1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/Verifier.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/BlockFrequency.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <map>
66 #include <set>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 using namespace llvm::PatternMatch;
72 using ProfileCount = Function::ProfileCount;
73 
74 #define DEBUG_TYPE "code-extractor"
75 
76 // Provide a command-line option to aggregate function arguments into a struct
77 // for functions produced by the code extractor. This is useful when converting
78 // extracted functions to pthread-based code, as only one argument (void*) can
79 // be passed in to pthread_create().
80 static cl::opt<bool>
81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
82                  cl::desc("Aggregate arguments to code-extracted functions"));
83 
84 /// Test whether a block is valid for extraction.
85 static bool isBlockValidForExtraction(const BasicBlock &BB,
86                                       const SetVector<BasicBlock *> &Result,
87                                       bool AllowVarArgs, bool AllowAlloca) {
88   // taking the address of a basic block moved to another function is illegal
89   if (BB.hasAddressTaken())
90     return false;
91 
92   // don't hoist code that uses another basicblock address, as it's likely to
93   // lead to unexpected behavior, like cross-function jumps
94   SmallPtrSet<User const *, 16> Visited;
95   SmallVector<User const *, 16> ToVisit;
96 
97   for (Instruction const &Inst : BB)
98     ToVisit.push_back(&Inst);
99 
100   while (!ToVisit.empty()) {
101     User const *Curr = ToVisit.pop_back_val();
102     if (!Visited.insert(Curr).second)
103       continue;
104     if (isa<BlockAddress const>(Curr))
105       return false; // even a reference to self is likely to be not compatible
106 
107     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
108       continue;
109 
110     for (auto const &U : Curr->operands()) {
111       if (auto *UU = dyn_cast<User>(U))
112         ToVisit.push_back(UU);
113     }
114   }
115 
116   // If explicitly requested, allow vastart and alloca. For invoke instructions
117   // verify that extraction is valid.
118   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
119     if (isa<AllocaInst>(I)) {
120        if (!AllowAlloca)
121          return false;
122        continue;
123     }
124 
125     if (const auto *II = dyn_cast<InvokeInst>(I)) {
126       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
127       // must be a part of the subgraph which is being extracted.
128       if (auto *UBB = II->getUnwindDest())
129         if (!Result.count(UBB))
130           return false;
131       continue;
132     }
133 
134     // All catch handlers of a catchswitch instruction as well as the unwind
135     // destination must be in the subgraph.
136     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
137       if (auto *UBB = CSI->getUnwindDest())
138         if (!Result.count(UBB))
139           return false;
140       for (auto *HBB : CSI->handlers())
141         if (!Result.count(const_cast<BasicBlock*>(HBB)))
142           return false;
143       continue;
144     }
145 
146     // Make sure that entire catch handler is within subgraph. It is sufficient
147     // to check that catch return's block is in the list.
148     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
149       for (const auto *U : CPI->users())
150         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
151           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
152             return false;
153       continue;
154     }
155 
156     // And do similar checks for cleanup handler - the entire handler must be
157     // in subgraph which is going to be extracted. For cleanup return should
158     // additionally check that the unwind destination is also in the subgraph.
159     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
160       for (const auto *U : CPI->users())
161         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
162           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
163             return false;
164       continue;
165     }
166     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
167       if (auto *UBB = CRI->getUnwindDest())
168         if (!Result.count(UBB))
169           return false;
170       continue;
171     }
172 
173     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
174       if (const Function *F = CI->getCalledFunction()) {
175         auto IID = F->getIntrinsicID();
176         if (IID == Intrinsic::vastart) {
177           if (AllowVarArgs)
178             continue;
179           else
180             return false;
181         }
182 
183         // Currently, we miscompile outlined copies of eh_typid_for. There are
184         // proposals for fixing this in llvm.org/PR39545.
185         if (IID == Intrinsic::eh_typeid_for)
186           return false;
187       }
188     }
189   }
190 
191   return true;
192 }
193 
194 /// Build a set of blocks to extract if the input blocks are viable.
195 static SetVector<BasicBlock *>
196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
197                         bool AllowVarArgs, bool AllowAlloca) {
198   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199   SetVector<BasicBlock *> Result;
200 
201   // Loop over the blocks, adding them to our set-vector, and aborting with an
202   // empty set if we encounter invalid blocks.
203   for (BasicBlock *BB : BBs) {
204     // If this block is dead, don't process it.
205     if (DT && !DT->isReachableFromEntry(BB))
206       continue;
207 
208     if (!Result.insert(BB))
209       llvm_unreachable("Repeated basic blocks in extraction input");
210   }
211 
212   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
213                     << '\n');
214 
215   for (auto *BB : Result) {
216     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
217       return {};
218 
219     // Make sure that the first block is not a landing pad.
220     if (BB == Result.front()) {
221       if (BB->isEHPad()) {
222         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
223         return {};
224       }
225       continue;
226     }
227 
228     // All blocks other than the first must not have predecessors outside of
229     // the subgraph which is being extracted.
230     for (auto *PBB : predecessors(BB))
231       if (!Result.count(PBB)) {
232         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
233                              "outside the region except for the first block!\n"
234                           << "Problematic source BB: " << BB->getName() << "\n"
235                           << "Problematic destination BB: " << PBB->getName()
236                           << "\n");
237         return {};
238       }
239   }
240 
241   return Result;
242 }
243 
244 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
245                              bool AggregateArgs, BlockFrequencyInfo *BFI,
246                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
247                              bool AllowVarArgs, bool AllowAlloca,
248                              std::string Suffix)
249     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
250       BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
251       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
252       Suffix(Suffix) {}
253 
254 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
255                              BlockFrequencyInfo *BFI,
256                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
257                              std::string Suffix)
258     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
259       BPI(BPI), AC(AC), AllowVarArgs(false),
260       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
261                                      /* AllowVarArgs */ false,
262                                      /* AllowAlloca */ false)),
263       Suffix(Suffix) {}
264 
265 /// definedInRegion - Return true if the specified value is defined in the
266 /// extracted region.
