1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/CodeExtractor.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/RegionInfo.h" 25 #include "llvm/Analysis/RegionIterator.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/BlockFrequency.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include <algorithm> 43 #include <set> 44 using namespace llvm; 45 46 #define DEBUG_TYPE "code-extractor" 47 48 // Provide a command-line option to aggregate function arguments into a struct 49 // for functions produced by the code extractor. This is useful when converting 50 // extracted functions to pthread-based code, as only one argument (void*) can 51 // be passed in to pthread_create(). 52 static cl::opt<bool> 53 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 54 cl::desc("Aggregate arguments to code-extracted functions")); 55 56 /// \brief Test whether a block is valid for extraction. 57 bool CodeExtractor::isBlockValidForExtraction(const BasicBlock &BB) { 58 // Landing pads must be in the function where they were inserted for cleanup. 59 if (BB.isEHPad()) 60 return false; 61 62 // Don't hoist code containing allocas, invokes, or vastarts. 63 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 64 if (isa<AllocaInst>(I) || isa<InvokeInst>(I)) 65 return false; 66 if (const CallInst *CI = dyn_cast<CallInst>(I)) 67 if (const Function *F = CI->getCalledFunction()) 68 if (F->getIntrinsicID() == Intrinsic::vastart) 69 return false; 70 } 71 72 return true; 73 } 74 75 /// \brief Build a set of blocks to extract if the input blocks are viable. 76 template <typename IteratorT> 77 static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin, 78 IteratorT BBEnd) { 79 SetVector<BasicBlock *> Result; 80 81 assert(BBBegin != BBEnd); 82 83 // Loop over the blocks, adding them to our set-vector, and aborting with an 84 // empty set if we encounter invalid blocks. 85 do { 86 if (!Result.insert(*BBBegin)) 87 llvm_unreachable("Repeated basic blocks in extraction input"); 88 89 if (!CodeExtractor::isBlockValidForExtraction(**BBBegin)) { 90 Result.clear(); 91 return Result; 92 } 93 } while (++BBBegin != BBEnd); 94 95 #ifndef NDEBUG 96 for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()), 97 E = Result.end(); 98 I != E; ++I) 99 for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I); 100 PI != PE; ++PI) 101 assert(Result.count(*PI) && 102 "No blocks in this region may have entries from outside the region" 103 " except for the first block!"); 104 #endif 105 106 return Result; 107 } 108 109 /// \brief Helper to call buildExtractionBlockSet with an ArrayRef. 110 static SetVector<BasicBlock *> 111 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) { 112 return buildExtractionBlockSet(BBs.begin(), BBs.end()); 113 } 114 115 /// \brief Helper to call buildExtractionBlockSet with a RegionNode. 116 static SetVector<BasicBlock *> 117 buildExtractionBlockSet(const RegionNode &RN) { 118 if (!RN.isSubRegion()) 119 // Just a single BasicBlock. 120 return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>()); 121 122 const Region &R = *RN.getNodeAs<Region>(); 123 124 return buildExtractionBlockSet(R.block_begin(), R.block_end()); 125 } 126 127 CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs, 128 BlockFrequencyInfo *BFI, 129 BranchProbabilityInfo *BPI) 130 : DT(nullptr), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 131 BPI(BPI), Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {} 132 133 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 134 bool AggregateArgs, BlockFrequencyInfo *BFI, 135 BranchProbabilityInfo *BPI) 136 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 137 BPI(BPI), Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {} 138 139 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 140 BlockFrequencyInfo *BFI, 141 BranchProbabilityInfo *BPI) 142 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 143 BPI(BPI), Blocks(buildExtractionBlockSet(L.getBlocks())), 144 NumExitBlocks(~0U) {} 145 146 CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN, 147 bool AggregateArgs, BlockFrequencyInfo *BFI, 148 BranchProbabilityInfo *BPI) 149 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 150 BPI(BPI), Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {} 151 152 /// definedInRegion - Return true if the specified value is defined in the 153 /// extracted region. 154 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 155 if (Instruction *I = dyn_cast<Instruction>(V)) 156 if (Blocks.count(I->getParent())) 157 return true; 158 return false; 159 } 160 161 /// definedInCaller - Return true if the specified value is defined in the 162 /// function being code extracted, but not in the region being extracted. 163 /// These values must be passed in as live-ins to the function. 164 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 165 if (isa<Argument>(V)) return true; 166 if (Instruction *I = dyn_cast<Instruction>(V)) 167 if (!Blocks.count(I->getParent())) 168 return true; 169 return false; 170 } 171 172 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, 173 ValueSet &Outputs) const { 174 for (BasicBlock *BB : Blocks) { 175 // If a used value is defined outside the region, it's an input. If an 176 // instruction is used outside the region, it's an output. 