << BB->getName() << "\n" 235 << "Problematic destination BB: " << PBB->getName() 236 << "\n"); 237 return {}; 238 } 239 } 240 241 return Result; 242 } 243 244 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 245 bool AggregateArgs, BlockFrequencyInfo *BFI, 246 BranchProbabilityInfo *BPI, AssumptionCache *AC, 247 bool AllowVarArgs, bool AllowAlloca, 248 std::string Suffix) 249 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 250 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs), 251 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 252 Suffix(Suffix) {} 253 254 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 255 BlockFrequencyInfo *BFI, 256 BranchProbabilityInfo *BPI, AssumptionCache *AC, 257 std::string Suffix) 258 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 259 BPI(BPI), AC(AC), AllowVarArgs(false), 260 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 261 /* AllowVarArgs */ false, 262 /* AllowAlloca */ false)), 263 Suffix(Suffix) {} 264 265 /// definedInRegion - Return true if the specified value is defined in the 266 /// extracted region. 267 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 268 if (Instruction *I = dyn_cast<Instruction>(V)) 269 if (Blocks.count(I->getParent())) 270 return true; 271 return false; 272 } 273 274 /// definedInCaller - Return true if the specified value is defined in the 275 /// function being code extracted, but not in the region being extracted. 276 /// These values must be passed in as live-ins to the function. 277 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 278 if (isa<Argument>(V)) return true; 279 if (Instruction *I = dyn_cast<Instruction>(V)) 280 if (!Blocks.count(I->getParent())) 281 return true; 282 return false; 283 } 284 285 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 286 BasicBlock *CommonExitBlock = nullptr; 287 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 288 for (auto *Succ : successors(Block)) { 289 // Internal edges, ok. 290 if (Blocks.count(Succ)) 291 continue; 292 if (!CommonExitBlock) { 293 CommonExitBlock = Succ; 294 continue; 295 } 296 if (CommonExitBlock == Succ) 297 continue; 298 299 return true; 300 } 301 return false; 302 }; 303 304 if (any_of(Blocks, hasNonCommonExitSucc)) 305 return nullptr; 306 307 return CommonExitBlock; 308 } 309 310 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 311 Instruction *Addr) const { 312 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 313 Function *Func = (*Blocks.begin())->getParent(); 314 for (BasicBlock &BB : *Func) { 315 if (Blocks.count(&BB)) 316 continue; 317 for (Instruction &II : BB) { 318 if (isa<DbgInfoIntrinsic>(II)) 319 continue; 320 321 unsigned Opcode = II.getOpcode(); 322 Value *MemAddr = nullptr; 323 switch (Opcode) { 324 case Instruction::Store: 325 case Instruction::Load: { 326 if (Opcode == Instruction::Store) { 327 StoreInst *SI = cast<StoreInst>(&II); 328 MemAddr = SI->getPointerOperand(); 329 } else { 330 LoadInst *LI = cast<LoadInst>(&II); 331 MemAddr = LI->getPointerOperand(); 332 } 333 // Global variable can not be aliased with locals. 334 if (dyn_cast<Constant>(MemAddr)) 335 break; 336 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 337 if (!isa<AllocaInst>(Base) || Base == AI) 338 return false; 339 break; 340 } 341 default: { 342 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 343 if (IntrInst) { 344 if (IntrInst->isLifetimeStartOrEnd()) 345 break; 346 return false; 347 } 348 // Treat all the other cases conservatively if it has side effects. 349 if (II.mayHaveSideEffects()) 350 return false; 351 } 352 } 353 } 354 } 355 356 return true; 357 } 358 359 BasicBlock * 360 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 361 BasicBlock *SinglePredFromOutlineRegion = nullptr; 362 assert(!Blocks.count(CommonExitBlock) && 363 "Expect a block outside the region!"); 364 for (auto *Pred : predecessors(CommonExitBlock)) { 365 if (!Blocks.count(Pred)) 366 continue; 367 if (!SinglePredFromOutlineRegion) { 368 SinglePredFromOutlineRegion = Pred; 369 } else if (SinglePredFromOutlineRegion != Pred) { 370 SinglePredFromOutlineRegion = nullptr; 371 break; 372 } 373 } 374 375 if (SinglePredFromOutlineRegion) 376 return SinglePredFromOutlineRegion; 377 378 #ifndef NDEBUG 379 auto getFirstPHI = [](BasicBlock *BB) { 380 BasicBlock::iterator I = BB->begin(); 381 PHINode *FirstPhi = nullptr; 382 while (I != BB->end()) { 383 PHINode *Phi = dyn_cast<PHINode>(I); 384 if (!Phi) 385 break; 386 if (!FirstPhi) { 387 FirstPhi = Phi; 388 break; 389 } 390 } 391 return FirstPhi; 392 }; 393 // If there are any phi nodes, the single pred either exists or has already 394 // be created before code extraction. 395 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 396 #endif 397 398 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 399 CommonExitBlock->getFirstNonPHI()->getIterator()); 400 401 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock); 402 PI != PE;) { 403 BasicBlock *Pred = *PI++; 404 if (Blocks.count(Pred)) 405 continue; 406 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 407 } 408 // Now add the old exit block to the outline region. 409 Blocks.insert(CommonExitBlock); 410 return CommonExitBlock; 411 } 412 413 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands, 414 BasicBlock *&ExitBlock) const { 415 Function *Func = (*Blocks.begin())->getParent(); 416 ExitBlock = getCommonExitBlock(Blocks); 417 418 for (BasicBlock &BB : *Func) { 419 if (Blocks.count(&BB)) 420 continue; 421 for (Instruction &II : BB) { 422 auto *AI = dyn_cast<AllocaInst>(&II); 423 if (!AI) 424 continue; 425 426 // Find the pair of life time markers for address 'Addr' that are either 427 // defined inside the outline region or can legally be shrinkwrapped into 428 // the outline region. If there are not other untracked uses of the 429 // address, return the pair of markers if found; otherwise return a pair 430 // of nullptr. 