267 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
268   if (Instruction *I = dyn_cast<Instruction>(V))
269     if (Blocks.count(I->getParent()))
270       return true;
271   return false;
272 }
273 
274 /// definedInCaller - Return true if the specified value is defined in the
275 /// function being code extracted, but not in the region being extracted.
276 /// These values must be passed in as live-ins to the function.
277 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
278   if (isa<Argument>(V)) return true;
279   if (Instruction *I = dyn_cast<Instruction>(V))
280     if (!Blocks.count(I->getParent()))
281       return true;
282   return false;
283 }
284 
285 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
286   BasicBlock *CommonExitBlock = nullptr;
287   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
288     for (auto *Succ : successors(Block)) {
289       // Internal edges, ok.
290       if (Blocks.count(Succ))
291         continue;
292       if (!CommonExitBlock) {
293         CommonExitBlock = Succ;
294         continue;
295       }
296       if (CommonExitBlock == Succ)
297         continue;
298 
299       return true;
300     }
301     return false;
302   };
303 
304   if (any_of(Blocks, hasNonCommonExitSucc))
305     return nullptr;
306 
307   return CommonExitBlock;
308 }
309 
310 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
311     Instruction *Addr) const {
312   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
313   Function *Func = (*Blocks.begin())->getParent();
314   for (BasicBlock &BB : *Func) {
315     if (Blocks.count(&BB))
316       continue;
317     for (Instruction &II : BB) {
318       if (isa<DbgInfoIntrinsic>(II))
319         continue;
320 
321       unsigned Opcode = II.getOpcode();
322       Value *MemAddr = nullptr;
323       switch (Opcode) {
324       case Instruction::Store:
325       case Instruction::Load: {
326         if (Opcode == Instruction::Store) {
327           StoreInst *SI = cast<StoreInst>(&II);
328           MemAddr = SI->getPointerOperand();
329         } else {
330           LoadInst *LI = cast<LoadInst>(&II);
331           MemAddr = LI->getPointerOperand();
332         }
333         // Global variable can not be aliased with locals.
334         if (dyn_cast<Constant>(MemAddr))
335           break;
336         Value *Base = MemAddr->stripInBoundsConstantOffsets();
337         if (!isa<AllocaInst>(Base) || Base == AI)
338           return false;
339         break;
340       }
341       default: {
342         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
343         if (IntrInst) {
344           if (IntrInst->isLifetimeStartOrEnd())
345             break;
346           return false;
347         }
348         // Treat all the other cases conservatively if it has side effects.
349         if (II.mayHaveSideEffects())
350           return false;
351       }
352       }
353     }
354   }
355 
356   return true;
357 }
358 
359 BasicBlock *
360 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
361   BasicBlock *SinglePredFromOutlineRegion = nullptr;
362   assert(!Blocks.count(CommonExitBlock) &&
363          "Expect a block outside the region!");
364   for (auto *Pred : predecessors(CommonExitBlock)) {
365     if (!Blocks.count(Pred))
366       continue;
367     if (!SinglePredFromOutlineRegion) {
368       SinglePredFromOutlineRegion = Pred;
369     } else if (SinglePredFromOutlineRegion != Pred) {
370       SinglePredFromOutlineRegion = nullptr;
371       break;
372     }
373   }
374 
375   if (SinglePredFromOutlineRegion)
376     return SinglePredFromOutlineRegion;
377 
378 #ifndef NDEBUG
379   auto getFirstPHI = [](BasicBlock *BB) {
380     BasicBlock::iterator I = BB->begin();
381     PHINode *FirstPhi = nullptr;
382     while (I != BB->end()) {
383       PHINode *Phi = dyn_cast<PHINode>(I);
384       if (!Phi)
385         break;
386       if (!FirstPhi) {
387         FirstPhi = Phi;
388         break;
389       }
390     }
391     return FirstPhi;
392   };
393   // If there are any phi nodes, the single pred either exists or has already
394   // be created before code extraction.
395   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
396 #endif
397 
398   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
399       CommonExitBlock->getFirstNonPHI()->getIterator());
400 
401   for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
402        PI != PE;) {
403     BasicBlock *Pred = *PI++;
404     if (Blocks.count(Pred))
405       continue;
406     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
407   }
408   // Now add the old exit block to the outline region.
409   Blocks.insert(CommonExitBlock);
410   return CommonExitBlock;
411 }
412 
413 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands,
414                                 BasicBlock *&ExitBlock) const {
415   Function *Func = (*Blocks.begin())->getParent();
416   ExitBlock = getCommonExitBlock(Blocks);
417 
418   for (BasicBlock &BB : *Func) {
419     if (Blocks.count(&BB))
420       continue;
421     for (Instruction &II : BB) {
422       auto *AI = dyn_cast<AllocaInst>(&II);
423       if (!AI)
424         continue;
425 
426       // Find the pair of life time markers for address 'Addr' that are either
427       // defined inside the outline region or can legally be shrinkwrapped into
428       // the outline region. If there are not other untracked uses of the
429       // address, return the pair of markers if found; otherwise return a pair
430       // of nullptr.
431       auto GetLifeTimeMarkers =
432           [&](Instruction *Addr, bool &SinkLifeStart,
433               bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> {
434         Instruction *LifeStart = nullptr, *LifeEnd = nullptr;
435 
436         for (User *U : Addr->users()) {
437           IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
438           if (IntrInst) {
439             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
440               // Do not handle the case where AI has multiple start markers.
441               if (LifeStart)
442                 return std::make_pair<Instruction *>(nullptr, nullptr);
443               LifeStart = IntrInst;
444             }
445             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
446               if (LifeEnd)
447                 return std::make_pair<Instruction *>(nullptr, nullptr);
448               LifeEnd = IntrInst;
449             }
450             continue;
451           }
452           // Find untracked uses of the address, bail.
453           if (!definedInRegion(Blocks, U))
454             return std::make_pair<Instruction *>(nullptr, nullptr);
455         }
456 
457         if (!LifeStart || !LifeEnd)
458           return std::make_pair<Instruction *>(nullptr, nullptr);
459 
460         SinkLifeStart = !definedInRegion(Blocks, LifeStart);
461         HoistLifeEnd = !definedInRegion(Blocks, LifeEnd);
462         // Do legality Check.