177 for (Instruction &II : *BB) { 178 for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE; 179 ++OI) 180 if (definedInCaller(Blocks, *OI)) 181 Inputs.insert(*OI); 182 183 for (User *U : II.users()) 184 if (!definedInRegion(Blocks, U)) { 185 Outputs.insert(&II); 186 break; 187 } 188 } 189 } 190 } 191 192 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 193 /// region, we need to split the entry block of the region so that the PHI node 194 /// is easier to deal with. 195 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 196 unsigned NumPredsFromRegion = 0; 197 unsigned NumPredsOutsideRegion = 0; 198 199 if (Header != &Header->getParent()->getEntryBlock()) { 200 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 201 if (!PN) return; // No PHI nodes. 202 203 // If the header node contains any PHI nodes, check to see if there is more 204 // than one entry from outside the region. If so, we need to sever the 205 // header block into two. 206 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 207 if (Blocks.count(PN->getIncomingBlock(i))) 208 ++NumPredsFromRegion; 209 else 210 ++NumPredsOutsideRegion; 211 212 // If there is one (or fewer) predecessor from outside the region, we don't 213 // need to do anything special. 214 if (NumPredsOutsideRegion <= 1) return; 215 } 216 217 // Otherwise, we need to split the header block into two pieces: one 218 // containing PHI nodes merging values from outside of the region, and a 219 // second that contains all of the code for the block and merges back any 220 // incoming values from inside of the region. 221 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI()->getIterator(); 222 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 223 Header->getName()+".ce"); 224 225 // We only want to code extract the second block now, and it becomes the new 226 // header of the region. 227 BasicBlock *OldPred = Header; 228 Blocks.remove(OldPred); 229 Blocks.insert(NewBB); 230 Header = NewBB; 231 232 // Okay, update dominator sets. The blocks that dominate the new one are the 233 // blocks that dominate TIBB plus the new block itself. 234 if (DT) 235 DT->splitBlock(NewBB); 236 237 // Okay, now we need to adjust the PHI nodes and any branches from within the 238 // region to go to the new header block instead of the old header block. 239 if (NumPredsFromRegion) { 240 PHINode *PN = cast<PHINode>(OldPred->begin()); 241 // Loop over all of the predecessors of OldPred that are in the region, 242 // changing them to branch to NewBB instead. 243 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 244 if (Blocks.count(PN->getIncomingBlock(i))) { 245 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 246 TI->replaceUsesOfWith(OldPred, NewBB); 247 } 248 249 // Okay, everything within the region is now branching to the right block, we 250 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 251 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 252 PHINode *PN = cast<PHINode>(AfterPHIs); 253 // Create a new PHI node in the new region, which has an incoming value 254 // from OldPred of PN. 255 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 256 PN->getName() + ".ce", &NewBB->front()); 257 NewPN->addIncoming(PN, OldPred); 258 259 // Loop over all of the incoming value in PN, moving them to NewPN if they 260 // are from the extracted region. 261 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 262 if (Blocks.count(PN->getIncomingBlock(i))) { 263 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 264 PN->removeIncomingValue(i); 265 --i; 266 } 267 } 268 } 269 } 270 } 271 272 void CodeExtractor::splitReturnBlocks() { 273 for (BasicBlock *Block : Blocks) 274 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 275 BasicBlock *New = 276 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 277 if (DT) { 278 // Old dominates New. New node dominates all other nodes dominated 279 // by Old. 280 DomTreeNode *OldNode = DT->getNode(Block); 281 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 282 OldNode->end()); 283 284 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 285 286 for (DomTreeNode *I : Children) 287 DT->changeImmediateDominator(I, NewNode); 288 } 289 } 290 } 291 292 /// constructFunction - make a function based on inputs and outputs, as follows: 293 /// f(in0, ..., inN, out0, ..., outN) 294 /// 295 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 296 const ValueSet &outputs, 297 BasicBlock *header, 298 BasicBlock *newRootNode, 299 BasicBlock *newHeader, 300 Function *oldFunction, 301 Module *M) { 302 DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 303 DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 304 305 // This function returns unsigned, outputs will go back by reference. 