431 auto GetLifeTimeMarkers = 432 [&](Instruction *Addr, bool &SinkLifeStart, 433 bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> { 434 Instruction *LifeStart = nullptr, *LifeEnd = nullptr; 435 436 for (User *U : Addr->users()) { 437 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 438 if (IntrInst) { 439 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 440 // Do not handle the case where AI has multiple start markers. 441 if (LifeStart) 442 return std::make_pair<Instruction *>(nullptr, nullptr); 443 LifeStart = IntrInst; 444 } 445 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 446 if (LifeEnd) 447 return std::make_pair<Instruction *>(nullptr, nullptr); 448 LifeEnd = IntrInst; 449 } 450 continue; 451 } 452 // Find untracked uses of the address, bail. 453 if (!definedInRegion(Blocks, U)) 454 return std::make_pair<Instruction *>(nullptr, nullptr); 455 } 456 457 if (!LifeStart || !LifeEnd) 458 return std::make_pair<Instruction *>(nullptr, nullptr); 459 460 SinkLifeStart = !definedInRegion(Blocks, LifeStart); 461 HoistLifeEnd = !definedInRegion(Blocks, LifeEnd); 462 // Do legality Check. 463 if ((SinkLifeStart || HoistLifeEnd) && 464 !isLegalToShrinkwrapLifetimeMarkers(Addr)) 465 return std::make_pair<Instruction *>(nullptr, nullptr); 466 467 // Check to see if we have a place to do hoisting, if not, bail. 468 if (HoistLifeEnd && !ExitBlock) 469 return std::make_pair<Instruction *>(nullptr, nullptr); 470 471 return std::make_pair(LifeStart, LifeEnd); 472 }; 473 474 bool SinkLifeStart = false, HoistLifeEnd = false; 475 auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd); 476 477 if (Markers.first) { 478 if (SinkLifeStart) 479 SinkCands.insert(Markers.first); 480 SinkCands.insert(AI); 481 if (HoistLifeEnd) 482 HoistCands.insert(Markers.second); 483 continue; 484 } 485 486 // Follow the bitcast. 487 Instruction *MarkerAddr = nullptr; 488 for (User *U : AI->users()) { 489 if (U->stripInBoundsConstantOffsets() == AI) { 490 SinkLifeStart = false; 491 HoistLifeEnd = false; 492 Instruction *Bitcast = cast<Instruction>(U); 493 Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd); 494 if (Markers.first) { 495 MarkerAddr = Bitcast; 496 continue; 497 } 498 } 499 500 // Found unknown use of AI. 501 if (!definedInRegion(Blocks, U)) { 502 MarkerAddr = nullptr; 503 break; 504 } 505 } 506 507 if (MarkerAddr) { 508 if (SinkLifeStart) 509 SinkCands.insert(Markers.first); 510 if (!definedInRegion(Blocks, MarkerAddr)) 511 SinkCands.insert(MarkerAddr); 512 SinkCands.insert(AI); 513 if (HoistLifeEnd) 514 HoistCands.insert(Markers.second); 515 } 516 } 517 } 518 } 519 520 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 521 const ValueSet &SinkCands) const { 522 for (BasicBlock *BB : Blocks) { 523 // If a used value is defined outside the region, it's an input. If an 524 // instruction is used outside the region, it's an output. 525 for (Instruction &II : *BB) { 526 for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE; 527 ++OI) { 528 Value *V = *OI; 529 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 530 Inputs.insert(V); 531 } 532 533 for (User *U : II.users()) 534 if (!definedInRegion(Blocks, U)) { 535 Outputs.insert(&II); 536 break; 537 } 538 } 539 } 540 } 541 542 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 543 /// of the region, we need to split the entry block of the region so that the 544 /// PHI node is easier to deal with. 545 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 546 unsigned NumPredsFromRegion = 0; 547 unsigned NumPredsOutsideRegion = 0; 548 549 if (Header != &Header->getParent()->getEntryBlock()) { 550 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 551 if (!PN) return; // No PHI nodes. 552 553 // If the header node contains any PHI nodes, check to see if there is more 554 // than one entry from outside the region. If so, we need to sever the 555 // header block into two. 556 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 557 if (Blocks.count(PN->getIncomingBlock(i))) 558 ++NumPredsFromRegion; 559 else 560 ++NumPredsOutsideRegion; 561 562 // If there is one (or fewer) predecessor from outside the region, we don't 563 // need to do anything special. 564 if (NumPredsOutsideRegion <= 1) return; 565 } 566 567 // Otherwise, we need to split the header block into two pieces: one 568 // containing PHI nodes merging values from outside of the region, and a 569 // second that contains all of the code for the block and merges back any 570 // incoming values from inside of the region. 571 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 572 573 // We only want to code extract the second block now, and it becomes the new 574 // header of the region. 575 BasicBlock *OldPred = Header; 576 Blocks.remove(OldPred); 577 Blocks.insert(NewBB); 578 Header = NewBB; 579 580 // Okay, now we need to adjust the PHI nodes and any branches from within the 581 // region to go to the new header block instead of the old header block. 582 if (NumPredsFromRegion) { 583 PHINode *PN = cast<PHINode>(OldPred->begin()); 584 // Loop over all of the predecessors of OldPred that are in the region, 585 // changing them to branch to NewBB instead. 586 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 587 if (Blocks.count(PN->getIncomingBlock(i))) { 588 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 589 TI->replaceUsesOfWith(OldPred, NewBB); 590 } 591 592 // Okay, everything within the region is now branching to the right block, we 593 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 594 BasicBlock::iterator AfterPHIs; 595 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 596 PHINode *PN = cast<PHINode>(AfterPHIs); 597 // Create a new PHI node in the new region, which has an incoming value 598 // from OldPred of PN. 599 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 600 PN->getName() + ".ce", &NewBB->front()); 601 PN->replaceAllUsesWith(NewPN); 602 NewPN->addIncoming(PN, OldPred); 603 604 // Loop over all of the incoming value in PN, moving them to NewPN if they 605 // are from the extracted region. 