1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/PatternMatch.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/IR/Verifier.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/BlockFrequency.h" 54 #include "llvm/Support/BranchProbability.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <map> 66 #include <set> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 using namespace llvm::PatternMatch; 72 using ProfileCount = Function::ProfileCount; 73 74 #define DEBUG_TYPE "code-extractor" 75 76 // Provide a command-line option to aggregate function arguments into a struct 77 // for functions produced by the code extractor. This is useful when converting 78 // extracted functions to pthread-based code, as only one argument (void*) can 79 // be passed in to pthread_create(). 80 static cl::opt<bool> 81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 82 cl::desc("Aggregate arguments to code-extracted functions")); 83 84 /// Test whether a block is valid for extraction. 85 static bool isBlockValidForExtraction(const BasicBlock &BB, 86 const SetVector<BasicBlock *> &Result, 87 bool AllowVarArgs, bool AllowAlloca) { 88 // taking the address of a basic block moved to another function is illegal 89 if (BB.hasAddressTaken()) 90 return false; 91 92 // don't hoist code that uses another basicblock address, as it's likely to 93 // lead to unexpected behavior, like cross-function jumps 94 SmallPtrSet<User const *, 16> Visited; 95 SmallVector<User const *, 16> ToVisit; 96 97 for (Instruction const &Inst : BB) 98 ToVisit.push_back(&Inst); 99 100 while (!ToVisit.empty()) { 101 User const *Curr = ToVisit.pop_back_val(); 102 if (!Visited.insert(Curr).second) 103 continue; 104 if (isa<BlockAddress const>(Curr)) 105 return false; // even a reference to self is likely to be not compatible 106 107 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 108 continue; 109 110 for (auto const &U : Curr->operands()) { 111 if (auto *UU = dyn_cast<User>(U)) 112 ToVisit.push_back(UU); 113 } 114 } 115 116 // If explicitly requested, allow vastart and alloca. For invoke instructions 117 // verify that extraction is valid. 118 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 119 if (isa<AllocaInst>(I)) { 120 if (!AllowAlloca) 121 return false; 122 continue; 123 } 124 125 if (const auto *II = dyn_cast<InvokeInst>(I)) { 126 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 127 // must be a part of the subgraph which is being extracted. 128 if (auto *UBB = II->getUnwindDest()) 129 if (!Result.count(UBB)) 130 return false; 131 continue; 132 } 133 134 // All catch handlers of a catchswitch instruction as well as the unwind 135 // destination must be in the subgraph. 136 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 137 if (auto *UBB = CSI->getUnwindDest()) 138 if (!Result.count(UBB)) 139 return false; 140 for (auto *HBB : CSI->handlers()) 141 if (!Result.count(const_cast<BasicBlock*>(HBB))) 142 return false; 143 continue; 144 } 145 146 // Make sure that entire catch handler is within subgraph. It is sufficient 147 // to check that catch return's block is in the list. 148 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 149 for (const auto *U : CPI->users()) 150 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 151 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 152 return false; 153 continue; 154 } 155 156 // And do similar checks for cleanup handler - the entire handler must be 157 // in subgraph which is going to be extracted. For cleanup return should 158 // additionally check that the unwind destination is also in the subgraph. 159 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 160 for (const auto *U : CPI->users()) 161 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 162 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 163 return false; 164 continue; 165 } 166 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 167 if (auto *UBB = CRI->getUnwindDest()) 168 if (!Result.count(UBB)) 169 return false; 170 continue; 171 } 172 173 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 174 if (const Function *F = CI->getCalledFunction()) { 175 auto IID = F->getIntrinsicID(); 176 if (IID == Intrinsic::vastart) { 177 if (AllowVarArgs) 178 continue; 179 else 180 return false; 181 } 182 183 // Currently, we miscompile outlined copies of eh_typid_for. There are 184 // proposals for fixing this in llvm.org/PR39545. 185 if (IID == Intrinsic::eh_typeid_for) 186 return false; 187 } 188 } 189 } 190 191 return true; 192 } 193 194 /// Build a set of blocks to extract if the input blocks are viable. 195 static SetVector<BasicBlock *> 196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 197 bool AllowVarArgs, bool AllowAlloca) { 198 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 199 SetVector<BasicBlock *> Result; 200 201 // Loop over the blocks, adding them to our set-vector, and aborting with an 202 // empty set if we encounter invalid blocks. 203 for (BasicBlock *BB : BBs) { 204 // If this block is dead, don't process it. 205 if (DT && !DT->isReachableFromEntry(BB)) 206 continue; 207 208 if (!Result.insert(BB)) 209 llvm_unreachable("Repeated basic blocks in extraction input"); 210 } 211 212 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 213 << '\n'); 214 215 for (auto *BB : Result) { 216 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 217 return {}; 218 219 // Make sure that the first block is not a landing pad. 220 if (BB == Result.front()) { 221 if (BB->isEHPad()) { 222 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 223 return {}; 224 } 225 continue; 226 } 227 228 // All blocks other than the first must not have predecessors outside of 229 // the subgraph which is being extracted. 230 for (auto *PBB : predecessors(BB)) 231 if (!Result.count(PBB)) { 232 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 233 "outside the region except for the first block!\n" 234 << "Problematic source BB: " << BB->getName() << "\n" 235 << "Problematic destination BB: " << PBB->getName() 236 << "\n"); 237 return {}; 238 } 239 } 240 241 return Result; 242 } 243 244 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 245 bool AggregateArgs, BlockFrequencyInfo *BFI, 246 BranchProbabilityInfo *BPI, AssumptionCache *AC, 247 bool AllowVarArgs, bool AllowAlloca, 248 std::string Suffix) 249 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 250 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs), 251 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 252 Suffix(Suffix) {} 253 254 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 255 BlockFrequencyInfo *BFI, 256 BranchProbabilityInfo *BPI, AssumptionCache *AC, 257 std::string Suffix) 258 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 259 BPI(BPI), AC(AC), AllowVarArgs(false), 260 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 261 /* AllowVarArgs */ false, 262 /* AllowAlloca */ false)), 263 Suffix(Suffix) {} 264 265 /// definedInRegion - Return true if the specified value is defined in the 266 /// extracted region. 