1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/CodeExtractor.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/RegionInfo.h" 25 #include "llvm/Analysis/RegionIterator.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/BlockFrequency.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include <algorithm> 43 #include <set> 44 using namespace llvm; 45 46 #define DEBUG_TYPE "code-extractor" 47 48 // Provide a command-line option to aggregate function arguments into a struct 49 // for functions produced by the code extractor. This is useful when converting 50 // extracted functions to pthread-based code, as only one argument (void*) can 51 // be passed in to pthread_create(). 52 static cl::opt<bool> 53 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 54 cl::desc("Aggregate arguments to code-extracted functions")); 55 56 /// \brief Test whether a block is valid for extraction. 57 bool CodeExtractor::isBlockValidForExtraction(const BasicBlock &BB) { 58 // Landing pads must be in the function where they were inserted for cleanup. 59 if (BB.isEHPad()) 60 return false; 61 62 // Don't hoist code containing allocas, invokes, or vastarts. 63 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 64 if (isa<AllocaInst>(I) || isa<InvokeInst>(I)) 65 return false; 66 if (const CallInst *CI = dyn_cast<CallInst>(I)) 67 if (const Function *F = CI->getCalledFunction()) 68 if (F->getIntrinsicID() == Intrinsic::vastart) 69 return false; 70 } 71 72 return true; 73 } 74 75 /// \brief Build a set of blocks to extract if the input blocks are viable. 76 static SetVector<BasicBlock *> 77 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT) { 78 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 79 SetVector<BasicBlock *> Result; 80 81 // Loop over the blocks, adding them to our set-vector, and aborting with an 82 // empty set if we encounter invalid blocks. 83 for (BasicBlock *BB : BBs) { 84 85 // If this block is dead, don't process it. 86 if (DT && !DT->isReachableFromEntry(BB)) 87 continue; 88 89 if (!Result.insert(BB)) 90 llvm_unreachable("Repeated basic blocks in extraction input"); 91 if (!CodeExtractor::isBlockValidForExtraction(*BB)) { 92 Result.clear(); 93 return Result; 94 } 95 } 96 97 #ifndef NDEBUG 98 for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()), 99 E = Result.end(); 100 I != E; ++I) 101 for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I); 102 PI != PE; ++PI) 103 assert(Result.count(*PI) && 104 "No blocks in this region may have entries from outside the region" 105 " except for the first block!"); 106 #endif 107 108 return Result; 109 } 110 111 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 112 bool AggregateArgs, BlockFrequencyInfo *BFI, 113 BranchProbabilityInfo *BPI) 114 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 115 BPI(BPI), Blocks(buildExtractionBlockSet(BBs, DT)), NumExitBlocks(~0U) {} 116 117 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 118 BlockFrequencyInfo *BFI, 119 BranchProbabilityInfo *BPI) 120 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 121 BPI(BPI), Blocks(buildExtractionBlockSet(L.getBlocks(), &DT)), 122 NumExitBlocks(~0U) {} 123 124 /// definedInRegion - Return true if the specified value is defined in the 125 /// extracted region. 126 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 127 if (Instruction *I = dyn_cast<Instruction>(V)) 128 if (Blocks.count(I->getParent())) 129 return true; 130 return false; 131 } 132 133 /// definedInCaller - Return true if the specified value is defined in the 134 /// function being code extracted, but not in the region being extracted. 135 /// These values must be passed in as live-ins to the function. 136 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 137 if (isa<Argument>(V)) return true; 138 if (Instruction *I = dyn_cast<Instruction>(V)) 139 if (!Blocks.count(I->getParent())) 140 return true; 141 return false; 142 } 143 144 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, 145 ValueSet &Outputs) const { 146 for (BasicBlock *BB : Blocks) { 147 // If a used value is defined outside the region, it's an input. If an 148 // instruction is used outside the region, it's an output. 149 for (Instruction &II : *BB) { 150 for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE; 151 ++OI) 152 if (definedInCaller(Blocks, *OI)) 153 Inputs.insert(*OI); 154 155 for (User *U : II.users()) 156 if (!definedInRegion(Blocks, U)) { 157 Outputs.insert(&II); 158 break; 159 } 160 } 161 } 162 } 163 164 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 165 /// region, we need to split the entry block of the region so that the PHI node 166 /// is easier to deal with. 167 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 168 unsigned NumPredsFromRegion = 0; 169 unsigned NumPredsOutsideRegion = 0; 170 171 if (Header != &Header->getParent()->getEntryBlock()) { 172 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 173 if (!PN) return; // No PHI nodes. 