606 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 607 if (Blocks.count(PN->getIncomingBlock(i))) { 608 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 609 PN->removeIncomingValue(i); 610 --i; 611 } 612 } 613 } 614 } 615 } 616 617 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 618 /// outlined region, we split these PHIs on two: one with inputs from region 619 /// and other with remaining incoming blocks; then first PHIs are placed in 620 /// outlined region. 621 void CodeExtractor::severSplitPHINodesOfExits( 622 const SmallPtrSetImpl<BasicBlock *> &Exits) { 623 for (BasicBlock *ExitBB : Exits) { 624 BasicBlock *NewBB = nullptr; 625 626 for (PHINode &PN : ExitBB->phis()) { 627 // Find all incoming values from the outlining region. 628 SmallVector<unsigned, 2> IncomingVals; 629 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 630 if (Blocks.count(PN.getIncomingBlock(i))) 631 IncomingVals.push_back(i); 632 633 // Do not process PHI if there is one (or fewer) predecessor from region. 634 // If PHI has exactly one predecessor from region, only this one incoming 635 // will be replaced on codeRepl block, so it should be safe to skip PHI. 636 if (IncomingVals.size() <= 1) 637 continue; 638 639 // Create block for new PHIs and add it to the list of outlined if it 640 // wasn't done before. 641 if (!NewBB) { 642 NewBB = BasicBlock::Create(ExitBB->getContext(), 643 ExitBB->getName() + ".split", 644 ExitBB->getParent(), ExitBB); 645 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB), 646 pred_end(ExitBB)); 647 for (BasicBlock *PredBB : Preds) 648 if (Blocks.count(PredBB)) 649 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 650 BranchInst::Create(ExitBB, NewBB); 651 Blocks.insert(NewBB); 652 } 653 654 // Split this PHI. 655 PHINode *NewPN = 656 PHINode::Create(PN.getType(), IncomingVals.size(), 657 PN.getName() + ".ce", NewBB->getFirstNonPHI()); 658 for (unsigned i : IncomingVals) 659 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 660 for (unsigned i : reverse(IncomingVals)) 661 PN.removeIncomingValue(i, false); 662 PN.addIncoming(NewPN, NewBB); 663 } 664 } 665 } 666 667 void CodeExtractor::splitReturnBlocks() { 668 for (BasicBlock *Block : Blocks) 669 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 670 BasicBlock *New = 671 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 672 if (DT) { 673 // Old dominates New. New node dominates all other nodes dominated 674 // by Old. 675 DomTreeNode *OldNode = DT->getNode(Block); 676 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 677 OldNode->end()); 678 679 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 680 681 for (DomTreeNode *I : Children) 682 DT->changeImmediateDominator(I, NewNode); 683 } 684 } 685 } 686 687 /// constructFunction - make a function based on inputs and outputs, as follows: 688 /// f(in0, ..., inN, out0, ..., outN) 689 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 690 const ValueSet &outputs, 691 BasicBlock *header, 692 BasicBlock *newRootNode, 693 BasicBlock *newHeader, 694 Function *oldFunction, 695 Module *M) { 696 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 697 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 698 699 // This function returns unsigned, outputs will go back by reference. 700 switch (NumExitBlocks) { 701 case 0: 702 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 703 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 704 default: RetTy = Type::getInt16Ty(header->getContext()); break; 705 } 706 707 std::vector<Type *> paramTy; 708 709 // Add the types of the input values to the function's argument list 710 for (Value *value : inputs) { 711 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 712 paramTy.push_back(value->getType()); 713 } 714 715 // Add the types of the output values to the function's argument list. 716 for (Value *output : outputs) { 717 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 718 if (AggregateArgs) 719 paramTy.push_back(output->getType()); 720 else 721 paramTy.push_back(PointerType::getUnqual(output->getType())); 722 } 723 724 LLVM_DEBUG({ 725 dbgs() << "Function type: " << *RetTy << " f("; 726 for (Type *i : paramTy) 727 dbgs() << *i << ", "; 728 dbgs() << ")\n"; 729 }); 730 731 StructType *StructTy; 732 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 733 StructTy = StructType::get(M->getContext(), paramTy); 734 paramTy.clear(); 735 paramTy.push_back(PointerType::getUnqual(StructTy)); 736 } 737 FunctionType *funcType = 738 FunctionType::get(RetTy, paramTy, 739 AllowVarArgs && oldFunction->isVarArg()); 740 741 std::string SuffixToUse = 742 Suffix.empty() 743 ? (header->getName().empty() ? "extracted" : header->getName().str()) 744 : Suffix; 745 // Create the new function 746 Function *newFunction = Function::Create( 747 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 748 oldFunction->getName() + "." + SuffixToUse, M); 749 // If the old function is no-throw, so is the new one. 750 if (oldFunction->doesNotThrow()) 751 newFunction->setDoesNotThrow(); 752 753 // Inherit the uwtable attribute if we need to. 754 if (oldFunction->hasUWTable()) 755 newFunction->setHasUWTable(); 756 757 // Inherit all of the target dependent attributes and white-listed 758 // target independent attributes. 759 // (e.g. If the extracted region contains a call to an x86.sse 760 // instruction we need to make sure that the extracted region has the 761 // "target-features" attribute allowing it to be lowered. 