267 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 268 if (Instruction *I = dyn_cast<Instruction>(V)) 269 if (Blocks.count(I->getParent())) 270 return true; 271 return false; 272 } 273 274 /// definedInCaller - Return true if the specified value is defined in the 275 /// function being code extracted, but not in the region being extracted. 276 /// These values must be passed in as live-ins to the function. 277 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 278 if (isa<Argument>(V)) return true; 279 if (Instruction *I = dyn_cast<Instruction>(V)) 280 if (!Blocks.count(I->getParent())) 281 return true; 282 return false; 283 } 284 285 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 286 BasicBlock *CommonExitBlock = nullptr; 287 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 288 for (auto *Succ : successors(Block)) { 289 // Internal edges, ok. 290 if (Blocks.count(Succ)) 291 continue; 292 if (!CommonExitBlock) { 293 CommonExitBlock = Succ; 294 continue; 295 } 296 if (CommonExitBlock != Succ) 297 return true; 298 } 299 return false; 300 }; 301 302 if (any_of(Blocks, hasNonCommonExitSucc)) 303 return nullptr; 304 305 return CommonExitBlock; 306 } 307 308 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 309 Instruction *Addr) const { 310 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 311 Function *Func = (*Blocks.begin())->getParent(); 312 for (BasicBlock &BB : *Func) { 313 if (Blocks.count(&BB)) 314 continue; 315 for (Instruction &II : BB) { 316 if (isa<DbgInfoIntrinsic>(II)) 317 continue; 318 319 unsigned Opcode = II.getOpcode(); 320 Value *MemAddr = nullptr; 321 switch (Opcode) { 322 case Instruction::Store: 323 case Instruction::Load: { 324 if (Opcode == Instruction::Store) { 325 StoreInst *SI = cast<StoreInst>(&II); 326 MemAddr = SI->getPointerOperand(); 327 } else { 328 LoadInst *LI = cast<LoadInst>(&II); 329 MemAddr = LI->getPointerOperand(); 330 } 331 // Global variable can not be aliased with locals. 332 if (dyn_cast<Constant>(MemAddr)) 333 break; 334 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 335 if (!isa<AllocaInst>(Base) || Base == AI) 336 return false; 337 break; 338 } 339 default: { 340 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 341 if (IntrInst) { 342 if (IntrInst->isLifetimeStartOrEnd()) 343 break; 344 return false; 345 } 346 // Treat all the other cases conservatively if it has side effects. 347 if (II.mayHaveSideEffects()) 348 return false; 349 } 350 } 351 } 352 } 353 354 return true; 355 } 356 357 BasicBlock * 358 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 359 BasicBlock *SinglePredFromOutlineRegion = nullptr; 360 assert(!Blocks.count(CommonExitBlock) && 361 "Expect a block outside the region!"); 362 for (auto *Pred : predecessors(CommonExitBlock)) { 363 if (!Blocks.count(Pred)) 364 continue; 365 if (!SinglePredFromOutlineRegion) { 366 SinglePredFromOutlineRegion = Pred; 367 } else if (SinglePredFromOutlineRegion != Pred) { 368 SinglePredFromOutlineRegion = nullptr; 369 break; 370 } 371 } 372 373 if (SinglePredFromOutlineRegion) 374 return SinglePredFromOutlineRegion; 375 376 #ifndef NDEBUG 377 auto getFirstPHI = [](BasicBlock *BB) { 378 BasicBlock::iterator I = BB->begin(); 379 PHINode *FirstPhi = nullptr; 380 while (I != BB->end()) { 381 PHINode *Phi = dyn_cast<PHINode>(I); 382 if (!Phi) 383 break; 384 if (!FirstPhi) { 385 FirstPhi = Phi; 386 break; 387 } 388 } 389 return FirstPhi; 390 }; 391 // If there are any phi nodes, the single pred either exists or has already 392 // be created before code extraction. 393 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 394 #endif 395 396 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 397 CommonExitBlock->getFirstNonPHI()->getIterator()); 398 399 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock); 400 PI != PE;) { 401 BasicBlock *Pred = *PI++; 402 if (Blocks.count(Pred)) 403 continue; 404 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 405 } 406 // Now add the old exit block to the outline region. 407 Blocks.insert(CommonExitBlock); 408 return CommonExitBlock; 409 } 410 411 // Find the pair of life time markers for address 'Addr' that are either 412 // defined inside the outline region or can legally be shrinkwrapped into the 413 // outline region. If there are not other untracked uses of the address, return 414 // the pair of markers if found; otherwise return a pair of nullptr. 415 CodeExtractor::LifetimeMarkerInfo 416 CodeExtractor::getLifetimeMarkers(Instruction *Addr, 417 BasicBlock *ExitBlock) const { 418 LifetimeMarkerInfo Info; 419 420 for (User *U : Addr->users()) { 421 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 422 if (IntrInst) { 423 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 424 // Do not handle the case where Addr has multiple start markers. 425 if (Info.LifeStart) 426 return {}; 427 Info.LifeStart = IntrInst; 428 } 429 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 430 if (Info.LifeEnd) 431 return {}; 432 Info.LifeEnd = IntrInst; 433 } 434 continue; 435 } 436 // Find untracked uses of the address, bail. 437 if (!definedInRegion(Blocks, U)) 438 return {}; 439 } 440 441 if (!Info.LifeStart || !Info.LifeEnd) 442 return {}; 443 444 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 445 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 446 // Do legality check. 447 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 448 !isLegalToShrinkwrapLifetimeMarkers(Addr)) 449 return {}; 450 451 // Check to see if we have a place to do hoisting, if not, bail. 452 if (Info.HoistLifeEnd && !ExitBlock) 453 return {}; 454 455 return Info; 456 } 457 458 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands, 459 BasicBlock *&ExitBlock) const { 460 Function *Func = (*Blocks.begin())->getParent(); 461 ExitBlock = getCommonExitBlock(Blocks); 462 463 auto moveOrIgnoreLifetimeMarkers = 464 [&](const LifetimeMarkerInfo &LMI) -> bool { 465 if (!LMI.LifeStart) 466 return false; 467 if (LMI.SinkLifeStart) { 468 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 469 << "\n"); 470 SinkCands.insert(LMI.LifeStart); 471 } 472 if (LMI.HoistLifeEnd) { 473 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 474 HoistCands.insert(LMI.LifeEnd); 475 } 476 return true; 477 }; 478 479 for (BasicBlock &BB : *Func) { 480 if (Blocks.count(&BB)) 481 continue; 482 for (Instruction &II : BB) { 483 auto *AI = dyn_cast<AllocaInst>(&II); 484 if (!AI) 485 continue; 486 487 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(AI, ExitBlock); 488 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 489 if (Moved) { 490 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 491 SinkCands.insert(AI); 492 continue; 493 } 494 495 // Follow any bitcasts. 