1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/Verifier.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/BlockFrequency.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <map>
66 #include <set>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 using namespace llvm::PatternMatch;
72 using ProfileCount = Function::ProfileCount;
73 
74 #define DEBUG_TYPE "code-extractor"
75 
76 // Provide a command-line option to aggregate function arguments into a struct
77 // for functions produced by the code extractor. This is useful when converting
78 // extracted functions to pthread-based code, as only one argument (void*) can
79 // be passed in to pthread_create().
80 static cl::opt<bool>
81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
82                  cl::desc("Aggregate arguments to code-extracted functions"));
83 
84 /// Test whether a block is valid for extraction.
85 static bool isBlockValidForExtraction(const BasicBlock &BB,
86                                       const SetVector<BasicBlock *> &Result,
87                                       bool AllowVarArgs, bool AllowAlloca) {
88   // taking the address of a basic block moved to another function is illegal
89   if (BB.hasAddressTaken())
90     return false;
91 
92   // don't hoist code that uses another basicblock address, as it's likely to
93   // lead to unexpected behavior, like cross-function jumps
94   SmallPtrSet<User const *, 16> Visited;
95   SmallVector<User const *, 16> ToVisit;
96 
97   for (Instruction const &Inst : BB)
98     ToVisit.push_back(&Inst);
99 
100   while (!ToVisit.empty()) {
101     User const *Curr = ToVisit.pop_back_val();
102     if (!Visited.insert(Curr).second)
103       continue;
104     if (isa<BlockAddress const>(Curr))
105       return false; // even a reference to self is likely to be not compatible
106 
107     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
108       continue;
109 
110     for (auto const &U : Curr->operands()) {
111       if (auto *UU = dyn_cast<User>(U))
112         ToVisit.push_back(UU);
113     }
114   }
115 
116   // If explicitly requested, allow vastart and alloca. For invoke instructions
117   // verify that extraction is valid.
118   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
119     if (isa<AllocaInst>(I)) {
120        if (!AllowAlloca)
121          return false;
122        continue;
123     }
124 
125     if (const auto *II = dyn_cast<InvokeInst>(I)) {
126       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
127       // must be a part of the subgraph which is being extracted.
128       if (auto *UBB = II->getUnwindDest())
129         if (!Result.count(UBB))
130           return false;
131       continue;
132     }
133 
134     // All catch handlers of a catchswitch instruction as well as the unwind
135     // destination must be in the subgraph.
136     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
137       if (auto *UBB = CSI->getUnwindDest())
138         if (!Result.count(UBB))
139           return false;
140       for (auto *HBB : CSI->handlers())
141         if (!Result.count(const_cast<BasicBlock*>(HBB)))
142           return false;
143       continue;
144     }
145 
146     // Make sure that entire catch handler is within subgraph. It is sufficient
147     // to check that catch return's block is in the list.
148     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
149       for (const auto *U : CPI->users())
150         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
151           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
152             return false;
153       continue;
154     }
155 
156     // And do similar checks for cleanup handler - the entire handler must be
157     // in subgraph which is going to be extracted. For cleanup return should
158     // additionally check that the unwind destination is also in the subgraph.
159     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
160       for (const auto *U : CPI->users())
161         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
162           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
163             return false;
164       continue;
165     }
166     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
167       if (auto *UBB = CRI->getUnwindDest())
168         if (!Result.count(UBB))
169           return false;
170       continue;
171     }
172 
173     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
174       if (const Function *F = CI->getCalledFunction()) {
175         auto IID = F->getIntrinsicID();
176         if (IID == Intrinsic::vastart) {
177           if (AllowVarArgs)
178             continue;
179           else
180             return false;
181         }
182 
183         // Currently, we miscompile outlined copies of eh_typid_for. There are
184         // proposals for fixing this in llvm.org/PR39545.
185         if (IID == Intrinsic::eh_typeid_for)
186           return false;
187       }
188     }
189   }
190 
191   return true;
192 }
193 
194 /// Build a set of blocks to extract if the input blocks are viable.
195 static SetVector<BasicBlock *>
196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
197                         bool AllowVarArgs, bool AllowAlloca) {
198   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199   SetVector<BasicBlock *> Result;
200 
201   // Loop over the blocks, adding them to our set-vector, and aborting with an
202   // empty set if we encounter invalid blocks.
203   for (BasicBlock *BB : BBs) {
204     // If this block is dead, don't process it.
205     if (DT && !DT->isReachableFromEntry(BB))
206       continue;
207 
208     if (!Result.insert(BB))
209       llvm_unreachable("Repeated basic blocks in extraction input");
210   }
211 
212   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
213                     << '\n');
214 
215   for (auto *BB : Result) {
216     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
217       return {};
218 
219     // Make sure that the first block is not a landing pad.
220     if (BB == Result.front()) {
221       if (BB->isEHPad()) {
222         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
223         return {};
224       }
225       continue;
226     }
227 
228     // All blocks other than the first must not have predecessors outside of
229     // the subgraph which is being extracted.
230     for (auto *PBB : predecessors(BB))
231       if (!Result.count(PBB)) {
232         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
233                              "outside the region except for the first block!\n"
234                           << "Problematic source BB: " << BB->getName() << "\n"
235                           << "Problematic destination BB: " << PBB->getName()
236                           << "\n");
237         return {};
238       }
239   }
240 
241   return Result;
242 }
243 
244 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
245                              bool AggregateArgs, BlockFrequencyInfo *BFI,
246                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
247                              bool AllowVarArgs, bool AllowAlloca,
248                              std::string Suffix)
249     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
250       BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
251       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
252       Suffix(Suffix) {}
253 
254 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
255                              BlockFrequencyInfo *BFI,
256                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
257                              std::string Suffix)
258     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
259       BPI(BPI), AC(AC), AllowVarArgs(false),
260       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
261                                      /* AllowVarArgs */ false,
262                                      /* AllowAlloca */ false)),
263       Suffix(Suffix) {}
264 
265 /// definedInRegion - Return true if the specified value is defined in the
266 /// extracted region.
267 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
268   if (Instruction *I = dyn_cast<Instruction>(V))
269     if (Blocks.count(I->getParent()))
270       return true;
271   return false;
272 }
273 
274 /// definedInCaller - Return true if the specified value is defined in the
275 /// function being code extracted, but not in the region being extracted.