762 // FIXME: This should be changed to check to see if a specific 763 // attribute can not be inherited. 764 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) { 765 if (Attr.isStringAttribute()) { 766 if (Attr.getKindAsString() == "thunk") 767 continue; 768 } else 769 switch (Attr.getKindAsEnum()) { 770 // Those attributes cannot be propagated safely. Explicitly list them 771 // here so we get a warning if new attributes are added. This list also 772 // includes non-function attributes. 773 case Attribute::Alignment: 774 case Attribute::AllocSize: 775 case Attribute::ArgMemOnly: 776 case Attribute::Builtin: 777 case Attribute::ByVal: 778 case Attribute::Convergent: 779 case Attribute::Dereferenceable: 780 case Attribute::DereferenceableOrNull: 781 case Attribute::InAlloca: 782 case Attribute::InReg: 783 case Attribute::InaccessibleMemOnly: 784 case Attribute::InaccessibleMemOrArgMemOnly: 785 case Attribute::JumpTable: 786 case Attribute::Naked: 787 case Attribute::Nest: 788 case Attribute::NoAlias: 789 case Attribute::NoBuiltin: 790 case Attribute::NoCapture: 791 case Attribute::NoReturn: 792 case Attribute::None: 793 case Attribute::NonNull: 794 case Attribute::ReadNone: 795 case Attribute::ReadOnly: 796 case Attribute::Returned: 797 case Attribute::ReturnsTwice: 798 case Attribute::SExt: 799 case Attribute::Speculatable: 800 case Attribute::StackAlignment: 801 case Attribute::StructRet: 802 case Attribute::SwiftError: 803 case Attribute::SwiftSelf: 804 case Attribute::WriteOnly: 805 case Attribute::ZExt: 806 case Attribute::ImmArg: 807 case Attribute::EndAttrKinds: 808 continue; 809 // Those attributes should be safe to propagate to the extracted function. 810 case Attribute::AlwaysInline: 811 case Attribute::Cold: 812 case Attribute::NoRecurse: 813 case Attribute::InlineHint: 814 case Attribute::MinSize: 815 case Attribute::NoDuplicate: 816 case Attribute::NoImplicitFloat: 817 case Attribute::NoInline: 818 case Attribute::NonLazyBind: 819 case Attribute::NoRedZone: 820 case Attribute::NoUnwind: 821 case Attribute::OptForFuzzing: 822 case Attribute::OptimizeNone: 823 case Attribute::OptimizeForSize: 824 case Attribute::SafeStack: 825 case Attribute::ShadowCallStack: 826 case Attribute::SanitizeAddress: 827 case Attribute::SanitizeMemory: 828 case Attribute::SanitizeThread: 829 case Attribute::SanitizeHWAddress: 830 case Attribute::SpeculativeLoadHardening: 831 case Attribute::StackProtect: 832 case Attribute::StackProtectReq: 833 case Attribute::StackProtectStrong: 834 case Attribute::StrictFP: 835 case Attribute::UWTable: 836 case Attribute::NoCfCheck: 837 break; 838 } 839 840 newFunction->addFnAttr(Attr); 841 } 842 newFunction->getBasicBlockList().push_back(newRootNode); 843 844 // Create an iterator to name all of the arguments we inserted. 845 Function::arg_iterator AI = newFunction->arg_begin(); 846 847 // Rewrite all users of the inputs in the extracted region to use the 848 // arguments (or appropriate addressing into struct) instead. 849 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 850 Value *RewriteVal; 851 if (AggregateArgs) { 852 Value *Idx[2]; 853 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 854 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 855 Instruction *TI = newFunction->begin()->getTerminator(); 856 GetElementPtrInst *GEP = GetElementPtrInst::Create( 857 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 858 RewriteVal = new LoadInst(StructTy->getElementType(i), GEP, 859 "loadgep_" + inputs[i]->getName(), TI); 860 } else 861 RewriteVal = &*AI++; 862 863 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 864 for (User *use : Users) 865 if (Instruction *inst = dyn_cast<Instruction>(use)) 866 if (Blocks.count(inst->getParent())) 867 inst->replaceUsesOfWith(inputs[i], RewriteVal); 868 } 869 870 // Set names for input and output arguments. 871 if (!AggregateArgs) { 872 AI = newFunction->arg_begin(); 873 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 874 AI->setName(inputs[i]->getName()); 875 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 876 AI->setName(outputs[i]->getName()+".out"); 877 } 878 879 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 880 // within the new function. This must be done before we lose track of which 881 // blocks were originally in the code region. 882 std::vector<User *> Users(header->user_begin(), header->user_end()); 883 for (unsigned i = 0, e = Users.size(); i != e; ++i) 884 // The BasicBlock which contains the branch is not in the region 885 // modify the branch target to a new block 886 if (Instruction *I = dyn_cast<Instruction>(Users[i])) 887 if (I->isTerminator() && !Blocks.count(I->getParent()) && 888 I->getParent()->getParent() == oldFunction) 889 I->replaceUsesOfWith(header, newHeader); 890 891 return newFunction; 892 } 893 894 /// Erase lifetime.start markers which reference inputs to the extraction 895 /// region, and insert the referenced memory into \p LifetimesStart. 896 /// 897 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 898 /// of allocas which will be moved from the caller function into the extracted 899 /// function (\p SunkAllocas). 900 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 901 const SetVector<Value *> &SunkAllocas, 902 SetVector<Value *> &LifetimesStart) { 903 for (BasicBlock *BB : Blocks) { 904 for (auto It = BB->begin(), End = BB->end(); It != End;) { 905 auto *II = dyn_cast<IntrinsicInst>(&*It); 906 ++It; 907 if (!II || !II->isLifetimeStartOrEnd()) 908 continue; 909 910 // Get the memory operand of the lifetime marker. If the underlying 911 // object is a sunk alloca, or is otherwise defined in the extraction 912 // region, the lifetime marker must not be erased. 