1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/CodeExtractor.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/IR/Verifier.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/BlockFrequency.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include <cassert> 61 #include <cstdint> 62 #include <iterator> 63 #include <map> 64 #include <set> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "code-extractor" 71 72 // Provide a command-line option to aggregate function arguments into a struct 73 // for functions produced by the code extractor. This is useful when converting 74 // extracted functions to pthread-based code, as only one argument (void*) can 75 // be passed in to pthread_create(). 76 static cl::opt<bool> 77 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 78 cl::desc("Aggregate arguments to code-extracted functions")); 79 80 /// \brief Test whether a block is valid for extraction. 81 bool CodeExtractor::isBlockValidForExtraction(const BasicBlock &BB) { 82 // Landing pads must be in the function where they were inserted for cleanup. 83 if (BB.isEHPad()) 84 return false; 85 // taking the address of a basic block moved to another function is illegal 86 if (BB.hasAddressTaken()) 87 return false; 88 89 // don't hoist code that uses another basicblock address, as it's likely to 90 // lead to unexpected behavior, like cross-function jumps 91 SmallPtrSet<User const *, 16> Visited; 92 SmallVector<User const *, 16> ToVisit; 93 94 for (Instruction const &Inst : BB) 95 ToVisit.push_back(&Inst); 96 97 while (!ToVisit.empty()) { 98 User const *Curr = ToVisit.pop_back_val(); 99 if (!Visited.insert(Curr).second) 100 continue; 101 if (isa<BlockAddress const>(Curr)) 102 return false; // even a reference to self is likely to be not compatible 103 104 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 105 continue; 106 107 for (auto const &U : Curr->operands()) { 108 if (auto *UU = dyn_cast<User>(U)) 109 ToVisit.push_back(UU); 110 } 111 } 112 113 // Don't hoist code containing allocas, invokes, or vastarts. 114 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 115 if (isa<AllocaInst>(I) || isa<InvokeInst>(I)) 116 return false; 117 if (const CallInst *CI = dyn_cast<CallInst>(I)) 118 if (const Function *F = CI->getCalledFunction()) 119 if (F->getIntrinsicID() == Intrinsic::vastart) 120 return false; 121 } 122 123 return true; 124 } 125 126 /// \brief Build a set of blocks to extract if the input blocks are viable. 127 static SetVector<BasicBlock *> 128 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT) { 129 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 130 SetVector<BasicBlock *> Result; 131 132 // Loop over the blocks, adding them to our set-vector, and aborting with an 133 // empty set if we encounter invalid blocks. 134 for (BasicBlock *BB : BBs) { 135 // If this block is dead, don't process it. 136 if (DT && !DT->isReachableFromEntry(BB)) 137 continue; 138 139 if (!Result.insert(BB)) 140 llvm_unreachable("Repeated basic blocks in extraction input"); 141 if (!CodeExtractor::isBlockValidForExtraction(*BB)) { 142 Result.clear(); 143 return Result; 144 } 145 } 146 147 #ifndef NDEBUG 148 for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()), 149 E = Result.end(); 150 I != E; ++I) 151 for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I); 152 PI != PE; ++PI) 153 assert(Result.count(*PI) && 154 "No blocks in this region may have entries from outside the region" 155 " except for the first block!"); 156 #endif 157 158 return Result; 159 } 160 161 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 162 bool AggregateArgs, BlockFrequencyInfo *BFI, 163 BranchProbabilityInfo *BPI) 164 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 165 BPI(BPI), Blocks(buildExtractionBlockSet(BBs, DT)) {} 166 167 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 168 BlockFrequencyInfo *BFI, 169 BranchProbabilityInfo *BPI) 170 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 171 BPI(BPI), Blocks(buildExtractionBlockSet(L.getBlocks(), &DT)) {} 172 173 /// definedInRegion - Return true if the specified value is defined in the 174 /// extracted region. 175 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 176 if (Instruction *I = dyn_cast<Instruction>(V)) 177 if (Blocks.count(I->getParent())) 178 return true; 179 return false; 180 } 181 182 /// definedInCaller - Return true if the specified value is defined in the 183 /// function being code extracted, but not in the region being extracted. 184 /// These values must be passed in as live-ins to the function. 