463         if ((SinkLifeStart || HoistLifeEnd) &&
464             !isLegalToShrinkwrapLifetimeMarkers(Addr))
465           return std::make_pair<Instruction *>(nullptr, nullptr);
466 
467         // Check to see if we have a place to do hoisting, if not, bail.
468         if (HoistLifeEnd && !ExitBlock)
469           return std::make_pair<Instruction *>(nullptr, nullptr);
470 
471         return std::make_pair(LifeStart, LifeEnd);
472       };
473 
474       bool SinkLifeStart = false, HoistLifeEnd = false;
475       auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd);
476 
477       if (Markers.first) {
478         if (SinkLifeStart)
479           SinkCands.insert(Markers.first);
480         SinkCands.insert(AI);
481         if (HoistLifeEnd)
482           HoistCands.insert(Markers.second);
483         continue;
484       }
485 
486       // Follow the bitcast.
487       Instruction *MarkerAddr = nullptr;
488       for (User *U : AI->users()) {
489         if (U->stripInBoundsConstantOffsets() == AI) {
490           SinkLifeStart = false;
491           HoistLifeEnd = false;
492           Instruction *Bitcast = cast<Instruction>(U);
493           Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd);
494           if (Markers.first) {
495             MarkerAddr = Bitcast;
496             continue;
497           }
498         }
499 
500         // Found unknown use of AI.
501         if (!definedInRegion(Blocks, U)) {
502           MarkerAddr = nullptr;
503           break;
504         }
505       }
506 
507       if (MarkerAddr) {
508         if (SinkLifeStart)
509           SinkCands.insert(Markers.first);
510         if (!definedInRegion(Blocks, MarkerAddr))
511           SinkCands.insert(MarkerAddr);
512         SinkCands.insert(AI);
513         if (HoistLifeEnd)
514           HoistCands.insert(Markers.second);
515       }
516     }
517   }
518 }
519 
520 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
521                                       const ValueSet &SinkCands) const {
522   for (BasicBlock *BB : Blocks) {
523     // If a used value is defined outside the region, it's an input.  If an
524     // instruction is used outside the region, it's an output.
525     for (Instruction &II : *BB) {
526       for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
527            ++OI) {
528         Value *V = *OI;
529         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
530           Inputs.insert(V);
531       }
532 
533       for (User *U : II.users())
534         if (!definedInRegion(Blocks, U)) {
535           Outputs.insert(&II);
536           break;
537         }
538     }
539   }
540 }
541 
542 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
543 /// of the region, we need to split the entry block of the region so that the
544 /// PHI node is easier to deal with.
545 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
546   unsigned NumPredsFromRegion = 0;
547   unsigned NumPredsOutsideRegion = 0;
548 
549   if (Header != &Header->getParent()->getEntryBlock()) {
550     PHINode *PN = dyn_cast<PHINode>(Header->begin());
551     if (!PN) return;  // No PHI nodes.
552 
553     // If the header node contains any PHI nodes, check to see if there is more
554     // than one entry from outside the region.  If so, we need to sever the
555     // header block into two.
556     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
557       if (Blocks.count(PN->getIncomingBlock(i)))
558         ++NumPredsFromRegion;
559       else
560         ++NumPredsOutsideRegion;
561 
562     // If there is one (or fewer) predecessor from outside the region, we don't
563     // need to do anything special.
564     if (NumPredsOutsideRegion <= 1) return;
565   }
566 
567   // Otherwise, we need to split the header block into two pieces: one
568   // containing PHI nodes merging values from outside of the region, and a
569   // second that contains all of the code for the block and merges back any
570   // incoming values from inside of the region.
571   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
572 
573   // We only want to code extract the second block now, and it becomes the new
574   // header of the region.
575   BasicBlock *OldPred = Header;
576   Blocks.remove(OldPred);
577   Blocks.insert(NewBB);
578   Header = NewBB;
579 
580   // Okay, now we need to adjust the PHI nodes and any branches from within the
581   // region to go to the new header block instead of the old header block.
582   if (NumPredsFromRegion) {
583     PHINode *PN = cast<PHINode>(OldPred->begin());
584     // Loop over all of the predecessors of OldPred that are in the region,
585     // changing them to branch to NewBB instead.
586     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
587       if (Blocks.count(PN->getIncomingBlock(i))) {
588         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
589         TI->replaceUsesOfWith(OldPred, NewBB);
590       }
591 
592     // Okay, everything within the region is now branching to the right block, we
593     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
594     BasicBlock::iterator AfterPHIs;
595     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
596       PHINode *PN = cast<PHINode>(AfterPHIs);
597       // Create a new PHI node in the new region, which has an incoming value
598       // from OldPred of PN.
599       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
600                                        PN->getName() + ".ce", &NewBB->front());
601       PN->replaceAllUsesWith(NewPN);
602       NewPN->addIncoming(PN, OldPred);
603 
604       // Loop over all of the incoming value in PN, moving them to NewPN if they
605       // are from the extracted region.
606       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
607         if (Blocks.count(PN->getIncomingBlock(i))) {
608           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
609           PN->removeIncomingValue(i);
610           --i;
611         }
612       }
613     }
614   }
615 }
616 
617 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
618 /// outlined region, we split these PHIs on two: one with inputs from region
619 /// and other with remaining incoming blocks; then first PHIs are placed in
620 /// outlined region.
621 void CodeExtractor::severSplitPHINodesOfExits(
622     const SmallPtrSetImpl<BasicBlock *> &Exits) {
623   for (BasicBlock *ExitBB : Exits) {
624     BasicBlock *NewBB = nullptr;
625 
626     for (PHINode &PN : ExitBB->phis()) {
627       // Find all incoming values from the outlining region.
628       SmallVector<unsigned, 2> IncomingVals;
629       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
630         if (Blocks.count(PN.getIncomingBlock(i)))
631           IncomingVals.push_back(i);
632 
633       // Do not process PHI if there is one (or fewer) predecessor from region.
634       // If PHI has exactly one predecessor from region, only this one incoming
635       // will be replaced on codeRepl block, so it should be safe to skip PHI.
