1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/CodeExtractor.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/IR/Verifier.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/BlockFrequency.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include <cassert> 61 #include <cstdint> 62 #include <iterator> 63 #include <map> 64 #include <set> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "code-extractor" 71 72 // Provide a command-line option to aggregate function arguments into a struct 73 // for functions produced by the code extractor. This is useful when converting 74 // extracted functions to pthread-based code, as only one argument (void*) can 75 // be passed in to pthread_create(). 76 static cl::opt<bool> 77 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 78 cl::desc("Aggregate arguments to code-extracted functions")); 79 80 /// \brief Test whether a block is valid for extraction. 81 bool CodeExtractor::isBlockValidForExtraction(const BasicBlock &BB, 82 bool AllowVarArgs) { 83 // Landing pads must be in the function where they were inserted for cleanup. 84 if (BB.isEHPad()) 85 return false; 86 // taking the address of a basic block moved to another function is illegal 87 if (BB.hasAddressTaken()) 88 return false; 89 90 // don't hoist code that uses another basicblock address, as it's likely to 91 // lead to unexpected behavior, like cross-function jumps 92 SmallPtrSet<User const *, 16> Visited; 93 SmallVector<User const *, 16> ToVisit; 94 95 for (Instruction const &Inst : BB) 96 ToVisit.push_back(&Inst); 97 98 while (!ToVisit.empty()) { 99 User const *Curr = ToVisit.pop_back_val(); 100 if (!Visited.insert(Curr).second) 101 continue; 102 if (isa<BlockAddress const>(Curr)) 103 return false; // even a reference to self is likely to be not compatible 104 105 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 106 continue; 107 108 for (auto const &U : Curr->operands()) { 109 if (auto *UU = dyn_cast<User>(U)) 110 ToVisit.push_back(UU); 111 } 112 } 113 114 // Don't hoist code containing allocas or invokes. If explicitly requested, 115 // allow vastart. 116 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 117 if (isa<AllocaInst>(I) || isa<InvokeInst>(I)) 118 return false; 119 if (const CallInst *CI = dyn_cast<CallInst>(I)) 120 if (const Function *F = CI->getCalledFunction()) 121 if (F->getIntrinsicID() == Intrinsic::vastart) { 122 if (AllowVarArgs) 123 continue; 124 else 125 return false; 126 } 127 } 128 129 return true; 130 } 131 132 /// \brief Build a set of blocks to extract if the input blocks are viable. 133 static SetVector<BasicBlock *> 134 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 135 bool AllowVarArgs) { 136 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 137 SetVector<BasicBlock *> Result; 138 139 // Loop over the blocks, adding them to our set-vector, and aborting with an 140 // empty set if we encounter invalid blocks. 141 for (BasicBlock *BB : BBs) { 142 // If this block is dead, don't process it. 143 if (DT && !DT->isReachableFromEntry(BB)) 144 continue; 145 146 if (!Result.insert(BB)) 147 llvm_unreachable("Repeated basic blocks in extraction input"); 148 if (!CodeExtractor::isBlockValidForExtraction(*BB, AllowVarArgs)) { 149 Result.clear(); 150 return Result; 151 } 152 } 153 154 #ifndef NDEBUG 155 for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()), 156 E = Result.end(); 157 I != E; ++I) 158 for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I); 159 PI != PE; ++PI) 160 assert(Result.count(*PI) && 161 "No blocks in this region may have entries from outside the region" 162 " except for the first block!"); 163 #endif 164 165 return Result; 166 } 167 168 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 169 bool AggregateArgs, BlockFrequencyInfo *BFI, 170 BranchProbabilityInfo *BPI, bool AllowVarArgs) 171 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 172 BPI(BPI), AllowVarArgs(AllowVarArgs), 173 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs)) {} 174 175 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 176 BlockFrequencyInfo *BFI, 177 BranchProbabilityInfo *BPI) 178 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 179 BPI(BPI), AllowVarArgs(false), 180 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 181 /* AllowVarArgs */ false)) {} 182 183 /// definedInRegion - Return true if the specified value is defined in the 184 /// extracted region. 185 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 186 if (Instruction *I = dyn_cast<Instruction>(V)) 187 if (Blocks.count(I->getParent())) 188 return true; 189 return false; 190 } 191 192 /// definedInCaller - Return true if the specified value is defined in the 193 /// function being code extracted, but not in the region being extracted. 