185 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 186 if (isa<Argument>(V)) return true; 187 if (Instruction *I = dyn_cast<Instruction>(V)) 188 if (!Blocks.count(I->getParent())) 189 return true; 190 return false; 191 } 192 193 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 194 BasicBlock *CommonExitBlock = nullptr; 195 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 196 for (auto *Succ : successors(Block)) { 197 // Internal edges, ok. 198 if (Blocks.count(Succ)) 199 continue; 200 if (!CommonExitBlock) { 201 CommonExitBlock = Succ; 202 continue; 203 } 204 if (CommonExitBlock == Succ) 205 continue; 206 207 return true; 208 } 209 return false; 210 }; 211 212 if (any_of(Blocks, hasNonCommonExitSucc)) 213 return nullptr; 214 215 return CommonExitBlock; 216 } 217 218 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 219 Instruction *Addr) const { 220 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 221 Function *Func = (*Blocks.begin())->getParent(); 222 for (BasicBlock &BB : *Func) { 223 if (Blocks.count(&BB)) 224 continue; 225 for (Instruction &II : BB) { 226 if (isa<DbgInfoIntrinsic>(II)) 227 continue; 228 229 unsigned Opcode = II.getOpcode(); 230 Value *MemAddr = nullptr; 231 switch (Opcode) { 232 case Instruction::Store: 233 case Instruction::Load: { 234 if (Opcode == Instruction::Store) { 235 StoreInst *SI = cast<StoreInst>(&II); 236 MemAddr = SI->getPointerOperand(); 237 } else { 238 LoadInst *LI = cast<LoadInst>(&II); 239 MemAddr = LI->getPointerOperand(); 240 } 241 // Global variable can not be aliased with locals. 242 if (dyn_cast<Constant>(MemAddr)) 243 break; 244 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 245 if (!dyn_cast<AllocaInst>(Base) || Base == AI) 246 return false; 247 break; 248 } 249 default: { 250 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 251 if (IntrInst) { 252 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start || 253 IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) 254 break; 255 return false; 256 } 257 // Treat all the other cases conservatively if it has side effects. 258 if (II.mayHaveSideEffects()) 259 return false; 260 } 261 } 262 } 263 } 264 265 return true; 266 } 267 268 BasicBlock * 269 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 270 BasicBlock *SinglePredFromOutlineRegion = nullptr; 271 assert(!Blocks.count(CommonExitBlock) && 272 "Expect a block outside the region!"); 273 for (auto *Pred : predecessors(CommonExitBlock)) { 274 if (!Blocks.count(Pred)) 275 continue; 276 if (!SinglePredFromOutlineRegion) { 277 SinglePredFromOutlineRegion = Pred; 278 } else if (SinglePredFromOutlineRegion != Pred) { 279 SinglePredFromOutlineRegion = nullptr; 280 break; 281 } 282 } 283 284 if (SinglePredFromOutlineRegion) 285 return SinglePredFromOutlineRegion; 286 287 #ifndef NDEBUG 288 auto getFirstPHI = [](BasicBlock *BB) { 289 BasicBlock::iterator I = BB->begin(); 290 PHINode *FirstPhi = nullptr; 291 while (I != BB->end()) { 292 PHINode *Phi = dyn_cast<PHINode>(I); 293 if (!Phi) 294 break; 295 if (!FirstPhi) { 296 FirstPhi = Phi; 297 break; 298 } 299 } 300 return FirstPhi; 301 }; 302 // If there are any phi nodes, the single pred either exists or has already 303 // be created before code extraction. 304 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 305 #endif 306 307 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 308 CommonExitBlock->getFirstNonPHI()->getIterator()); 309 310 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock); 311 PI != PE;) { 312 BasicBlock *Pred = *PI++; 313 if (Blocks.count(Pred)) 314 continue; 315 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 316 } 317 // Now add the old exit block to the outline region. 318 Blocks.insert(CommonExitBlock); 319 return CommonExitBlock; 320 } 321 322 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands, 323 BasicBlock *&ExitBlock) const { 324 Function *Func = (*Blocks.begin())->getParent(); 325 ExitBlock = getCommonExitBlock(Blocks); 326 327 for (BasicBlock &BB : *Func) { 328 if (Blocks.count(&BB)) 329 continue; 330 for (Instruction &II : BB) { 331 auto *AI = dyn_cast<AllocaInst>(&II); 332 if (!AI) 333 continue; 334 335 // Find the pair of life time markers for address 'Addr' that are either 336 // defined inside the outline region or can legally be shrinkwrapped into 337 // the outline region. If there are not other untracked uses of the 338 // address, return the pair of markers if found; otherwise return a pair 339 // of nullptr. 