1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/CodeExtractor.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/IR/Verifier.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/BlockFrequency.h"
53 #include "llvm/Support/BranchProbability.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <map>
64 #include <set>
65 #include <utility>
66 #include <vector>
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "code-extractor"
71 
72 // Provide a command-line option to aggregate function arguments into a struct
73 // for functions produced by the code extractor. This is useful when converting
74 // extracted functions to pthread-based code, as only one argument (void*) can
75 // be passed in to pthread_create().
76 static cl::opt<bool>
77 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
78                  cl::desc("Aggregate arguments to code-extracted functions"));
79 
80 /// \brief Test whether a block is valid for extraction.
81 bool CodeExtractor::isBlockValidForExtraction(const BasicBlock &BB,
82                                               bool AllowVarArgs) {
83   // Landing pads must be in the function where they were inserted for cleanup.
84   if (BB.isEHPad())
85     return false;
86   // taking the address of a basic block moved to another function is illegal
87   if (BB.hasAddressTaken())
88     return false;
89 
90   // don't hoist code that uses another basicblock address, as it's likely to
91   // lead to unexpected behavior, like cross-function jumps
92   SmallPtrSet<User const *, 16> Visited;
93   SmallVector<User const *, 16> ToVisit;
94 
95   for (Instruction const &Inst : BB)
96     ToVisit.push_back(&Inst);
97 
98   while (!ToVisit.empty()) {
99     User const *Curr = ToVisit.pop_back_val();
100     if (!Visited.insert(Curr).second)
101       continue;
102     if (isa<BlockAddress const>(Curr))
103       return false; // even a reference to self is likely to be not compatible
104 
105     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
106       continue;
107 
108     for (auto const &U : Curr->operands()) {
109       if (auto *UU = dyn_cast<User>(U))
110         ToVisit.push_back(UU);
111     }
112   }
113 
114   // Don't hoist code containing allocas or invokes. If explicitly requested,
115   // allow vastart.
116   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
117     if (isa<AllocaInst>(I) || isa<InvokeInst>(I))
118       return false;
119     if (const CallInst *CI = dyn_cast<CallInst>(I))
120       if (const Function *F = CI->getCalledFunction())
121         if (F->getIntrinsicID() == Intrinsic::vastart) {
122           if (AllowVarArgs)
123             continue;
124           else
125             return false;
126         }
127   }
128 
129   return true;
130 }
131 
132 /// \brief Build a set of blocks to extract if the input blocks are viable.
133 static SetVector<BasicBlock *>
134 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
135                         bool AllowVarArgs) {
136   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
137   SetVector<BasicBlock *> Result;
138 
139   // Loop over the blocks, adding them to our set-vector, and aborting with an
140   // empty set if we encounter invalid blocks.
141   for (BasicBlock *BB : BBs) {
142     // If this block is dead, don't process it.
143     if (DT && !DT->isReachableFromEntry(BB))
144       continue;
145 
146     if (!Result.insert(BB))
147       llvm_unreachable("Repeated basic blocks in extraction input");
148     if (!CodeExtractor::isBlockValidForExtraction(*BB, AllowVarArgs)) {
149       Result.clear();
150       return Result;
151     }
152   }
153 
154 #ifndef NDEBUG
155   for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()),
156                                          E = Result.end();
157        I != E; ++I)
158     for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I);
159          PI != PE; ++PI)
160       assert(Result.count(*PI) &&
161              "No blocks in this region may have entries from outside the region"
162              " except for the first block!");
163 #endif
164 
165   return Result;
166 }
167 
168 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
169                              bool AggregateArgs, BlockFrequencyInfo *BFI,
170                              BranchProbabilityInfo *BPI, bool AllowVarArgs)
171     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
172       BPI(BPI), AllowVarArgs(AllowVarArgs),
173       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs)) {}
174 
175 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
176                              BlockFrequencyInfo *BFI,
177                              BranchProbabilityInfo *BPI)
178     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
179       BPI(BPI), AllowVarArgs(false),
180       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
181                                      /* AllowVarArgs */ false)) {}
182 
183 /// definedInRegion - Return true if the specified value is defined in the
184 /// extracted region.
185 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
186   if (Instruction *I = dyn_cast<Instruction>(V))
187     if (Blocks.count(I->getParent()))
188       return true;
189   return false;
190 }
191 
192 /// definedInCaller - Return true if the specified value is defined in the
193 /// function being code extracted, but not in the region being extracted.