496 SmallVector<Instruction *, 2> Bitcasts; 497 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 498 for (User *U : AI->users()) { 499 if (U->stripInBoundsConstantOffsets() == AI) { 500 Instruction *Bitcast = cast<Instruction>(U); 501 LifetimeMarkerInfo LMI = getLifetimeMarkers(Bitcast, ExitBlock); 502 if (LMI.LifeStart) { 503 Bitcasts.push_back(Bitcast); 504 BitcastLifetimeInfo.push_back(LMI); 505 continue; 506 } 507 } 508 509 // Found unknown use of AI. 510 if (!definedInRegion(Blocks, U)) { 511 Bitcasts.clear(); 512 break; 513 } 514 } 515 516 // Either no bitcasts reference the alloca or there are unknown uses. 517 if (Bitcasts.empty()) 518 continue; 519 520 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 521 SinkCands.insert(AI); 522 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 523 Instruction *BitcastAddr = Bitcasts[I]; 524 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 525 assert(LMI.LifeStart && 526 "Unsafe to sink bitcast without lifetime markers"); 527 moveOrIgnoreLifetimeMarkers(LMI); 528 if (!definedInRegion(Blocks, BitcastAddr)) { 529 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 530 << "\n"); 531 SinkCands.insert(BitcastAddr); 532 } 533 } 534 } 535 } 536 } 537 538 bool CodeExtractor::isEligible() const { 539 if (Blocks.empty()) 540 return false; 541 BasicBlock *Header = *Blocks.begin(); 542 Function *F = Header->getParent(); 543 544 // For functions with varargs, check that varargs handling is only done in the 545 // outlined function, i.e vastart and vaend are only used in outlined blocks. 546 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 547 auto containsVarArgIntrinsic = [](const Instruction &I) { 548 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 549 if (const Function *Callee = CI->getCalledFunction()) 550 return Callee->getIntrinsicID() == Intrinsic::vastart || 551 Callee->getIntrinsicID() == Intrinsic::vaend; 552 return false; 553 }; 554 555 for (auto &BB : *F) { 556 if (Blocks.count(&BB)) 557 continue; 558 if (llvm::any_of(BB, containsVarArgIntrinsic)) 559 return false; 560 } 561 } 562 return true; 563 } 564 565 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 566 const ValueSet &SinkCands) const { 567 for (BasicBlock *BB : Blocks) { 568 // If a used value is defined outside the region, it's an input. If an 569 // instruction is used outside the region, it's an output. 570 for (Instruction &II : *BB) { 571 for (auto &OI : II.operands()) { 572 Value *V = OI; 573 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 574 Inputs.insert(V); 575 } 576 577 for (User *U : II.users()) 578 if (!definedInRegion(Blocks, U)) { 579 Outputs.insert(&II); 580 break; 581 } 582 } 583 } 584 } 585 586 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 587 /// of the region, we need to split the entry block of the region so that the 588 /// PHI node is easier to deal with. 589 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 590 unsigned NumPredsFromRegion = 0; 591 unsigned NumPredsOutsideRegion = 0; 592 593 if (Header != &Header->getParent()->getEntryBlock()) { 594 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 595 if (!PN) return; // No PHI nodes. 596 597 // If the header node contains any PHI nodes, check to see if there is more 598 // than one entry from outside the region. If so, we need to sever the 599 // header block into two. 600 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 601 if (Blocks.count(PN->getIncomingBlock(i))) 602 ++NumPredsFromRegion; 603 else 604 ++NumPredsOutsideRegion; 605 606 // If there is one (or fewer) predecessor from outside the region, we don't 607 // need to do anything special. 608 if (NumPredsOutsideRegion <= 1) return; 609 } 610 611 // Otherwise, we need to split the header block into two pieces: one 612 // containing PHI nodes merging values from outside of the region, and a 613 // second that contains all of the code for the block and merges back any 614 // incoming values from inside of the region. 615 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 616 617 // We only want to code extract the second block now, and it becomes the new 618 // header of the region. 619 BasicBlock *OldPred = Header; 620 Blocks.remove(OldPred); 621 Blocks.insert(NewBB); 622 Header = NewBB; 623 624 // Okay, now we need to adjust the PHI nodes and any branches from within the 625 // region to go to the new header block instead of the old header block. 626 if (NumPredsFromRegion) { 627 PHINode *PN = cast<PHINode>(OldPred->begin()); 628 // Loop over all of the predecessors of OldPred that are in the region, 629 // changing them to branch to NewBB instead. 630 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 631 if (Blocks.count(PN->getIncomingBlock(i))) { 632 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 633 TI->replaceUsesOfWith(OldPred, NewBB); 634 } 635 636 // Okay, everything within the region is now branching to the right block, we 637 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 638 BasicBlock::iterator AfterPHIs; 639 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 640 PHINode *PN = cast<PHINode>(AfterPHIs); 641 // Create a new PHI node in the new region, which has an incoming value 642 // from OldPred of PN. 643 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 644 PN->getName() + ".ce", &NewBB->front()); 645 PN->replaceAllUsesWith(NewPN); 646 NewPN->addIncoming(PN, OldPred); 647 648 // Loop over all of the incoming value in PN, moving them to NewPN if they 649 // are from the extracted region. 650 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 651 if (Blocks.count(PN->getIncomingBlock(i))) { 652 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 653 PN->removeIncomingValue(i); 654 --i; 655 } 656 } 657 } 658 } 659 } 660 661 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 662 /// outlined region, we split these PHIs on two: one with inputs from region 663 /// and other with remaining incoming blocks; then first PHIs are placed in 664 /// outlined region. 665 void CodeExtractor::severSplitPHINodesOfExits( 666 const SmallPtrSetImpl<BasicBlock *> &Exits) { 667 for (BasicBlock *ExitBB : Exits) { 668 BasicBlock *NewBB = nullptr; 669 670 for (PHINode &PN : ExitBB->phis()) { 671 // Find all incoming values from the outlining region. 672 SmallVector<unsigned, 2> IncomingVals; 673 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 674 if (Blocks.count(PN.getIncomingBlock(i))) 675 IncomingVals.push_back(i); 676 677 // Do not process PHI if there is one (or fewer) predecessor from region. 