340 auto GetLifeTimeMarkers = 341 [&](Instruction *Addr, bool &SinkLifeStart, 342 bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> { 343 Instruction *LifeStart = nullptr, *LifeEnd = nullptr; 344 345 for (User *U : Addr->users()) { 346 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 347 if (IntrInst) { 348 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 349 // Do not handle the case where AI has multiple start markers. 350 if (LifeStart) 351 return std::make_pair<Instruction *>(nullptr, nullptr); 352 LifeStart = IntrInst; 353 } 354 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 355 if (LifeEnd) 356 return std::make_pair<Instruction *>(nullptr, nullptr); 357 LifeEnd = IntrInst; 358 } 359 continue; 360 } 361 // Find untracked uses of the address, bail. 362 if (!definedInRegion(Blocks, U)) 363 return std::make_pair<Instruction *>(nullptr, nullptr); 364 } 365 366 if (!LifeStart || !LifeEnd) 367 return std::make_pair<Instruction *>(nullptr, nullptr); 368 369 SinkLifeStart = !definedInRegion(Blocks, LifeStart); 370 HoistLifeEnd = !definedInRegion(Blocks, LifeEnd); 371 // Do legality Check. 372 if ((SinkLifeStart || HoistLifeEnd) && 373 !isLegalToShrinkwrapLifetimeMarkers(Addr)) 374 return std::make_pair<Instruction *>(nullptr, nullptr); 375 376 // Check to see if we have a place to do hoisting, if not, bail. 377 if (HoistLifeEnd && !ExitBlock) 378 return std::make_pair<Instruction *>(nullptr, nullptr); 379 380 return std::make_pair(LifeStart, LifeEnd); 381 }; 382 383 bool SinkLifeStart = false, HoistLifeEnd = false; 384 auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd); 385 386 if (Markers.first) { 387 if (SinkLifeStart) 388 SinkCands.insert(Markers.first); 389 SinkCands.insert(AI); 390 if (HoistLifeEnd) 391 HoistCands.insert(Markers.second); 392 continue; 393 } 394 395 // Follow the bitcast. 396 Instruction *MarkerAddr = nullptr; 397 for (User *U : AI->users()) { 398 if (U->stripInBoundsConstantOffsets() == AI) { 399 SinkLifeStart = false; 400 HoistLifeEnd = false; 401 Instruction *Bitcast = cast<Instruction>(U); 402 Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd); 403 if (Markers.first) { 404 MarkerAddr = Bitcast; 405 continue; 406 } 407 } 408 409 // Found unknown use of AI. 410 if (!definedInRegion(Blocks, U)) { 411 MarkerAddr = nullptr; 412 break; 413 } 414 } 415 416 if (MarkerAddr) { 417 if (SinkLifeStart) 418 SinkCands.insert(Markers.first); 419 if (!definedInRegion(Blocks, MarkerAddr)) 420 SinkCands.insert(MarkerAddr); 421 SinkCands.insert(AI); 422 if (HoistLifeEnd) 423 HoistCands.insert(Markers.second); 424 } 425 } 426 } 427 } 428 429 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 430 const ValueSet &SinkCands) const { 431 for (BasicBlock *BB : Blocks) { 432 // If a used value is defined outside the region, it's an input. If an 433 // instruction is used outside the region, it's an output. 434 for (Instruction &II : *BB) { 435 for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE; 436 ++OI) { 437 Value *V = *OI; 438 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 439 Inputs.insert(V); 440 } 441 442 for (User *U : II.users()) 443 if (!definedInRegion(Blocks, U)) { 444 Outputs.insert(&II); 445 break; 446 } 447 } 448 } 449 } 450 451 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 452 /// region, we need to split the entry block of the region so that the PHI node 453 /// is easier to deal with. 454 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 455 unsigned NumPredsFromRegion = 0; 456 unsigned NumPredsOutsideRegion = 0; 457 458 if (Header != &Header->getParent()->getEntryBlock()) { 459 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 460 if (!PN) return; // No PHI nodes. 461 462 // If the header node contains any PHI nodes, check to see if there is more 463 // than one entry from outside the region. If so, we need to sever the 464 // header block into two. 465 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 466 if (Blocks.count(PN->getIncomingBlock(i))) 467 ++NumPredsFromRegion; 468 else 469 ++NumPredsOutsideRegion; 470 471 // If there is one (or fewer) predecessor from outside the region, we don't 472 // need to do anything special. 473 if (NumPredsOutsideRegion <= 1) return; 474 } 475 476 // Otherwise, we need to split the header block into two pieces: one 477 // containing PHI nodes merging values from outside of the region, and a 478 // second that contains all of the code for the block and merges back any 479 // incoming values from inside of the region. 