636       if (IncomingVals.size() <= 1)
637         continue;
638 
639       // Create block for new PHIs and add it to the list of outlined if it
640       // wasn't done before.
641       if (!NewBB) {
642         NewBB = BasicBlock::Create(ExitBB->getContext(),
643                                    ExitBB->getName() + ".split",
644                                    ExitBB->getParent(), ExitBB);
645         SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB),
646                                            pred_end(ExitBB));
647         for (BasicBlock *PredBB : Preds)
648           if (Blocks.count(PredBB))
649             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
650         BranchInst::Create(ExitBB, NewBB);
651         Blocks.insert(NewBB);
652       }
653 
654       // Split this PHI.
655       PHINode *NewPN =
656           PHINode::Create(PN.getType(), IncomingVals.size(),
657                           PN.getName() + ".ce", NewBB->getFirstNonPHI());
658       for (unsigned i : IncomingVals)
659         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
660       for (unsigned i : reverse(IncomingVals))
661         PN.removeIncomingValue(i, false);
662       PN.addIncoming(NewPN, NewBB);
663     }
664   }
665 }
666 
667 void CodeExtractor::splitReturnBlocks() {
668   for (BasicBlock *Block : Blocks)
669     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
670       BasicBlock *New =
671           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
672       if (DT) {
673         // Old dominates New. New node dominates all other nodes dominated
674         // by Old.
675         DomTreeNode *OldNode = DT->getNode(Block);
676         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
677                                                OldNode->end());
678 
679         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
680 
681         for (DomTreeNode *I : Children)
682           DT->changeImmediateDominator(I, NewNode);
683       }
684     }
685 }
686 
687 /// constructFunction - make a function based on inputs and outputs, as follows:
688 /// f(in0, ..., inN, out0, ..., outN)
689 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
690                                            const ValueSet &outputs,
691                                            BasicBlock *header,
692                                            BasicBlock *newRootNode,
693                                            BasicBlock *newHeader,
694                                            Function *oldFunction,
695                                            Module *M) {
696   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
697   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
698 
699   // This function returns unsigned, outputs will go back by reference.
700   switch (NumExitBlocks) {
701   case 0:
702   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
703   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
704   default: RetTy = Type::getInt16Ty(header->getContext()); break;
705   }
706 
707   std::vector<Type *> paramTy;
708 
709   // Add the types of the input values to the function's argument list
710   for (Value *value : inputs) {
711     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
712     paramTy.push_back(value->getType());
713   }
714 
715   // Add the types of the output values to the function's argument list.
716   for (Value *output : outputs) {
717     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
718     if (AggregateArgs)
719       paramTy.push_back(output->getType());
720     else
721       paramTy.push_back(PointerType::getUnqual(output->getType()));
722   }
723 
724   LLVM_DEBUG({
725     dbgs() << "Function type: " << *RetTy << " f(";
726     for (Type *i : paramTy)
727       dbgs() << *i << ", ";
728     dbgs() << ")\n";
729   });
730 
731   StructType *StructTy;
732   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
733     StructTy = StructType::get(M->getContext(), paramTy);
734     paramTy.clear();
735     paramTy.push_back(PointerType::getUnqual(StructTy));
736   }
737   FunctionType *funcType =
738                   FunctionType::get(RetTy, paramTy,
739                                     AllowVarArgs && oldFunction->isVarArg());
740 
741   std::string SuffixToUse =
742       Suffix.empty()
743           ? (header->getName().empty() ? "extracted" : header->getName().str())
744           : Suffix;
745   // Create the new function
746   Function *newFunction = Function::Create(
747       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
748       oldFunction->getName() + "." + SuffixToUse, M);
749   // If the old function is no-throw, so is the new one.
750   if (oldFunction->doesNotThrow())
751     newFunction->setDoesNotThrow();
752 
753   // Inherit the uwtable attribute if we need to.
754   if (oldFunction->hasUWTable())
755     newFunction->setHasUWTable();
756 
757   // Inherit all of the target dependent attributes and white-listed
758   // target independent attributes.
759   //  (e.g. If the extracted region contains a call to an x86.sse
760   //  instruction we need to make sure that the extracted region has the
761   //  "target-features" attribute allowing it to be lowered.
762   // FIXME: This should be changed to check to see if a specific
763   //           attribute can not be inherited.
764   for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
765     if (Attr.isStringAttribute()) {
766       if (Attr.getKindAsString() == "thunk")
767         continue;
768     } else
769       switch (Attr.getKindAsEnum()) {
770       // Those attributes cannot be propagated safely. Explicitly list them
771       // here so we get a warning if new attributes are added. This list also
772       // includes non-function attributes.
773       case Attribute::Alignment:
774       case Attribute::AllocSize:
775       case Attribute::ArgMemOnly:
776       case Attribute::Builtin:
777       case Attribute::ByVal:
778       case Attribute::Convergent:
779       case Attribute::Dereferenceable:
780       case Attribute::DereferenceableOrNull:
781       case Attribute::InAlloca:
782       case Attribute::InReg:
783       case Attribute::InaccessibleMemOnly:
784       case Attribute::InaccessibleMemOrArgMemOnly:
785       case Attribute::JumpTable:
786       case Attribute::Naked:
787       case Attribute::Nest:
788       case Attribute::NoAlias:
789       case Attribute::NoBuiltin:
790       case Attribute::NoCapture:
791       case Attribute::NoReturn:
792       case Attribute::None:
793       case Attribute::NonNull:
794       case Attribute::ReadNone:
795       case Attribute::ReadOnly:
796       case Attribute::Returned:
797       case Attribute::ReturnsTwice:
798       case Attribute::SExt:
799       case Attribute::Speculatable:
800       case Attribute::StackAlignment:
801       case Attribute::StructRet:
802       case Attribute::SwiftError:
803       case Attribute::SwiftSelf:
804       case Attribute::WriteOnly:
805       case Attribute::ZExt:
806       case Attribute::ImmArg:
807       case Attribute::EndAttrKinds:
808         continue;
809       // Those attributes should be safe to propagate to the extracted function.