276 /// These values must be passed in as live-ins to the function.
277 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
278   if (isa<Argument>(V)) return true;
279   if (Instruction *I = dyn_cast<Instruction>(V))
280     if (!Blocks.count(I->getParent()))
281       return true;
282   return false;
283 }
284 
285 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
286   BasicBlock *CommonExitBlock = nullptr;
287   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
288     for (auto *Succ : successors(Block)) {
289       // Internal edges, ok.
290       if (Blocks.count(Succ))
291         continue;
292       if (!CommonExitBlock) {
293         CommonExitBlock = Succ;
294         continue;
295       }
296       if (CommonExitBlock == Succ)
297         continue;
298 
299       return true;
300     }
301     return false;
302   };
303 
304   if (any_of(Blocks, hasNonCommonExitSucc))
305     return nullptr;
306 
307   return CommonExitBlock;
308 }
309 
310 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
311     Instruction *Addr) const {
312   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
313   Function *Func = (*Blocks.begin())->getParent();
314   for (BasicBlock &BB : *Func) {
315     if (Blocks.count(&BB))
316       continue;
317     for (Instruction &II : BB) {
318       if (isa<DbgInfoIntrinsic>(II))
319         continue;
320 
321       unsigned Opcode = II.getOpcode();
322       Value *MemAddr = nullptr;
323       switch (Opcode) {
324       case Instruction::Store:
325       case Instruction::Load: {
326         if (Opcode == Instruction::Store) {
327           StoreInst *SI = cast<StoreInst>(&II);
328           MemAddr = SI->getPointerOperand();
329         } else {
330           LoadInst *LI = cast<LoadInst>(&II);
331           MemAddr = LI->getPointerOperand();
332         }
333         // Global variable can not be aliased with locals.
334         if (dyn_cast<Constant>(MemAddr))
335           break;
336         Value *Base = MemAddr->stripInBoundsConstantOffsets();
337         if (!isa<AllocaInst>(Base) || Base == AI)
338           return false;
339         break;
340       }
341       default: {
342         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
343         if (IntrInst) {
344           if (IntrInst->isLifetimeStartOrEnd())
345             break;
346           return false;
347         }
348         // Treat all the other cases conservatively if it has side effects.
349         if (II.mayHaveSideEffects())
350           return false;
351       }
352       }
353     }
354   }
355 
356   return true;
357 }
358 
359 BasicBlock *
360 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
361   BasicBlock *SinglePredFromOutlineRegion = nullptr;
362   assert(!Blocks.count(CommonExitBlock) &&
363          "Expect a block outside the region!");
364   for (auto *Pred : predecessors(CommonExitBlock)) {
365     if (!Blocks.count(Pred))
366       continue;
367     if (!SinglePredFromOutlineRegion) {
368       SinglePredFromOutlineRegion = Pred;
369     } else if (SinglePredFromOutlineRegion != Pred) {
370       SinglePredFromOutlineRegion = nullptr;
371       break;
372     }
373   }
374 
375   if (SinglePredFromOutlineRegion)
376     return SinglePredFromOutlineRegion;
377 
378 #ifndef NDEBUG
379   auto getFirstPHI = [](BasicBlock *BB) {
380     BasicBlock::iterator I = BB->begin();
381     PHINode *FirstPhi = nullptr;
382     while (I != BB->end()) {
383       PHINode *Phi = dyn_cast<PHINode>(I);
384       if (!Phi)
385         break;
386       if (!FirstPhi) {
387         FirstPhi = Phi;
388         break;
389       }
390     }
391     return FirstPhi;
392   };
393   // If there are any phi nodes, the single pred either exists or has already
394   // be created before code extraction.
395   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
396 #endif
397 
398   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
399       CommonExitBlock->getFirstNonPHI()->getIterator());
400 
401   for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
402        PI != PE;) {
403     BasicBlock *Pred = *PI++;
404     if (Blocks.count(Pred))
405       continue;
406     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
407   }
408   // Now add the old exit block to the outline region.
409   Blocks.insert(CommonExitBlock);
410   return CommonExitBlock;
411 }
412 
413 // Find the pair of life time markers for address 'Addr' that are either
414 // defined inside the outline region or can legally be shrinkwrapped into the
415 // outline region. If there are not other untracked uses of the address, return
416 // the pair of markers if found; otherwise return a pair of nullptr.
417 CodeExtractor::LifetimeMarkerInfo
418 CodeExtractor::getLifetimeMarkers(Instruction *Addr,
419                                   BasicBlock *ExitBlock) const {
420   LifetimeMarkerInfo Info;
421 
422   for (User *U : Addr->users()) {
423     IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
424     if (IntrInst) {
425       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
426         // Do not handle the case where Addr has multiple start markers.
427         if (Info.LifeStart)
428           return {};
429         Info.LifeStart = IntrInst;
430       }
431       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
432         if (Info.LifeEnd)
433           return {};
434         Info.LifeEnd = IntrInst;
435       }
436       continue;
437     }
438     // Find untracked uses of the address, bail.
439     if (!definedInRegion(Blocks, U))
440       return {};
441   }
442 
443   if (!Info.LifeStart || !Info.LifeEnd)
444     return {};
445 
446   Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
447   Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
448   // Do legality check.
449   if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
450       !isLegalToShrinkwrapLifetimeMarkers(Addr))
451     return {};
452 
453   // Check to see if we have a place to do hoisting, if not, bail.
454   if (Info.HoistLifeEnd && !ExitBlock)
455     return {};
456 
457   return Info;
458 }
459 
460 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands,
461                                 BasicBlock *&ExitBlock) const {
462   Function *Func = (*Blocks.begin())->getParent();
463   ExitBlock = getCommonExitBlock(Blocks);
464 
465   auto moveOrIgnoreLifetimeMarkers =
466       [&](const LifetimeMarkerInfo &LMI) -> bool {
467     if (!LMI.LifeStart)
468       return false;
469     if (LMI.SinkLifeStart) {
470       LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
471                         << "\n");
472       SinkCands.insert(LMI.LifeStart);
473     }
474     if (LMI.HoistLifeEnd) {
475       LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
476       HoistCands.insert(LMI.LifeEnd);
477     }
478     return true;
479   };
480 
481   for (BasicBlock &BB : *Func) {
482     if (Blocks.count(&BB))
483       continue;
484     for (Instruction &II : BB) {
485       auto *AI = dyn_cast<AllocaInst>(&II);
486       if (!AI)
487         continue;
488 
489       LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(AI, ExitBlock);
490       bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
491       if (Moved) {
492         LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
493         SinkCands.insert(AI);
494         continue;
495       }
496 
497       // Follow any bitcasts.
