1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/CodeExtractor.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/IR/Verifier.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/BlockFrequency.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include <cassert> 61 #include <cstdint> 62 #include <iterator> 63 #include <map> 64 #include <set> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "code-extractor" 71 72 // Provide a command-line option to aggregate function arguments into a struct 73 // for functions produced by the code extractor. This is useful when converting 74 // extracted functions to pthread-based code, as only one argument (void*) can 75 // be passed in to pthread_create(). 76 static cl::opt<bool> 77 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 78 cl::desc("Aggregate arguments to code-extracted functions")); 79 80 /// \brief Test whether a block is valid for extraction. 81 bool CodeExtractor::isBlockValidForExtraction(const BasicBlock &BB) { 82 // Landing pads must be in the function where they were inserted for cleanup. 83 if (BB.isEHPad()) 84 return false; 85 // taking the address of a basic block moved to another function is illegal 86 if (BB.hasAddressTaken()) 87 return false; 88 89 // don't hoist code that uses another basicblock address, as it's likely to 90 // lead to unexpected behavior, like cross-function jumps 91 SmallPtrSet<User const *, 16> Visited; 92 SmallVector<User const *, 16> ToVisit; 93 94 for (Instruction const &Inst : BB) 95 ToVisit.push_back(&Inst); 96 97 while (!ToVisit.empty()) { 98 User const *Curr = ToVisit.pop_back_val(); 99 if (!Visited.insert(Curr).second) 100 continue; 101 if (isa<BlockAddress const>(Curr)) 102 return false; // even a reference to self is likely to be not compatible 103 104 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 105 continue; 106 107 for (auto const &U : Curr->operands()) { 108 if (auto *UU = dyn_cast<User>(U)) 109 ToVisit.push_back(UU); 110 } 111 } 112 113 // Don't hoist code containing allocas, invokes, or vastarts. 114 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 115 if (isa<AllocaInst>(I) || isa<InvokeInst>(I)) 116 return false; 117 if (const CallInst *CI = dyn_cast<CallInst>(I)) 118 if (const Function *F = CI->getCalledFunction()) 119 if (F->getIntrinsicID() == Intrinsic::vastart) 120 return false; 121 } 122 123 return true; 124 } 125 126 /// \brief Build a set of blocks to extract if the input blocks are viable. 127 static SetVector<BasicBlock *> 128 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT) { 129 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 130 SetVector<BasicBlock *> Result; 131 132 // Loop over the blocks, adding them to our set-vector, and aborting with an 133 // empty set if we encounter invalid blocks. 134 for (BasicBlock *BB : BBs) { 135 // If this block is dead, don't process it. 136 if (DT && !DT->isReachableFromEntry(BB)) 137 continue; 138 139 if (!Result.insert(BB)) 140 llvm_unreachable("Repeated basic blocks in extraction input"); 141 if (!CodeExtractor::isBlockValidForExtraction(*BB)) { 142 Result.clear(); 143 return Result; 144 } 145 } 146 147 #ifndef NDEBUG 148 for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()), 149 E = Result.end(); 150 I != E; ++I) 151 for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I); 152 PI != PE; ++PI) 153 assert(Result.count(*PI) && 154 "No blocks in this region may have entries from outside the region" 155 " except for the first block!"); 156 #endif 157 158 return Result; 159 } 160 161 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 162 bool AggregateArgs, BlockFrequencyInfo *BFI, 163 BranchProbabilityInfo *BPI) 164 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 165 BPI(BPI), Blocks(buildExtractionBlockSet(BBs, DT)) {} 166 167 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 168 BlockFrequencyInfo *BFI, 169 BranchProbabilityInfo *BPI) 170 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 171 BPI(BPI), Blocks(buildExtractionBlockSet(L.getBlocks(), &DT)) {} 172 173 /// definedInRegion - Return true if the specified value is defined in the 174 /// extracted region. 175 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 176 if (Instruction *I = dyn_cast<Instruction>(V)) 177 if (Blocks.count(I->getParent())) 178 return true; 179 return false; 180 } 181 182 /// definedInCaller - Return true if the specified value is defined in the 183 /// function being code extracted, but not in the region being extracted. 