194 /// These values must be passed in as live-ins to the function. 195 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 196 if (isa<Argument>(V)) return true; 197 if (Instruction *I = dyn_cast<Instruction>(V)) 198 if (!Blocks.count(I->getParent())) 199 return true; 200 return false; 201 } 202 203 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 204 BasicBlock *CommonExitBlock = nullptr; 205 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 206 for (auto *Succ : successors(Block)) { 207 // Internal edges, ok. 208 if (Blocks.count(Succ)) 209 continue; 210 if (!CommonExitBlock) { 211 CommonExitBlock = Succ; 212 continue; 213 } 214 if (CommonExitBlock == Succ) 215 continue; 216 217 return true; 218 } 219 return false; 220 }; 221 222 if (any_of(Blocks, hasNonCommonExitSucc)) 223 return nullptr; 224 225 return CommonExitBlock; 226 } 227 228 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 229 Instruction *Addr) const { 230 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 231 Function *Func = (*Blocks.begin())->getParent(); 232 for (BasicBlock &BB : *Func) { 233 if (Blocks.count(&BB)) 234 continue; 235 for (Instruction &II : BB) { 236 if (isa<DbgInfoIntrinsic>(II)) 237 continue; 238 239 unsigned Opcode = II.getOpcode(); 240 Value *MemAddr = nullptr; 241 switch (Opcode) { 242 case Instruction::Store: 243 case Instruction::Load: { 244 if (Opcode == Instruction::Store) { 245 StoreInst *SI = cast<StoreInst>(&II); 246 MemAddr = SI->getPointerOperand(); 247 } else { 248 LoadInst *LI = cast<LoadInst>(&II); 249 MemAddr = LI->getPointerOperand(); 250 } 251 // Global variable can not be aliased with locals. 252 if (dyn_cast<Constant>(MemAddr)) 253 break; 254 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 255 if (!dyn_cast<AllocaInst>(Base) || Base == AI) 256 return false; 257 break; 258 } 259 default: { 260 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 261 if (IntrInst) { 262 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start || 263 IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) 264 break; 265 return false; 266 } 267 // Treat all the other cases conservatively if it has side effects. 268 if (II.mayHaveSideEffects()) 269 return false; 270 } 271 } 272 } 273 } 274 275 return true; 276 } 277 278 BasicBlock * 279 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 280 BasicBlock *SinglePredFromOutlineRegion = nullptr; 281 assert(!Blocks.count(CommonExitBlock) && 282 "Expect a block outside the region!"); 283 for (auto *Pred : predecessors(CommonExitBlock)) { 284 if (!Blocks.count(Pred)) 285 continue; 286 if (!SinglePredFromOutlineRegion) { 287 SinglePredFromOutlineRegion = Pred; 288 } else if (SinglePredFromOutlineRegion != Pred) { 289 SinglePredFromOutlineRegion = nullptr; 290 break; 291 } 292 } 293 294 if (SinglePredFromOutlineRegion) 295 return SinglePredFromOutlineRegion; 296 297 #ifndef NDEBUG 298 auto getFirstPHI = [](BasicBlock *BB) { 299 BasicBlock::iterator I = BB->begin(); 300 PHINode *FirstPhi = nullptr; 301 while (I != BB->end()) { 302 PHINode *Phi = dyn_cast<PHINode>(I); 303 if (!Phi) 304 break; 305 if (!FirstPhi) { 306 FirstPhi = Phi; 307 break; 308 } 309 } 310 return FirstPhi; 311 }; 312 // If there are any phi nodes, the single pred either exists or has already 313 // be created before code extraction. 314 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 315 #endif 316 317 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 318 CommonExitBlock->getFirstNonPHI()->getIterator()); 319 320 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock); 321 PI != PE;) { 322 BasicBlock *Pred = *PI++; 323 if (Blocks.count(Pred)) 324 continue; 325 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 326 } 327 // Now add the old exit block to the outline region. 328 Blocks.insert(CommonExitBlock); 329 return CommonExitBlock; 330 } 331 332 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands, 333 BasicBlock *&ExitBlock) const { 334 Function *Func = (*Blocks.begin())->getParent(); 335 ExitBlock = getCommonExitBlock(Blocks); 336 337 for (BasicBlock &BB : *Func) { 338 if (Blocks.count(&BB)) 339 continue; 340 for (Instruction &II : BB) { 341 auto *AI = dyn_cast<AllocaInst>(&II); 342 if (!AI) 343 continue; 344 345 // Find the pair of life time markers for address 'Addr' that are either 346 // defined inside the outline region or can legally be shrinkwrapped into 347 // the outline region. If there are not other untracked uses of the 348 // address, return the pair of markers if found; otherwise return a pair 349 // of nullptr. 