498       SmallVector<Instruction *, 2> Bitcasts;
499       SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
500       for (User *U : AI->users()) {
501         if (U->stripInBoundsConstantOffsets() == AI) {
502           Instruction *Bitcast = cast<Instruction>(U);
503           LifetimeMarkerInfo LMI = getLifetimeMarkers(Bitcast, ExitBlock);
504           if (LMI.LifeStart) {
505             Bitcasts.push_back(Bitcast);
506             BitcastLifetimeInfo.push_back(LMI);
507             continue;
508           }
509         }
510 
511         // Found unknown use of AI.
512         if (!definedInRegion(Blocks, U)) {
513           Bitcasts.clear();
514           break;
515         }
516       }
517 
518       // Either no bitcasts reference the alloca or there are unknown uses.
519       if (Bitcasts.empty())
520         continue;
521 
522       LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
523       SinkCands.insert(AI);
524       for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
525         Instruction *BitcastAddr = Bitcasts[I];
526         const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
527         assert(LMI.LifeStart &&
528                "Unsafe to sink bitcast without lifetime markers");
529         moveOrIgnoreLifetimeMarkers(LMI);
530         if (!definedInRegion(Blocks, BitcastAddr)) {
531           LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
532                             << "\n");
533           SinkCands.insert(BitcastAddr);
534         }
535       }
536     }
537   }
538 }
539 
540 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
541                                       const ValueSet &SinkCands) const {
542   for (BasicBlock *BB : Blocks) {
543     // If a used value is defined outside the region, it's an input.  If an
544     // instruction is used outside the region, it's an output.
545     for (Instruction &II : *BB) {
546       for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
547            ++OI) {
548         Value *V = *OI;
549         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
550           Inputs.insert(V);
551       }
552 
553       for (User *U : II.users())
554         if (!definedInRegion(Blocks, U)) {
555           Outputs.insert(&II);
556           break;
557         }
558     }
559   }
560 }
561 
562 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
563 /// of the region, we need to split the entry block of the region so that the
564 /// PHI node is easier to deal with.
565 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
566   unsigned NumPredsFromRegion = 0;
567   unsigned NumPredsOutsideRegion = 0;
568 
569   if (Header != &Header->getParent()->getEntryBlock()) {
570     PHINode *PN = dyn_cast<PHINode>(Header->begin());
571     if (!PN) return;  // No PHI nodes.
572 
573     // If the header node contains any PHI nodes, check to see if there is more
574     // than one entry from outside the region.  If so, we need to sever the
575     // header block into two.
576     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
577       if (Blocks.count(PN->getIncomingBlock(i)))
578         ++NumPredsFromRegion;
579       else
580         ++NumPredsOutsideRegion;
581 
582     // If there is one (or fewer) predecessor from outside the region, we don't
583     // need to do anything special.
584     if (NumPredsOutsideRegion <= 1) return;
585   }
586 
587   // Otherwise, we need to split the header block into two pieces: one
588   // containing PHI nodes merging values from outside of the region, and a
589   // second that contains all of the code for the block and merges back any
590   // incoming values from inside of the region.
591   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
592 
593   // We only want to code extract the second block now, and it becomes the new
594   // header of the region.
595   BasicBlock *OldPred = Header;
596   Blocks.remove(OldPred);
597   Blocks.insert(NewBB);
598   Header = NewBB;
599 
600   // Okay, now we need to adjust the PHI nodes and any branches from within the
601   // region to go to the new header block instead of the old header block.
602   if (NumPredsFromRegion) {
603     PHINode *PN = cast<PHINode>(OldPred->begin());
604     // Loop over all of the predecessors of OldPred that are in the region,
605     // changing them to branch to NewBB instead.
606     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
607       if (Blocks.count(PN->getIncomingBlock(i))) {
608         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
609         TI->replaceUsesOfWith(OldPred, NewBB);
610       }
611 
612     // Okay, everything within the region is now branching to the right block, we
613     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
614     BasicBlock::iterator AfterPHIs;
615     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
616       PHINode *PN = cast<PHINode>(AfterPHIs);
617       // Create a new PHI node in the new region, which has an incoming value
618       // from OldPred of PN.
619       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
620                                        PN->getName() + ".ce", &NewBB->front());
621       PN->replaceAllUsesWith(NewPN);
622       NewPN->addIncoming(PN, OldPred);
623 
624       // Loop over all of the incoming value in PN, moving them to NewPN if they
625       // are from the extracted region.
626       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
627         if (Blocks.count(PN->getIncomingBlock(i))) {
628           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
629           PN->removeIncomingValue(i);
630           --i;
631         }
632       }
633     }
634   }
635 }
636 
637 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
638 /// outlined region, we split these PHIs on two: one with inputs from region
639 /// and other with remaining incoming blocks; then first PHIs are placed in
640 /// outlined region.
641 void CodeExtractor::severSplitPHINodesOfExits(
642     const SmallPtrSetImpl<BasicBlock *> &Exits) {
643   for (BasicBlock *ExitBB : Exits) {
644     BasicBlock *NewBB = nullptr;
645 
646     for (PHINode &PN : ExitBB->phis()) {
647       // Find all incoming values from the outlining region.
648       SmallVector<unsigned, 2> IncomingVals;
649       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
650         if (Blocks.count(PN.getIncomingBlock(i)))
651           IncomingVals.push_back(i);
652 
653       // Do not process PHI if there is one (or fewer) predecessor from region.
654       // If PHI has exactly one predecessor from region, only this one incoming
655       // will be replaced on codeRepl block, so it should be safe to skip PHI.
656       if (IncomingVals.size() <= 1)
657         continue;
658 
659       // Create block for new PHIs and add it to the list of outlined if it
660       // wasn't done before.