184 /// These values must be passed in as live-ins to the function. 185 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 186 if (isa<Argument>(V)) return true; 187 if (Instruction *I = dyn_cast<Instruction>(V)) 188 if (!Blocks.count(I->getParent())) 189 return true; 190 return false; 191 } 192 193 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 194 BasicBlock *CommonExitBlock = nullptr; 195 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 196 for (auto *Succ : successors(Block)) { 197 // Internal edges, ok. 198 if (Blocks.count(Succ)) 199 continue; 200 if (!CommonExitBlock) { 201 CommonExitBlock = Succ; 202 continue; 203 } 204 if (CommonExitBlock == Succ) 205 continue; 206 207 return true; 208 } 209 return false; 210 }; 211 212 if (any_of(Blocks, hasNonCommonExitSucc)) 213 return nullptr; 214 215 return CommonExitBlock; 216 } 217 218 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 219 Instruction *Addr) const { 220 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 221 Function *Func = (*Blocks.begin())->getParent(); 222 for (BasicBlock &BB : *Func) { 223 if (Blocks.count(&BB)) 224 continue; 225 for (Instruction &II : BB) { 226 if (isa<DbgInfoIntrinsic>(II)) 227 continue; 228 229 unsigned Opcode = II.getOpcode(); 230 Value *MemAddr = nullptr; 231 switch (Opcode) { 232 case Instruction::Store: 233 case Instruction::Load: { 234 if (Opcode == Instruction::Store) { 235 StoreInst *SI = cast<StoreInst>(&II); 236 MemAddr = SI->getPointerOperand(); 237 } else { 238 LoadInst *LI = cast<LoadInst>(&II); 239 MemAddr = LI->getPointerOperand(); 240 } 241 // Global variable can not be aliased with locals. 242 if (dyn_cast<Constant>(MemAddr)) 243 break; 244 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 245 if (!dyn_cast<AllocaInst>(Base) || Base == AI) 246 return false; 247 break; 248 } 249 default: { 250 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 251 if (IntrInst) { 252 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start || 253 IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) 254 break; 255 return false; 256 } 257 // Treat all the other cases conservatively if it has side effects. 258 if (II.mayHaveSideEffects()) 259 return false; 260 } 261 } 262 } 263 } 264 265 return true; 266 } 267 268 BasicBlock * 269 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 270 BasicBlock *SinglePredFromOutlineRegion = nullptr; 271 assert(!Blocks.count(CommonExitBlock) && 272 "Expect a block outside the region!"); 273 for (auto *Pred : predecessors(CommonExitBlock)) { 274 if (!Blocks.count(Pred)) 275 continue; 276 if (!SinglePredFromOutlineRegion) { 277 SinglePredFromOutlineRegion = Pred; 278 } else if (SinglePredFromOutlineRegion != Pred) { 279 SinglePredFromOutlineRegion = nullptr; 280 break; 281 } 282 } 283 284 if (SinglePredFromOutlineRegion) 285 return SinglePredFromOutlineRegion; 286 287 #ifndef NDEBUG 288 auto getFirstPHI = [](BasicBlock *BB) { 289 BasicBlock::iterator I = BB->begin(); 290 PHINode *FirstPhi = nullptr; 291 while (I != BB->end()) { 292 PHINode *Phi = dyn_cast<PHINode>(I); 293 if (!Phi) 294 break; 295 if (!FirstPhi) { 296 FirstPhi = Phi; 297 break; 298 } 299 } 300 return FirstPhi; 301 }; 302 // If there are any phi nodes, the single pred either exists or has already 303 // be created before code extraction. 304 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 305 #endif 306 307 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 308 CommonExitBlock->getFirstNonPHI()->getIterator()); 309 310 for (auto *Pred : predecessors(CommonExitBlock)) { 311 if (Blocks.count(Pred)) 312 continue; 313 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 314 } 315 // Now add the old exit block to the outline region. 316 Blocks.insert(CommonExitBlock); 317 return CommonExitBlock; 318 } 319 320 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands, 321 BasicBlock *&ExitBlock) const { 322 Function *Func = (*Blocks.begin())->getParent(); 323 ExitBlock = getCommonExitBlock(Blocks); 324 325 for (BasicBlock &BB : *Func) { 326 if (Blocks.count(&BB)) 327 continue; 328 for (Instruction &II : BB) { 329 auto *AI = dyn_cast<AllocaInst>(&II); 330 if (!AI) 331 continue; 332 333 // Find the pair of life time markers for address 'Addr' that are either 334 // defined inside the outline region or can legally be shrinkwrapped into 335 // the outline region. If there are not other untracked uses of the 336 // address, return the pair of markers if found; otherwise return a pair 337 // of nullptr. 