174 175 // If the header node contains any PHI nodes, check to see if there is more 176 // than one entry from outside the region. If so, we need to sever the 177 // header block into two. 178 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 179 if (Blocks.count(PN->getIncomingBlock(i))) 180 ++NumPredsFromRegion; 181 else 182 ++NumPredsOutsideRegion; 183 184 // If there is one (or fewer) predecessor from outside the region, we don't 185 // need to do anything special. 186 if (NumPredsOutsideRegion <= 1) return; 187 } 188 189 // Otherwise, we need to split the header block into two pieces: one 190 // containing PHI nodes merging values from outside of the region, and a 191 // second that contains all of the code for the block and merges back any 192 // incoming values from inside of the region. 193 BasicBlock *NewBB = llvm::SplitBlock(Header, Header->getFirstNonPHI(), DT); 194 195 // We only want to code extract the second block now, and it becomes the new 196 // header of the region. 197 BasicBlock *OldPred = Header; 198 Blocks.remove(OldPred); 199 Blocks.insert(NewBB); 200 Header = NewBB; 201 202 // Okay, now we need to adjust the PHI nodes and any branches from within the 203 // region to go to the new header block instead of the old header block. 204 if (NumPredsFromRegion) { 205 PHINode *PN = cast<PHINode>(OldPred->begin()); 206 // Loop over all of the predecessors of OldPred that are in the region, 207 // changing them to branch to NewBB instead. 208 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 209 if (Blocks.count(PN->getIncomingBlock(i))) { 210 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 211 TI->replaceUsesOfWith(OldPred, NewBB); 212 } 213 214 // Okay, everything within the region is now branching to the right block, we 215 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 216 BasicBlock::iterator AfterPHIs; 217 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 218 PHINode *PN = cast<PHINode>(AfterPHIs); 219 // Create a new PHI node in the new region, which has an incoming value 220 // from OldPred of PN. 221 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 222 PN->getName() + ".ce", &NewBB->front()); 223 PN->replaceAllUsesWith(NewPN); 224 NewPN->addIncoming(PN, OldPred); 225 226 // Loop over all of the incoming value in PN, moving them to NewPN if they 227 // are from the extracted region. 228 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 229 if (Blocks.count(PN->getIncomingBlock(i))) { 230 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 231 PN->removeIncomingValue(i); 232 --i; 233 } 234 } 235 } 236 } 237 } 238 239 void CodeExtractor::splitReturnBlocks() { 240 for (BasicBlock *Block : Blocks) 241 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 242 BasicBlock *New = 243 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 244 if (DT) { 245 // Old dominates New. New node dominates all other nodes dominated 246 // by Old. 247 DomTreeNode *OldNode = DT->getNode(Block); 248 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 249 OldNode->end()); 250 251 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 252 253 for (DomTreeNode *I : Children) 254 DT->changeImmediateDominator(I, NewNode); 255 } 256 } 257 } 258 259 /// constructFunction - make a function based on inputs and outputs, as follows: 260 /// f(in0, ..., inN, out0, ..., outN) 261 /// 262 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 263 const ValueSet &outputs, 264 BasicBlock *header, 265 BasicBlock *newRootNode, 266 BasicBlock *newHeader, 267 Function *oldFunction, 268 Module *M) { 269 DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 270 DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 271 272 // This function returns unsigned, outputs will go back by reference. 273 switch (NumExitBlocks) { 274 case 0: 275 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 276 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 277 default: RetTy = Type::getInt16Ty(header->getContext()); break; 278 } 279 280 std::vector<Type*> paramTy; 281 282 // Add the types of the input values to the function's argument list 283 for (Value *value : inputs) { 284 DEBUG(dbgs() << "value used in func: " << *value << "\n"); 285 paramTy.push_back(value->getType()); 286 } 287 288 // Add the types of the output values to the function's argument list. 289 for (Value *output : outputs) { 290 DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 291 if (AggregateArgs) 292 paramTy.push_back(output->getType()); 293 else 294 paramTy.push_back(PointerType::getUnqual(output->getType())); 295 } 296 297 DEBUG({ 298 dbgs() << "Function type: " << *RetTy << " f("; 299 for (Type *i : paramTy) 300 dbgs() << *i << ", "; 301 dbgs() << ")\n"; 302 }); 303 304 StructType *StructTy; 305 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 306 StructTy = StructType::get(M->getContext(), paramTy); 307 paramTy.clear(); 308 paramTy.push_back(PointerType::getUnqual(StructTy)); 309 } 310 FunctionType *funcType = 311 FunctionType::get(RetTy, paramTy, false); 312 313 // Create the new function 314 Function *newFunction = Function::Create(funcType, 315 GlobalValue::InternalLinkage, 316 oldFunction->getName() + "_" + 317 header->getName(), M); 318 // If the old function is no-throw, so is the new one. 319 if (oldFunction->doesNotThrow()) 320 newFunction->setDoesNotThrow(); 321 322 // Inherit the uwtable attribute if we need to. 323 if (oldFunction->hasUWTable()) 324 newFunction->setHasUWTable(); 325 326 // Inherit all of the target dependent attributes. 