480 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 481 482 // We only want to code extract the second block now, and it becomes the new 483 // header of the region. 484 BasicBlock *OldPred = Header; 485 Blocks.remove(OldPred); 486 Blocks.insert(NewBB); 487 Header = NewBB; 488 489 // Okay, now we need to adjust the PHI nodes and any branches from within the 490 // region to go to the new header block instead of the old header block. 491 if (NumPredsFromRegion) { 492 PHINode *PN = cast<PHINode>(OldPred->begin()); 493 // Loop over all of the predecessors of OldPred that are in the region, 494 // changing them to branch to NewBB instead. 495 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 496 if (Blocks.count(PN->getIncomingBlock(i))) { 497 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 498 TI->replaceUsesOfWith(OldPred, NewBB); 499 } 500 501 // Okay, everything within the region is now branching to the right block, we 502 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 503 BasicBlock::iterator AfterPHIs; 504 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 505 PHINode *PN = cast<PHINode>(AfterPHIs); 506 // Create a new PHI node in the new region, which has an incoming value 507 // from OldPred of PN. 508 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 509 PN->getName() + ".ce", &NewBB->front()); 510 PN->replaceAllUsesWith(NewPN); 511 NewPN->addIncoming(PN, OldPred); 512 513 // Loop over all of the incoming value in PN, moving them to NewPN if they 514 // are from the extracted region. 515 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 516 if (Blocks.count(PN->getIncomingBlock(i))) { 517 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 518 PN->removeIncomingValue(i); 519 --i; 520 } 521 } 522 } 523 } 524 } 525 526 void CodeExtractor::splitReturnBlocks() { 527 for (BasicBlock *Block : Blocks) 528 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 529 BasicBlock *New = 530 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 531 if (DT) { 532 // Old dominates New. New node dominates all other nodes dominated 533 // by Old. 534 DomTreeNode *OldNode = DT->getNode(Block); 535 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 536 OldNode->end()); 537 538 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 539 540 for (DomTreeNode *I : Children) 541 DT->changeImmediateDominator(I, NewNode); 542 } 543 } 544 } 545 546 /// constructFunction - make a function based on inputs and outputs, as follows: 547 /// f(in0, ..., inN, out0, ..., outN) 548 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 549 const ValueSet &outputs, 550 BasicBlock *header, 551 BasicBlock *newRootNode, 552 BasicBlock *newHeader, 553 Function *oldFunction, 554 Module *M) { 555 DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 556 DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 557 558 // This function returns unsigned, outputs will go back by reference. 559 switch (NumExitBlocks) { 560 case 0: 561 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 562 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 563 default: RetTy = Type::getInt16Ty(header->getContext()); break; 564 } 565 566 std::vector<Type *> paramTy; 567 568 // Add the types of the input values to the function's argument list 569 for (Value *value : inputs) { 570 DEBUG(dbgs() << "value used in func: " << *value << "\n"); 571 paramTy.push_back(value->getType()); 572 } 573 574 // Add the types of the output values to the function's argument list. 575 for (Value *output : outputs) { 576 DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 577 if (AggregateArgs) 578 paramTy.push_back(output->getType()); 579 else 580 paramTy.push_back(PointerType::getUnqual(output->getType())); 581 } 582 583 DEBUG({ 584 dbgs() << "Function type: " << *RetTy << " f("; 585 for (Type *i : paramTy) 586 dbgs() << *i << ", "; 587 dbgs() << ")\n"; 588 }); 589 590 StructType *StructTy; 591 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 592 StructTy = StructType::get(M->getContext(), paramTy); 593 paramTy.clear(); 594 paramTy.push_back(PointerType::getUnqual(StructTy)); 595 } 596 FunctionType *funcType = 597 FunctionType::get(RetTy, paramTy, false); 598 599 // Create the new function 600 Function *newFunction = Function::Create(funcType, 601 GlobalValue::InternalLinkage, 602 oldFunction->getName() + "_" + 603 header->getName(), M); 604 // If the old function is no-throw, so is the new one. 605 if (oldFunction->doesNotThrow()) 606 newFunction->setDoesNotThrow(); 607 608 // Inherit the uwtable attribute if we need to. 609 if (oldFunction->hasUWTable()) 610 newFunction->setHasUWTable(); 611 612 // Inherit all of the target dependent attributes. 