338 auto GetLifeTimeMarkers = 339 [&](Instruction *Addr, bool &SinkLifeStart, 340 bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> { 341 Instruction *LifeStart = nullptr, *LifeEnd = nullptr; 342 343 for (User *U : Addr->users()) { 344 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 345 if (IntrInst) { 346 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 347 // Do not handle the case where AI has multiple start markers. 348 if (LifeStart) 349 return std::make_pair<Instruction *>(nullptr, nullptr); 350 LifeStart = IntrInst; 351 } 352 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 353 if (LifeEnd) 354 return std::make_pair<Instruction *>(nullptr, nullptr); 355 LifeEnd = IntrInst; 356 } 357 continue; 358 } 359 // Find untracked uses of the address, bail. 360 if (!definedInRegion(Blocks, U)) 361 return std::make_pair<Instruction *>(nullptr, nullptr); 362 } 363 364 if (!LifeStart || !LifeEnd) 365 return std::make_pair<Instruction *>(nullptr, nullptr); 366 367 SinkLifeStart = !definedInRegion(Blocks, LifeStart); 368 HoistLifeEnd = !definedInRegion(Blocks, LifeEnd); 369 // Do legality Check. 370 if ((SinkLifeStart || HoistLifeEnd) && 371 !isLegalToShrinkwrapLifetimeMarkers(Addr)) 372 return std::make_pair<Instruction *>(nullptr, nullptr); 373 374 // Check to see if we have a place to do hoisting, if not, bail. 375 if (HoistLifeEnd && !ExitBlock) 376 return std::make_pair<Instruction *>(nullptr, nullptr); 377 378 return std::make_pair(LifeStart, LifeEnd); 379 }; 380 381 bool SinkLifeStart = false, HoistLifeEnd = false; 382 auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd); 383 384 if (Markers.first) { 385 if (SinkLifeStart) 386 SinkCands.insert(Markers.first); 387 SinkCands.insert(AI); 388 if (HoistLifeEnd) 389 HoistCands.insert(Markers.second); 390 continue; 391 } 392 393 // Follow the bitcast. 394 Instruction *MarkerAddr = nullptr; 395 for (User *U : AI->users()) { 396 if (U->stripInBoundsConstantOffsets() == AI) { 397 SinkLifeStart = false; 398 HoistLifeEnd = false; 399 Instruction *Bitcast = cast<Instruction>(U); 400 Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd); 401 if (Markers.first) { 402 MarkerAddr = Bitcast; 403 continue; 404 } 405 } 406 407 // Found unknown use of AI. 408 if (!definedInRegion(Blocks, U)) { 409 MarkerAddr = nullptr; 410 break; 411 } 412 } 413 414 if (MarkerAddr) { 415 if (SinkLifeStart) 416 SinkCands.insert(Markers.first); 417 if (!definedInRegion(Blocks, MarkerAddr)) 418 SinkCands.insert(MarkerAddr); 419 SinkCands.insert(AI); 420 if (HoistLifeEnd) 421 HoistCands.insert(Markers.second); 422 } 423 } 424 } 425 } 426 427 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 428 const ValueSet &SinkCands) const { 429 for (BasicBlock *BB : Blocks) { 430 // If a used value is defined outside the region, it's an input. If an 431 // instruction is used outside the region, it's an output. 432 for (Instruction &II : *BB) { 433 for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE; 434 ++OI) { 435 Value *V = *OI; 436 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 437 Inputs.insert(V); 438 } 439 440 for (User *U : II.users()) 441 if (!definedInRegion(Blocks, U)) { 442 Outputs.insert(&II); 443 break; 444 } 445 } 446 } 447 } 448 449 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 450 /// region, we need to split the entry block of the region so that the PHI node 451 /// is easier to deal with. 452 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 453 unsigned NumPredsFromRegion = 0; 454 unsigned NumPredsOutsideRegion = 0; 455 456 if (Header != &Header->getParent()->getEntryBlock()) { 457 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 458 if (!PN) return; // No PHI nodes. 459 460 // If the header node contains any PHI nodes, check to see if there is more 461 // than one entry from outside the region. If so, we need to sever the 462 // header block into two. 463 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 464 if (Blocks.count(PN->getIncomingBlock(i))) 465 ++NumPredsFromRegion; 466 else 467 ++NumPredsOutsideRegion; 468 469 // If there is one (or fewer) predecessor from outside the region, we don't 470 // need to do anything special. 471 if (NumPredsOutsideRegion <= 1) return; 472 } 473 474 // Otherwise, we need to split the header block into two pieces: one 475 // containing PHI nodes merging values from outside of the region, and a 476 // second that contains all of the code for the block and merges back any 477 // incoming values from inside of the region. 