327 // (e.g. If the extracted region contains a call to an x86.sse 328 // instruction we need to make sure that the extracted region has the 329 // "target-features" attribute allowing it to be lowered. 330 // FIXME: This should be changed to check to see if a specific 331 // attribute can not be inherited. 332 AttrBuilder AB(oldFunction->getAttributes().getFnAttributes()); 333 for (const auto &Attr : AB.td_attrs()) 334 newFunction->addFnAttr(Attr.first, Attr.second); 335 336 newFunction->getBasicBlockList().push_back(newRootNode); 337 338 // Create an iterator to name all of the arguments we inserted. 339 Function::arg_iterator AI = newFunction->arg_begin(); 340 341 // Rewrite all users of the inputs in the extracted region to use the 342 // arguments (or appropriate addressing into struct) instead. 343 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 344 Value *RewriteVal; 345 if (AggregateArgs) { 346 Value *Idx[2]; 347 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 348 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 349 TerminatorInst *TI = newFunction->begin()->getTerminator(); 350 GetElementPtrInst *GEP = GetElementPtrInst::Create( 351 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 352 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 353 } else 354 RewriteVal = &*AI++; 355 356 std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 357 for (User *use : Users) 358 if (Instruction *inst = dyn_cast<Instruction>(use)) 359 if (Blocks.count(inst->getParent())) 360 inst->replaceUsesOfWith(inputs[i], RewriteVal); 361 } 362 363 // Set names for input and output arguments. 364 if (!AggregateArgs) { 365 AI = newFunction->arg_begin(); 366 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 367 AI->setName(inputs[i]->getName()); 368 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 369 AI->setName(outputs[i]->getName()+".out"); 370 } 371 372 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 373 // within the new function. This must be done before we lose track of which 374 // blocks were originally in the code region. 375 std::vector<User*> Users(header->user_begin(), header->user_end()); 376 for (unsigned i = 0, e = Users.size(); i != e; ++i) 377 // The BasicBlock which contains the branch is not in the region 378 // modify the branch target to a new block 379 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 380 if (!Blocks.count(TI->getParent()) && 381 TI->getParent()->getParent() == oldFunction) 382 TI->replaceUsesOfWith(header, newHeader); 383 384 return newFunction; 385 } 386 387 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI 388 /// that uses the value within the basic block, and return the predecessor 389 /// block associated with that use, or return 0 if none is found. 390 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) { 391 for (Use &U : Used->uses()) { 392 PHINode *P = dyn_cast<PHINode>(U.getUser()); 393 if (P && P->getParent() == BB) 394 return P->getIncomingBlock(U); 395 } 396 397 return nullptr; 398 } 399 400 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 401 /// the call instruction, splitting any PHI nodes in the header block as 402 /// necessary. 403 void CodeExtractor:: 404 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 405 ValueSet &inputs, ValueSet &outputs) { 406 // Emit a call to the new function, passing in: *pointer to struct (if 407 // aggregating parameters), or plan inputs and allocated memory for outputs 408 std::vector<Value*> params, StructValues, ReloadOutputs, Reloads; 409 410 Module *M = newFunction->getParent(); 411 LLVMContext &Context = M->getContext(); 412 const DataLayout &DL = M->getDataLayout(); 413 414 // Add inputs as params, or to be filled into the struct 415 for (Value *input : inputs) 416 if (AggregateArgs) 417 StructValues.push_back(input); 418 else 419 params.push_back(input); 420 421 // Create allocas for the outputs 422 for (Value *output : outputs) { 423 if (AggregateArgs) { 424 StructValues.push_back(output); 425 } else { 426 AllocaInst *alloca = 427 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 428 nullptr, output->getName() + ".loc", 429 &codeReplacer->getParent()->front().front()); 430 ReloadOutputs.push_back(alloca); 431 params.push_back(alloca); 