810       case Attribute::AlwaysInline:
811       case Attribute::Cold:
812       case Attribute::NoRecurse:
813       case Attribute::InlineHint:
814       case Attribute::MinSize:
815       case Attribute::NoDuplicate:
816       case Attribute::NoImplicitFloat:
817       case Attribute::NoInline:
818       case Attribute::NonLazyBind:
819       case Attribute::NoRedZone:
820       case Attribute::NoUnwind:
821       case Attribute::OptForFuzzing:
822       case Attribute::OptimizeNone:
823       case Attribute::OptimizeForSize:
824       case Attribute::SafeStack:
825       case Attribute::ShadowCallStack:
826       case Attribute::SanitizeAddress:
827       case Attribute::SanitizeMemory:
828       case Attribute::SanitizeThread:
829       case Attribute::SanitizeHWAddress:
830       case Attribute::SpeculativeLoadHardening:
831       case Attribute::StackProtect:
832       case Attribute::StackProtectReq:
833       case Attribute::StackProtectStrong:
834       case Attribute::StrictFP:
835       case Attribute::UWTable:
836       case Attribute::NoCfCheck:
837         break;
838       }
839 
840     newFunction->addFnAttr(Attr);
841   }
842   newFunction->getBasicBlockList().push_back(newRootNode);
843 
844   // Create an iterator to name all of the arguments we inserted.
845   Function::arg_iterator AI = newFunction->arg_begin();
846 
847   // Rewrite all users of the inputs in the extracted region to use the
848   // arguments (or appropriate addressing into struct) instead.
849   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
850     Value *RewriteVal;
851     if (AggregateArgs) {
852       Value *Idx[2];
853       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
854       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
855       Instruction *TI = newFunction->begin()->getTerminator();
856       GetElementPtrInst *GEP = GetElementPtrInst::Create(
857           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
858       RewriteVal = new LoadInst(StructTy->getElementType(i), GEP,
859                                 "loadgep_" + inputs[i]->getName(), TI);
860     } else
861       RewriteVal = &*AI++;
862 
863     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
864     for (User *use : Users)
865       if (Instruction *inst = dyn_cast<Instruction>(use))
866         if (Blocks.count(inst->getParent()))
867           inst->replaceUsesOfWith(inputs[i], RewriteVal);
868   }
869 
870   // Set names for input and output arguments.
871   if (!AggregateArgs) {
872     AI = newFunction->arg_begin();
873     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
874       AI->setName(inputs[i]->getName());
875     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
876       AI->setName(outputs[i]->getName()+".out");
877   }
878 
879   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
880   // within the new function. This must be done before we lose track of which
881   // blocks were originally in the code region.
882   std::vector<User *> Users(header->user_begin(), header->user_end());
883   for (unsigned i = 0, e = Users.size(); i != e; ++i)
884     // The BasicBlock which contains the branch is not in the region
885     // modify the branch target to a new block
886     if (Instruction *I = dyn_cast<Instruction>(Users[i]))
887       if (I->isTerminator() && !Blocks.count(I->getParent()) &&
888           I->getParent()->getParent() == oldFunction)
889         I->replaceUsesOfWith(header, newHeader);
890 
891   return newFunction;
892 }
893 
894 /// Erase lifetime.start markers which reference inputs to the extraction
895 /// region, and insert the referenced memory into \p LifetimesStart.
896 ///
897 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
898 /// of allocas which will be moved from the caller function into the extracted
899 /// function (\p SunkAllocas).
900 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
901                                          const SetVector<Value *> &SunkAllocas,
902                                          SetVector<Value *> &LifetimesStart) {
903   for (BasicBlock *BB : Blocks) {
904     for (auto It = BB->begin(), End = BB->end(); It != End;) {
905       auto *II = dyn_cast<IntrinsicInst>(&*It);
906       ++It;
907       if (!II || !II->isLifetimeStartOrEnd())
908         continue;
909 
910       // Get the memory operand of the lifetime marker. If the underlying
911       // object is a sunk alloca, or is otherwise defined in the extraction
912       // region, the lifetime marker must not be erased.
913       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
914       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
915         continue;
916 
917       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
918         LifetimesStart.insert(Mem);
919       II->eraseFromParent();
920     }
921   }
922 }
923 
924 /// Insert lifetime start/end markers surrounding the call to the new function
925 /// for objects defined in the caller.
926 static void insertLifetimeMarkersSurroundingCall(
927     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
928     CallInst *TheCall) {
929   LLVMContext &Ctx = M->getContext();
930   auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
931   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
932   Instruction *Term = TheCall->getParent()->getTerminator();
933 
934   // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
935   // needed to satisfy this requirement so they may be reused.
936   DenseMap<Value *, Value *> Bitcasts;
937 
938   // Emit lifetime markers for the pointers given in \p Objects. Insert the
939   // markers before the call if \p InsertBefore, and after the call otherwise.
940   auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
941                            bool InsertBefore) {
942     for (Value *Mem : Objects) {
943       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
944                                             TheCall->getFunction()) &&
945              "Input memory not defined in original function");
946       Value *&MemAsI8Ptr = Bitcasts[Mem];
947       if (!MemAsI8Ptr) {
948         if (Mem->getType() == Int8PtrTy)
949           MemAsI8Ptr = Mem;
950         else
951           MemAsI8Ptr =
952               CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
953       }
954 
955       auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
956       if (InsertBefore)
957         Marker->insertBefore(TheCall);
958       else
959         Marker->insertBefore(Term);
960     }
961   };
962 
963   if (!LifetimesStart.empty()) {
964     auto StartFn = llvm::Intrinsic::getDeclaration(
965         M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
966     insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
967   }
968 
969   if (!LifetimesEnd.empty()) {
970     auto EndFn = llvm::Intrinsic::getDeclaration(
971         M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
972     insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
973   }
974 }
975 
976 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
977 /// the call instruction, splitting any PHI nodes in the header block as
978 /// necessary.