613 // (e.g. If the extracted region contains a call to an x86.sse 614 // instruction we need to make sure that the extracted region has the 615 // "target-features" attribute allowing it to be lowered. 616 // FIXME: This should be changed to check to see if a specific 617 // attribute can not be inherited. 618 AttrBuilder AB(oldFunction->getAttributes().getFnAttributes()); 619 for (const auto &Attr : AB.td_attrs()) 620 newFunction->addFnAttr(Attr.first, Attr.second); 621 622 newFunction->getBasicBlockList().push_back(newRootNode); 623 624 // Create an iterator to name all of the arguments we inserted. 625 Function::arg_iterator AI = newFunction->arg_begin(); 626 627 // Rewrite all users of the inputs in the extracted region to use the 628 // arguments (or appropriate addressing into struct) instead. 629 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 630 Value *RewriteVal; 631 if (AggregateArgs) { 632 Value *Idx[2]; 633 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 634 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 635 TerminatorInst *TI = newFunction->begin()->getTerminator(); 636 GetElementPtrInst *GEP = GetElementPtrInst::Create( 637 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 638 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 639 } else 640 RewriteVal = &*AI++; 641 642 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 643 for (User *use : Users) 644 if (Instruction *inst = dyn_cast<Instruction>(use)) 645 if (Blocks.count(inst->getParent())) 646 inst->replaceUsesOfWith(inputs[i], RewriteVal); 647 } 648 649 // Set names for input and output arguments. 650 if (!AggregateArgs) { 651 AI = newFunction->arg_begin(); 652 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 653 AI->setName(inputs[i]->getName()); 654 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 655 AI->setName(outputs[i]->getName()+".out"); 656 } 657 658 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 659 // within the new function. This must be done before we lose track of which 660 // blocks were originally in the code region. 661 std::vector<User *> Users(header->user_begin(), header->user_end()); 662 for (unsigned i = 0, e = Users.size(); i != e; ++i) 663 // The BasicBlock which contains the branch is not in the region 664 // modify the branch target to a new block 665 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 666 if (!Blocks.count(TI->getParent()) && 667 TI->getParent()->getParent() == oldFunction) 668 TI->replaceUsesOfWith(header, newHeader); 669 670 return newFunction; 671 } 672 673 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 674 /// the call instruction, splitting any PHI nodes in the header block as 675 /// necessary. 676 void CodeExtractor:: 677 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 678 ValueSet &inputs, ValueSet &outputs) { 679 // Emit a call to the new function, passing in: *pointer to struct (if 680 // aggregating parameters), or plan inputs and allocated memory for outputs 681 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 682 683 Module *M = newFunction->getParent(); 684 LLVMContext &Context = M->getContext(); 685 const DataLayout &DL = M->getDataLayout(); 686 687 // Add inputs as params, or to be filled into the struct 688 for (Value *input : inputs) 689 if (AggregateArgs) 690 StructValues.push_back(input); 691 else 692 params.push_back(input); 693 694 // Create allocas for the outputs 695 for (Value *output : outputs) { 696 if (AggregateArgs) { 697 StructValues.push_back(output); 698 } else { 699 AllocaInst *alloca = 700 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 701 nullptr, output->getName() + ".loc", 702 &codeReplacer->getParent()->front().front()); 703 ReloadOutputs.push_back(alloca); 704 params.push_back(alloca); 705 } 706 } 707 708 StructType *StructArgTy = nullptr; 709 AllocaInst *Struct = nullptr; 710 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 711 std::vector<Type *> ArgTypes; 712 for (ValueSet::iterator v = StructValues.begin(), 713 ve = StructValues.end(); v != ve; ++v) 714 ArgTypes.push_back((*v)->getType()); 715 716 // Allocate a struct at the beginning of this function 717 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 718 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 719 "structArg", 720 &codeReplacer->getParent()->front().front()); 721 params.push_back(Struct); 722 723 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 724 