194 /// These values must be passed in as live-ins to the function.
195 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
196   if (isa<Argument>(V)) return true;
197   if (Instruction *I = dyn_cast<Instruction>(V))
198     if (!Blocks.count(I->getParent()))
199       return true;
200   return false;
201 }
202 
203 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
204   BasicBlock *CommonExitBlock = nullptr;
205   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
206     for (auto *Succ : successors(Block)) {
207       // Internal edges, ok.
208       if (Blocks.count(Succ))
209         continue;
210       if (!CommonExitBlock) {
211         CommonExitBlock = Succ;
212         continue;
213       }
214       if (CommonExitBlock == Succ)
215         continue;
216 
217       return true;
218     }
219     return false;
220   };
221 
222   if (any_of(Blocks, hasNonCommonExitSucc))
223     return nullptr;
224 
225   return CommonExitBlock;
226 }
227 
228 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
229     Instruction *Addr) const {
230   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
231   Function *Func = (*Blocks.begin())->getParent();
232   for (BasicBlock &BB : *Func) {
233     if (Blocks.count(&BB))
234       continue;
235     for (Instruction &II : BB) {
236       if (isa<DbgInfoIntrinsic>(II))
237         continue;
238 
239       unsigned Opcode = II.getOpcode();
240       Value *MemAddr = nullptr;
241       switch (Opcode) {
242       case Instruction::Store:
243       case Instruction::Load: {
244         if (Opcode == Instruction::Store) {
245           StoreInst *SI = cast<StoreInst>(&II);
246           MemAddr = SI->getPointerOperand();
247         } else {
248           LoadInst *LI = cast<LoadInst>(&II);
249           MemAddr = LI->getPointerOperand();
250         }
251         // Global variable can not be aliased with locals.
252         if (dyn_cast<Constant>(MemAddr))
253           break;
254         Value *Base = MemAddr->stripInBoundsConstantOffsets();
255         if (!dyn_cast<AllocaInst>(Base) || Base == AI)
256           return false;
257         break;
258       }
259       default: {
260         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
261         if (IntrInst) {
262           if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start ||
263               IntrInst->getIntrinsicID() == Intrinsic::lifetime_end)
264             break;
265           return false;
266         }
267         // Treat all the other cases conservatively if it has side effects.
268         if (II.mayHaveSideEffects())
269           return false;
270       }
271       }
272     }
273   }
274 
275   return true;
276 }
277 
278 BasicBlock *
279 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
280   BasicBlock *SinglePredFromOutlineRegion = nullptr;
281   assert(!Blocks.count(CommonExitBlock) &&
282          "Expect a block outside the region!");
283   for (auto *Pred : predecessors(CommonExitBlock)) {
284     if (!Blocks.count(Pred))
285       continue;
286     if (!SinglePredFromOutlineRegion) {
287       SinglePredFromOutlineRegion = Pred;
288     } else if (SinglePredFromOutlineRegion != Pred) {
289       SinglePredFromOutlineRegion = nullptr;
290       break;
291     }
292   }
293 
294   if (SinglePredFromOutlineRegion)
295     return SinglePredFromOutlineRegion;
296 
297 #ifndef NDEBUG
298   auto getFirstPHI = [](BasicBlock *BB) {
299     BasicBlock::iterator I = BB->begin();
300     PHINode *FirstPhi = nullptr;
301     while (I != BB->end()) {
302       PHINode *Phi = dyn_cast<PHINode>(I);
303       if (!Phi)
304         break;
305       if (!FirstPhi) {
306         FirstPhi = Phi;
307         break;
308       }
309     }
310     return FirstPhi;
311   };
312   // If there are any phi nodes, the single pred either exists or has already
313   // be created before code extraction.
314   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
315 #endif
316 
317   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
318       CommonExitBlock->getFirstNonPHI()->getIterator());
319 
320   for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
321        PI != PE;) {
322     BasicBlock *Pred = *PI++;
323     if (Blocks.count(Pred))
324       continue;
325     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
326   }
327   // Now add the old exit block to the outline region.