678 // If PHI has exactly one predecessor from region, only this one incoming 679 // will be replaced on codeRepl block, so it should be safe to skip PHI. 680 if (IncomingVals.size() <= 1) 681 continue; 682 683 // Create block for new PHIs and add it to the list of outlined if it 684 // wasn't done before. 685 if (!NewBB) { 686 NewBB = BasicBlock::Create(ExitBB->getContext(), 687 ExitBB->getName() + ".split", 688 ExitBB->getParent(), ExitBB); 689 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB), 690 pred_end(ExitBB)); 691 for (BasicBlock *PredBB : Preds) 692 if (Blocks.count(PredBB)) 693 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 694 BranchInst::Create(ExitBB, NewBB); 695 Blocks.insert(NewBB); 696 } 697 698 // Split this PHI. 699 PHINode *NewPN = 700 PHINode::Create(PN.getType(), IncomingVals.size(), 701 PN.getName() + ".ce", NewBB->getFirstNonPHI()); 702 for (unsigned i : IncomingVals) 703 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 704 for (unsigned i : reverse(IncomingVals)) 705 PN.removeIncomingValue(i, false); 706 PN.addIncoming(NewPN, NewBB); 707 } 708 } 709 } 710 711 void CodeExtractor::splitReturnBlocks() { 712 for (BasicBlock *Block : Blocks) 713 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 714 BasicBlock *New = 715 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 716 if (DT) { 717 // Old dominates New. New node dominates all other nodes dominated 718 // by Old. 719 DomTreeNode *OldNode = DT->getNode(Block); 720 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 721 OldNode->end()); 722 723 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 724 725 for (DomTreeNode *I : Children) 726 DT->changeImmediateDominator(I, NewNode); 727 } 728 } 729 } 730 731 /// constructFunction - make a function based on inputs and outputs, as follows: 732 /// f(in0, ..., inN, out0, ..., outN) 733 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 734 const ValueSet &outputs, 735 BasicBlock *header, 736 BasicBlock *newRootNode, 737 BasicBlock *newHeader, 738 Function *oldFunction, 739 Module *M) { 740 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 741 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 742 743 // This function returns unsigned, outputs will go back by reference. 744 switch (NumExitBlocks) { 745 case 0: 746 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 747 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 748 default: RetTy = Type::getInt16Ty(header->getContext()); break; 749 } 750 751 std::vector<Type *> paramTy; 752 753 // Add the types of the input values to the function's argument list 754 for (Value *value : inputs) { 755 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 756 paramTy.push_back(value->getType()); 757 } 758 759 // Add the types of the output values to the function's argument list. 760 for (Value *output : outputs) { 761 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 762 if (AggregateArgs) 763 paramTy.push_back(output->getType()); 764 else 765 paramTy.push_back(PointerType::getUnqual(output->getType())); 766 } 767 768 LLVM_DEBUG({ 769 dbgs() << "Function type: " << *RetTy << " f("; 770 for (Type *i : paramTy) 771 dbgs() << *i << ", "; 772 dbgs() << ")\n"; 773 }); 774 775 StructType *StructTy; 776 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 777 StructTy = StructType::get(M->getContext(), paramTy); 778 paramTy.clear(); 779 paramTy.push_back(PointerType::getUnqual(StructTy)); 780 } 781 FunctionType *funcType = 782 FunctionType::get(RetTy, paramTy, 783 AllowVarArgs && oldFunction->isVarArg()); 784 785 std::string SuffixToUse = 786 Suffix.empty() 787 ? (header->getName().empty() ? "extracted" : header->getName().str()) 788 : Suffix; 789 // Create the new function 790 Function *newFunction = Function::Create( 791 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 792 oldFunction->getName() + "." + SuffixToUse, M); 793 // If the old function is no-throw, so is the new one. 794 if (oldFunction->doesNotThrow()) 795 newFunction->setDoesNotThrow(); 796 797 // Inherit the uwtable attribute if we need to. 798 if (oldFunction->hasUWTable()) 799 newFunction->setHasUWTable(); 800 801 // Inherit all of the target dependent attributes and white-listed 802 // target independent attributes. 803 // (e.g. If the extracted region contains a call to an x86.sse 804 // instruction we need to make sure that the extracted region has the 805 // "target-features" attribute allowing it to be lowered. 806 // FIXME: This should be changed to check to see if a specific 807 // attribute can not be inherited. 808 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) { 809 if (Attr.isStringAttribute()) { 810 if (Attr.getKindAsString() == "thunk") 811 continue; 812 } else 813 switch (Attr.getKindAsEnum()) { 814 // Those attributes cannot be propagated safely. Explicitly list them 815 // here so we get a warning if new attributes are added. This list also 816 // includes non-function attributes. 817 case Attribute::Alignment: 818 case Attribute::AllocSize: 819 case Attribute::ArgMemOnly: 820 case Attribute::Builtin: 821 case Attribute::ByVal: 822 case Attribute::Convergent: 823 case Attribute::Dereferenceable: 824 case Attribute::DereferenceableOrNull: 825 case Attribute::InAlloca: 826 case Attribute::InReg: 827 case Attribute::InaccessibleMemOnly: 828 case Attribute::InaccessibleMemOrArgMemOnly: 829 case Attribute::JumpTable: 830 case Attribute::Naked: 831 case Attribute::Nest: 832 case Attribute::NoAlias: 833 case Attribute::NoBuiltin: 834 case Attribute::NoCapture: 835 case Attribute::NoReturn: 836 case Attribute::NoSync: 837 case Attribute::None: 838 case Attribute::NonNull: 839 case Attribute::ReadNone: 840 case Attribute::ReadOnly: 841 case Attribute::Returned: 842 case Attribute::ReturnsTwice: 843 case Attribute::SExt: 844 case Attribute::Speculatable: 845 case Attribute::StackAlignment: 846 case Attribute::StructRet: 847 case Attribute::SwiftError: 848 case Attribute::SwiftSelf: 849 case Attribute::WillReturn: 850 case Attribute::WriteOnly: 851 case Attribute::ZExt: 852 case Attribute::ImmArg: 853 case Attribute::EndAttrKinds: 854 continue; 855 // Those attributes should be safe to propagate to the extracted function. 856 case Attribute::AlwaysInline: 857 case Attribute::Cold: 858 case Attribute::NoRecurse: 859 case Attribute::InlineHint: 860 case Attribute::MinSize: 861 case Attribute::NoDuplicate: 862 case Attribute::NoFree: 863 case Attribute::NoImplicitFloat: 864 case Attribute::NoInline: 865 case Attribute::NonLazyBind: 866 case Attribute::NoRedZone: 867 case Attribute::NoUnwind: 868 case Attribute::OptForFuzzing: 869 case Attribute::OptimizeNone: 870 case Attribute::OptimizeForSize: 871 case Attribute::SafeStack: 872 case Attribute::ShadowCallStack: 873 case Attribute::SanitizeAddress: 874 case Attribute::SanitizeMemory: 875 case Attribute::SanitizeThread: 876 case Attribute::SanitizeHWAddress: 877 case Attribute::SanitizeMemTag: 878 case Attribute::SpeculativeLoadHardening: 879 case Attribute::StackProtect: 880 case Attribute::StackProtectReq: 881 case Attribute::StackProtectStrong: 882 case Attribute::StrictFP: 883 case Attribute::UWTable: 884 case Attribute::NoCfCheck: 885 break; 886 } 887 888 newFunction->addFnAttr(Attr); 889 } 890 newFunction->getBasicBlockList().push_back(newRootNode); 891 892 // Create an iterator to name all of the arguments we inserted. 