Value *Idx[2]; 725 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 726 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 727 GetElementPtrInst *GEP = GetElementPtrInst::Create( 728 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 729 codeReplacer->getInstList().push_back(GEP); 730 StoreInst *SI = new StoreInst(StructValues[i], GEP); 731 codeReplacer->getInstList().push_back(SI); 732 } 733 } 734 735 // Emit the call to the function 736 CallInst *call = CallInst::Create(newFunction, params, 737 NumExitBlocks > 1 ? "targetBlock" : ""); 738 codeReplacer->getInstList().push_back(call); 739 740 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 741 unsigned FirstOut = inputs.size(); 742 if (!AggregateArgs) 743 std::advance(OutputArgBegin, inputs.size()); 744 745 // Reload the outputs passed in by reference. 746 Function::arg_iterator OAI = OutputArgBegin; 747 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 748 Value *Output = nullptr; 749 if (AggregateArgs) { 750 Value *Idx[2]; 751 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 752 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 753 GetElementPtrInst *GEP = GetElementPtrInst::Create( 754 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 755 codeReplacer->getInstList().push_back(GEP); 756 Output = GEP; 757 } else { 758 Output = ReloadOutputs[i]; 759 } 760 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 761 Reloads.push_back(load); 762 codeReplacer->getInstList().push_back(load); 763 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 764 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 765 Instruction *inst = cast<Instruction>(Users[u]); 766 if (!Blocks.count(inst->getParent())) 767 inst->replaceUsesOfWith(outputs[i], load); 768 } 769 770 // Store to argument right after the definition of output value. 771 auto *OutI = dyn_cast<Instruction>(outputs[i]); 772 if (!OutI) 773 continue; 774 // Find proper insertion point. 775 Instruction *InsertPt = OutI->getNextNode(); 776 // Let's assume that there is no other guy interleave non-PHI in PHIs. 777 if (isa<PHINode>(InsertPt)) 778 InsertPt = InsertPt->getParent()->getFirstNonPHI(); 779 780 assert(OAI != newFunction->arg_end() && 781 "Number of output arguments should match " 782 "the amount of defined values"); 783 if (AggregateArgs) { 784 Value *Idx[2]; 785 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 786 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 787 GetElementPtrInst *GEP = GetElementPtrInst::Create( 788 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), InsertPt); 789 new StoreInst(outputs[i], GEP, InsertPt); 790 // Since there should be only one struct argument aggregating 791 // all the output values, we shouldn't increment OAI, which always 792 // points to the struct argument, in this case. 793 } else { 794 new StoreInst(outputs[i], &*OAI, InsertPt); 795 ++OAI; 796 } 797 } 798 799 // Now we can emit a switch statement using the call as a value. 800 SwitchInst *TheSwitch = 801 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 802 codeReplacer, 0, codeReplacer); 803 804 // Since there may be multiple exits from the original region, make the new 805 // function return an unsigned, switch on that number. This loop iterates 806 // over all of the blocks in the extracted region, updating any terminator 807 // instructions in the to-be-extracted region that branch to blocks that are 808 // not in the region to be extracted. 809 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 810 811 unsigned switchVal = 0; 812 for (BasicBlock *Block : Blocks) { 813 TerminatorInst *TI = Block->getTerminator(); 814 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 815 if (!Blocks.count(TI->getSuccessor(i))) { 816 BasicBlock *OldTarget = TI->getSuccessor(i); 817 // add a new basic block which returns the appropriate value 818 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 819 if (!NewTarget) { 820 // If we don't already have an exit stub for this non-extracted 821 // destination, create one now! 822 NewTarget = BasicBlock::Create(Context, 823 OldTarget->getName() + ".exitStub", 824 newFunction); 825 unsigned SuccNum = switchVal++; 826 827 Value *brVal = nullptr; 828 switch (NumExitBlocks) { 829 case 0: 830 case 1: break; // No value needed. 831 case 2: // Conditional branch, return a bool 832 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 833 break; 834 default: 835 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 836 break; 837 } 838 839 ReturnInst::Create(Context, brVal, NewTarget); 840 841 // Update the switch instruction. 