478 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 479 480 // We only want to code extract the second block now, and it becomes the new 481 // header of the region. 482 BasicBlock *OldPred = Header; 483 Blocks.remove(OldPred); 484 Blocks.insert(NewBB); 485 Header = NewBB; 486 487 // Okay, now we need to adjust the PHI nodes and any branches from within the 488 // region to go to the new header block instead of the old header block. 489 if (NumPredsFromRegion) { 490 PHINode *PN = cast<PHINode>(OldPred->begin()); 491 // Loop over all of the predecessors of OldPred that are in the region, 492 // changing them to branch to NewBB instead. 493 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 494 if (Blocks.count(PN->getIncomingBlock(i))) { 495 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 496 TI->replaceUsesOfWith(OldPred, NewBB); 497 } 498 499 // Okay, everything within the region is now branching to the right block, we 500 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 501 BasicBlock::iterator AfterPHIs; 502 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 503 PHINode *PN = cast<PHINode>(AfterPHIs); 504 // Create a new PHI node in the new region, which has an incoming value 505 // from OldPred of PN. 506 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 507 PN->getName() + ".ce", &NewBB->front()); 508 PN->replaceAllUsesWith(NewPN); 509 NewPN->addIncoming(PN, OldPred); 510 511 // Loop over all of the incoming value in PN, moving them to NewPN if they 512 // are from the extracted region. 513 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 514 if (Blocks.count(PN->getIncomingBlock(i))) { 515 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 516 PN->removeIncomingValue(i); 517 --i; 518 } 519 } 520 } 521 } 522 } 523 524 void CodeExtractor::splitReturnBlocks() { 525 for (BasicBlock *Block : Blocks) 526 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 527 BasicBlock *New = 528 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 529 if (DT) { 530 // Old dominates New. New node dominates all other nodes dominated 531 // by Old. 532 DomTreeNode *OldNode = DT->getNode(Block); 533 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 534 OldNode->end()); 535 536 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 537 538 for (DomTreeNode *I : Children) 539 DT->changeImmediateDominator(I, NewNode); 540 } 541 } 542 } 543 544 /// constructFunction - make a function based on inputs and outputs, as follows: 545 /// f(in0, ..., inN, out0, ..., outN) 546 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 547 const ValueSet &outputs, 548 BasicBlock *header, 549 BasicBlock *newRootNode, 550 BasicBlock *newHeader, 551 Function *oldFunction, 552 Module *M) { 553 DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 554 DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 555 556 // This function returns unsigned, outputs will go back by reference. 557 switch (NumExitBlocks) { 558 case 0: 559 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 560 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 561 default: RetTy = Type::getInt16Ty(header->getContext()); break; 562 } 563 564 std::vector<Type *> paramTy; 565 566 // Add the types of the input values to the function's argument list 567 for (Value *value : inputs) { 568 DEBUG(dbgs() << "value used in func: " << *value << "\n"); 569 paramTy.push_back(value->getType()); 570 } 571 572 // Add the types of the output values to the function's argument list. 573 for (Value *output : outputs) { 574 DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 575 if (AggregateArgs) 576 paramTy.push_back(output->getType()); 577 else 578 paramTy.push_back(PointerType::getUnqual(output->getType())); 579 } 580 581 DEBUG({ 582 dbgs() << "Function type: " << *RetTy << " f("; 583 for (Type *i : paramTy) 584 dbgs() << *i << ", "; 585 dbgs() << ")\n"; 586 }); 587 588 StructType *StructTy; 589 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 590 StructTy = StructType::get(M->getContext(), paramTy); 591 paramTy.clear(); 592 paramTy.push_back(PointerType::getUnqual(StructTy)); 593 } 594 FunctionType *funcType = 595 FunctionType::get(RetTy, paramTy, false); 596 597 // Create the new function 598 Function *newFunction = Function::Create(funcType, 599 GlobalValue::InternalLinkage, 600 oldFunction->getName() + "_" + 601 header->getName(), M); 602 // If the old function is no-throw, so is the new one. 603 if (oldFunction->doesNotThrow()) 604 newFunction->setDoesNotThrow(); 605 606 // Inherit the uwtable attribute if we need to. 607 if (oldFunction->hasUWTable()) 608 newFunction->setHasUWTable(); 609 610 // Inherit all of the target dependent attributes. 