979 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
980                                                     BasicBlock *codeReplacer,
981                                                     ValueSet &inputs,
982                                                     ValueSet &outputs) {
983   // Emit a call to the new function, passing in: *pointer to struct (if
984   // aggregating parameters), or plan inputs and allocated memory for outputs
985   std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
986 
987   Module *M = newFunction->getParent();
988   LLVMContext &Context = M->getContext();
989   const DataLayout &DL = M->getDataLayout();
990   CallInst *call = nullptr;
991 
992   // Add inputs as params, or to be filled into the struct
993   unsigned ArgNo = 0;
994   SmallVector<unsigned, 1> SwiftErrorArgs;
995   for (Value *input : inputs) {
996     if (AggregateArgs)
997       StructValues.push_back(input);
998     else {
999       params.push_back(input);
1000       if (input->isSwiftError())
1001         SwiftErrorArgs.push_back(ArgNo);
1002     }
1003     ++ArgNo;
1004   }
1005 
1006   // Create allocas for the outputs
1007   for (Value *output : outputs) {
1008     if (AggregateArgs) {
1009       StructValues.push_back(output);
1010     } else {
1011       AllocaInst *alloca =
1012         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1013                        nullptr, output->getName() + ".loc",
1014                        &codeReplacer->getParent()->front().front());
1015       ReloadOutputs.push_back(alloca);
1016       params.push_back(alloca);
1017     }
1018   }
1019 
1020   StructType *StructArgTy = nullptr;
1021   AllocaInst *Struct = nullptr;
1022   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
1023     std::vector<Type *> ArgTypes;
1024     for (ValueSet::iterator v = StructValues.begin(),
1025            ve = StructValues.end(); v != ve; ++v)
1026       ArgTypes.push_back((*v)->getType());
1027 
1028     // Allocate a struct at the beginning of this function
1029     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1030     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1031                             "structArg",
1032                             &codeReplacer->getParent()->front().front());
1033     params.push_back(Struct);
1034 
1035     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
1036       Value *Idx[2];
1037       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1038       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1039       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1040           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1041       codeReplacer->getInstList().push_back(GEP);
1042       StoreInst *SI = new StoreInst(StructValues[i], GEP);
1043       codeReplacer->getInstList().push_back(SI);
1044     }
1045   }
1046 
1047   // Emit the call to the function
1048   call = CallInst::Create(newFunction, params,
1049                           NumExitBlocks > 1 ? "targetBlock" : "");
1050   // Add debug location to the new call, if the original function has debug
1051   // info. In that case, the terminator of the entry block of the extracted
1052   // function contains the first debug location of the extracted function,
1053   // set in extractCodeRegion.
1054   if (codeReplacer->getParent()->getSubprogram()) {
1055     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1056       call->setDebugLoc(DL);
1057   }
1058   codeReplacer->getInstList().push_back(call);
1059 
1060   // Set swifterror parameter attributes.
1061   for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1062     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1063     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1064   }
1065 
1066   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
1067   unsigned FirstOut = inputs.size();
1068   if (!AggregateArgs)
1069     std::advance(OutputArgBegin, inputs.size());
1070 
1071   // Reload the outputs passed in by reference.
1072   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1073     Value *Output = nullptr;
1074     if (AggregateArgs) {
1075       Value *Idx[2];
1076       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1077       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1078       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1079           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1080       codeReplacer->getInstList().push_back(GEP);
1081       Output = GEP;
1082     } else {
1083       Output = ReloadOutputs[i];
1084     }
1085     LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1086                                   outputs[i]->getName() + ".reload");
1087     Reloads.push_back(load);
1088     codeReplacer->getInstList().push_back(load);
1089     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1090     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1091       Instruction *inst = cast<Instruction>(Users[u]);
1092       if (!Blocks.count(inst->getParent()))
1093         inst->replaceUsesOfWith(outputs[i], load);
1094     }
1095   }
1096 
1097   // Now we can emit a switch statement using the call as a value.
1098   SwitchInst *TheSwitch =
1099       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1100                          codeReplacer, 0, codeReplacer);
1101 
1102   // Since there may be multiple exits from the original region, make the new
1103   // function return an unsigned, switch on that number.  This loop iterates
1104   // over all of the blocks in the extracted region, updating any terminator
1105   // instructions in the to-be-extracted region that branch to blocks that are
1106   // not in the region to be extracted.
1107   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1108 
1109   unsigned switchVal = 0;
1110   for (BasicBlock *Block : Blocks) {
1111     Instruction *TI = Block->getTerminator();
1112     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1113       if (!Blocks.count(TI->getSuccessor(i))) {
1114         BasicBlock *OldTarget = TI->getSuccessor(i);
1115         // add a new basic block which returns the appropriate value
1116         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1117         if (!NewTarget) {
1118           // If we don't already have an exit stub for this non-extracted
1119           // destination, create one now!
1120           NewTarget = BasicBlock::Create(Context,
1121                                          OldTarget->getName() + ".exitStub",
1122                                          newFunction);
1123           unsigned SuccNum = switchVal++;
1124 
1125           Value *brVal = nullptr;
1126           switch (NumExitBlocks) {
1127           case 0:
1128           case 1: break;  // No value needed.
1129           case 2:         // Conditional branch, return a bool
1130             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1131             break;
1132           default:
1133             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1134             break;
1135           }
1136 
1137           ReturnInst::Create(Context, brVal, NewTarget);
1138 
1139           // Update the switch instruction.
1140           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1141                                               SuccNum),
1142                              OldTarget);
1143         }
1144 
1145         // rewrite the original branch instruction with this new target
1146         TI->setSuccessor(i, NewTarget);
1147       }
1148   }
1149 
1150   // Store the arguments right after the definition of output value.
1151   // This should be proceeded after creating exit stubs to be ensure that invoke
1152   // result restore will be placed in the outlined function.
1153   Function::arg_iterator OAI = OutputArgBegin;
1154   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1155     auto *OutI = dyn_cast<Instruction>(outputs[i]);
1156     if (!OutI)
1157       continue;
1158 
1159     // Find proper insertion point.
1160     BasicBlock::iterator InsertPt;
1161     // In case OutI is an invoke, we insert the store at the beginning in the
1162     // 'normal destination' BB. Otherwise we insert the store right after OutI.