893 Function::arg_iterator AI = newFunction->arg_begin(); 894 895 // Rewrite all users of the inputs in the extracted region to use the 896 // arguments (or appropriate addressing into struct) instead. 897 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 898 Value *RewriteVal; 899 if (AggregateArgs) { 900 Value *Idx[2]; 901 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 902 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 903 Instruction *TI = newFunction->begin()->getTerminator(); 904 GetElementPtrInst *GEP = GetElementPtrInst::Create( 905 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 906 RewriteVal = new LoadInst(StructTy->getElementType(i), GEP, 907 "loadgep_" + inputs[i]->getName(), TI); 908 } else 909 RewriteVal = &*AI++; 910 911 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 912 for (User *use : Users) 913 if (Instruction *inst = dyn_cast<Instruction>(use)) 914 if (Blocks.count(inst->getParent())) 915 inst->replaceUsesOfWith(inputs[i], RewriteVal); 916 } 917 918 // Set names for input and output arguments. 919 if (!AggregateArgs) { 920 AI = newFunction->arg_begin(); 921 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 922 AI->setName(inputs[i]->getName()); 923 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 924 AI->setName(outputs[i]->getName()+".out"); 925 } 926 927 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 928 // within the new function. This must be done before we lose track of which 929 // blocks were originally in the code region. 930 std::vector<User *> Users(header->user_begin(), header->user_end()); 931 for (unsigned i = 0, e = Users.size(); i != e; ++i) 932 // The BasicBlock which contains the branch is not in the region 933 // modify the branch target to a new block 934 if (Instruction *I = dyn_cast<Instruction>(Users[i])) 935 if (I->isTerminator() && !Blocks.count(I->getParent()) && 936 I->getParent()->getParent() == oldFunction) 937 I->replaceUsesOfWith(header, newHeader); 938 939 return newFunction; 940 } 941 942 /// Erase lifetime.start markers which reference inputs to the extraction 943 /// region, and insert the referenced memory into \p LifetimesStart. 944 /// 945 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 946 /// of allocas which will be moved from the caller function into the extracted 947 /// function (\p SunkAllocas). 948 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 949 const SetVector<Value *> &SunkAllocas, 950 SetVector<Value *> &LifetimesStart) { 951 for (BasicBlock *BB : Blocks) { 952 for (auto It = BB->begin(), End = BB->end(); It != End;) { 953 auto *II = dyn_cast<IntrinsicInst>(&*It); 954 ++It; 955 if (!II || !II->isLifetimeStartOrEnd()) 956 continue; 957 958 // Get the memory operand of the lifetime marker. If the underlying 959 // object is a sunk alloca, or is otherwise defined in the extraction 960 // region, the lifetime marker must not be erased. 961 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 962 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 963 continue; 964 965 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 966 LifetimesStart.insert(Mem); 967 II->eraseFromParent(); 968 } 969 } 970 } 971 972 /// Insert lifetime start/end markers surrounding the call to the new function 973 /// for objects defined in the caller. 974 static void insertLifetimeMarkersSurroundingCall( 975 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 976 CallInst *TheCall) { 977 LLVMContext &Ctx = M->getContext(); 978 auto Int8PtrTy = Type::getInt8PtrTy(Ctx); 979 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 980 Instruction *Term = TheCall->getParent()->getTerminator(); 981 982 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts 983 // needed to satisfy this requirement so they may be reused. 984 DenseMap<Value *, Value *> Bitcasts; 985 986 // Emit lifetime markers for the pointers given in \p Objects. Insert the 987 // markers before the call if \p InsertBefore, and after the call otherwise. 988 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects, 989 bool InsertBefore) { 990 for (Value *Mem : Objects) { 991 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 992 TheCall->getFunction()) && 993 "Input memory not defined in original function"); 994 Value *&MemAsI8Ptr = Bitcasts[Mem]; 995 if (!MemAsI8Ptr) { 996 if (Mem->getType() == Int8PtrTy) 997 MemAsI8Ptr = Mem; 998 else 999 MemAsI8Ptr = 1000 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); 1001 } 1002 1003 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); 1004 if (InsertBefore) 1005 Marker->insertBefore(TheCall); 1006 else 1007 Marker->insertBefore(Term); 1008 } 1009 }; 1010 1011 if (!LifetimesStart.empty()) { 1012 auto StartFn = llvm::Intrinsic::getDeclaration( 1013 M, llvm::Intrinsic::lifetime_start, Int8PtrTy); 1014 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); 1015 } 1016 1017 if (!LifetimesEnd.empty()) { 1018 auto EndFn = llvm::Intrinsic::getDeclaration( 1019 M, llvm::Intrinsic::lifetime_end, Int8PtrTy); 1020 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); 1021 } 1022 } 1023 1024 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1025 /// the call instruction, splitting any PHI nodes in the header block as 1026 /// necessary. 1027 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1028 BasicBlock *codeReplacer, 1029 ValueSet &inputs, 1030 ValueSet &outputs) { 1031 // Emit a call to the new function, passing in: *pointer to struct (if 1032 // aggregating parameters), or plan inputs and allocated memory for outputs 1033 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 1034 1035 Module *M = newFunction->getParent(); 1036 LLVMContext &Context = M->getContext(); 1037 const DataLayout &DL = M->getDataLayout(); 1038 CallInst *call = nullptr; 1039 1040 // Add inputs as params, or to be filled into the struct 1041 unsigned ArgNo = 0; 1042 SmallVector<unsigned, 1> SwiftErrorArgs; 1043 for (Value *input : inputs) { 1044 if (AggregateArgs) 1045 StructValues.push_back(input); 1046 else { 1047 params.push_back(input); 1048 if (input->isSwiftError()) 1049 SwiftErrorArgs.push_back(ArgNo); 1050 } 1051 ++ArgNo; 1052 } 1053 1054 // Create allocas for the outputs 1055 for (Value *output : outputs) { 1056 if (AggregateArgs) { 1057 