661       if (!NewBB) {
662         NewBB = BasicBlock::Create(ExitBB->getContext(),
663                                    ExitBB->getName() + ".split",
664                                    ExitBB->getParent(), ExitBB);
665         SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB),
666                                            pred_end(ExitBB));
667         for (BasicBlock *PredBB : Preds)
668           if (Blocks.count(PredBB))
669             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
670         BranchInst::Create(ExitBB, NewBB);
671         Blocks.insert(NewBB);
672       }
673 
674       // Split this PHI.
675       PHINode *NewPN =
676           PHINode::Create(PN.getType(), IncomingVals.size(),
677                           PN.getName() + ".ce", NewBB->getFirstNonPHI());
678       for (unsigned i : IncomingVals)
679         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
680       for (unsigned i : reverse(IncomingVals))
681         PN.removeIncomingValue(i, false);
682       PN.addIncoming(NewPN, NewBB);
683     }
684   }
685 }
686 
687 void CodeExtractor::splitReturnBlocks() {
688   for (BasicBlock *Block : Blocks)
689     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
690       BasicBlock *New =
691           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
692       if (DT) {
693         // Old dominates New. New node dominates all other nodes dominated
694         // by Old.
695         DomTreeNode *OldNode = DT->getNode(Block);
696         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
697                                                OldNode->end());
698 
699         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
700 
701         for (DomTreeNode *I : Children)
702           DT->changeImmediateDominator(I, NewNode);
703       }
704     }
705 }
706 
707 /// constructFunction - make a function based on inputs and outputs, as follows:
708 /// f(in0, ..., inN, out0, ..., outN)
709 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
710                                            const ValueSet &outputs,
711                                            BasicBlock *header,
712                                            BasicBlock *newRootNode,
713                                            BasicBlock *newHeader,
714                                            Function *oldFunction,
715                                            Module *M) {
716   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
717   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
718 
719   // This function returns unsigned, outputs will go back by reference.
720   switch (NumExitBlocks) {
721   case 0:
722   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
723   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
724   default: RetTy = Type::getInt16Ty(header->getContext()); break;
725   }
726 
727   std::vector<Type *> paramTy;
728 
729   // Add the types of the input values to the function's argument list
730   for (Value *value : inputs) {
731     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
732     paramTy.push_back(value->getType());
733   }
734 
735   // Add the types of the output values to the function's argument list.
736   for (Value *output : outputs) {
737     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
738     if (AggregateArgs)
739       paramTy.push_back(output->getType());
740     else
741       paramTy.push_back(PointerType::getUnqual(output->getType()));
742   }
743 
744   LLVM_DEBUG({
745     dbgs() << "Function type: " << *RetTy << " f(";
746     for (Type *i : paramTy)
747       dbgs() << *i << ", ";
748     dbgs() << ")\n";
749   });
750 
751   StructType *StructTy;
752   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
753     StructTy = StructType::get(M->getContext(), paramTy);
754     paramTy.clear();
755     paramTy.push_back(PointerType::getUnqual(StructTy));
756   }
757   FunctionType *funcType =
758                   FunctionType::get(RetTy, paramTy,
759                                     AllowVarArgs && oldFunction->isVarArg());
760 
761   std::string SuffixToUse =
762       Suffix.empty()
763           ? (header->getName().empty() ? "extracted" : header->getName().str())
764           : Suffix;
765   // Create the new function
766   Function *newFunction = Function::Create(
767       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
768       oldFunction->getName() + "." + SuffixToUse, M);
769   // If the old function is no-throw, so is the new one.
770   if (oldFunction->doesNotThrow())
771     newFunction->setDoesNotThrow();
772 
773   // Inherit the uwtable attribute if we need to.
774   if (oldFunction->hasUWTable())
775     newFunction->setHasUWTable();
776 
777   // Inherit all of the target dependent attributes and white-listed
778   // target independent attributes.
779   //  (e.g. If the extracted region contains a call to an x86.sse
780   //  instruction we need to make sure that the extracted region has the
781   //  "target-features" attribute allowing it to be lowered.
782   // FIXME: This should be changed to check to see if a specific
783   //           attribute can not be inherited.
784   for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
785     if (Attr.isStringAttribute()) {
786       if (Attr.getKindAsString() == "thunk")
787         continue;
788     } else
789       switch (Attr.getKindAsEnum()) {
790       // Those attributes cannot be propagated safely. Explicitly list them
791       // here so we get a warning if new attributes are added. This list also
792       // includes non-function attributes.
793       case Attribute::Alignment:
794       case Attribute::AllocSize:
795       case Attribute::ArgMemOnly:
796       case Attribute::Builtin:
797       case Attribute::ByVal:
798       case Attribute::Convergent:
799       case Attribute::Dereferenceable:
800       case Attribute::DereferenceableOrNull:
801       case Attribute::InAlloca:
802       case Attribute::InReg:
803       case Attribute::InaccessibleMemOnly:
804       case Attribute::InaccessibleMemOrArgMemOnly:
805       case Attribute::JumpTable:
806       case Attribute::Naked:
807       case Attribute::Nest:
808       case Attribute::NoAlias:
809       case Attribute::NoBuiltin:
810       case Attribute::NoCapture:
811       case Attribute::NoReturn:
812       case Attribute::None:
813       case Attribute::NonNull:
814       case Attribute::ReadNone:
815       case Attribute::ReadOnly:
816       case Attribute::Returned:
817       case Attribute::ReturnsTwice:
818       case Attribute::SExt:
819       case Attribute::Speculatable:
820       case Attribute::StackAlignment:
821       case Attribute::StructRet:
822       case Attribute::SwiftError:
823       case Attribute::SwiftSelf:
824       case Attribute::WillReturn:
825       case Attribute::WriteOnly:
826       case Attribute::ZExt:
827       case Attribute::ImmArg:
828       case Attribute::EndAttrKinds:
829         continue;
830       // Those attributes should be safe to propagate to the extracted function.