350 auto GetLifeTimeMarkers = 351 [&](Instruction *Addr, bool &SinkLifeStart, 352 bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> { 353 Instruction *LifeStart = nullptr, *LifeEnd = nullptr; 354 355 for (User *U : Addr->users()) { 356 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 357 if (IntrInst) { 358 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 359 // Do not handle the case where AI has multiple start markers. 360 if (LifeStart) 361 return std::make_pair<Instruction *>(nullptr, nullptr); 362 LifeStart = IntrInst; 363 } 364 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 365 if (LifeEnd) 366 return std::make_pair<Instruction *>(nullptr, nullptr); 367 LifeEnd = IntrInst; 368 } 369 continue; 370 } 371 // Find untracked uses of the address, bail. 372 if (!definedInRegion(Blocks, U)) 373 return std::make_pair<Instruction *>(nullptr, nullptr); 374 } 375 376 if (!LifeStart || !LifeEnd) 377 return std::make_pair<Instruction *>(nullptr, nullptr); 378 379 SinkLifeStart = !definedInRegion(Blocks, LifeStart); 380 HoistLifeEnd = !definedInRegion(Blocks, LifeEnd); 381 // Do legality Check. 382 if ((SinkLifeStart || HoistLifeEnd) && 383 !isLegalToShrinkwrapLifetimeMarkers(Addr)) 384 return std::make_pair<Instruction *>(nullptr, nullptr); 385 386 // Check to see if we have a place to do hoisting, if not, bail. 387 if (HoistLifeEnd && !ExitBlock) 388 return std::make_pair<Instruction *>(nullptr, nullptr); 389 390 return std::make_pair(LifeStart, LifeEnd); 391 }; 392 393 bool SinkLifeStart = false, HoistLifeEnd = false; 394 auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd); 395 396 if (Markers.first) { 397 if (SinkLifeStart) 398 SinkCands.insert(Markers.first); 399 SinkCands.insert(AI); 400 if (HoistLifeEnd) 401 HoistCands.insert(Markers.second); 402 continue; 403 } 404 405 // Follow the bitcast. 406 Instruction *MarkerAddr = nullptr; 407 for (User *U : AI->users()) { 408 if (U->stripInBoundsConstantOffsets() == AI) { 409 SinkLifeStart = false; 410 HoistLifeEnd = false; 411 Instruction *Bitcast = cast<Instruction>(U); 412 Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd); 413 if (Markers.first) { 414 MarkerAddr = Bitcast; 415 continue; 416 } 417 } 418 419 // Found unknown use of AI. 420 if (!definedInRegion(Blocks, U)) { 421 MarkerAddr = nullptr; 422 break; 423 } 424 } 425 426 if (MarkerAddr) { 427 if (SinkLifeStart) 428 SinkCands.insert(Markers.first); 429 if (!definedInRegion(Blocks, MarkerAddr)) 430 SinkCands.insert(MarkerAddr); 431 SinkCands.insert(AI); 432 if (HoistLifeEnd) 433 HoistCands.insert(Markers.second); 434 } 435 } 436 } 437 } 438 439 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 440 const ValueSet &SinkCands) const { 441 for (BasicBlock *BB : Blocks) { 442 // If a used value is defined outside the region, it's an input. If an 443 // instruction is used outside the region, it's an output. 444 for (Instruction &II : *BB) { 445 for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE; 446 ++OI) { 447 Value *V = *OI; 448 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 449 Inputs.insert(V); 450 } 451 452 for (User *U : II.users()) 453 if (!definedInRegion(Blocks, U)) { 454 Outputs.insert(&II); 455 break; 456 } 457 } 458 } 459 } 460 461 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 462 /// region, we need to split the entry block of the region so that the PHI node 463 /// is easier to deal with. 464 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 465 unsigned NumPredsFromRegion = 0; 466 unsigned NumPredsOutsideRegion = 0; 467 468 if (Header != &Header->getParent()->getEntryBlock()) { 469 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 470 if (!PN) return; // No PHI nodes. 471 472 // If the header node contains any PHI nodes, check to see if there is more 473 // than one entry from outside the region. If so, we need to sever the 474 // header block into two. 475 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 476 if (Blocks.count(PN->getIncomingBlock(i))) 477 ++NumPredsFromRegion; 478 else 479 ++NumPredsOutsideRegion; 480 481 // If there is one (or fewer) predecessor from outside the region, we don't 482 // need to do anything special. 483 if (NumPredsOutsideRegion <= 1) return; 484 } 485 486 // Otherwise, we need to split the header block into two pieces: one 487 // containing PHI nodes merging values from outside of the region, and a 488 // second that contains all of the code for the block and merges back any 489 // incoming values from inside of the region. 490 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 491 492 // We only want to code extract the second block now, and it becomes the new 493 // header of the region. 