1163     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1164       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1165     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1166       InsertPt = Phi->getParent()->getFirstInsertionPt();
1167     else
1168       InsertPt = std::next(OutI->getIterator());
1169 
1170     Instruction *InsertBefore = &*InsertPt;
1171     assert((InsertBefore->getFunction() == newFunction ||
1172             Blocks.count(InsertBefore->getParent())) &&
1173            "InsertPt should be in new function");
1174     assert(OAI != newFunction->arg_end() &&
1175            "Number of output arguments should match "
1176            "the amount of defined values");
1177     if (AggregateArgs) {
1178       Value *Idx[2];
1179       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1180       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1181       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1182           StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(),
1183           InsertBefore);
1184       new StoreInst(outputs[i], GEP, InsertBefore);
1185       // Since there should be only one struct argument aggregating
1186       // all the output values, we shouldn't increment OAI, which always
1187       // points to the struct argument, in this case.
1188     } else {
1189       new StoreInst(outputs[i], &*OAI, InsertBefore);
1190       ++OAI;
1191     }
1192   }
1193 
1194   // Now that we've done the deed, simplify the switch instruction.
1195   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1196   switch (NumExitBlocks) {
1197   case 0:
1198     // There are no successors (the block containing the switch itself), which
1199     // means that previously this was the last part of the function, and hence
1200     // this should be rewritten as a `ret'
1201 
1202     // Check if the function should return a value
1203     if (OldFnRetTy->isVoidTy()) {
1204       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1205     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1206       // return what we have
1207       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1208     } else {
1209       // Otherwise we must have code extracted an unwind or something, just
1210       // return whatever we want.
1211       ReturnInst::Create(Context,
1212                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1213     }
1214 
1215     TheSwitch->eraseFromParent();
1216     break;
1217   case 1:
1218     // Only a single destination, change the switch into an unconditional
1219     // branch.
1220     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1221     TheSwitch->eraseFromParent();
1222     break;
1223   case 2:
1224     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1225                        call, TheSwitch);
1226     TheSwitch->eraseFromParent();
1227     break;
1228   default:
1229     // Otherwise, make the default destination of the switch instruction be one
1230     // of the other successors.
1231     TheSwitch->setCondition(call);
1232     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1233     // Remove redundant case
1234     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1235     break;
1236   }
1237 
1238   // Insert lifetime markers around the reloads of any output values. The
1239   // allocas output values are stored in are only in-use in the codeRepl block.
1240   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1241 
1242   return call;
1243 }
1244 
1245 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1246   Function *oldFunc = (*Blocks.begin())->getParent();
1247   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1248   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1249 
1250   for (BasicBlock *Block : Blocks) {
1251     // Delete the basic block from the old function, and the list of blocks
1252     oldBlocks.remove(Block);
1253 
1254     // Insert this basic block into the new function
1255     newBlocks.push_back(Block);
1256 
1257     // Remove @llvm.assume calls that were moved to the new function from the
1258     // old function's assumption cache.
1259     if (AC)
1260       for (auto &I : *Block)
1261         if (match(&I, m_Intrinsic<Intrinsic::assume>()))
1262           AC->unregisterAssumption(cast<CallInst>(&I));
1263   }
1264 }
1265 
1266 void CodeExtractor::calculateNewCallTerminatorWeights(
1267     BasicBlock *CodeReplacer,
1268     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1269     BranchProbabilityInfo *BPI) {
1270   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1271   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1272 
1273   // Update the branch weights for the exit block.
1274   Instruction *TI = CodeReplacer->getTerminator();
1275   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1276 
1277   // Block Frequency distribution with dummy node.
1278   Distribution BranchDist;
1279 
1280   // Add each of the frequencies of the successors.
1281   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1282     BlockNode ExitNode(i);
1283     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1284     if (ExitFreq != 0)
1285       BranchDist.addExit(ExitNode, ExitFreq);
1286     else
1287       BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
1288   }
1289 
1290   // Check for no total weight.
1291   if (BranchDist.Total == 0)
1292     return;
1293 
1294   // Normalize the distribution so that they can fit in unsigned.
1295   BranchDist.normalize();
1296 
1297   // Create normalized branch weights and set the metadata.
1298   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1299     const auto &Weight = BranchDist.Weights[I];
1300 
1301     // Get the weight and update the current BFI.
1302     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1303     BranchProbability BP(Weight.Amount, BranchDist.Total);
1304     BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
1305   }
1306   TI->setMetadata(
1307       LLVMContext::MD_prof,
1308       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1309 }
1310 
1311 Function *CodeExtractor::extractCodeRegion() {
1312   if (!isEligible())
1313     return nullptr;
1314 
1315   // Assumption: this is a single-entry code region, and the header is the first
1316   // block in the region.
1317   BasicBlock *header = *Blocks.begin();
1318   Function *oldFunction = header->getParent();
1319 
1320   // For functions with varargs, check that varargs handling is only done in the
1321   // outlined function, i.e vastart and vaend are only used in outlined blocks.
1322   if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) {
1323     auto containsVarArgIntrinsic = [](Instruction &I) {
1324       if (const CallInst *CI = dyn_cast<CallInst>(&I))
1325         if (const Function *F = CI->getCalledFunction())
1326           return F->getIntrinsicID() == Intrinsic::vastart ||
1327                  F->getIntrinsicID() == Intrinsic::vaend;
1328       return false;
1329     };
1330 
1331     for (auto &BB : *oldFunction) {
1332       if (Blocks.count(&BB))
1333         continue;
1334       if (llvm::any_of(BB, containsVarArgIntrinsic))
1335         return nullptr;
1336     }
1337   }
1338   ValueSet inputs, outputs, SinkingCands, HoistingCands;
1339   BasicBlock *CommonExit = nullptr;
1340 
1341   // Calculate the entry frequency of the new function before we change the root
1342   //   block.
1343   BlockFrequency EntryFreq;
1344   if (BFI) {
1345     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1346     for (BasicBlock *Pred : predecessors(header)) {
1347       if (Blocks.count(Pred))
1348         continue;
1349       EntryFreq +=
1350           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1351     }
1352   }
1353 
1354   // If we have any return instructions in the region, split those blocks so
1355   // that the return is not in the region.
1356   splitReturnBlocks();
1357 
1358   // Calculate the exit blocks for the extracted region and the total exit
1359   // weights for each of those blocks.