611 // (e.g. If the extracted region contains a call to an x86.sse 612 // instruction we need to make sure that the extracted region has the 613 // "target-features" attribute allowing it to be lowered. 614 // FIXME: This should be changed to check to see if a specific 615 // attribute can not be inherited. 616 AttrBuilder AB(oldFunction->getAttributes().getFnAttributes()); 617 for (const auto &Attr : AB.td_attrs()) 618 newFunction->addFnAttr(Attr.first, Attr.second); 619 620 newFunction->getBasicBlockList().push_back(newRootNode); 621 622 // Create an iterator to name all of the arguments we inserted. 623 Function::arg_iterator AI = newFunction->arg_begin(); 624 625 // Rewrite all users of the inputs in the extracted region to use the 626 // arguments (or appropriate addressing into struct) instead. 627 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 628 Value *RewriteVal; 629 if (AggregateArgs) { 630 Value *Idx[2]; 631 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 632 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 633 TerminatorInst *TI = newFunction->begin()->getTerminator(); 634 GetElementPtrInst *GEP = GetElementPtrInst::Create( 635 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 636 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 637 } else 638 RewriteVal = &*AI++; 639 640 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 641 for (User *use : Users) 642 if (Instruction *inst = dyn_cast<Instruction>(use)) 643 if (Blocks.count(inst->getParent())) 644 inst->replaceUsesOfWith(inputs[i], RewriteVal); 645 } 646 647 // Set names for input and output arguments. 648 if (!AggregateArgs) { 649 AI = newFunction->arg_begin(); 650 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 651 AI->setName(inputs[i]->getName()); 652 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 653 AI->setName(outputs[i]->getName()+".out"); 654 } 655 656 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 657 // within the new function. This must be done before we lose track of which 658 // blocks were originally in the code region. 659 std::vector<User *> Users(header->user_begin(), header->user_end()); 660 for (unsigned i = 0, e = Users.size(); i != e; ++i) 661 // The BasicBlock which contains the branch is not in the region 662 // modify the branch target to a new block 663 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 664 if (!Blocks.count(TI->getParent()) && 665 TI->getParent()->getParent() == oldFunction) 666 TI->replaceUsesOfWith(header, newHeader); 667 668 return newFunction; 669 } 670 671 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 672 /// the call instruction, splitting any PHI nodes in the header block as 673 /// necessary. 674 void CodeExtractor:: 675 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 676 ValueSet &inputs, ValueSet &outputs) { 677 // Emit a call to the new function, passing in: *pointer to struct (if 678 // aggregating parameters), or plan inputs and allocated memory for outputs 679 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 680 681 Module *M = newFunction->getParent(); 682 LLVMContext &Context = M->getContext(); 683 const DataLayout &DL = M->getDataLayout(); 684 685 // Add inputs as params, or to be filled into the struct 686 for (Value *input : inputs) 687 if (AggregateArgs) 688 StructValues.push_back(input); 689 else 690 params.push_back(input); 691 692 // Create allocas for the outputs 693 for (Value *output : outputs) { 694 if (AggregateArgs) { 695 StructValues.push_back(output); 696 } else { 697 AllocaInst *alloca = 698 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 699 nullptr, output->getName() + ".loc", 700 &codeReplacer->getParent()->front().front()); 701 ReloadOutputs.push_back(alloca); 702 params.push_back(alloca); 703 } 704 } 705 706 StructType *StructArgTy = nullptr; 707 AllocaInst *Struct = nullptr; 708 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 709 std::vector<Type *> ArgTypes; 710 for (ValueSet::iterator v = StructValues.begin(), 711 ve = StructValues.end(); v != ve; ++v) 712 ArgTypes.push_back((*v)->getType()); 713 714 // Allocate a struct at the beginning of this function 715 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 716 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 717 "structArg", 718 &codeReplacer->getParent()->front().front()); 719 params.push_back(Struct); 720 721 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 722 Value *Idx[2]; 723 