831       case Attribute::AlwaysInline:
832       case Attribute::Cold:
833       case Attribute::NoRecurse:
834       case Attribute::InlineHint:
835       case Attribute::MinSize:
836       case Attribute::NoDuplicate:
837       case Attribute::NoFree:
838       case Attribute::NoImplicitFloat:
839       case Attribute::NoInline:
840       case Attribute::NonLazyBind:
841       case Attribute::NoRedZone:
842       case Attribute::NoUnwind:
843       case Attribute::OptForFuzzing:
844       case Attribute::OptimizeNone:
845       case Attribute::OptimizeForSize:
846       case Attribute::SafeStack:
847       case Attribute::ShadowCallStack:
848       case Attribute::SanitizeAddress:
849       case Attribute::SanitizeMemory:
850       case Attribute::SanitizeThread:
851       case Attribute::SanitizeHWAddress:
852       case Attribute::SpeculativeLoadHardening:
853       case Attribute::StackProtect:
854       case Attribute::StackProtectReq:
855       case Attribute::StackProtectStrong:
856       case Attribute::StrictFP:
857       case Attribute::UWTable:
858       case Attribute::NoCfCheck:
859         break;
860       }
861 
862     newFunction->addFnAttr(Attr);
863   }
864   newFunction->getBasicBlockList().push_back(newRootNode);
865 
866   // Create an iterator to name all of the arguments we inserted.
867   Function::arg_iterator AI = newFunction->arg_begin();
868 
869   // Rewrite all users of the inputs in the extracted region to use the
870   // arguments (or appropriate addressing into struct) instead.
871   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
872     Value *RewriteVal;
873     if (AggregateArgs) {
874       Value *Idx[2];
875       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
876       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
877       Instruction *TI = newFunction->begin()->getTerminator();
878       GetElementPtrInst *GEP = GetElementPtrInst::Create(
879           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
880       RewriteVal = new LoadInst(StructTy->getElementType(i), GEP,
881                                 "loadgep_" + inputs[i]->getName(), TI);
882     } else
883       RewriteVal = &*AI++;
884 
885     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
886     for (User *use : Users)
887       if (Instruction *inst = dyn_cast<Instruction>(use))
888         if (Blocks.count(inst->getParent()))
889           inst->replaceUsesOfWith(inputs[i], RewriteVal);
890   }
891 
892   // Set names for input and output arguments.
893   if (!AggregateArgs) {
894     AI = newFunction->arg_begin();
895     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
896       AI->setName(inputs[i]->getName());
897     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
898       AI->setName(outputs[i]->getName()+".out");
899   }
900 
901   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
902   // within the new function. This must be done before we lose track of which
903   // blocks were originally in the code region.
904   std::vector<User *> Users(header->user_begin(), header->user_end());
905   for (unsigned i = 0, e = Users.size(); i != e; ++i)
906     // The BasicBlock which contains the branch is not in the region
907     // modify the branch target to a new block
908     if (Instruction *I = dyn_cast<Instruction>(Users[i]))
909       if (I->isTerminator() && !Blocks.count(I->getParent()) &&
910           I->getParent()->getParent() == oldFunction)
911         I->replaceUsesOfWith(header, newHeader);
912 
913   return newFunction;
914 }
915 
916 /// Erase lifetime.start markers which reference inputs to the extraction
917 /// region, and insert the referenced memory into \p LifetimesStart.
918 ///
919 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
920 /// of allocas which will be moved from the caller function into the extracted
921 /// function (\p SunkAllocas).
922 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
923                                          const SetVector<Value *> &SunkAllocas,
924                                          SetVector<Value *> &LifetimesStart) {
925   for (BasicBlock *BB : Blocks) {
926     for (auto It = BB->begin(), End = BB->end(); It != End;) {
927       auto *II = dyn_cast<IntrinsicInst>(&*It);
928       ++It;
929       if (!II || !II->isLifetimeStartOrEnd())
930         continue;
931 
932       // Get the memory operand of the lifetime marker. If the underlying
933       // object is a sunk alloca, or is otherwise defined in the extraction
934       // region, the lifetime marker must not be erased.
935       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
936       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
937         continue;
938 
939       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
940         LifetimesStart.insert(Mem);
941       II->eraseFromParent();
942     }
943   }
944 }
945 
946 /// Insert lifetime start/end markers surrounding the call to the new function
947 /// for objects defined in the caller.
948 static void insertLifetimeMarkersSurroundingCall(
949     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
950     CallInst *TheCall) {
951   LLVMContext &Ctx = M->getContext();
952   auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
953   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
954   Instruction *Term = TheCall->getParent()->getTerminator();
955 
956   // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
957   // needed to satisfy this requirement so they may be reused.
958   DenseMap<Value *, Value *> Bitcasts;
959 
960   // Emit lifetime markers for the pointers given in \p Objects. Insert the
961   // markers before the call if \p InsertBefore, and after the call otherwise.
962   auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
963                            bool InsertBefore) {
964     for (Value *Mem : Objects) {
965       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
966                                             TheCall->getFunction()) &&
967              "Input memory not defined in original function");
968       Value *&MemAsI8Ptr = Bitcasts[Mem];
969       if (!MemAsI8Ptr) {
970         if (Mem->getType() == Int8PtrTy)
971           MemAsI8Ptr = Mem;
972         else
973           MemAsI8Ptr =
974               CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
975       }
976 
977       auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
978       if (InsertBefore)
979         Marker->insertBefore(TheCall);
980       else
981         Marker->insertBefore(Term);
982     }
983   };
984 
985   if (!LifetimesStart.empty()) {
986     auto StartFn = llvm::Intrinsic::getDeclaration(
987         M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
988     insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
989   }
990 
991   if (!LifetimesEnd.empty()) {
992     auto EndFn = llvm::Intrinsic::getDeclaration(
993         M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
994     insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
995   }
996 }
997 
998 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
999 /// the call instruction, splitting any PHI nodes in the header block as
1000 /// necessary.