913 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 914 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 915 continue; 916 917 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 918 LifetimesStart.insert(Mem); 919 II->eraseFromParent(); 920 } 921 } 922 } 923 924 /// Insert lifetime start/end markers surrounding the call to the new function 925 /// for objects defined in the caller. 926 static void insertLifetimeMarkersSurroundingCall( 927 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 928 CallInst *TheCall) { 929 LLVMContext &Ctx = M->getContext(); 930 auto Int8PtrTy = Type::getInt8PtrTy(Ctx); 931 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 932 Instruction *Term = TheCall->getParent()->getTerminator(); 933 934 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts 935 // needed to satisfy this requirement so they may be reused. 936 DenseMap<Value *, Value *> Bitcasts; 937 938 // Emit lifetime markers for the pointers given in \p Objects. Insert the 939 // markers before the call if \p InsertBefore, and after the call otherwise. 940 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects, 941 bool InsertBefore) { 942 for (Value *Mem : Objects) { 943 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 944 TheCall->getFunction()) && 945 "Input memory not defined in original function"); 946 Value *&MemAsI8Ptr = Bitcasts[Mem]; 947 if (!MemAsI8Ptr) { 948 if (Mem->getType() == Int8PtrTy) 949 MemAsI8Ptr = Mem; 950 else 951 MemAsI8Ptr = 952 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); 953 } 954 955 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); 956 if (InsertBefore) 957 Marker->insertBefore(TheCall); 958 else 959 Marker->insertBefore(Term); 960 } 961 }; 962 963 if (!LifetimesStart.empty()) { 964 auto StartFn = llvm::Intrinsic::getDeclaration( 965 M, llvm::Intrinsic::lifetime_start, Int8PtrTy); 966 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); 967 } 968 969 if (!LifetimesEnd.empty()) { 970 auto EndFn = llvm::Intrinsic::getDeclaration( 971 M, llvm::Intrinsic::lifetime_end, Int8PtrTy); 972 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); 973 } 974 } 975 976 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 977 /// the call instruction, splitting any PHI nodes in the header block as 978 /// necessary. 979 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 980 BasicBlock *codeReplacer, 981 ValueSet &inputs, 982 ValueSet &outputs) { 983 // Emit a call to the new function, passing in: *pointer to struct (if 984 // aggregating parameters), or plan inputs and allocated memory for outputs 985 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 986 987 Module *M = newFunction->getParent(); 988 LLVMContext &Context = M->getContext(); 989 const DataLayout &DL = M->getDataLayout(); 990 CallInst *call = nullptr; 991 992 // Add inputs as params, or to be filled into the struct 993 unsigned ArgNo = 0; 994 SmallVector<unsigned, 1> SwiftErrorArgs; 995 for (Value *input : inputs) { 996 if (AggregateArgs) 997 StructValues.push_back(input); 998 else { 999 params.push_back(input); 1000 if (input->isSwiftError()) 1001 SwiftErrorArgs.push_back(ArgNo); 1002 } 1003 ++ArgNo; 1004 } 1005 1006 // Create allocas for the outputs 1007 for (Value *output : outputs) { 1008 if (AggregateArgs) { 1009 StructValues.push_back(output); 1010 } else { 1011 AllocaInst *alloca = 1012 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1013 nullptr, output->getName() + ".loc", 1014 &codeReplacer->getParent()->front().front()); 1015 ReloadOutputs.push_back(alloca); 1016 params.push_back(alloca); 1017 } 1018 } 1019 1020 StructType *StructArgTy = nullptr; 1021 AllocaInst *Struct = nullptr; 1022 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 1023 std::vector<Type *> ArgTypes; 1024 for (ValueSet::iterator v = StructValues.begin(), 1025 ve = StructValues.end(); v != ve; ++v) 1026 ArgTypes.push_back((*v)->getType()); 1027 1028 // Allocate a struct at the beginning of this function 1029 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1030 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 1031 "structArg", 1032 &codeReplacer->getParent()->front().front()); 1033 params.push_back(Struct); 1034 1035 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 1036 Value *Idx[2]; 1037 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1038 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1039 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1040 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1041 codeReplacer->getInstList().push_back(GEP); 1042 StoreInst *SI = new StoreInst(StructValues[i], GEP); 1043 codeReplacer->getInstList().push_back(SI); 1044 } 1045 } 1046 1047 // Emit the call to the function 1048 call = CallInst::Create(newFunction, params, 1049 NumExitBlocks > 1 ? "targetBlock" : ""); 1050 // Add debug location to the new call, if the original function has debug 1051 // info. In that case, the terminator of the entry block of the extracted 1052 // function contains the first debug location of the extracted function, 1053 // set in extractCodeRegion. 1054 if (codeReplacer->getParent()->getSubprogram()) { 1055 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1056 call->setDebugLoc(DL); 1057 } 1058 codeReplacer->getInstList().push_back(call); 1059 1060 // Set swifterror parameter attributes. 1061 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1062 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1063 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1064 } 1065 1066 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 1067 unsigned FirstOut = inputs.size(); 1068 if (!AggregateArgs) 1069 std::advance(OutputArgBegin, inputs.size()); 1070 1071 // Reload the outputs passed in by reference. 