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 724 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 725 GetElementPtrInst *GEP = GetElementPtrInst::Create( 726 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 727 codeReplacer->getInstList().push_back(GEP); 728 StoreInst *SI = new StoreInst(StructValues[i], GEP); 729 codeReplacer->getInstList().push_back(SI); 730 } 731 } 732 733 // Emit the call to the function 734 CallInst *call = CallInst::Create(newFunction, params, 735 NumExitBlocks > 1 ? "targetBlock" : ""); 736 codeReplacer->getInstList().push_back(call); 737 738 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 739 unsigned FirstOut = inputs.size(); 740 if (!AggregateArgs) 741 std::advance(OutputArgBegin, inputs.size()); 742 743 // Reload the outputs passed in by reference. 744 Function::arg_iterator OAI = OutputArgBegin; 745 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 746 Value *Output = nullptr; 747 if (AggregateArgs) { 748 Value *Idx[2]; 749 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 750 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 751 GetElementPtrInst *GEP = GetElementPtrInst::Create( 752 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 753 codeReplacer->getInstList().push_back(GEP); 754 Output = GEP; 755 } else { 756 Output = ReloadOutputs[i]; 757 } 758 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 759 Reloads.push_back(load); 760 codeReplacer->getInstList().push_back(load); 761 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 762 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 763 Instruction *inst = cast<Instruction>(Users[u]); 764 if (!Blocks.count(inst->getParent())) 765 inst->replaceUsesOfWith(outputs[i], load); 766 } 767 768 // Store to argument right after the definition of output value. 769 auto *OutI = dyn_cast<Instruction>(outputs[i]); 770 if (!OutI) 771 continue; 772 // Find proper insertion point. 773 Instruction *InsertPt = OutI->getNextNode(); 774 // Let's assume that there is no other guy interleave non-PHI in PHIs. 775 if (isa<PHINode>(InsertPt)) 776 InsertPt = InsertPt->getParent()->getFirstNonPHI(); 777 778 assert(OAI != newFunction->arg_end() && 779 "Number of output arguments should match " 780 "the amount of defined values"); 781 if (AggregateArgs) { 782 Value *Idx[2]; 783 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 784 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 785 GetElementPtrInst *GEP = GetElementPtrInst::Create( 786 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), InsertPt); 787 new StoreInst(outputs[i], GEP, InsertPt); 788 // Since there should be only one struct argument aggregating 789 // all the output values, we shouldn't increment OAI, which always 790 // points to the struct argument, in this case. 791 } else { 792 new StoreInst(outputs[i], &*OAI, InsertPt); 793 ++OAI; 794 } 795 } 796 797 // Now we can emit a switch statement using the call as a value. 798 SwitchInst *TheSwitch = 799 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 800 codeReplacer, 0, codeReplacer); 801 802 // Since there may be multiple exits from the original region, make the new 803 // function return an unsigned, switch on that number. This loop iterates 804 // over all of the blocks in the extracted region, updating any terminator 805 // instructions in the to-be-extracted region that branch to blocks that are 806 // not in the region to be extracted. 807 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 808 809 unsigned switchVal = 0; 810 for (BasicBlock *Block : Blocks) { 811 TerminatorInst *TI = Block->getTerminator(); 812 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 813 if (!Blocks.count(TI->getSuccessor(i))) { 814 BasicBlock *OldTarget = TI->getSuccessor(i); 815 // add a new basic block which returns the appropriate value 816 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 817 if (!NewTarget) { 818 // If we don't already have an exit stub for this non-extracted 819 // destination, create one now! 820 NewTarget = BasicBlock::Create(Context, 821 OldTarget->getName() + ".exitStub", 822 newFunction); 823 unsigned SuccNum = switchVal++; 824 825 Value *brVal = nullptr; 826 switch (NumExitBlocks) { 827 case 0: 828 case 1: break; // No value needed. 829 case 2: // Conditional branch, return a bool 830 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 831 break; 832 default: 833 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 834 break; 835 } 836 837 ReturnInst::Create(Context, brVal, NewTarget); 838 839 // Update the switch instruction. 