494 BasicBlock *OldPred = Header; 495 Blocks.remove(OldPred); 496 Blocks.insert(NewBB); 497 Header = NewBB; 498 499 // Okay, now we need to adjust the PHI nodes and any branches from within the 500 // region to go to the new header block instead of the old header block. 501 if (NumPredsFromRegion) { 502 PHINode *PN = cast<PHINode>(OldPred->begin()); 503 // Loop over all of the predecessors of OldPred that are in the region, 504 // changing them to branch to NewBB instead. 505 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 506 if (Blocks.count(PN->getIncomingBlock(i))) { 507 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 508 TI->replaceUsesOfWith(OldPred, NewBB); 509 } 510 511 // Okay, everything within the region is now branching to the right block, we 512 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 513 BasicBlock::iterator AfterPHIs; 514 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 515 PHINode *PN = cast<PHINode>(AfterPHIs); 516 // Create a new PHI node in the new region, which has an incoming value 517 // from OldPred of PN. 518 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 519 PN->getName() + ".ce", &NewBB->front()); 520 PN->replaceAllUsesWith(NewPN); 521 NewPN->addIncoming(PN, OldPred); 522 523 // Loop over all of the incoming value in PN, moving them to NewPN if they 524 // are from the extracted region. 525 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 526 if (Blocks.count(PN->getIncomingBlock(i))) { 527 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 528 PN->removeIncomingValue(i); 529 --i; 530 } 531 } 532 } 533 } 534 } 535 536 void CodeExtractor::splitReturnBlocks() { 537 for (BasicBlock *Block : Blocks) 538 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 539 BasicBlock *New = 540 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 541 if (DT) { 542 // Old dominates New. New node dominates all other nodes dominated 543 // by Old. 544 DomTreeNode *OldNode = DT->getNode(Block); 545 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 546 OldNode->end()); 547 548 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 549 550 for (DomTreeNode *I : Children) 551 DT->changeImmediateDominator(I, NewNode); 552 } 553 } 554 } 555 556 /// constructFunction - make a function based on inputs and outputs, as follows: 557 /// f(in0, ..., inN, out0, ..., outN) 558 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 559 const ValueSet &outputs, 560 BasicBlock *header, 561 BasicBlock *newRootNode, 562 BasicBlock *newHeader, 563 Function *oldFunction, 564 Module *M) { 565 DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 566 DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 567 568 // This function returns unsigned, outputs will go back by reference. 569 switch (NumExitBlocks) { 570 case 0: 571 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 572 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 573 default: RetTy = Type::getInt16Ty(header->getContext()); break; 574 } 575 576 std::vector<Type *> paramTy; 577 578 // Add the types of the input values to the function's argument list 579 for (Value *value : inputs) { 580 DEBUG(dbgs() << "value used in func: " << *value << "\n"); 581 paramTy.push_back(value->getType()); 582 } 583 584 // Add the types of the output values to the function's argument list. 585 for (Value *output : outputs) { 586 DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 587 if (AggregateArgs) 588 paramTy.push_back(output->getType()); 589 else 590 paramTy.push_back(PointerType::getUnqual(output->getType())); 591 } 592 593 DEBUG({ 594 dbgs() << "Function type: " << *RetTy << " f("; 595 for (Type *i : paramTy) 596 dbgs() << *i << ", "; 597 dbgs() << ")\n"; 598 }); 599 600 StructType *StructTy; 601 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 602 StructTy = StructType::get(M->getContext(), paramTy); 603 paramTy.clear(); 604 paramTy.push_back(PointerType::getUnqual(StructTy)); 605 } 606 FunctionType *funcType = 607 FunctionType::get(RetTy, paramTy, 608 AllowVarArgs && oldFunction->isVarArg()); 609 610 // Create the new function 611 Function *newFunction = Function::Create(funcType, 612 GlobalValue::InternalLinkage, 613 oldFunction->getName() + "_" + 614 header->getName(), M); 615 // If the old function is no-throw, so is the new one. 616 if (oldFunction->doesNotThrow()) 617 newFunction->setDoesNotThrow(); 618 619 // Inherit the uwtable attribute if we need to. 620 if (oldFunction->hasUWTable()) 621 newFunction->setHasUWTable(); 622 623 // Inherit all of the target dependent attributes. 