328   Blocks.insert(CommonExitBlock);
329   return CommonExitBlock;
330 }
331 
332 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands,
333                                 BasicBlock *&ExitBlock) const {
334   Function *Func = (*Blocks.begin())->getParent();
335   ExitBlock = getCommonExitBlock(Blocks);
336 
337   for (BasicBlock &BB : *Func) {
338     if (Blocks.count(&BB))
339       continue;
340     for (Instruction &II : BB) {
341       auto *AI = dyn_cast<AllocaInst>(&II);
342       if (!AI)
343         continue;
344 
345       // Find the pair of life time markers for address 'Addr' that are either
346       // defined inside the outline region or can legally be shrinkwrapped into
347       // the outline region. If there are not other untracked uses of the
348       // address, return the pair of markers if found; otherwise return a pair
349       // of nullptr.
350       auto GetLifeTimeMarkers =
351           [&](Instruction *Addr, bool &SinkLifeStart,
352               bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> {
353         Instruction *LifeStart = nullptr, *LifeEnd = nullptr;
354 
355         for (User *U : Addr->users()) {
356           IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
357           if (IntrInst) {
358             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
359               // Do not handle the case where AI has multiple start markers.
360               if (LifeStart)
361                 return std::make_pair<Instruction *>(nullptr, nullptr);
362               LifeStart = IntrInst;
363             }
364             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
365               if (LifeEnd)
366                 return std::make_pair<Instruction *>(nullptr, nullptr);
367               LifeEnd = IntrInst;
368             }
369             continue;
370           }
371           // Find untracked uses of the address, bail.
372           if (!definedInRegion(Blocks, U))
373             return std::make_pair<Instruction *>(nullptr, nullptr);
374         }
375 
376         if (!LifeStart || !LifeEnd)
377           return std::make_pair<Instruction *>(nullptr, nullptr);
378 
379         SinkLifeStart = !definedInRegion(Blocks, LifeStart);
380         HoistLifeEnd = !definedInRegion(Blocks, LifeEnd);
381         // Do legality Check.
382         if ((SinkLifeStart || HoistLifeEnd) &&
383             !isLegalToShrinkwrapLifetimeMarkers(Addr))
384           return std::make_pair<Instruction *>(nullptr, nullptr);
385 
386         // Check to see if we have a place to do hoisting, if not, bail.
387         if (HoistLifeEnd && !ExitBlock)
388           return std::make_pair<Instruction *>(nullptr, nullptr);
389 
390         return std::make_pair(LifeStart, LifeEnd);
391       };
392 
393       bool SinkLifeStart = false, HoistLifeEnd = false;
394       auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd);
395 
396       if (Markers.first) {
397         if (SinkLifeStart)
398           SinkCands.insert(Markers.first);
399         SinkCands.insert(AI);
400         if (HoistLifeEnd)
401           HoistCands.insert(Markers.second);
402         continue;
403       }
404 
405       // Follow the bitcast.
406       Instruction *MarkerAddr = nullptr;
407       for (User *U : AI->users()) {
408         if (U->stripInBoundsConstantOffsets() == AI) {
409           SinkLifeStart = false;
410           HoistLifeEnd = false;
411           Instruction *Bitcast = cast<Instruction>(U);
412           Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd);
413           if (Markers.first) {
414             MarkerAddr = Bitcast;
415             continue;
416           }
417         }
418 
419         // Found unknown use of AI.
420         if (!definedInRegion(Blocks, U)) {
421           MarkerAddr = nullptr;
422           break;
423         }
424       }
425 
426       if (MarkerAddr) {
427         if (SinkLifeStart)
428           SinkCands.insert(Markers.first);
429         if (!definedInRegion(Blocks, MarkerAddr))
430           SinkCands.insert(MarkerAddr);
431         SinkCands.insert(AI);
432         if (HoistLifeEnd)
433           HoistCands.insert(Markers.second);
434       }
435     }
436   }
437 }
438 
439 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
440                                       const ValueSet &SinkCands) const {
441   for (BasicBlock *BB : Blocks) {
442     // If a used value is defined outside the region, it's an input.  If an
443     // instruction is used outside the region, it's an output.
444     for (Instruction &II : *BB) {
445       for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
446            ++OI) {
447         Value *V = *OI;
448         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
449           Inputs.insert(V);
450       }
451 
452       for (User *U : II.users())
453         if (!definedInRegion(Blocks, U)) {
454           Outputs.insert(&II);
455           break;
456         }
457     }
458   }
459 }
460 
461 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
462 /// region, we need to split the entry block of the region so that the PHI node
463 /// is easier to deal with.
464 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
465   unsigned NumPredsFromRegion = 0;
466   unsigned NumPredsOutsideRegion = 0;
467 
468   if (Header != &Header->getParent()->getEntryBlock()) {
469     PHINode *PN = dyn_cast<PHINode>(Header->begin());
470     if (!PN) return;  // No PHI nodes.