StructValues.push_back(output); 1058 } else { 1059 AllocaInst *alloca = 1060 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1061 nullptr, output->getName() + ".loc", 1062 &codeReplacer->getParent()->front().front()); 1063 ReloadOutputs.push_back(alloca); 1064 params.push_back(alloca); 1065 } 1066 } 1067 1068 StructType *StructArgTy = nullptr; 1069 AllocaInst *Struct = nullptr; 1070 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 1071 std::vector<Type *> ArgTypes; 1072 for (ValueSet::iterator v = StructValues.begin(), 1073 ve = StructValues.end(); v != ve; ++v) 1074 ArgTypes.push_back((*v)->getType()); 1075 1076 // Allocate a struct at the beginning of this function 1077 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1078 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 1079 "structArg", 1080 &codeReplacer->getParent()->front().front()); 1081 params.push_back(Struct); 1082 1083 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 1084 Value *Idx[2]; 1085 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1086 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1087 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1088 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1089 codeReplacer->getInstList().push_back(GEP); 1090 StoreInst *SI = new StoreInst(StructValues[i], GEP); 1091 codeReplacer->getInstList().push_back(SI); 1092 } 1093 } 1094 1095 // Emit the call to the function 1096 call = CallInst::Create(newFunction, params, 1097 NumExitBlocks > 1 ? "targetBlock" : ""); 1098 // Add debug location to the new call, if the original function has debug 1099 // info. In that case, the terminator of the entry block of the extracted 1100 // function contains the first debug location of the extracted function, 1101 // set in extractCodeRegion. 1102 if (codeReplacer->getParent()->getSubprogram()) { 1103 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1104 call->setDebugLoc(DL); 1105 } 1106 codeReplacer->getInstList().push_back(call); 1107 1108 // Set swifterror parameter attributes. 1109 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1110 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1111 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1112 } 1113 1114 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 1115 unsigned FirstOut = inputs.size(); 1116 if (!AggregateArgs) 1117 std::advance(OutputArgBegin, inputs.size()); 1118 1119 // Reload the outputs passed in by reference. 1120 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1121 Value *Output = nullptr; 1122 if (AggregateArgs) { 1123 Value *Idx[2]; 1124 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1125 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1126 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1127 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1128 codeReplacer->getInstList().push_back(GEP); 1129 Output = GEP; 1130 } else { 1131 Output = ReloadOutputs[i]; 1132 } 1133 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1134 outputs[i]->getName() + ".reload"); 1135 Reloads.push_back(load); 1136 codeReplacer->getInstList().push_back(load); 1137 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1138 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 1139 Instruction *inst = cast<Instruction>(Users[u]); 1140 if (!Blocks.count(inst->getParent())) 1141 inst->replaceUsesOfWith(outputs[i], load); 1142 } 1143 } 1144 1145 // Now we can emit a switch statement using the call as a value. 1146 SwitchInst *TheSwitch = 1147 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1148 codeReplacer, 0, codeReplacer); 1149 1150 // Since there may be multiple exits from the original region, make the new 1151 // function return an unsigned, switch on that number. This loop iterates 1152 // over all of the blocks in the extracted region, updating any terminator 1153 // instructions in the to-be-extracted region that branch to blocks that are 1154 // not in the region to be extracted. 1155 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1156 1157 unsigned switchVal = 0; 1158 for (BasicBlock *Block : Blocks) { 1159 Instruction *TI = Block->getTerminator(); 1160 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1161 if (!Blocks.count(TI->getSuccessor(i))) { 1162 BasicBlock *OldTarget = TI->getSuccessor(i); 1163 // add a new basic block which returns the appropriate value 1164 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1165 if (!NewTarget) { 1166 // If we don't already have an exit stub for this non-extracted 1167 // destination, create one now! 1168 NewTarget = BasicBlock::Create(Context, 1169 OldTarget->getName() + ".exitStub", 1170 newFunction); 1171 unsigned SuccNum = switchVal++; 1172 1173 Value *brVal = nullptr; 1174 switch (NumExitBlocks) { 1175 case 0: 1176 case 1: break; // No value needed. 1177 case 2: // Conditional branch, return a bool 1178 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1179 break; 1180 default: 1181 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1182 break; 1183 } 1184 1185 ReturnInst::Create(Context, brVal, NewTarget); 1186 1187 // Update the switch instruction. 1188 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1189 SuccNum), 1190 OldTarget); 1191 } 1192 1193 // rewrite the original branch instruction with this new target 1194 TI->setSuccessor(i, NewTarget); 1195 } 1196 } 1197 1198 // Store the arguments right after the definition of output value. 1199 // This should be proceeded after creating exit stubs to be ensure that invoke 1200 // result restore will be placed in the outlined function. 1201 Function::arg_iterator OAI = OutputArgBegin; 1202 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1203 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1204 if (!OutI) 1205 continue; 1206 1207 // Find proper insertion point. 1208 BasicBlock::iterator InsertPt; 1209 // In case OutI is an invoke, we insert the store at the beginning in the 1210 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1211 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1212 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1213 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1214 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1215 else 1216 InsertPt = std::next(OutI->getIterator()); 1217 1218 Instruction *InsertBefore = &*InsertPt; 1219 assert((InsertBefore->getFunction() == newFunction || 1220 Blocks.count(InsertBefore->getParent())) && 1221 "InsertPt should be in new function"); 1222 assert(OAI != newFunction->arg_end() && 1223 "Number of output arguments should match " 1224 "the amount of defined values"); 1225 if (AggregateArgs) { 1226 Value *Idx[2]; 1227 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1228 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1229 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1230 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), 1231 InsertBefore); 1232 new StoreInst(outputs[i], GEP, InsertBefore); 1233 // Since there should be only one struct argument aggregating 1234 // all the output values, we shouldn't increment OAI, which always 1235 // points to the struct argument, in this case. 1236 } else { 1237 new StoreInst(outputs[i], &*OAI, InsertBefore); 1238 ++OAI; 1239 } 1240 } 1241 1242 // Now that we've done the deed, simplify the switch instruction. 