432 } 433 } 434 435 StructType *StructArgTy = nullptr; 436 AllocaInst *Struct = nullptr; 437 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 438 std::vector<Type*> ArgTypes; 439 for (ValueSet::iterator v = StructValues.begin(), 440 ve = StructValues.end(); v != ve; ++v) 441 ArgTypes.push_back((*v)->getType()); 442 443 // Allocate a struct at the beginning of this function 444 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 445 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 446 "structArg", 447 &codeReplacer->getParent()->front().front()); 448 params.push_back(Struct); 449 450 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 451 Value *Idx[2]; 452 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 453 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 454 GetElementPtrInst *GEP = GetElementPtrInst::Create( 455 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 456 codeReplacer->getInstList().push_back(GEP); 457 StoreInst *SI = new StoreInst(StructValues[i], GEP); 458 codeReplacer->getInstList().push_back(SI); 459 } 460 } 461 462 // Emit the call to the function 463 CallInst *call = CallInst::Create(newFunction, params, 464 NumExitBlocks > 1 ? "targetBlock" : ""); 465 codeReplacer->getInstList().push_back(call); 466 467 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 468 unsigned FirstOut = inputs.size(); 469 if (!AggregateArgs) 470 std::advance(OutputArgBegin, inputs.size()); 471 472 // Reload the outputs passed in by reference 473 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 474 Value *Output = nullptr; 475 if (AggregateArgs) { 476 Value *Idx[2]; 477 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 478 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 479 GetElementPtrInst *GEP = GetElementPtrInst::Create( 480 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 481 codeReplacer->getInstList().push_back(GEP); 482 Output = GEP; 483 } else { 484 Output = ReloadOutputs[i]; 485 } 486 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 487 Reloads.push_back(load); 488 codeReplacer->getInstList().push_back(load); 489 std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 490 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 491 Instruction *inst = cast<Instruction>(Users[u]); 492 if (!Blocks.count(inst->getParent())) 493 inst->replaceUsesOfWith(outputs[i], load); 494 } 495 } 496 497 // Now we can emit a switch statement using the call as a value. 498 SwitchInst *TheSwitch = 499 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 500 codeReplacer, 0, codeReplacer); 501 502 // Since there may be multiple exits from the original region, make the new 503 // function return an unsigned, switch on that number. This loop iterates 504 // over all of the blocks in the extracted region, updating any terminator 505 // instructions in the to-be-extracted region that branch to blocks that are 506 // not in the region to be extracted. 507 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 508 509 unsigned switchVal = 0; 510 for (BasicBlock *Block : Blocks) { 511 TerminatorInst *TI = Block->getTerminator(); 512 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 513 if (!Blocks.count(TI->getSuccessor(i))) { 514 BasicBlock *OldTarget = TI->getSuccessor(i); 515 // add a new basic block which returns the appropriate value 516 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 517 if (!NewTarget) { 518 // If we don't already have an exit stub for this non-extracted 519 // destination, create one now! 520 NewTarget = BasicBlock::Create(Context, 521 OldTarget->getName() + ".exitStub", 522 newFunction); 523 unsigned SuccNum = switchVal++; 524 525 Value *brVal = nullptr; 526 switch (NumExitBlocks) { 527 case 0: 528 case 1: break; // No value needed. 529 case 2: // Conditional branch, return a bool 530 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 531 break; 532 default: 533 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 534 break; 535 } 536 537 ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget); 538 539 // Update the switch instruction. 540 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 541 SuccNum), 542 OldTarget); 543 544 // Restore values just before we exit 545 Function::arg_iterator OAI = OutputArgBegin; 546 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 547 // For an invoke, the normal destination is the only one that is 548 // dominated by the result of the invocation 549 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 550 551 bool DominatesDef = true; 552 553 BasicBlock *NormalDest = nullptr; 554 if (auto *Invoke = dyn_cast<InvokeInst>(outputs[out])) 555 NormalDest = Invoke->getNormalDest(); 556 557 if (NormalDest) { 558 DefBlock = NormalDest; 559 560 // Make sure we are looking at the original successor block, not 561 // at a newly inserted exit block, which won't be in the dominator 562 // info. 563 for (const auto &I : ExitBlockMap) 564 if (DefBlock == I.second) { 565 DefBlock = I.first; 566 break; 567 } 568 569 // In the extract block case, if the block we are extracting ends 570 // with an invoke instruction, make sure that we don't emit a 571 // store of the invoke value for the unwind block. 