471 
472     // If the header node contains any PHI nodes, check to see if there is more
473     // than one entry from outside the region.  If so, we need to sever the
474     // header block into two.
475     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
476       if (Blocks.count(PN->getIncomingBlock(i)))
477         ++NumPredsFromRegion;
478       else
479         ++NumPredsOutsideRegion;
480 
481     // If there is one (or fewer) predecessor from outside the region, we don't
482     // need to do anything special.
483     if (NumPredsOutsideRegion <= 1) return;
484   }
485 
486   // Otherwise, we need to split the header block into two pieces: one
487   // containing PHI nodes merging values from outside of the region, and a
488   // second that contains all of the code for the block and merges back any
489   // incoming values from inside of the region.
490   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
491 
492   // We only want to code extract the second block now, and it becomes the new
493   // header of the region.
494   BasicBlock *OldPred = Header;
495   Blocks.remove(OldPred);
496   Blocks.insert(NewBB);
497   Header = NewBB;
498 
499   // Okay, now we need to adjust the PHI nodes and any branches from within the
500   // region to go to the new header block instead of the old header block.
501   if (NumPredsFromRegion) {
502     PHINode *PN = cast<PHINode>(OldPred->begin());
503     // Loop over all of the predecessors of OldPred that are in the region,
504     // changing them to branch to NewBB instead.
505     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
506       if (Blocks.count(PN->getIncomingBlock(i))) {
507         TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
508         TI->replaceUsesOfWith(OldPred, NewBB);
509       }
510 
511     // Okay, everything within the region is now branching to the right block, we
512     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
513     BasicBlock::iterator AfterPHIs;
514     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
515       PHINode *PN = cast<PHINode>(AfterPHIs);
516       // Create a new PHI node in the new region, which has an incoming value
517       // from OldPred of PN.
518       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
519                                        PN->getName() + ".ce", &NewBB->front());
520       PN->replaceAllUsesWith(NewPN);
521       NewPN->addIncoming(PN, OldPred);
522 
523       // Loop over all of the incoming value in PN, moving them to NewPN if they
524       // are from the extracted region.
525       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
526         if (Blocks.count(PN->getIncomingBlock(i))) {
527           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
528           PN->removeIncomingValue(i);
529           --i;
530         }
531       }
532     }
533   }
534 }
535 
536 void CodeExtractor::splitReturnBlocks() {
537   for (BasicBlock *Block : Blocks)
538     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
539       BasicBlock *New =
540           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
541       if (DT) {
542         // Old dominates New. New node dominates all other nodes dominated
543         // by Old.
544         DomTreeNode *OldNode = DT->getNode(Block);
545         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
546                                                OldNode->end());
547 
548         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
549 
550         for (DomTreeNode *I : Children)
551           DT->changeImmediateDominator(I, NewNode);
552       }
553     }
554 }
555 
556 /// constructFunction - make a function based on inputs and outputs, as follows:
557 /// f(in0, ..., inN, out0, ..., outN)
558 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
559                                            const ValueSet &outputs,
560                                            BasicBlock *header,
561                                            BasicBlock *newRootNode,
562                                            BasicBlock *newHeader,
563                                            Function *oldFunction,
564                                            Module *M) {
565   DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
566   DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
567 
568   // This function returns unsigned, outputs will go back by reference.
569   switch (NumExitBlocks) {
570   case 0:
571   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
572   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
573   default: RetTy = Type::getInt16Ty(header->getContext()); break;
574   }
575 
576   std::vector<Type *> paramTy;
577 
578   // Add the types of the input values to the function's argument list
579   for (Value *value : inputs) {
580     DEBUG(dbgs() << "value used in func: " << *value << "\n");
581     paramTy.push_back(value->getType());
582   }
583 
584   // Add the types of the output values to the function's argument list.