1243 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1244 switch (NumExitBlocks) { 1245 case 0: 1246 // There are no successors (the block containing the switch itself), which 1247 // means that previously this was the last part of the function, and hence 1248 // this should be rewritten as a `ret' 1249 1250 // Check if the function should return a value 1251 if (OldFnRetTy->isVoidTy()) { 1252 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1253 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1254 // return what we have 1255 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1256 } else { 1257 // Otherwise we must have code extracted an unwind or something, just 1258 // return whatever we want. 1259 ReturnInst::Create(Context, 1260 Constant::getNullValue(OldFnRetTy), TheSwitch); 1261 } 1262 1263 TheSwitch->eraseFromParent(); 1264 break; 1265 case 1: 1266 // Only a single destination, change the switch into an unconditional 1267 // branch. 1268 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1269 TheSwitch->eraseFromParent(); 1270 break; 1271 case 2: 1272 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1273 call, TheSwitch); 1274 TheSwitch->eraseFromParent(); 1275 break; 1276 default: 1277 // Otherwise, make the default destination of the switch instruction be one 1278 // of the other successors. 1279 TheSwitch->setCondition(call); 1280 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1281 // Remove redundant case 1282 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1283 break; 1284 } 1285 1286 // Insert lifetime markers around the reloads of any output values. The 1287 // allocas output values are stored in are only in-use in the codeRepl block. 1288 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1289 1290 return call; 1291 } 1292 1293 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1294 Function *oldFunc = (*Blocks.begin())->getParent(); 1295 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1296 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1297 1298 for (BasicBlock *Block : Blocks) { 1299 // Delete the basic block from the old function, and the list of blocks 1300 oldBlocks.remove(Block); 1301 1302 // Insert this basic block into the new function 1303 newBlocks.push_back(Block); 1304 } 1305 } 1306 1307 void CodeExtractor::calculateNewCallTerminatorWeights( 1308 BasicBlock *CodeReplacer, 1309 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1310 BranchProbabilityInfo *BPI) { 1311 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1312 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1313 1314 // Update the branch weights for the exit block. 1315 Instruction *TI = CodeReplacer->getTerminator(); 1316 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1317 1318 // Block Frequency distribution with dummy node. 1319 Distribution BranchDist; 1320 1321 // Add each of the frequencies of the successors. 1322 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1323 BlockNode ExitNode(i); 1324 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1325 if (ExitFreq != 0) 1326 BranchDist.addExit(ExitNode, ExitFreq); 1327 else 1328 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); 1329 } 1330 1331 // Check for no total weight. 1332 if (BranchDist.Total == 0) 1333 return; 1334 1335 // Normalize the distribution so that they can fit in unsigned. 1336 BranchDist.normalize(); 1337 1338 // Create normalized branch weights and set the metadata. 1339 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1340 const auto &Weight = BranchDist.Weights[I]; 1341 1342 // Get the weight and update the current BFI. 1343 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1344 BranchProbability BP(Weight.Amount, BranchDist.Total); 1345 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); 1346 } 1347 TI->setMetadata( 1348 LLVMContext::MD_prof, 1349 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1350 } 1351 1352 Function *CodeExtractor::extractCodeRegion() { 1353 if (!isEligible()) 1354 return nullptr; 1355 1356 // Assumption: this is a single-entry code region, and the header is the first 1357 // block in the region. 1358 BasicBlock *header = *Blocks.begin(); 1359 Function *oldFunction = header->getParent(); 1360 1361 // Calculate the entry frequency of the new function before we change the root 1362 // block. 1363 BlockFrequency EntryFreq; 1364 if (BFI) { 1365 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1366 for (BasicBlock *Pred : predecessors(header)) { 1367 if (Blocks.count(Pred)) 1368 continue; 1369 EntryFreq += 1370 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1371 } 1372 } 1373 1374 if (AC) { 1375 // Remove @llvm.assume calls that were moved to the new function from the 1376 // old function's assumption cache. 1377 for (BasicBlock *Block : Blocks) 1378 for (auto &I : *Block) 1379 if (match(&I, m_Intrinsic<Intrinsic::assume>())) 1380 AC->unregisterAssumption(cast<CallInst>(&I)); 1381 } 1382 1383 // If we have any return instructions in the region, split those blocks so 1384 // that the return is not in the region. 1385 splitReturnBlocks(); 1386 1387 // Calculate the exit blocks for the extracted region and the total exit 1388 // weights for each of those blocks. 1389 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1390 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1391 for (BasicBlock *Block : Blocks) { 1392 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 1393 ++SI) { 1394 if (!Blocks.count(*SI)) { 1395 // Update the branch weight for this successor. 1396 if (BFI) { 1397 BlockFrequency &BF = ExitWeights[*SI]; 1398 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 1399 } 1400 ExitBlocks.insert(*SI); 1401 } 1402 } 1403 } 1404 NumExitBlocks = ExitBlocks.size(); 1405 1406 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1407 severSplitPHINodesOfEntry(header); 1408 severSplitPHINodesOfExits(ExitBlocks); 1409 1410 // This takes place of the original loop 1411 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1412 "codeRepl", oldFunction, 1413 header); 1414 1415 // The new function needs a root node because other nodes can branch to the 1416 // head of the region, but the entry node of a function cannot have preds. 