842 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 843 SuccNum), 844 OldTarget); 845 } 846 847 // rewrite the original branch instruction with this new target 848 TI->setSuccessor(i, NewTarget); 849 } 850 } 851 852 // Now that we've done the deed, simplify the switch instruction. 853 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 854 switch (NumExitBlocks) { 855 case 0: 856 // There are no successors (the block containing the switch itself), which 857 // means that previously this was the last part of the function, and hence 858 // this should be rewritten as a `ret' 859 860 // Check if the function should return a value 861 if (OldFnRetTy->isVoidTy()) { 862 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 863 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 864 // return what we have 865 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 866 } else { 867 // Otherwise we must have code extracted an unwind or something, just 868 // return whatever we want. 869 ReturnInst::Create(Context, 870 Constant::getNullValue(OldFnRetTy), TheSwitch); 871 } 872 873 TheSwitch->eraseFromParent(); 874 break; 875 case 1: 876 // Only a single destination, change the switch into an unconditional 877 // branch. 878 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 879 TheSwitch->eraseFromParent(); 880 break; 881 case 2: 882 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 883 call, TheSwitch); 884 TheSwitch->eraseFromParent(); 885 break; 886 default: 887 // Otherwise, make the default destination of the switch instruction be one 888 // of the other successors. 889 TheSwitch->setCondition(call); 890 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 891 // Remove redundant case 892 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 893 break; 894 } 895 } 896 897 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 898 Function *oldFunc = (*Blocks.begin())->getParent(); 899 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 900 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 901 902 for (BasicBlock *Block : Blocks) { 903 // Delete the basic block from the old function, and the list of blocks 904 oldBlocks.remove(Block); 905 906 // Insert this basic block into the new function 907 newBlocks.push_back(Block); 908 } 909 } 910 911 void CodeExtractor::calculateNewCallTerminatorWeights( 912 BasicBlock *CodeReplacer, 913 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 914 BranchProbabilityInfo *BPI) { 915 using Distribution = BlockFrequencyInfoImplBase::Distribution; 916 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 917 918 // Update the branch weights for the exit block. 919 TerminatorInst *TI = CodeReplacer->getTerminator(); 920 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 921 922 // Block Frequency distribution with dummy node. 923 Distribution BranchDist; 924 925 // Add each of the frequencies of the successors. 926 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 927 BlockNode ExitNode(i); 928 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 929 if (ExitFreq != 0) 930 BranchDist.addExit(ExitNode, ExitFreq); 931 else 932 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); 933 } 934 935 // Check for no total weight. 936 if (BranchDist.Total == 0) 937 return; 938 939 // Normalize the distribution so that they can fit in unsigned. 940 BranchDist.normalize(); 941 942 // Create normalized branch weights and set the metadata. 943 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 944 const auto &Weight = BranchDist.Weights[I]; 945 946 // Get the weight and update the current BFI. 947 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 948 BranchProbability BP(Weight.Amount, BranchDist.Total); 949 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); 950 } 951 TI->setMetadata( 952 LLVMContext::MD_prof, 953 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 954 } 955 956 Function *CodeExtractor::extractCodeRegion() { 957 if (!isEligible()) 958 return nullptr; 959 960 ValueSet inputs, outputs, SinkingCands, HoistingCands; 961 BasicBlock *CommonExit = nullptr; 962 963 // Assumption: this is a single-entry code region, and the header is the first 964 // block in the region. 965 BasicBlock *header = *Blocks.begin(); 966 967 // Calculate the entry frequency of the new function before we change the root 968 // block. 