624 // (e.g. If the extracted region contains a call to an x86.sse 625 // instruction we need to make sure that the extracted region has the 626 // "target-features" attribute allowing it to be lowered. 627 // FIXME: This should be changed to check to see if a specific 628 // attribute can not be inherited. 629 AttrBuilder AB(oldFunction->getAttributes().getFnAttributes()); 630 for (const auto &Attr : AB.td_attrs()) 631 newFunction->addFnAttr(Attr.first, Attr.second); 632 633 newFunction->getBasicBlockList().push_back(newRootNode); 634 635 // Create an iterator to name all of the arguments we inserted. 636 Function::arg_iterator AI = newFunction->arg_begin(); 637 638 // Rewrite all users of the inputs in the extracted region to use the 639 // arguments (or appropriate addressing into struct) instead. 640 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 641 Value *RewriteVal; 642 if (AggregateArgs) { 643 Value *Idx[2]; 644 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 645 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 646 TerminatorInst *TI = newFunction->begin()->getTerminator(); 647 GetElementPtrInst *GEP = GetElementPtrInst::Create( 648 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 649 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 650 } else 651 RewriteVal = &*AI++; 652 653 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 654 for (User *use : Users) 655 if (Instruction *inst = dyn_cast<Instruction>(use)) 656 if (Blocks.count(inst->getParent())) 657 inst->replaceUsesOfWith(inputs[i], RewriteVal); 658 } 659 660 // Set names for input and output arguments. 661 if (!AggregateArgs) { 662 AI = newFunction->arg_begin(); 663 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 664 AI->setName(inputs[i]->getName()); 665 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 666 AI->setName(outputs[i]->getName()+".out"); 667 } 668 669 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 670 // within the new function. This must be done before we lose track of which 671 // blocks were originally in the code region. 672 std::vector<User *> Users(header->user_begin(), header->user_end()); 673 for (unsigned i = 0, e = Users.size(); i != e; ++i) 674 // The BasicBlock which contains the branch is not in the region 675 // modify the branch target to a new block 676 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 677 if (!Blocks.count(TI->getParent()) && 678 TI->getParent()->getParent() == oldFunction) 679 TI->replaceUsesOfWith(header, newHeader); 680 681 return newFunction; 682 } 683 684 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 685 /// the call instruction, splitting any PHI nodes in the header block as 686 /// necessary. 687 void CodeExtractor:: 688 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 689 ValueSet &inputs, ValueSet &outputs) { 690 // Emit a call to the new function, passing in: *pointer to struct (if 691 // aggregating parameters), or plan inputs and allocated memory for outputs 692 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 693 694 Module *M = newFunction->getParent(); 695 LLVMContext &Context = M->getContext(); 696 const DataLayout &DL = M->getDataLayout(); 697 698 // Add inputs as params, or to be filled into the struct 699 for (Value *input : inputs) 700 if (AggregateArgs) 701 StructValues.push_back(input); 702 else 703 params.push_back(input); 704 705 // Create allocas for the outputs 706 for (Value *output : outputs) { 707 if (AggregateArgs) { 708 StructValues.push_back(output); 709 } else { 710 AllocaInst *alloca = 711 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 712 nullptr, output->getName() + ".loc", 713 &codeReplacer->getParent()->front().front()); 714 ReloadOutputs.push_back(alloca); 715 params.push_back(alloca); 716 } 717 } 718 719 StructType *StructArgTy = nullptr; 720 AllocaInst *Struct = nullptr; 721 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 722 std::vector<Type *> ArgTypes; 723 for (ValueSet::iterator v = StructValues.begin(), 724 ve = StructValues.end(); v != ve; ++v) 725 ArgTypes.push_back((*v)->getType()); 726 727 // Allocate a struct at the beginning of this function 728 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 729 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 730 "structArg", 731 &codeReplacer->getParent()->front().front()); 732 params.push_back(Struct); 733 734 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 735 Value *Idx[2]; 736 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 737 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 738 GetElementPtrInst *GEP = GetElementPtrInst::Create( 739 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 740 codeReplacer->getInstList().push_back(GEP); 741 StoreInst *SI = new StoreInst(StructValues[i], GEP); 742 codeReplacer->getInstList().push_back(SI); 743 } 744 } 745 746 // Emit the call to the function 747 CallInst *call = CallInst::Create(newFunction, params, 748 NumExitBlocks > 1 ? "targetBlock" : ""); 749 codeReplacer->getInstList().push_back(call); 750 751 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 752 unsigned FirstOut = inputs.size(); 753 if (!AggregateArgs) 754 std::advance(OutputArgBegin, inputs.size()); 755 756 // Reload the outputs passed in by reference. 