840 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 841 SuccNum), 842 OldTarget); 843 } 844 845 // rewrite the original branch instruction with this new target 846 TI->setSuccessor(i, NewTarget); 847 } 848 } 849 850 // Now that we've done the deed, simplify the switch instruction. 851 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 852 switch (NumExitBlocks) { 853 case 0: 854 // There are no successors (the block containing the switch itself), which 855 // means that previously this was the last part of the function, and hence 856 // this should be rewritten as a `ret' 857 858 // Check if the function should return a value 859 if (OldFnRetTy->isVoidTy()) { 860 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 861 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 862 // return what we have 863 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 864 } else { 865 // Otherwise we must have code extracted an unwind or something, just 866 // return whatever we want. 867 ReturnInst::Create(Context, 868 Constant::getNullValue(OldFnRetTy), TheSwitch); 869 } 870 871 TheSwitch->eraseFromParent(); 872 break; 873 case 1: 874 // Only a single destination, change the switch into an unconditional 875 // branch. 876 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 877 TheSwitch->eraseFromParent(); 878 break; 879 case 2: 880 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 881 call, TheSwitch); 882 TheSwitch->eraseFromParent(); 883 break; 884 default: 885 // Otherwise, make the default destination of the switch instruction be one 886 // of the other successors. 887 TheSwitch->setCondition(call); 888 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 889 // Remove redundant case 890 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 891 break; 892 } 893 } 894 895 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 896 Function *oldFunc = (*Blocks.begin())->getParent(); 897 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 898 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 899 900 for (BasicBlock *Block : Blocks) { 901 // Delete the basic block from the old function, and the list of blocks 902 oldBlocks.remove(Block); 903 904 // Insert this basic block into the new function 905 newBlocks.push_back(Block); 906 } 907 } 908 909 void CodeExtractor::calculateNewCallTerminatorWeights( 910 BasicBlock *CodeReplacer, 911 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 912 BranchProbabilityInfo *BPI) { 913 using Distribution = BlockFrequencyInfoImplBase::Distribution; 914 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 915 916 // Update the branch weights for the exit block. 917 TerminatorInst *TI = CodeReplacer->getTerminator(); 918 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 919 920 // Block Frequency distribution with dummy node. 921 Distribution BranchDist; 922 923 // Add each of the frequencies of the successors. 924 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 925 BlockNode ExitNode(i); 926 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 927 if (ExitFreq != 0) 928 BranchDist.addExit(ExitNode, ExitFreq); 929 else 930 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); 931 } 932 933 // Check for no total weight. 934 if (BranchDist.Total == 0) 935 return; 936 937 // Normalize the distribution so that they can fit in unsigned. 938 BranchDist.normalize(); 939 940 // Create normalized branch weights and set the metadata. 941 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 942 const auto &Weight = BranchDist.Weights[I]; 943 944 // Get the weight and update the current BFI. 945 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 946 BranchProbability BP(Weight.Amount, BranchDist.Total); 947 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); 948 } 949 TI->setMetadata( 950 LLVMContext::MD_prof, 951 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 952 } 953 954 Function *CodeExtractor::extractCodeRegion() { 955 if (!isEligible()) 956 return nullptr; 957 958 ValueSet inputs, outputs, SinkingCands, HoistingCands; 959 BasicBlock *CommonExit = nullptr; 960 961 // Assumption: this is a single-entry code region, and the header is the first 962 // block in the region. 963 BasicBlock *header = *Blocks.begin(); 964 965 // Calculate the entry frequency of the new function before we change the root 966 // block. 