585   for (Value *output : outputs) {
586     DEBUG(dbgs() << "instr used in func: " << *output << "\n");
587     if (AggregateArgs)
588       paramTy.push_back(output->getType());
589     else
590       paramTy.push_back(PointerType::getUnqual(output->getType()));
591   }
592 
593   DEBUG({
594     dbgs() << "Function type: " << *RetTy << " f(";
595     for (Type *i : paramTy)
596       dbgs() << *i << ", ";
597     dbgs() << ")\n";
598   });
599 
600   StructType *StructTy;
601   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
602     StructTy = StructType::get(M->getContext(), paramTy);
603     paramTy.clear();
604     paramTy.push_back(PointerType::getUnqual(StructTy));
605   }
606   FunctionType *funcType =
607                   FunctionType::get(RetTy, paramTy,
608                                     AllowVarArgs && oldFunction->isVarArg());
609 
610   // Create the new function
611   Function *newFunction = Function::Create(funcType,
612                                            GlobalValue::InternalLinkage,
613                                            oldFunction->getName() + "_" +
614                                            header->getName(), M);
615   // If the old function is no-throw, so is the new one.
616   if (oldFunction->doesNotThrow())
617     newFunction->setDoesNotThrow();
618 
619   // Inherit the uwtable attribute if we need to.
620   if (oldFunction->hasUWTable())
621     newFunction->setHasUWTable();
622 
623   // Inherit all of the target dependent attributes.
624   //  (e.g. If the extracted region contains a call to an x86.sse
625   //  instruction we need to make sure that the extracted region has the
626   //  "target-features" attribute allowing it to be lowered.
627   // FIXME: This should be changed to check to see if a specific
628   //           attribute can not be inherited.
629   AttrBuilder AB(oldFunction->getAttributes().getFnAttributes());
630   for (const auto &Attr : AB.td_attrs())
631     newFunction->addFnAttr(Attr.first, Attr.second);
632 
633   newFunction->getBasicBlockList().push_back(newRootNode);
634 
635   // Create an iterator to name all of the arguments we inserted.
636   Function::arg_iterator AI = newFunction->arg_begin();
637 
638   // Rewrite all users of the inputs in the extracted region to use the
639   // arguments (or appropriate addressing into struct) instead.
640   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
641     Value *RewriteVal;
642     if (AggregateArgs) {
643       Value *Idx[2];
644       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
645       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
646       TerminatorInst *TI = newFunction->begin()->getTerminator();
647       GetElementPtrInst *GEP = GetElementPtrInst::Create(
648           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
649       RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
650     } else
651       RewriteVal = &*AI++;
652 
653     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
654     for (User *use : Users)
655       if (Instruction *inst = dyn_cast<Instruction>(use))
656         if (Blocks.count(inst->getParent()))
657           inst->replaceUsesOfWith(inputs[i], RewriteVal);
658   }
659 
660   // Set names for input and output arguments.
661   if (!AggregateArgs) {
662     AI = newFunction->arg_begin();
663     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
664       AI->setName(inputs[i]->getName());
665     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
666       AI->setName(outputs[i]->getName()+".out");
667   }
668 
669   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
670   // within the new function. This must be done before we lose track of which
671   // blocks were originally in the code region.
672   std::vector<User *> Users(header->user_begin(), header->user_end());
673   for (unsigned i = 0, e = Users.size(); i != e; ++i)
674     // The BasicBlock which contains the branch is not in the region
675     // modify the branch target to a new block
676     if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
677       if (!Blocks.count(TI->getParent()) &&
678           TI->getParent()->getParent() == oldFunction)
679         TI->replaceUsesOfWith(header, newHeader);
680 
681   return newFunction;
682 }
683 
684 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
685 /// the call instruction, splitting any PHI nodes in the header block as
686 /// necessary.
687 void CodeExtractor::
688 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
689                            ValueSet &inputs, ValueSet &outputs) {
690   // Emit a call to the new function, passing in: *pointer to struct (if
691   // aggregating parameters), or plan inputs and allocated memory for outputs
692   std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
693 
694   Module *M = newFunction->getParent();
695   LLVMContext &Context = M->getContext();
696   const DataLayout &DL = M->getDataLayout();
697 
698   // Add inputs as params, or to be filled into the struct
699   for (Value *input : inputs)
700     if (AggregateArgs)
701       StructValues.push_back(input);
702     else
703       params.push_back(input);
704 
705   // Create allocas for the outputs
706   for (Value *output : outputs) {
707     if (AggregateArgs) {
708       StructValues.push_back(output);
709     } else {
710       AllocaInst *alloca =
711         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
712                        nullptr, output->getName() + ".loc",
713                        &codeReplacer->getParent()->front().front());
714       ReloadOutputs.push_back(alloca);
715       params.push_back(alloca);
716     }
717   }
718 
719   StructType *StructArgTy = nullptr;
720   AllocaInst *Struct = nullptr;
721   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
722     std::vector<Type *> ArgTypes;
723     for (ValueSet::iterator v = StructValues.begin(),
724            ve = StructValues.end(); v != ve; ++v)
725       ArgTypes.push_back((*v)->getType());
726 
727     // Allocate a struct at the beginning of this function
728     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
729     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
730                             "structArg",
731                             &codeReplacer->getParent()->front().front());
732     params.push_back(Struct);
733 
734     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
735       Value *Idx[2];
736       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
737       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
738       GetElementPtrInst *GEP = GetElementPtrInst::Create(
739           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
740       codeReplacer->getInstList().push_back(GEP);
741       StoreInst *SI = new StoreInst(StructValues[i], GEP);
742       codeReplacer->getInstList().push_back(SI);
743     }
744   }
745 
746   // Emit the call to the function
747   CallInst *call = CallInst::Create(newFunction, params,
748                                     NumExitBlocks > 1 ? "targetBlock" : "");
749   codeReplacer->getInstList().push_back(call);
750 
751   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
752   unsigned FirstOut = inputs.size();
753   if (!AggregateArgs)
754     std::advance(OutputArgBegin, inputs.size());
755 
756   // Reload the outputs passed in by reference.