757 Function::arg_iterator OAI = OutputArgBegin; 758 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 759 Value *Output = nullptr; 760 if (AggregateArgs) { 761 Value *Idx[2]; 762 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 763 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 764 GetElementPtrInst *GEP = GetElementPtrInst::Create( 765 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 766 codeReplacer->getInstList().push_back(GEP); 767 Output = GEP; 768 } else { 769 Output = ReloadOutputs[i]; 770 } 771 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 772 Reloads.push_back(load); 773 codeReplacer->getInstList().push_back(load); 774 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 775 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 776 Instruction *inst = cast<Instruction>(Users[u]); 777 if (!Blocks.count(inst->getParent())) 778 inst->replaceUsesOfWith(outputs[i], load); 779 } 780 781 // Store to argument right after the definition of output value. 782 auto *OutI = dyn_cast<Instruction>(outputs[i]); 783 if (!OutI) 784 continue; 785 // Find proper insertion point. 786 Instruction *InsertPt = OutI->getNextNode(); 787 // Let's assume that there is no other guy interleave non-PHI in PHIs. 788 if (isa<PHINode>(InsertPt)) 789 InsertPt = InsertPt->getParent()->getFirstNonPHI(); 790 791 assert(OAI != newFunction->arg_end() && 792 "Number of output arguments should match " 793 "the amount of defined values"); 794 if (AggregateArgs) { 795 Value *Idx[2]; 796 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 797 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 798 GetElementPtrInst *GEP = GetElementPtrInst::Create( 799 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), InsertPt); 800 new StoreInst(outputs[i], GEP, InsertPt); 801 // Since there should be only one struct argument aggregating 802 // all the output values, we shouldn't increment OAI, which always 803 // points to the struct argument, in this case. 804 } else { 805 new StoreInst(outputs[i], &*OAI, InsertPt); 806 ++OAI; 807 } 808 } 809 810 // Now we can emit a switch statement using the call as a value. 811 SwitchInst *TheSwitch = 812 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 813 codeReplacer, 0, codeReplacer); 814 815 // Since there may be multiple exits from the original region, make the new 816 // function return an unsigned, switch on that number. This loop iterates 817 // over all of the blocks in the extracted region, updating any terminator 818 // instructions in the to-be-extracted region that branch to blocks that are 819 // not in the region to be extracted. 820 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 821 822 unsigned switchVal = 0; 823 for (BasicBlock *Block : Blocks) { 824 TerminatorInst *TI = Block->getTerminator(); 825 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 826 if (!Blocks.count(TI->getSuccessor(i))) { 827 BasicBlock *OldTarget = TI->getSuccessor(i); 828 // add a new basic block which returns the appropriate value 829 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 830 if (!NewTarget) { 831 // If we don't already have an exit stub for this non-extracted 832 // destination, create one now! 833 NewTarget = BasicBlock::Create(Context, 834 OldTarget->getName() + ".exitStub", 835 newFunction); 836 unsigned SuccNum = switchVal++; 837 838 Value *brVal = nullptr; 839 switch (NumExitBlocks) { 840 case 0: 841 case 1: break; // No value needed. 842 case 2: // Conditional branch, return a bool 843 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 844 break; 845 default: 846 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 847 break; 848 } 849 850 ReturnInst::Create(Context, brVal, NewTarget); 851 852 // Update the switch instruction. 853 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 854 SuccNum), 855 OldTarget); 856 } 857 858 // rewrite the original branch instruction with this new target 859 TI->setSuccessor(i, NewTarget); 860 } 861 } 862 863 // Now that we've done the deed, simplify the switch instruction. 