1360   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1361   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1362   for (BasicBlock *Block : Blocks) {
1363     for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1364          ++SI) {
1365       if (!Blocks.count(*SI)) {
1366         // Update the branch weight for this successor.
1367         if (BFI) {
1368           BlockFrequency &BF = ExitWeights[*SI];
1369           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1370         }
1371         ExitBlocks.insert(*SI);
1372       }
1373     }
1374   }
1375   NumExitBlocks = ExitBlocks.size();
1376 
1377   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1378   severSplitPHINodesOfEntry(header);
1379   severSplitPHINodesOfExits(ExitBlocks);
1380 
1381   // This takes place of the original loop
1382   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1383                                                 "codeRepl", oldFunction,
1384                                                 header);
1385 
1386   // The new function needs a root node because other nodes can branch to the
1387   // head of the region, but the entry node of a function cannot have preds.
1388   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1389                                                "newFuncRoot");
1390   auto *BranchI = BranchInst::Create(header);
1391   // If the original function has debug info, we have to add a debug location
1392   // to the new branch instruction from the artificial entry block.
1393   // We use the debug location of the first instruction in the extracted
1394   // blocks, as there is no other equivalent line in the source code.
1395   if (oldFunction->getSubprogram()) {
1396     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1397       return any_of(*BB, [&BranchI](const Instruction &I) {
1398         if (!I.getDebugLoc())
1399           return false;
1400         BranchI->setDebugLoc(I.getDebugLoc());
1401         return true;
1402       });
1403     });
1404   }
1405   newFuncRoot->getInstList().push_back(BranchI);
1406 
1407   findAllocas(SinkingCands, HoistingCands, CommonExit);
1408   assert(HoistingCands.empty() || CommonExit);
1409 
1410   // Find inputs to, outputs from the code region.
1411   findInputsOutputs(inputs, outputs, SinkingCands);
1412 
1413   // Now sink all instructions which only have non-phi uses inside the region
1414   for (auto *II : SinkingCands)
1415     cast<Instruction>(II)->moveBefore(*newFuncRoot,
1416                                       newFuncRoot->getFirstInsertionPt());
1417 
1418   if (!HoistingCands.empty()) {
1419     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1420     Instruction *TI = HoistToBlock->getTerminator();
1421     for (auto *II : HoistingCands)
1422       cast<Instruction>(II)->moveBefore(TI);
1423   }
1424 
1425   // Collect objects which are inputs to the extraction region and also
1426   // referenced by lifetime start markers within it. The effects of these
1427   // markers must be replicated in the calling function to prevent the stack
1428   // coloring pass from merging slots which store input objects.
1429   ValueSet LifetimesStart;
1430   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1431 
1432   // Construct new function based on inputs/outputs & add allocas for all defs.
1433   Function *newFunction =
1434       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1435                         oldFunction, oldFunction->getParent());
1436 
1437   // Update the entry count of the function.
1438   if (BFI) {
1439     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1440     if (Count.hasValue())
1441       newFunction->setEntryCount(
1442           ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1443     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1444   }
1445 
1446   CallInst *TheCall =
1447       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1448 
1449   moveCodeToFunction(newFunction);
1450 
1451   // Replicate the effects of any lifetime start/end markers which referenced
1452   // input objects in the extraction region by placing markers around the call.
1453   insertLifetimeMarkersSurroundingCall(
1454       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1455 
1456   // Propagate personality info to the new function if there is one.
1457   if (oldFunction->hasPersonalityFn())
1458     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1459 
1460   // Update the branch weights for the exit block.
1461   if (BFI && NumExitBlocks > 1)
1462     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1463 
1464   // Loop over all of the PHI nodes in the header and exit blocks, and change
1465   // any references to the old incoming edge to be the new incoming edge.
1466   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1467     PHINode *PN = cast<PHINode>(I);
1468     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1469       if (!Blocks.count(PN->getIncomingBlock(i)))
1470         PN->setIncomingBlock(i, newFuncRoot);
1471   }
1472 
1473   for (BasicBlock *ExitBB : ExitBlocks)
1474     for (PHINode &PN : ExitBB->phis()) {
1475       Value *IncomingCodeReplacerVal = nullptr;
1476       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1477         // Ignore incoming values from outside of the extracted region.
1478         if (!Blocks.count(PN.getIncomingBlock(i)))
1479           continue;
1480 
1481         // Ensure that there is only one incoming value from codeReplacer.
1482         if (!IncomingCodeReplacerVal) {
1483           PN.setIncomingBlock(i, codeReplacer);
1484           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1485         } else
1486           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1487                  "PHI has two incompatbile incoming values from codeRepl");
1488       }
1489     }
1490 
1491   // Erase debug info intrinsics. Variable updates within the new function are
1492   // invisible to debuggers. This could be improved by defining a DISubprogram
1493   // for the new function.
1494   for (BasicBlock &BB : *newFunction) {
1495     auto BlockIt = BB.begin();
1496     // Remove debug info intrinsics from the new function.
1497     while (BlockIt != BB.end()) {
1498       Instruction *Inst = &*BlockIt;
1499       ++BlockIt;
1500       if (isa<DbgInfoIntrinsic>(Inst))
1501         Inst->eraseFromParent();
1502     }
1503     // Remove debug info intrinsics which refer to values in the new function
1504     // from the old function.
1505     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1506     for (Instruction &I : BB)
1507       findDbgUsers(DbgUsers, &I);
1508     for (DbgVariableIntrinsic *DVI : DbgUsers)
1509       DVI->eraseFromParent();
1510   }
1511 
1512   // Mark the new function `noreturn` if applicable. Terminators which resume
1513   // exception propagation are treated as returning instructions. This is to
1514   // avoid inserting traps after calls to outlined functions which unwind.
1515   bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1516     const Instruction *Term = BB.getTerminator();
1517     return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1518   });
1519   if (doesNotReturn)
1520     newFunction->setDoesNotReturn();
1521 
1522   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1523     newFunction->dump();
1524     report_fatal_error("verification of newFunction failed!");
1525   });
1526   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1527              report_fatal_error("verification of oldFunction failed!"));
1528   return newFunction;
1529 }
1530