757   Function::arg_iterator OAI = OutputArgBegin;
758   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
759     Value *Output = nullptr;
760     if (AggregateArgs) {
761       Value *Idx[2];
762       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
763       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
764       GetElementPtrInst *GEP = GetElementPtrInst::Create(
765           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
766       codeReplacer->getInstList().push_back(GEP);
767       Output = GEP;
768     } else {
769       Output = ReloadOutputs[i];
770     }
771     LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
772     Reloads.push_back(load);
773     codeReplacer->getInstList().push_back(load);
774     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
775     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
776       Instruction *inst = cast<Instruction>(Users[u]);
777       if (!Blocks.count(inst->getParent()))
778         inst->replaceUsesOfWith(outputs[i], load);
779     }
780 
781     // Store to argument right after the definition of output value.
782     auto *OutI = dyn_cast<Instruction>(outputs[i]);
783     if (!OutI)
784       continue;
785     // Find proper insertion point.
786     Instruction *InsertPt = OutI->getNextNode();
787     // Let's assume that there is no other guy interleave non-PHI in PHIs.
788     if (isa<PHINode>(InsertPt))
789       InsertPt = InsertPt->getParent()->getFirstNonPHI();
790 
791     assert(OAI != newFunction->arg_end() &&
792            "Number of output arguments should match "
793            "the amount of defined values");
794     if (AggregateArgs) {
795       Value *Idx[2];
796       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
797       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
798       GetElementPtrInst *GEP = GetElementPtrInst::Create(
799           StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), InsertPt);
800       new StoreInst(outputs[i], GEP, InsertPt);
801       // Since there should be only one struct argument aggregating
802       // all the output values, we shouldn't increment OAI, which always
803       // points to the struct argument, in this case.
804     } else {
805       new StoreInst(outputs[i], &*OAI, InsertPt);
806       ++OAI;
807     }
808   }
809 
810   // Now we can emit a switch statement using the call as a value.
811   SwitchInst *TheSwitch =
812       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
813                          codeReplacer, 0, codeReplacer);
814 
815   // Since there may be multiple exits from the original region, make the new
816   // function return an unsigned, switch on that number.  This loop iterates
817   // over all of the blocks in the extracted region, updating any terminator
818   // instructions in the to-be-extracted region that branch to blocks that are
819   // not in the region to be extracted.
820   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
821 
822   unsigned switchVal = 0;
823   for (BasicBlock *Block : Blocks) {
824     TerminatorInst *TI = Block->getTerminator();
825     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
826       if (!Blocks.count(TI->getSuccessor(i))) {
827         BasicBlock *OldTarget = TI->getSuccessor(i);
828         // add a new basic block which returns the appropriate value
829         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
830         if (!NewTarget) {
831           // If we don't already have an exit stub for this non-extracted
832           // destination, create one now!
833           NewTarget = BasicBlock::Create(Context,
834                                          OldTarget->getName() + ".exitStub",
835                                          newFunction);
836           unsigned SuccNum = switchVal++;
837 
838           Value *brVal = nullptr;
839           switch (NumExitBlocks) {
840           case 0:
841           case 1: break;  // No value needed.
842           case 2:         // Conditional branch, return a bool
843             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
844             break;
845           default:
846             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
847             break;
848           }
849 
850           ReturnInst::Create(Context, brVal, NewTarget);
851 
852           // Update the switch instruction.