1001 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1002                                                     BasicBlock *codeReplacer,
1003                                                     ValueSet &inputs,
1004                                                     ValueSet &outputs) {
1005   // Emit a call to the new function, passing in: *pointer to struct (if
1006   // aggregating parameters), or plan inputs and allocated memory for outputs
1007   std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
1008 
1009   Module *M = newFunction->getParent();
1010   LLVMContext &Context = M->getContext();
1011   const DataLayout &DL = M->getDataLayout();
1012   CallInst *call = nullptr;
1013 
1014   // Add inputs as params, or to be filled into the struct
1015   unsigned ArgNo = 0;
1016   SmallVector<unsigned, 1> SwiftErrorArgs;
1017   for (Value *input : inputs) {
1018     if (AggregateArgs)
1019       StructValues.push_back(input);
1020     else {
1021       params.push_back(input);
1022       if (input->isSwiftError())
1023         SwiftErrorArgs.push_back(ArgNo);
1024     }
1025     ++ArgNo;
1026   }
1027 
1028   // Create allocas for the outputs
1029   for (Value *output : outputs) {
1030     if (AggregateArgs) {
1031       StructValues.push_back(output);
1032     } else {
1033       AllocaInst *alloca =
1034         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1035                        nullptr, output->getName() + ".loc",
1036                        &codeReplacer->getParent()->front().front());
1037       ReloadOutputs.push_back(alloca);
1038       params.push_back(alloca);
1039     }
1040   }
1041 
1042   StructType *StructArgTy = nullptr;
1043   AllocaInst *Struct = nullptr;
1044   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
1045     std::vector<Type *> ArgTypes;
1046     for (ValueSet::iterator v = StructValues.begin(),
1047            ve = StructValues.end(); v != ve; ++v)
1048       ArgTypes.push_back((*v)->getType());
1049 
1050     // Allocate a struct at the beginning of this function
1051     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1052     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1053                             "structArg",
1054                             &codeReplacer->getParent()->front().front());
1055     params.push_back(Struct);
1056 
1057     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
1058       Value *Idx[2];
1059       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1060       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1061       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1062           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1063       codeReplacer->getInstList().push_back(GEP);
1064       StoreInst *SI = new StoreInst(StructValues[i], GEP);
1065       codeReplacer->getInstList().push_back(SI);
1066     }
1067   }
1068 
1069   // Emit the call to the function
1070   call = CallInst::Create(newFunction, params,
1071                           NumExitBlocks > 1 ? "targetBlock" : "");
1072   // Add debug location to the new call, if the original function has debug
1073   // info. In that case, the terminator of the entry block of the extracted
1074   // function contains the first debug location of the extracted function,
1075   // set in extractCodeRegion.
1076   if (codeReplacer->getParent()->getSubprogram()) {
1077     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1078       call->setDebugLoc(DL);
1079   }
1080   codeReplacer->getInstList().push_back(call);
1081 
1082   // Set swifterror parameter attributes.
1083   for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1084     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1085     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1086   }
1087 
1088   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
1089   unsigned FirstOut = inputs.size();
1090   if (!AggregateArgs)
1091     std::advance(OutputArgBegin, inputs.size());
1092 
1093   // Reload the outputs passed in by reference.
1094   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1095     Value *Output = nullptr;
1096     if (AggregateArgs) {
1097       Value *Idx[2];
1098       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1099       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1100       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1101           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1102       codeReplacer->getInstList().push_back(GEP);
1103       Output = GEP;
1104     } else {
1105       Output = ReloadOutputs[i];
1106     }
1107     LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1108                                   outputs[i]->getName() + ".reload");
1109     Reloads.push_back(load);
1110     codeReplacer->getInstList().push_back(load);
1111     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1112     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1113       Instruction *inst = cast<Instruction>(Users[u]);
1114       if (!Blocks.count(inst->getParent()))
1115         inst->replaceUsesOfWith(outputs[i], load);
1116     }
1117   }
1118 
1119   // Now we can emit a switch statement using the call as a value.
1120   SwitchInst *TheSwitch =
1121       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1122                          codeReplacer, 0, codeReplacer);
1123 
1124   // Since there may be multiple exits from the original region, make the new
1125   // function return an unsigned, switch on that number.  This loop iterates
1126   // over all of the blocks in the extracted region, updating any terminator
1127   // instructions in the to-be-extracted region that branch to blocks that are
1128   // not in the region to be extracted.
1129   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1130 
1131   unsigned switchVal = 0;
1132   for (BasicBlock *Block : Blocks) {
1133     Instruction *TI = Block->getTerminator();
1134     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1135       if (!Blocks.count(TI->getSuccessor(i))) {
1136         BasicBlock *OldTarget = TI->getSuccessor(i);
1137         // add a new basic block which returns the appropriate value
1138         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1139         if (!NewTarget) {
1140           // If we don't already have an exit stub for this non-extracted
1141           // destination, create one now!
1142           NewTarget = BasicBlock::Create(Context,
1143                                          OldTarget->getName() + ".exitStub",
1144                                          newFunction);
1145           unsigned SuccNum = switchVal++;
1146 
1147           Value *brVal = nullptr;
1148           switch (NumExitBlocks) {
1149           case 0:
1150           case 1: break;  // No value needed.
1151           case 2:         // Conditional branch, return a bool
1152             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1153             break;
1154           default:
1155             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1156             break;
1157           }
1158 
1159           ReturnInst::Create(Context, brVal, NewTarget);
1160 
1161           // Update the switch instruction.
1162           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1163                                               SuccNum),
1164                              OldTarget);
1165         }
1166 
1167         // rewrite the original branch instruction with this new target
1168         TI->setSuccessor(i, NewTarget);
1169       }
1170   }
1171 
1172   // Store the arguments right after the definition of output value.
1173   // This should be proceeded after creating exit stubs to be ensure that invoke
1174   // result restore will be placed in the outlined function.
1175   Function::arg_iterator OAI = OutputArgBegin;
1176   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1177     auto *OutI = dyn_cast<Instruction>(outputs[i]);
1178     if (!OutI)
1179       continue;
1180 
1181     // Find proper insertion point.
1182     BasicBlock::iterator InsertPt;
1183     // In case OutI is an invoke, we insert the store at the beginning in the
1184     // 'normal destination' BB. Otherwise we insert the store right after OutI.
1185     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1186       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1187     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1188       InsertPt = Phi->getParent()->getFirstInsertionPt();
1189     else
1190       InsertPt = std::next(OutI->getIterator());
1191 
1192     Instruction *InsertBefore = &*InsertPt;
1193     assert((InsertBefore->getFunction() == newFunction ||
1194             Blocks.count(InsertBefore->getParent())) &&
1195            "InsertPt should be in new function");
1196     assert(OAI != newFunction->arg_end() &&
1197            "Number of output arguments should match "
1198            "the amount of defined values");
1199     if (AggregateArgs) {
1200       Value *Idx[2];
1201       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1202       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1203       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1204           StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(),
1205           InsertBefore);
1206       new StoreInst(outputs[i], GEP, InsertBefore);
1207       // Since there should be only one struct argument aggregating
1208       // all the output values, we shouldn't increment OAI, which always
1209       // points to the struct argument, in this case.