1417 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1418 "newFuncRoot"); 1419 auto *BranchI = BranchInst::Create(header); 1420 // If the original function has debug info, we have to add a debug location 1421 // to the new branch instruction from the artificial entry block. 1422 // We use the debug location of the first instruction in the extracted 1423 // blocks, as there is no other equivalent line in the source code. 1424 if (oldFunction->getSubprogram()) { 1425 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1426 return any_of(*BB, [&BranchI](const Instruction &I) { 1427 if (!I.getDebugLoc()) 1428 return false; 1429 BranchI->setDebugLoc(I.getDebugLoc()); 1430 return true; 1431 }); 1432 }); 1433 } 1434 newFuncRoot->getInstList().push_back(BranchI); 1435 1436 ValueSet inputs, outputs, SinkingCands, HoistingCands; 1437 BasicBlock *CommonExit = nullptr; 1438 findAllocas(SinkingCands, HoistingCands, CommonExit); 1439 assert(HoistingCands.empty() || CommonExit); 1440 1441 // Find inputs to, outputs from the code region. 1442 findInputsOutputs(inputs, outputs, SinkingCands); 1443 1444 // Now sink all instructions which only have non-phi uses inside the region. 1445 // Group the allocas at the start of the block, so that any bitcast uses of 1446 // the allocas are well-defined. 1447 AllocaInst *FirstSunkAlloca = nullptr; 1448 for (auto *II : SinkingCands) { 1449 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1450 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1451 if (!FirstSunkAlloca) 1452 FirstSunkAlloca = AI; 1453 } 1454 } 1455 assert((SinkingCands.empty() || FirstSunkAlloca) && 1456 "Did not expect a sink candidate without any allocas"); 1457 for (auto *II : SinkingCands) { 1458 if (!isa<AllocaInst>(II)) { 1459 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1460 } 1461 } 1462 1463 if (!HoistingCands.empty()) { 1464 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1465 Instruction *TI = HoistToBlock->getTerminator(); 1466 for (auto *II : HoistingCands) 1467 cast<Instruction>(II)->moveBefore(TI); 1468 } 1469 1470 // Collect objects which are inputs to the extraction region and also 1471 // referenced by lifetime start markers within it. The effects of these 1472 // markers must be replicated in the calling function to prevent the stack 1473 // coloring pass from merging slots which store input objects. 1474 ValueSet LifetimesStart; 1475 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1476 1477 // Construct new function based on inputs/outputs & add allocas for all defs. 1478 Function *newFunction = 1479 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1480 oldFunction, oldFunction->getParent()); 1481 1482 // Update the entry count of the function. 1483 if (BFI) { 1484 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1485 if (Count.hasValue()) 1486 newFunction->setEntryCount( 1487 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1488 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1489 } 1490 1491 CallInst *TheCall = 1492 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1493 1494 moveCodeToFunction(newFunction); 1495 1496 // Replicate the effects of any lifetime start/end markers which referenced 1497 // input objects in the extraction region by placing markers around the call. 1498 insertLifetimeMarkersSurroundingCall( 1499 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1500 1501 // Propagate personality info to the new function if there is one. 1502 if (oldFunction->hasPersonalityFn()) 1503 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1504 1505 // Update the branch weights for the exit block. 1506 if (BFI && NumExitBlocks > 1) 1507 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1508 1509 // Loop over all of the PHI nodes in the header and exit blocks, and change 1510 // any references to the old incoming edge to be the new incoming edge. 1511 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1512 PHINode *PN = cast<PHINode>(I); 1513 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1514 if (!Blocks.count(PN->getIncomingBlock(i))) 1515 PN->setIncomingBlock(i, newFuncRoot); 1516 } 1517 1518 for (BasicBlock *ExitBB : ExitBlocks) 1519 for (PHINode &PN : ExitBB->phis()) { 1520 Value *IncomingCodeReplacerVal = nullptr; 1521 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1522 // Ignore incoming values from outside of the extracted region. 1523 if (!Blocks.count(PN.getIncomingBlock(i))) 1524 continue; 1525 1526 // Ensure that there is only one incoming value from codeReplacer. 1527 if (!IncomingCodeReplacerVal) { 1528 PN.setIncomingBlock(i, codeReplacer); 1529 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1530 } else 1531 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1532 "PHI has two incompatbile incoming values from codeRepl"); 1533 } 1534 } 1535 1536 // Erase debug info intrinsics. Variable updates within the new function are 1537 // invisible to debuggers. This could be improved by defining a DISubprogram 1538 // for the new function. 1539 for (BasicBlock &BB : *newFunction) { 1540 auto BlockIt = BB.begin(); 1541 // Remove debug info intrinsics from the new function. 1542 while (BlockIt != BB.end()) { 1543 Instruction *Inst = &*BlockIt; 1544 ++BlockIt; 1545 if (isa<DbgInfoIntrinsic>(Inst)) 1546 Inst->eraseFromParent(); 1547 } 1548 // Remove debug info intrinsics which refer to values in the new function 1549 // from the old function. 1550 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1551 for (Instruction &I : BB) 1552 findDbgUsers(DbgUsers, &I); 1553 for (DbgVariableIntrinsic *DVI : DbgUsers) 1554 DVI->eraseFromParent(); 1555 } 1556 1557 // Mark the new function `noreturn` if applicable. Terminators which resume 1558 // exception propagation are treated as returning instructions. This is to 1559 // avoid inserting traps after calls to outlined functions which unwind. 1560 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1561 const Instruction *Term = BB.getTerminator(); 1562 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1563 }); 1564 if (doesNotReturn) 1565 newFunction->setDoesNotReturn(); 1566 1567 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1568 newFunction->dump(); 1569 report_fatal_error("verification of newFunction failed!"); 1570 }); 1571 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1572 report_fatal_error("verification of oldFunction failed!")); 1573 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, AC)) 1574 report_fatal_error("Stale Asumption cache for old Function!")); 1575 return newFunction; 1576 } 1577 1578 bool CodeExtractor::verifyAssumptionCache(const Function& F, 1579 AssumptionCache *AC) { 1580 for (auto AssumeVH : AC->assumptions()) { 1581 CallInst *I = cast<CallInst>(AssumeVH); 1582 if (I->getFunction() != &F) 1583 return true; 1584 } 1585 return false; 1586 } 1587