853           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
854                                               SuccNum),
855                              OldTarget);
856         }
857 
858         // rewrite the original branch instruction with this new target
859         TI->setSuccessor(i, NewTarget);
860       }
861   }
862 
863   // Now that we've done the deed, simplify the switch instruction.
864   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
865   switch (NumExitBlocks) {
866   case 0:
867     // There are no successors (the block containing the switch itself), which
868     // means that previously this was the last part of the function, and hence
869     // this should be rewritten as a `ret'
870 
871     // Check if the function should return a value
872     if (OldFnRetTy->isVoidTy()) {
873       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
874     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
875       // return what we have
876       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
877     } else {
878       // Otherwise we must have code extracted an unwind or something, just
879       // return whatever we want.
880       ReturnInst::Create(Context,
881                          Constant::getNullValue(OldFnRetTy), TheSwitch);
882     }
883 
884     TheSwitch->eraseFromParent();
885     break;
886   case 1:
887     // Only a single destination, change the switch into an unconditional
888     // branch.
889     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
890     TheSwitch->eraseFromParent();
891     break;
892   case 2:
893     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
894                        call, TheSwitch);
895     TheSwitch->eraseFromParent();
896     break;
897   default:
898     // Otherwise, make the default destination of the switch instruction be one
899     // of the other successors.
900     TheSwitch->setCondition(call);
901     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
902     // Remove redundant case
903     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
904     break;
905   }
906 }
907 
908 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
909   Function *oldFunc = (*Blocks.begin())->getParent();
910   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
911   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
912 
913   for (BasicBlock *Block : Blocks) {
914     // Delete the basic block from the old function, and the list of blocks
915     oldBlocks.remove(Block);
916 
917     // Insert this basic block into the new function
918     newBlocks.push_back(Block);
919   }
920 }
921 
922 void CodeExtractor::calculateNewCallTerminatorWeights(
923     BasicBlock *CodeReplacer,
924     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
925     BranchProbabilityInfo *BPI) {
926   using Distribution = BlockFrequencyInfoImplBase::Distribution;
927   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
928 
929   // Update the branch weights for the exit block.
930   TerminatorInst *TI = CodeReplacer->getTerminator();
931   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
932 
933   // Block Frequency distribution with dummy node.
934   Distribution BranchDist;
935 
936   // Add each of the frequencies of the successors.
937   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
938     BlockNode ExitNode(i);
939     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
940     if (ExitFreq != 0)
941       BranchDist.addExit(ExitNode, ExitFreq);
942     else
943       BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
944   }
945 
946   // Check for no total weight.
947   if (BranchDist.Total == 0)
948     return;
949 
950   // Normalize the distribution so that they can fit in unsigned.
951   BranchDist.normalize();
952 
953   // Create normalized branch weights and set the metadata.
954   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
955     const auto &Weight = BranchDist.Weights[I];
956 
957     // Get the weight and update the current BFI.
958     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
959     BranchProbability BP(Weight.Amount, BranchDist.Total);
960     BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
961   }
962   TI->setMetadata(
963       LLVMContext::MD_prof,
964       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
965 }
966 
967 Function *CodeExtractor::extractCodeRegion() {
968   if (!isEligible())
969     return nullptr;
970 
971   // Assumption: this is a single-entry code region, and the header is the first
972   // block in the region.
973   BasicBlock *header = *Blocks.begin();
974   Function *oldFunction = header->getParent();
975 
976   // For functions with varargs, check that varargs handling is only done in the
977   // outlined function, i.e vastart and vaend are only used in outlined blocks.
978   if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) {
979     auto containsVarArgIntrinsic = [](Instruction &I) {
980       if (const CallInst *CI = dyn_cast<CallInst>(&I))
981         if (const Function *F = CI->getCalledFunction())
982           return F->getIntrinsicID() == Intrinsic::vastart ||
983                  F->getIntrinsicID() == Intrinsic::vaend;
984       return false;
985     };
986 
987     for (auto &BB : *oldFunction) {
988       if (Blocks.count(&BB))
989         continue;
990       if (llvm::any_of(BB, containsVarArgIntrinsic))
991         return nullptr;
992     }
993   }
994   ValueSet inputs, outputs, SinkingCands, HoistingCands;
995   BasicBlock *CommonExit = nullptr;
996 
997   // Calculate the entry frequency of the new function before we change the root
998   //   block.