1210     } else {
1211       new StoreInst(outputs[i], &*OAI, InsertBefore);
1212       ++OAI;
1213     }
1214   }
1215 
1216   // Now that we've done the deed, simplify the switch instruction.
1217   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1218   switch (NumExitBlocks) {
1219   case 0:
1220     // There are no successors (the block containing the switch itself), which
1221     // means that previously this was the last part of the function, and hence
1222     // this should be rewritten as a `ret'
1223 
1224     // Check if the function should return a value
1225     if (OldFnRetTy->isVoidTy()) {
1226       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1227     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1228       // return what we have
1229       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1230     } else {
1231       // Otherwise we must have code extracted an unwind or something, just
1232       // return whatever we want.
1233       ReturnInst::Create(Context,
1234                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1235     }
1236 
1237     TheSwitch->eraseFromParent();
1238     break;
1239   case 1:
1240     // Only a single destination, change the switch into an unconditional
1241     // branch.
1242     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1243     TheSwitch->eraseFromParent();
1244     break;
1245   case 2:
1246     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1247                        call, TheSwitch);
1248     TheSwitch->eraseFromParent();
1249     break;
1250   default:
1251     // Otherwise, make the default destination of the switch instruction be one
1252     // of the other successors.
1253     TheSwitch->setCondition(call);
1254     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1255     // Remove redundant case
1256     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1257     break;
1258   }
1259 
1260   // Insert lifetime markers around the reloads of any output values. The
1261   // allocas output values are stored in are only in-use in the codeRepl block.
1262   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1263 
1264   return call;
1265 }
1266 
1267 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1268   Function *oldFunc = (*Blocks.begin())->getParent();
1269   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1270   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1271 
1272   for (BasicBlock *Block : Blocks) {
1273     // Delete the basic block from the old function, and the list of blocks
1274     oldBlocks.remove(Block);
1275 
1276     // Insert this basic block into the new function
1277     newBlocks.push_back(Block);
1278 
1279     // Remove @llvm.assume calls that were moved to the new function from the
1280     // old function's assumption cache.
1281     if (AC)
1282       for (auto &I : *Block)
1283         if (match(&I, m_Intrinsic<Intrinsic::assume>()))
1284           AC->unregisterAssumption(cast<CallInst>(&I));
1285   }
1286 }
1287 
1288 void CodeExtractor::calculateNewCallTerminatorWeights(
1289     BasicBlock *CodeReplacer,
1290     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1291     BranchProbabilityInfo *BPI) {
1292   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1293   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1294 
1295   // Update the branch weights for the exit block.
1296   Instruction *TI = CodeReplacer->getTerminator();
1297   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1298 
1299   // Block Frequency distribution with dummy node.
1300   Distribution BranchDist;
1301 
1302   // Add each of the frequencies of the successors.
1303   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1304     BlockNode ExitNode(i);
1305     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1306     if (ExitFreq != 0)
1307       BranchDist.addExit(ExitNode, ExitFreq);
1308     else
1309       BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
1310   }
1311 
1312   // Check for no total weight.
1313   if (BranchDist.Total == 0)
1314     return;
1315 
1316   // Normalize the distribution so that they can fit in unsigned.
1317   BranchDist.normalize();
1318 
1319   // Create normalized branch weights and set the metadata.
1320   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1321     const auto &Weight = BranchDist.Weights[I];
1322 
1323     // Get the weight and update the current BFI.
1324     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1325     BranchProbability BP(Weight.Amount, BranchDist.Total);
1326     BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
1327   }
1328   TI->setMetadata(
1329       LLVMContext::MD_prof,
1330       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1331 }
1332 
1333 Function *CodeExtractor::extractCodeRegion() {
1334   if (!isEligible())
1335     return nullptr;
1336 
1337   // Assumption: this is a single-entry code region, and the header is the first
1338   // block in the region.
1339   BasicBlock *header = *Blocks.begin();
1340   Function *oldFunction = header->getParent();
1341 
1342   // For functions with varargs, check that varargs handling is only done in the
1343   // outlined function, i.e vastart and vaend are only used in outlined blocks.
1344   if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) {
1345     auto containsVarArgIntrinsic = [](Instruction &I) {
1346       if (const CallInst *CI = dyn_cast<CallInst>(&I))
1347         if (const Function *F = CI->getCalledFunction())
1348           return F->getIntrinsicID() == Intrinsic::vastart ||
1349                  F->getIntrinsicID() == Intrinsic::vaend;
1350       return false;
1351     };
1352 
1353     for (auto &BB : *oldFunction) {
1354       if (Blocks.count(&BB))
1355         continue;
1356       if (llvm::any_of(BB, containsVarArgIntrinsic))
1357         return nullptr;
1358     }
1359   }
1360   ValueSet inputs, outputs, SinkingCands, HoistingCands;
1361   BasicBlock *CommonExit = nullptr;
1362 
1363   // Calculate the entry frequency of the new function before we change the root
1364   //   block.
1365   BlockFrequency EntryFreq;
1366   if (BFI) {
1367     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1368     for (BasicBlock *Pred : predecessors(header)) {
1369       if (Blocks.count(Pred))
1370         continue;
1371       EntryFreq +=
1372           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1373     }
1374   }
1375 
1376   // If we have any return instructions in the region, split those blocks so
1377   // that the return is not in the region.
1378   splitReturnBlocks();
1379 
1380   // Calculate the exit blocks for the extracted region and the total exit
1381   // weights for each of those blocks.
1382   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1383   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1384   for (BasicBlock *Block : Blocks) {
1385     for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1386          ++SI) {
1387       if (!Blocks.count(*SI)) {
1388         // Update the branch weight for this successor.