1072 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1073 Value *Output = nullptr; 1074 if (AggregateArgs) { 1075 Value *Idx[2]; 1076 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1077 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1078 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1079 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1080 codeReplacer->getInstList().push_back(GEP); 1081 Output = GEP; 1082 } else { 1083 Output = ReloadOutputs[i]; 1084 } 1085 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1086 outputs[i]->getName() + ".reload"); 1087 Reloads.push_back(load); 1088 codeReplacer->getInstList().push_back(load); 1089 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1090 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 1091 Instruction *inst = cast<Instruction>(Users[u]); 1092 if (!Blocks.count(inst->getParent())) 1093 inst->replaceUsesOfWith(outputs[i], load); 1094 } 1095 } 1096 1097 // Now we can emit a switch statement using the call as a value. 1098 SwitchInst *TheSwitch = 1099 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1100 codeReplacer, 0, codeReplacer); 1101 1102 // Since there may be multiple exits from the original region, make the new 1103 // function return an unsigned, switch on that number. This loop iterates 1104 // over all of the blocks in the extracted region, updating any terminator 1105 // instructions in the to-be-extracted region that branch to blocks that are 1106 // not in the region to be extracted. 1107 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1108 1109 unsigned switchVal = 0; 1110 for (BasicBlock *Block : Blocks) { 1111 Instruction *TI = Block->getTerminator(); 1112 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1113 if (!Blocks.count(TI->getSuccessor(i))) { 1114 BasicBlock *OldTarget = TI->getSuccessor(i); 1115 // add a new basic block which returns the appropriate value 1116 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1117 if (!NewTarget) { 1118 // If we don't already have an exit stub for this non-extracted 1119 // destination, create one now! 1120 NewTarget = BasicBlock::Create(Context, 1121 OldTarget->getName() + ".exitStub", 1122 newFunction); 1123 unsigned SuccNum = switchVal++; 1124 1125 Value *brVal = nullptr; 1126 switch (NumExitBlocks) { 1127 case 0: 1128 case 1: break; // No value needed. 1129 case 2: // Conditional branch, return a bool 1130 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1131 break; 1132 default: 1133 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1134 break; 1135 } 1136 1137 ReturnInst::Create(Context, brVal, NewTarget); 1138 1139 // Update the switch instruction. 1140 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1141 SuccNum), 1142 OldTarget); 1143 } 1144 1145 // rewrite the original branch instruction with this new target 1146 TI->setSuccessor(i, NewTarget); 1147 } 1148 } 1149 1150 // Store the arguments right after the definition of output value. 1151 // This should be proceeded after creating exit stubs to be ensure that invoke 1152 // result restore will be placed in the outlined function. 1153 Function::arg_iterator OAI = OutputArgBegin; 1154 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1155 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1156 if (!OutI) 1157 continue; 1158 1159 // Find proper insertion point. 1160 BasicBlock::iterator InsertPt; 1161 // In case OutI is an invoke, we insert the store at the beginning in the 1162 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1163 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1164 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1165 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1166 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1167 else 1168 InsertPt = std::next(OutI->getIterator()); 1169 1170 Instruction *InsertBefore = &*InsertPt; 1171 assert((InsertBefore->getFunction() == newFunction || 1172 Blocks.count(InsertBefore->getParent())) && 1173 "InsertPt should be in new function"); 1174 assert(OAI != newFunction->arg_end() && 1175 "Number of output arguments should match " 1176 "the amount of defined values"); 1177 if (AggregateArgs) { 1178 Value *Idx[2]; 1179 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1180 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1181 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1182 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), 1183 InsertBefore); 1184 new StoreInst(outputs[i], GEP, InsertBefore); 1185 // Since there should be only one struct argument aggregating 1186 // all the output values, we shouldn't increment OAI, which always 1187 // points to the struct argument, in this case. 1188 } else { 1189 new StoreInst(outputs[i], &*OAI, InsertBefore); 1190 ++OAI; 1191 } 1192 } 1193 1194 // Now that we've done the deed, simplify the switch instruction. 1195 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1196 switch (NumExitBlocks) { 1197 case 0: 1198 // There are no successors (the block containing the switch itself), which 1199 // means that previously this was the last part of the function, and hence 1200 // this should be rewritten as a `ret' 1201 1202 // Check if the function should return a value 1203 if (OldFnRetTy->isVoidTy()) { 1204 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1205 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1206 // return what we have 1207 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1208 } else { 1209 // Otherwise we must have code extracted an unwind or something, just 1210 // return whatever we want. 1211 ReturnInst::Create(Context, 1212 Constant::getNullValue(OldFnRetTy), TheSwitch); 1213 } 1214 1215 TheSwitch->eraseFromParent(); 1216 break; 1217 case 1: 1218 // Only a single destination, change the switch into an unconditional 1219 // branch. 1220 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1221 TheSwitch->eraseFromParent(); 1222 break; 1223 case 2: 1224 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1225 call, TheSwitch); 1226 TheSwitch->eraseFromParent(); 1227 break; 1228 default: 1229 // Otherwise, make the default destination of the switch instruction be one 1230 // of the other successors. 