999   BlockFrequency EntryFreq;
1000   if (BFI) {
1001     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1002     for (BasicBlock *Pred : predecessors(header)) {
1003       if (Blocks.count(Pred))
1004         continue;
1005       EntryFreq +=
1006           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1007     }
1008   }
1009 
1010   // If we have to split PHI nodes or the entry block, do so now.
1011   severSplitPHINodes(header);
1012 
1013   // If we have any return instructions in the region, split those blocks so
1014   // that the return is not in the region.
1015   splitReturnBlocks();
1016 
1017   // This takes place of the original loop
1018   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1019                                                 "codeRepl", oldFunction,
1020                                                 header);
1021 
1022   // The new function needs a root node because other nodes can branch to the
1023   // head of the region, but the entry node of a function cannot have preds.
1024   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1025                                                "newFuncRoot");
1026   newFuncRoot->getInstList().push_back(BranchInst::Create(header));
1027 
1028   findAllocas(SinkingCands, HoistingCands, CommonExit);
1029   assert(HoistingCands.empty() || CommonExit);
1030 
1031   // Find inputs to, outputs from the code region.
1032   findInputsOutputs(inputs, outputs, SinkingCands);
1033 
1034   // Now sink all instructions which only have non-phi uses inside the region
1035   for (auto *II : SinkingCands)
1036     cast<Instruction>(II)->moveBefore(*newFuncRoot,
1037                                       newFuncRoot->getFirstInsertionPt());
1038 
1039   if (!HoistingCands.empty()) {
1040     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1041     Instruction *TI = HoistToBlock->getTerminator();
1042     for (auto *II : HoistingCands)
1043       cast<Instruction>(II)->moveBefore(TI);
1044   }
1045 
1046   // Calculate the exit blocks for the extracted region and the total exit
1047   // weights for each of those blocks.
1048   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1049   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1050   for (BasicBlock *Block : Blocks) {
1051     for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1052          ++SI) {
1053       if (!Blocks.count(*SI)) {
1054         // Update the branch weight for this successor.
1055         if (BFI) {
1056           BlockFrequency &BF = ExitWeights[*SI];
1057           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1058         }
1059         ExitBlocks.insert(*SI);
1060       }
1061     }
1062   }
1063   NumExitBlocks = ExitBlocks.size();
1064 
1065   // Construct new function based on inputs/outputs & add allocas for all defs.
1066   Function *newFunction = constructFunction(inputs, outputs, header,
1067                                             newFuncRoot,
1068                                             codeReplacer, oldFunction,
1069                                             oldFunction->getParent());
1070 
1071   // Update the entry count of the function.
1072   if (BFI) {
1073     Optional<uint64_t> EntryCount =
1074         BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1075     if (EntryCount.hasValue())
1076       newFunction->setEntryCount(EntryCount.getValue());
1077     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1078   }
1079 
1080   emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1081 
1082   moveCodeToFunction(newFunction);
1083 
1084   // Update the branch weights for the exit block.
1085   if (BFI && NumExitBlocks > 1)
1086     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1087 
1088   // Loop over all of the PHI nodes in the header block, and change any
1089   // references to the old incoming edge to be the new incoming edge.
1090   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1091     PHINode *PN = cast<PHINode>(I);
1092     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1093       if (!Blocks.count(PN->getIncomingBlock(i)))
1094         PN->setIncomingBlock(i, newFuncRoot);
1095   }
1096 
1097   // Look at all successors of the codeReplacer block.  If any of these blocks
1098   // had PHI nodes in them, we need to update the "from" block to be the code
1099   // replacer, not the original block in the extracted region.
1100   std::vector<BasicBlock *> Succs(succ_begin(codeReplacer),
1101                                   succ_end(codeReplacer));
1102   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
1103     for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
1104       PHINode *PN = cast<PHINode>(I);
1105       std::set<BasicBlock*> ProcessedPreds;
1106       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1107         if (Blocks.count(PN->getIncomingBlock(i))) {
1108           if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
1109             PN->setIncomingBlock(i, codeReplacer);
1110           else {
1111             // There were multiple entries in the PHI for this block, now there
1112             // is only one, so remove the duplicated entries.
1113             PN->removeIncomingValue(i, false);
1114             --i; --e;
1115           }
1116         }
1117     }
1118 
1119   DEBUG(if (verifyFunction(*newFunction))
1120         report_fatal_error("verifyFunction failed!"));
1121   return newFunction;
1122 }
1123