864 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 865 switch (NumExitBlocks) { 866 case 0: 867 // There are no successors (the block containing the switch itself), which 868 // means that previously this was the last part of the function, and hence 869 // this should be rewritten as a `ret' 870 871 // Check if the function should return a value 872 if (OldFnRetTy->isVoidTy()) { 873 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 874 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 875 // return what we have 876 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 877 } else { 878 // Otherwise we must have code extracted an unwind or something, just 879 // return whatever we want. 880 ReturnInst::Create(Context, 881 Constant::getNullValue(OldFnRetTy), TheSwitch); 882 } 883 884 TheSwitch->eraseFromParent(); 885 break; 886 case 1: 887 // Only a single destination, change the switch into an unconditional 888 // branch. 889 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 890 TheSwitch->eraseFromParent(); 891 break; 892 case 2: 893 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 894 call, TheSwitch); 895 TheSwitch->eraseFromParent(); 896 break; 897 default: 898 // Otherwise, make the default destination of the switch instruction be one 899 // of the other successors. 900 TheSwitch->setCondition(call); 901 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 902 // Remove redundant case 903 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 904 break; 905 } 906 } 907 908 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 909 Function *oldFunc = (*Blocks.begin())->getParent(); 910 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 911 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 912 913 for (BasicBlock *Block : Blocks) { 914 // Delete the basic block from the old function, and the list of blocks 915 oldBlocks.remove(Block); 916 917 // Insert this basic block into the new function 918 newBlocks.push_back(Block); 919 } 920 } 921 922 void CodeExtractor::calculateNewCallTerminatorWeights( 923 BasicBlock *CodeReplacer, 924 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 925 BranchProbabilityInfo *BPI) { 926 using Distribution = BlockFrequencyInfoImplBase::Distribution; 927 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 928 929 // Update the branch weights for the exit block. 930 TerminatorInst *TI = CodeReplacer->getTerminator(); 931 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 932 933 // Block Frequency distribution with dummy node. 934 Distribution BranchDist; 935 936 // Add each of the frequencies of the successors. 937 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 938 BlockNode ExitNode(i); 939 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 940 if (ExitFreq != 0) 941 BranchDist.addExit(ExitNode, ExitFreq); 942 else 943 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); 944 } 945 946 // Check for no total weight. 947 if (BranchDist.Total == 0) 948 return; 949 950 // Normalize the distribution so that they can fit in unsigned. 951 BranchDist.normalize(); 952 953 // Create normalized branch weights and set the metadata. 954 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 955 const auto &Weight = BranchDist.Weights[I]; 956 957 // Get the weight and update the current BFI. 958 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 959 BranchProbability BP(Weight.Amount, BranchDist.Total); 960 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); 961 } 962 TI->setMetadata( 963 LLVMContext::MD_prof, 964 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 965 } 966 967 Function *CodeExtractor::extractCodeRegion() { 968 if (!isEligible()) 969 return nullptr; 970 971 // Assumption: this is a single-entry code region, and the header is the first 972 // block in the region. 973 BasicBlock *header = *Blocks.begin(); 974 Function *oldFunction = header->getParent(); 975 976 // For functions with varargs, check that varargs handling is only done in the 977 // outlined function, i.e vastart and vaend are only used in outlined blocks. 978 if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) { 979 auto containsVarArgIntrinsic = [](Instruction &I) { 980 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 981 if (const Function *F = CI->getCalledFunction()) 982 return F->getIntrinsicID() == Intrinsic::vastart || 983 F->getIntrinsicID() == Intrinsic::vaend; 984 return false; 985 }; 986 987 for (auto &BB : *oldFunction) { 988 if (Blocks.count(&BB)) 989 continue; 990 if (llvm::any_of(BB, containsVarArgIntrinsic)) 991 return nullptr; 992 } 993 } 994 ValueSet inputs, outputs, SinkingCands, HoistingCands; 995 BasicBlock *CommonExit = nullptr; 996 997 // Calculate the entry frequency of the new function before we change the root 998 // block. 