967 BlockFrequency EntryFreq; 968 if (BFI) { 969 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 970 for (BasicBlock *Pred : predecessors(header)) { 971 if (Blocks.count(Pred)) 972 continue; 973 EntryFreq += 974 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 975 } 976 } 977 978 // If we have to split PHI nodes or the entry block, do so now. 979 severSplitPHINodes(header); 980 981 // If we have any return instructions in the region, split those blocks so 982 // that the return is not in the region. 983 splitReturnBlocks(); 984 985 Function *oldFunction = header->getParent(); 986 987 // This takes place of the original loop 988 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 989 "codeRepl", oldFunction, 990 header); 991 992 // The new function needs a root node because other nodes can branch to the 993 // head of the region, but the entry node of a function cannot have preds. 994 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 995 "newFuncRoot"); 996 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 997 998 findAllocas(SinkingCands, HoistingCands, CommonExit); 999 assert(HoistingCands.empty() || CommonExit); 1000 1001 // Find inputs to, outputs from the code region. 1002 findInputsOutputs(inputs, outputs, SinkingCands); 1003 1004 // Now sink all instructions which only have non-phi uses inside the region 1005 for (auto *II : SinkingCands) 1006 cast<Instruction>(II)->moveBefore(*newFuncRoot, 1007 newFuncRoot->getFirstInsertionPt()); 1008 1009 if (!HoistingCands.empty()) { 1010 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1011 Instruction *TI = HoistToBlock->getTerminator(); 1012 for (auto *II : HoistingCands) 1013 cast<Instruction>(II)->moveBefore(TI); 1014 } 1015 1016 // Calculate the exit blocks for the extracted region and the total exit 1017 // weights for each of those blocks. 1018 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1019 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1020 for (BasicBlock *Block : Blocks) { 1021 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 1022 ++SI) { 1023 if (!Blocks.count(*SI)) { 1024 // Update the branch weight for this successor. 1025 if (BFI) { 1026 BlockFrequency &BF = ExitWeights[*SI]; 1027 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 1028 } 1029 ExitBlocks.insert(*SI); 1030 } 1031 } 1032 } 1033 NumExitBlocks = ExitBlocks.size(); 1034 1035 // Construct new function based on inputs/outputs & add allocas for all defs. 1036 Function *newFunction = constructFunction(inputs, outputs, header, 1037 newFuncRoot, 1038 codeReplacer, oldFunction, 1039 oldFunction->getParent()); 1040 1041 // Update the entry count of the function. 1042 if (BFI) { 1043 Optional<uint64_t> EntryCount = 1044 BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1045 if (EntryCount.hasValue()) 1046 newFunction->setEntryCount(EntryCount.getValue()); 1047 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1048 } 1049 1050 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1051 1052 moveCodeToFunction(newFunction); 1053 1054 // Update the branch weights for the exit block. 1055 if (BFI && NumExitBlocks > 1) 1056 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1057 1058 // Loop over all of the PHI nodes in the header block, and change any 1059 // references to the old incoming edge to be the new incoming edge. 1060 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1061 PHINode *PN = cast<PHINode>(I); 1062 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1063 if (!Blocks.count(PN->getIncomingBlock(i))) 1064 PN->setIncomingBlock(i, newFuncRoot); 1065 } 1066 1067 // Look at all successors of the codeReplacer block. If any of these blocks 1068 // had PHI nodes in them, we need to update the "from" block to be the code 1069 // replacer, not the original block in the extracted region. 1070 std::vector<BasicBlock *> Succs(succ_begin(codeReplacer), 1071 succ_end(codeReplacer)); 1072 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 1073 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 1074 PHINode *PN = cast<PHINode>(I); 1075 std::set<BasicBlock*> ProcessedPreds; 1076 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1077 if (Blocks.count(PN->getIncomingBlock(i))) { 1078 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 1079 PN->setIncomingBlock(i, codeReplacer); 1080 else { 1081 // There were multiple entries in the PHI for this block, now there 1082 // is only one, so remove the duplicated entries. 1083 PN->removeIncomingValue(i, false); 1084 --i; --e; 1085 } 1086 } 1087 } 1088 1089 DEBUG(if (verifyFunction(*newFunction)) 1090 report_fatal_error("verifyFunction failed!")); 1091 return newFunction; 1092 } 1093