572 if (!DT && DefBlock != OldTarget) 573 DominatesDef = false; 574 } 575 576 if (DT) { 577 DominatesDef = DT->dominates(DefBlock, OldTarget); 578 579 // If the output value is used by a phi in the target block, 580 // then we need to test for dominance of the phi's predecessor 581 // instead. Unfortunately, this a little complicated since we 582 // have already rewritten uses of the value to uses of the reload. 583 BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out], 584 OldTarget); 585 if (pred && DT && DT->dominates(DefBlock, pred)) 586 DominatesDef = true; 587 } 588 589 if (DominatesDef) { 590 if (AggregateArgs) { 591 Value *Idx[2]; 592 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 593 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), 594 FirstOut+out); 595 GetElementPtrInst *GEP = GetElementPtrInst::Create( 596 StructArgTy, &*OAI, Idx, "gep_" + outputs[out]->getName(), 597 NTRet); 598 new StoreInst(outputs[out], GEP, NTRet); 599 } else { 600 new StoreInst(outputs[out], &*OAI, NTRet); 601 } 602 } 603 // Advance output iterator even if we don't emit a store 604 if (!AggregateArgs) ++OAI; 605 } 606 } 607 608 // rewrite the original branch instruction with this new target 609 TI->setSuccessor(i, NewTarget); 610 } 611 } 612 613 // Now that we've done the deed, simplify the switch instruction. 614 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 615 switch (NumExitBlocks) { 616 case 0: 617 // There are no successors (the block containing the switch itself), which 618 // means that previously this was the last part of the function, and hence 619 // this should be rewritten as a `ret' 620 621 // Check if the function should return a value 622 if (OldFnRetTy->isVoidTy()) { 623 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 624 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 625 // return what we have 626 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 627 } else { 628 // Otherwise we must have code extracted an unwind or something, just 629 // return whatever we want. 630 ReturnInst::Create(Context, 631 Constant::getNullValue(OldFnRetTy), TheSwitch); 632 } 633 634 TheSwitch->eraseFromParent(); 635 break; 636 case 1: 637 // Only a single destination, change the switch into an unconditional 638 // branch. 639 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 640 TheSwitch->eraseFromParent(); 641 break; 642 case 2: 643 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 644 call, TheSwitch); 645 TheSwitch->eraseFromParent(); 646 break; 647 default: 648 // Otherwise, make the default destination of the switch instruction be one 649 // of the other successors. 650 TheSwitch->setCondition(call); 651 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 652 // Remove redundant case 653 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 654 break; 655 } 656 } 657 658 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 659 Function *oldFunc = (*Blocks.begin())->getParent(); 660 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 661 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 662 663 for (BasicBlock *Block : Blocks) { 664 // Delete the basic block from the old function, and the list of blocks 665 oldBlocks.remove(Block); 666 667 // Insert this basic block into the new function 668 newBlocks.push_back(Block); 669 } 670 } 671 672 void CodeExtractor::calculateNewCallTerminatorWeights( 673 BasicBlock *CodeReplacer, 674 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 675 BranchProbabilityInfo *BPI) { 676 typedef BlockFrequencyInfoImplBase::Distribution Distribution; 677 typedef BlockFrequencyInfoImplBase::BlockNode BlockNode; 678 679 // Update the branch weights for the exit block. 680 TerminatorInst *TI = CodeReplacer->getTerminator(); 681 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 682 683 // Block Frequency distribution with dummy node. 684 Distribution BranchDist; 685 686 // Add each of the frequencies of the successors. 687 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 688 BlockNode ExitNode(i); 689 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 690 if (ExitFreq != 0) 691 BranchDist.addExit(ExitNode, ExitFreq); 692 else 693 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); 694 } 695 696 // Check for no total weight. 697 if (BranchDist.Total == 0) 698 return; 699 700 // Normalize the distribution so that they can fit in unsigned. 701 BranchDist.normalize(); 702 703 // Create normalized branch weights and set the metadata. 