999 BlockFrequency EntryFreq; 1000 if (BFI) { 1001 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1002 for (BasicBlock *Pred : predecessors(header)) { 1003 if (Blocks.count(Pred)) 1004 continue; 1005 EntryFreq += 1006 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1007 } 1008 } 1009 1010 // If we have to split PHI nodes or the entry block, do so now. 1011 severSplitPHINodes(header); 1012 1013 // If we have any return instructions in the region, split those blocks so 1014 // that the return is not in the region. 1015 splitReturnBlocks(); 1016 1017 // This takes place of the original loop 1018 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1019 "codeRepl", oldFunction, 1020 header); 1021 1022 // The new function needs a root node because other nodes can branch to the 1023 // head of the region, but the entry node of a function cannot have preds. 1024 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1025 "newFuncRoot"); 1026 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 1027 1028 findAllocas(SinkingCands, HoistingCands, CommonExit); 1029 assert(HoistingCands.empty() || CommonExit); 1030 1031 // Find inputs to, outputs from the code region. 1032 findInputsOutputs(inputs, outputs, SinkingCands); 1033 1034 // Now sink all instructions which only have non-phi uses inside the region 1035 for (auto *II : SinkingCands) 1036 cast<Instruction>(II)->moveBefore(*newFuncRoot, 1037 newFuncRoot->getFirstInsertionPt()); 1038 1039 if (!HoistingCands.empty()) { 1040 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1041 Instruction *TI = HoistToBlock->getTerminator(); 1042 for (auto *II : HoistingCands) 1043 cast<Instruction>(II)->moveBefore(TI); 1044 } 1045 1046 // Calculate the exit blocks for the extracted region and the total exit 1047 // weights for each of those blocks. 1048 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1049 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1050 for (BasicBlock *Block : Blocks) { 1051 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 1052 ++SI) { 1053 if (!Blocks.count(*SI)) { 1054 // Update the branch weight for this successor. 1055 if (BFI) { 1056 BlockFrequency &BF = ExitWeights[*SI]; 1057 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 1058 } 1059 ExitBlocks.insert(*SI); 1060 } 1061 } 1062 } 1063 NumExitBlocks = ExitBlocks.size(); 1064 1065 // Construct new function based on inputs/outputs & add allocas for all defs. 1066 Function *newFunction = constructFunction(inputs, outputs, header, 1067 newFuncRoot, 1068 codeReplacer, oldFunction, 1069 oldFunction->getParent()); 1070 1071 // Update the entry count of the function. 1072 if (BFI) { 1073 Optional<uint64_t> EntryCount = 1074 BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1075 if (EntryCount.hasValue()) 1076 newFunction->setEntryCount(EntryCount.getValue()); 1077 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1078 } 1079 1080 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1081 1082 moveCodeToFunction(newFunction); 1083 1084 // Update the branch weights for the exit block. 1085 if (BFI && NumExitBlocks > 1) 1086 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1087 1088 // Loop over all of the PHI nodes in the header block, and change any 1089 // references to the old incoming edge to be the new incoming edge. 1090 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1091 PHINode *PN = cast<PHINode>(I); 1092 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1093 if (!Blocks.count(PN->getIncomingBlock(i))) 1094 PN->setIncomingBlock(i, newFuncRoot); 1095 } 1096 1097 // Look at all successors of the codeReplacer block. If any of these blocks 1098 // had PHI nodes in them, we need to update the "from" block to be the code 1099 // replacer, not the original block in the extracted region. 1100 std::vector<BasicBlock *> Succs(succ_begin(codeReplacer), 1101 succ_end(codeReplacer)); 1102 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 1103 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 1104 PHINode *PN = cast<PHINode>(I); 1105 std::set<BasicBlock*> ProcessedPreds; 1106 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1107 if (Blocks.count(PN->getIncomingBlock(i))) { 1108 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 1109 PN->setIncomingBlock(i, codeReplacer); 1110 else { 1111 // There were multiple entries in the PHI for this block, now there 1112 // is only one, so remove the duplicated entries. 1113 PN->removeIncomingValue(i, false); 1114 --i; --e; 1115 } 1116 } 1117 } 1118 1119 DEBUG(if (verifyFunction(*newFunction)) 1120 report_fatal_error("verifyFunction failed!")); 1121 return newFunction; 1122 } 1123