1231 TheSwitch->setCondition(call); 1232 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1233 // Remove redundant case 1234 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1235 break; 1236 } 1237 1238 // Insert lifetime markers around the reloads of any output values. The 1239 // allocas output values are stored in are only in-use in the codeRepl block. 1240 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1241 1242 return call; 1243 } 1244 1245 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1246 Function *oldFunc = (*Blocks.begin())->getParent(); 1247 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1248 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1249 1250 for (BasicBlock *Block : Blocks) { 1251 // Delete the basic block from the old function, and the list of blocks 1252 oldBlocks.remove(Block); 1253 1254 // Insert this basic block into the new function 1255 newBlocks.push_back(Block); 1256 1257 // Remove @llvm.assume calls that were moved to the new function from the 1258 // old function's assumption cache. 1259 if (AC) 1260 for (auto &I : *Block) 1261 if (match(&I, m_Intrinsic<Intrinsic::assume>())) 1262 AC->unregisterAssumption(cast<CallInst>(&I)); 1263 } 1264 } 1265 1266 void CodeExtractor::calculateNewCallTerminatorWeights( 1267 BasicBlock *CodeReplacer, 1268 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1269 BranchProbabilityInfo *BPI) { 1270 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1271 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1272 1273 // Update the branch weights for the exit block. 1274 Instruction *TI = CodeReplacer->getTerminator(); 1275 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1276 1277 // Block Frequency distribution with dummy node. 1278 Distribution BranchDist; 1279 1280 // Add each of the frequencies of the successors. 1281 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1282 BlockNode ExitNode(i); 1283 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1284 if (ExitFreq != 0) 1285 BranchDist.addExit(ExitNode, ExitFreq); 1286 else 1287 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); 1288 } 1289 1290 // Check for no total weight. 1291 if (BranchDist.Total == 0) 1292 return; 1293 1294 // Normalize the distribution so that they can fit in unsigned. 1295 BranchDist.normalize(); 1296 1297 // Create normalized branch weights and set the metadata. 1298 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1299 const auto &Weight = BranchDist.Weights[I]; 1300 1301 // Get the weight and update the current BFI. 1302 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1303 BranchProbability BP(Weight.Amount, BranchDist.Total); 1304 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); 1305 } 1306 TI->setMetadata( 1307 LLVMContext::MD_prof, 1308 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1309 } 1310 1311 Function *CodeExtractor::extractCodeRegion() { 1312 if (!isEligible()) 1313 return nullptr; 1314 1315 // Assumption: this is a single-entry code region, and the header is the first 1316 // block in the region. 1317 BasicBlock *header = *Blocks.begin(); 1318 Function *oldFunction = header->getParent(); 1319 1320 // For functions with varargs, check that varargs handling is only done in the 1321 // outlined function, i.e vastart and vaend are only used in outlined blocks. 1322 if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) { 1323 auto containsVarArgIntrinsic = [](Instruction &I) { 1324 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 1325 if (const Function *F = CI->getCalledFunction()) 1326 return F->getIntrinsicID() == Intrinsic::vastart || 1327 F->getIntrinsicID() == Intrinsic::vaend; 1328 return false; 1329 }; 1330 1331 for (auto &BB : *oldFunction) { 1332 if (Blocks.count(&BB)) 1333 continue; 1334 if (llvm::any_of(BB, containsVarArgIntrinsic)) 1335 return nullptr; 1336 } 1337 } 1338 ValueSet inputs, outputs, SinkingCands, HoistingCands; 1339 BasicBlock *CommonExit = nullptr; 1340 1341 // Calculate the entry frequency of the new function before we change the root 1342 // block. 1343 BlockFrequency EntryFreq; 1344 if (BFI) { 1345 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1346 for (BasicBlock *Pred : predecessors(header)) { 1347 if (Blocks.count(Pred)) 1348 continue; 1349 EntryFreq += 1350 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1351 } 1352 } 1353 1354 // If we have any return instructions in the region, split those blocks so 1355 // that the return is not in the region. 1356 splitReturnBlocks(); 1357 1358 // Calculate the exit blocks for the extracted region and the total exit 1359 // weights for each of those blocks. 1360 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1361 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1362 for (BasicBlock *Block : Blocks) { 1363 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 1364 ++SI) { 1365 if (!Blocks.count(*SI)) { 1366 // Update the branch weight for this successor. 1367 if (BFI) { 1368 BlockFrequency &BF = ExitWeights[*SI]; 1369 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 1370 } 1371 ExitBlocks.insert(*SI); 1372 } 1373 } 1374 } 1375 NumExitBlocks = ExitBlocks.size(); 1376 1377 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1378 severSplitPHINodesOfEntry(header); 1379 severSplitPHINodesOfExits(ExitBlocks); 1380 1381 // This takes place of the original loop 1382 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1383 "codeRepl", oldFunction, 1384 header); 1385 1386 // The new function needs a root node because other nodes can branch to the 1387 // head of the region, but the entry node of a function cannot have preds. 