704 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 705 const auto &Weight = BranchDist.Weights[I]; 706 707 // Get the weight and update the current BFI. 708 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 709 BranchProbability BP(Weight.Amount, BranchDist.Total); 710 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); 711 } 712 TI->setMetadata( 713 LLVMContext::MD_prof, 714 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 715 } 716 717 Function *CodeExtractor::extractCodeRegion() { 718 if (!isEligible()) 719 return nullptr; 720 721 ValueSet inputs, outputs; 722 723 // Assumption: this is a single-entry code region, and the header is the first 724 // block in the region. 725 BasicBlock *header = *Blocks.begin(); 726 727 // Calculate the entry frequency of the new function before we change the root 728 // block. 729 BlockFrequency EntryFreq; 730 if (BFI) { 731 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 732 for (BasicBlock *Pred : predecessors(header)) { 733 if (Blocks.count(Pred)) 734 continue; 735 EntryFreq += 736 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 737 } 738 } 739 740 // If we have to split PHI nodes or the entry block, do so now. 741 severSplitPHINodes(header); 742 743 // If we have any return instructions in the region, split those blocks so 744 // that the return is not in the region. 745 splitReturnBlocks(); 746 747 Function *oldFunction = header->getParent(); 748 749 // This takes place of the original loop 750 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 751 "codeRepl", oldFunction, 752 header); 753 754 // The new function needs a root node because other nodes can branch to the 755 // head of the region, but the entry node of a function cannot have preds. 756 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 757 "newFuncRoot"); 758 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 759 760 // Find inputs to, outputs from the code region. 761 findInputsOutputs(inputs, outputs); 762 763 // Calculate the exit blocks for the extracted region and the total exit 764 // weights for each of those blocks. 765 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 766 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 767 for (BasicBlock *Block : Blocks) { 768 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 769 ++SI) { 770 if (!Blocks.count(*SI)) { 771 // Update the branch weight for this successor. 772 if (BFI) { 773 BlockFrequency &BF = ExitWeights[*SI]; 774 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 775 } 776 ExitBlocks.insert(*SI); 777 } 778 } 779 } 780 NumExitBlocks = ExitBlocks.size(); 781 782 // Construct new function based on inputs/outputs & add allocas for all defs. 783 Function *newFunction = constructFunction(inputs, outputs, header, 784 newFuncRoot, 785 codeReplacer, oldFunction, 786 oldFunction->getParent()); 787 788 // Update the entry count of the function. 789 if (BFI) { 790 Optional<uint64_t> EntryCount = 791 BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 792 if (EntryCount.hasValue()) 793 newFunction->setEntryCount(EntryCount.getValue()); 794 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 795 } 796 797 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 798 799 moveCodeToFunction(newFunction); 800 801 // Update the branch weights for the exit block. 802 if (BFI && NumExitBlocks > 1) 803 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 804 805 // Loop over all of the PHI nodes in the header block, and change any 806 // references to the old incoming edge to be the new incoming edge. 807 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 808 PHINode *PN = cast<PHINode>(I); 809 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 810 if (!Blocks.count(PN->getIncomingBlock(i))) 811 PN->setIncomingBlock(i, newFuncRoot); 812 } 813 814 // Look at all successors of the codeReplacer block. If any of these blocks 815 // had PHI nodes in them, we need to update the "from" block to be the code 816 // replacer, not the original block in the extracted region. 817 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 818 succ_end(codeReplacer)); 819 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 820 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 821 PHINode *PN = cast<PHINode>(I); 822 std::set<BasicBlock*> ProcessedPreds; 823 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 824 if (Blocks.count(PN->getIncomingBlock(i))) { 825 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 826 PN->setIncomingBlock(i, codeReplacer); 827 else { 828 // There were multiple entries in the PHI for this block, now there 829 // is only one, so remove the duplicated entries. 830 PN->removeIncomingValue(i, false); 831 --i; --e; 832 } 833 } 834 } 835 836 //cerr << "NEW FUNCTION: " << *newFunction; 837 // verifyFunction(*newFunction); 838 839 // cerr << "OLD FUNCTION: " << *oldFunction; 840 // verifyFunction(*oldFunction); 841 842 DEBUG(if (verifyFunction(*newFunction)) 843 report_fatal_error("verifyFunction failed!")); 844 return newFunction; 845 } 846