1389         if (BFI) {
1390           BlockFrequency &BF = ExitWeights[*SI];
1391           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1392         }
1393         ExitBlocks.insert(*SI);
1394       }
1395     }
1396   }
1397   NumExitBlocks = ExitBlocks.size();
1398 
1399   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1400   severSplitPHINodesOfEntry(header);
1401   severSplitPHINodesOfExits(ExitBlocks);
1402 
1403   // This takes place of the original loop
1404   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1405                                                 "codeRepl", oldFunction,
1406                                                 header);
1407 
1408   // The new function needs a root node because other nodes can branch to the
1409   // head of the region, but the entry node of a function cannot have preds.
1410   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1411                                                "newFuncRoot");
1412   auto *BranchI = BranchInst::Create(header);
1413   // If the original function has debug info, we have to add a debug location
1414   // to the new branch instruction from the artificial entry block.
1415   // We use the debug location of the first instruction in the extracted
1416   // blocks, as there is no other equivalent line in the source code.
1417   if (oldFunction->getSubprogram()) {
1418     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1419       return any_of(*BB, [&BranchI](const Instruction &I) {
1420         if (!I.getDebugLoc())
1421           return false;
1422         BranchI->setDebugLoc(I.getDebugLoc());
1423         return true;
1424       });
1425     });
1426   }
1427   newFuncRoot->getInstList().push_back(BranchI);
1428 
1429   findAllocas(SinkingCands, HoistingCands, CommonExit);
1430   assert(HoistingCands.empty() || CommonExit);
1431 
1432   // Find inputs to, outputs from the code region.
1433   findInputsOutputs(inputs, outputs, SinkingCands);
1434 
1435   // Now sink all instructions which only have non-phi uses inside the region.
1436   // Group the allocas at the start of the block, so that any bitcast uses of
1437   // the allocas are well-defined.
1438   AllocaInst *FirstSunkAlloca = nullptr;
1439   for (auto *II : SinkingCands) {
1440     if (auto *AI = dyn_cast<AllocaInst>(II)) {
1441       AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1442       if (!FirstSunkAlloca)
1443         FirstSunkAlloca = AI;
1444     }
1445   }
1446   assert((SinkingCands.empty() || FirstSunkAlloca) &&
1447          "Did not expect a sink candidate without any allocas");
1448   for (auto *II : SinkingCands) {
1449     if (!isa<AllocaInst>(II)) {
1450       cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1451     }
1452   }
1453 
1454   if (!HoistingCands.empty()) {
1455     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1456     Instruction *TI = HoistToBlock->getTerminator();
1457     for (auto *II : HoistingCands)
1458       cast<Instruction>(II)->moveBefore(TI);
1459   }
1460 
1461   // Collect objects which are inputs to the extraction region and also
1462   // referenced by lifetime start markers within it. The effects of these
1463   // markers must be replicated in the calling function to prevent the stack
1464   // coloring pass from merging slots which store input objects.
1465   ValueSet LifetimesStart;
1466   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1467 
1468   // Construct new function based on inputs/outputs & add allocas for all defs.
1469   Function *newFunction =
1470       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1471                         oldFunction, oldFunction->getParent());
1472 
1473   // Update the entry count of the function.
1474   if (BFI) {
1475     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1476     if (Count.hasValue())
1477       newFunction->setEntryCount(
1478           ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1479     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1480   }
1481 
1482   CallInst *TheCall =
1483       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1484 
1485   moveCodeToFunction(newFunction);
1486 
1487   // Replicate the effects of any lifetime start/end markers which referenced
1488   // input objects in the extraction region by placing markers around the call.
1489   insertLifetimeMarkersSurroundingCall(
1490       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1491 
1492   // Propagate personality info to the new function if there is one.
1493   if (oldFunction->hasPersonalityFn())
1494     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1495 
1496   // Update the branch weights for the exit block.
1497   if (BFI && NumExitBlocks > 1)
1498     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1499 
1500   // Loop over all of the PHI nodes in the header and exit blocks, and change
1501   // any references to the old incoming edge to be the new incoming edge.
1502   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1503     PHINode *PN = cast<PHINode>(I);
1504     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1505       if (!Blocks.count(PN->getIncomingBlock(i)))
1506         PN->setIncomingBlock(i, newFuncRoot);
1507   }
1508 
1509   for (BasicBlock *ExitBB : ExitBlocks)
1510     for (PHINode &PN : ExitBB->phis()) {
1511       Value *IncomingCodeReplacerVal = nullptr;
1512       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1513         // Ignore incoming values from outside of the extracted region.
1514         if (!Blocks.count(PN.getIncomingBlock(i)))
1515           continue;
1516 
1517         // Ensure that there is only one incoming value from codeReplacer.
1518         if (!IncomingCodeReplacerVal) {
1519           PN.setIncomingBlock(i, codeReplacer);
1520           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1521         } else
1522           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1523                  "PHI has two incompatbile incoming values from codeRepl");
1524       }
1525     }
1526 
1527   // Erase debug info intrinsics. Variable updates within the new function are
1528   // invisible to debuggers. This could be improved by defining a DISubprogram
1529   // for the new function.
1530   for (BasicBlock &BB : *newFunction) {
1531     auto BlockIt = BB.begin();
1532     // Remove debug info intrinsics from the new function.
1533     while (BlockIt != BB.end()) {
1534       Instruction *Inst = &*BlockIt;
1535       ++BlockIt;
1536       if (isa<DbgInfoIntrinsic>(Inst))
1537         Inst->eraseFromParent();
1538     }
1539     // Remove debug info intrinsics which refer to values in the new function
1540     // from the old function.
1541     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1542     for (Instruction &I : BB)
1543       findDbgUsers(DbgUsers, &I);
1544     for (DbgVariableIntrinsic *DVI : DbgUsers)
1545       DVI->eraseFromParent();
1546   }
1547 
1548   // Mark the new function `noreturn` if applicable. Terminators which resume
1549   // exception propagation are treated as returning instructions. This is to
1550   // avoid inserting traps after calls to outlined functions which unwind.
1551   bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1552     const Instruction *Term = BB.getTerminator();
1553     return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1554   });
1555   if (doesNotReturn)
1556     newFunction->setDoesNotReturn();
1557 
1558   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1559     newFunction->dump();
1560     report_fatal_error("verification of newFunction failed!");
1561   });
1562   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1563              report_fatal_error("verification of oldFunction failed!"));
1564   return newFunction;
1565 }
1566