1388 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1389 "newFuncRoot"); 1390 auto *BranchI = BranchInst::Create(header); 1391 // If the original function has debug info, we have to add a debug location 1392 // to the new branch instruction from the artificial entry block. 1393 // We use the debug location of the first instruction in the extracted 1394 // blocks, as there is no other equivalent line in the source code. 1395 if (oldFunction->getSubprogram()) { 1396 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1397 return any_of(*BB, [&BranchI](const Instruction &I) { 1398 if (!I.getDebugLoc()) 1399 return false; 1400 BranchI->setDebugLoc(I.getDebugLoc()); 1401 return true; 1402 }); 1403 }); 1404 } 1405 newFuncRoot->getInstList().push_back(BranchI); 1406 1407 findAllocas(SinkingCands, HoistingCands, CommonExit); 1408 assert(HoistingCands.empty() || CommonExit); 1409 1410 // Find inputs to, outputs from the code region. 1411 findInputsOutputs(inputs, outputs, SinkingCands); 1412 1413 // Now sink all instructions which only have non-phi uses inside the region 1414 for (auto *II : SinkingCands) 1415 cast<Instruction>(II)->moveBefore(*newFuncRoot, 1416 newFuncRoot->getFirstInsertionPt()); 1417 1418 if (!HoistingCands.empty()) { 1419 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1420 Instruction *TI = HoistToBlock->getTerminator(); 1421 for (auto *II : HoistingCands) 1422 cast<Instruction>(II)->moveBefore(TI); 1423 } 1424 1425 // Collect objects which are inputs to the extraction region and also 1426 // referenced by lifetime start markers within it. The effects of these 1427 // markers must be replicated in the calling function to prevent the stack 1428 // coloring pass from merging slots which store input objects. 1429 ValueSet LifetimesStart; 1430 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1431 1432 // Construct new function based on inputs/outputs & add allocas for all defs. 1433 Function *newFunction = 1434 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1435 oldFunction, oldFunction->getParent()); 1436 1437 // Update the entry count of the function. 1438 if (BFI) { 1439 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1440 if (Count.hasValue()) 1441 newFunction->setEntryCount( 1442 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1443 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1444 } 1445 1446 CallInst *TheCall = 1447 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1448 1449 moveCodeToFunction(newFunction); 1450 1451 // Replicate the effects of any lifetime start/end markers which referenced 1452 // input objects in the extraction region by placing markers around the call. 1453 insertLifetimeMarkersSurroundingCall( 1454 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1455 1456 // Propagate personality info to the new function if there is one. 1457 if (oldFunction->hasPersonalityFn()) 1458 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1459 1460 // Update the branch weights for the exit block. 1461 if (BFI && NumExitBlocks > 1) 1462 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1463 1464 // Loop over all of the PHI nodes in the header and exit blocks, and change 1465 // any references to the old incoming edge to be the new incoming edge. 1466 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1467 PHINode *PN = cast<PHINode>(I); 1468 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1469 if (!Blocks.count(PN->getIncomingBlock(i))) 1470 PN->setIncomingBlock(i, newFuncRoot); 1471 } 1472 1473 for (BasicBlock *ExitBB : ExitBlocks) 1474 for (PHINode &PN : ExitBB->phis()) { 1475 Value *IncomingCodeReplacerVal = nullptr; 1476 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1477 // Ignore incoming values from outside of the extracted region. 1478 if (!Blocks.count(PN.getIncomingBlock(i))) 1479 continue; 1480 1481 // Ensure that there is only one incoming value from codeReplacer. 1482 if (!IncomingCodeReplacerVal) { 1483 PN.setIncomingBlock(i, codeReplacer); 1484 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1485 } else 1486 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1487 "PHI has two incompatbile incoming values from codeRepl"); 1488 } 1489 } 1490 1491 // Erase debug info intrinsics. Variable updates within the new function are 1492 // invisible to debuggers. This could be improved by defining a DISubprogram 1493 // for the new function. 1494 for (BasicBlock &BB : *newFunction) { 1495 auto BlockIt = BB.begin(); 1496 // Remove debug info intrinsics from the new function. 1497 while (BlockIt != BB.end()) { 1498 Instruction *Inst = &*BlockIt; 1499 ++BlockIt; 1500 if (isa<DbgInfoIntrinsic>(Inst)) 1501 Inst->eraseFromParent(); 1502 } 1503 // Remove debug info intrinsics which refer to values in the new function 1504 // from the old function. 1505 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1506 for (Instruction &I : BB) 1507 findDbgUsers(DbgUsers, &I); 1508 for (DbgVariableIntrinsic *DVI : DbgUsers) 1509 DVI->eraseFromParent(); 1510 } 1511 1512 // Mark the new function `noreturn` if applicable. Terminators which resume 1513 // exception propagation are treated as returning instructions. This is to 1514 // avoid inserting traps after calls to outlined functions which unwind. 1515 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1516 const Instruction *Term = BB.getTerminator(); 1517 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1518 }); 1519 if (doesNotReturn) 1520 newFunction->setDoesNotReturn(); 1521 1522 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1523 newFunction->dump(); 1524 report_fatal_error("verification of newFunction failed!"); 1525 }); 1526 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1527 report_fatal_error("verification of oldFunction failed!")); 1528 return newFunction; 1529 } 1530