969 BlockFrequency EntryFreq; 970 if (BFI) { 971 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 972 for (BasicBlock *Pred : predecessors(header)) { 973 if (Blocks.count(Pred)) 974 continue; 975 EntryFreq += 976 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 977 } 978 } 979 980 // If we have to split PHI nodes or the entry block, do so now. 981 severSplitPHINodes(header); 982 983 // If we have any return instructions in the region, split those blocks so 984 // that the return is not in the region. 985 splitReturnBlocks(); 986 987 Function *oldFunction = header->getParent(); 988 989 // This takes place of the original loop 990 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 991 "codeRepl", oldFunction, 992 header); 993 994 // The new function needs a root node because other nodes can branch to the 995 // head of the region, but the entry node of a function cannot have preds. 996 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 997 "newFuncRoot"); 998 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 999 1000 findAllocas(SinkingCands, HoistingCands, CommonExit); 1001 assert(HoistingCands.empty() || CommonExit); 1002 1003 // Find inputs to, outputs from the code region. 1004 findInputsOutputs(inputs, outputs, SinkingCands); 1005 1006 // Now sink all instructions which only have non-phi uses inside the region 1007 for (auto *II : SinkingCands) 1008 cast<Instruction>(II)->moveBefore(*newFuncRoot, 1009 newFuncRoot->getFirstInsertionPt()); 1010 1011 if (!HoistingCands.empty()) { 1012 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1013 Instruction *TI = HoistToBlock->getTerminator(); 1014 for (auto *II : HoistingCands) 1015 cast<Instruction>(II)->moveBefore(TI); 1016 } 1017 1018 // Calculate the exit blocks for the extracted region and the total exit 1019 // weights for each of those blocks. 1020 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1021 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1022 for (BasicBlock *Block : Blocks) { 1023 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 1024 ++SI) { 1025 if (!Blocks.count(*SI)) { 1026 // Update the branch weight for this successor. 1027 if (BFI) { 1028 BlockFrequency &BF = ExitWeights[*SI]; 1029 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 1030 } 1031 ExitBlocks.insert(*SI); 1032 } 1033 } 1034 } 1035 NumExitBlocks = ExitBlocks.size(); 1036 1037 // Construct new function based on inputs/outputs & add allocas for all defs. 1038 Function *newFunction = constructFunction(inputs, outputs, header, 1039 newFuncRoot, 1040 codeReplacer, oldFunction, 1041 oldFunction->getParent()); 1042 1043 // Update the entry count of the function. 1044 if (BFI) { 1045 Optional<uint64_t> EntryCount = 1046 BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1047 if (EntryCount.hasValue()) 1048 newFunction->setEntryCount(EntryCount.getValue()); 1049 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1050 } 1051 1052 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1053 1054 moveCodeToFunction(newFunction); 1055 1056 // Update the branch weights for the exit block. 1057 if (BFI && NumExitBlocks > 1) 1058 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1059 1060 // Loop over all of the PHI nodes in the header block, and change any 1061 // references to the old incoming edge to be the new incoming edge. 1062 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1063 PHINode *PN = cast<PHINode>(I); 1064 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1065 if (!Blocks.count(PN->getIncomingBlock(i))) 1066 PN->setIncomingBlock(i, newFuncRoot); 1067 } 1068 1069 // Look at all successors of the codeReplacer block. If any of these blocks 1070 // had PHI nodes in them, we need to update the "from" block to be the code 1071 // replacer, not the original block in the extracted region. 1072 std::vector<BasicBlock *> Succs(succ_begin(codeReplacer), 1073 succ_end(codeReplacer)); 1074 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 1075 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 1076 PHINode *PN = cast<PHINode>(I); 1077 std::set<BasicBlock*> ProcessedPreds; 1078 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1079 if (Blocks.count(PN->getIncomingBlock(i))) { 1080 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 1081 PN->setIncomingBlock(i, codeReplacer); 1082 else { 1083 // There were multiple entries in the PHI for this block, now there 1084 // is only one, so remove the duplicated entries. 1085 PN->removeIncomingValue(i, false); 1086 --i; --e; 1087 } 1088 } 1089 } 1090 1091 DEBUG(if (verifyFunction(*newFunction)) 1092 report_fatal_error("verifyFunction failed!")); 1093 return newFunction; 1094 } 1095