306 switch (NumExitBlocks) { 307 case 0: 308 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 309 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 310 default: RetTy = Type::getInt16Ty(header->getContext()); break; 311 } 312 313 std::vector<Type*> paramTy; 314 315 // Add the types of the input values to the function's argument list 316 for (Value *value : inputs) { 317 DEBUG(dbgs() << "value used in func: " << *value << "\n"); 318 paramTy.push_back(value->getType()); 319 } 320 321 // Add the types of the output values to the function's argument list. 322 for (Value *output : outputs) { 323 DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 324 if (AggregateArgs) 325 paramTy.push_back(output->getType()); 326 else 327 paramTy.push_back(PointerType::getUnqual(output->getType())); 328 } 329 330 DEBUG({ 331 dbgs() << "Function type: " << *RetTy << " f("; 332 for (Type *i : paramTy) 333 dbgs() << *i << ", "; 334 dbgs() << ")\n"; 335 }); 336 337 StructType *StructTy; 338 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 339 StructTy = StructType::get(M->getContext(), paramTy); 340 paramTy.clear(); 341 paramTy.push_back(PointerType::getUnqual(StructTy)); 342 } 343 FunctionType *funcType = 344 FunctionType::get(RetTy, paramTy, false); 345 346 // Create the new function 347 Function *newFunction = Function::Create(funcType, 348 GlobalValue::InternalLinkage, 349 oldFunction->getName() + "_" + 350 header->getName(), M); 351 // If the old function is no-throw, so is the new one. 352 if (oldFunction->doesNotThrow()) 353 newFunction->setDoesNotThrow(); 354 355 // Inherit the uwtable attribute if we need to. 356 if (oldFunction->hasUWTable()) 357 newFunction->setHasUWTable(); 358 359 // Inherit all of the target dependent attributes. 360 // (e.g. If the extracted region contains a call to an x86.sse 361 // instruction we need to make sure that the extracted region has the 362 // "target-features" attribute allowing it to be lowered. 363 // FIXME: This should be changed to check to see if a specific 364 // attribute can not be inherited. 365 AttrBuilder AB(oldFunction->getAttributes().getFnAttributes()); 366 for (const auto &Attr : AB.td_attrs()) 367 newFunction->addFnAttr(Attr.first, Attr.second); 368 369 newFunction->getBasicBlockList().push_back(newRootNode); 370 371 // Create an iterator to name all of the arguments we inserted. 372 Function::arg_iterator AI = newFunction->arg_begin(); 373 374 // Rewrite all users of the inputs in the extracted region to use the 375 // arguments (or appropriate addressing into struct) instead. 376 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 377 Value *RewriteVal; 378 if (AggregateArgs) { 379 Value *Idx[2]; 380 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 381 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 382 TerminatorInst *TI = newFunction->begin()->getTerminator(); 383 GetElementPtrInst *GEP = GetElementPtrInst::Create( 384 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 385 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 386 } else 387 RewriteVal = &*AI++; 388 389 std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 390 for (User *use : Users) 391 if (Instruction *inst = dyn_cast<Instruction>(use)) 392 if (Blocks.count(inst->getParent())) 393 inst->replaceUsesOfWith(inputs[i], RewriteVal); 394 } 395 396 // Set names for input and output arguments. 397 if (!AggregateArgs) { 398 AI = newFunction->arg_begin(); 399 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 400 AI->setName(inputs[i]->getName()); 401 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 402 AI->setName(outputs[i]->getName()+".out"); 403 } 404 405 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 406 // within the new function. This must be done before we lose track of which 407 // blocks were originally in the code region. 408 std::vector<User*> Users(header->user_begin(), header->user_end()); 409 for (unsigned i = 0, e = Users.size(); i != e; ++i) 410 // The BasicBlock which contains the branch is not in the region 411 // modify the branch target to a new block 412 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 413 if (!Blocks.count(TI->getParent()) && 414 TI->getParent()->getParent() == oldFunction) 415 TI->replaceUsesOfWith(header, newHeader); 416 417 return newFunction; 418 } 419 420 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI 421 /// that uses the value within the basic block, and return the predecessor 422 /// block associated with that use, or return 0 if none is found. 423 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) { 424 for (Use &U : Used->uses()) { 425 PHINode *P = dyn_cast<PHINode>(U.getUser()); 426 if (P && P->getParent() == BB) 427 return P->getIncomingBlock(U); 428 } 429 430 return nullptr; 431 } 432 433 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 434 /// the call instruction, splitting any PHI nodes in the header block as 435 /// necessary. 436 void CodeExtractor:: 437 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 438 ValueSet &inputs, ValueSet &outputs) { 439 // Emit a call to the new function, passing in: *pointer to struct (if 440 // aggregating parameters), or plan inputs and allocated memory for outputs 441 std::vector<Value*> params, StructValues, ReloadOutputs, Reloads; 442 443 Module *M = newFunction->getParent(); 444 LLVMContext &Context = M->getContext(); 445 const DataLayout &DL = M->getDataLayout(); 446 447 // Add inputs as params, or to be filled into the struct 448 for (Value *input : inputs) 449 if (AggregateArgs) 450 StructValues.push_back(input); 451 else 452 params.push_back(input); 453 454 // Create allocas for the outputs 455 for (Value *output : outputs) { 456 if (AggregateArgs) { 457 StructValues.push_back(output); 458 } else { 459 AllocaInst *alloca = 460 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 461 nullptr, output->getName() + ".loc", 462 &codeReplacer->getParent()->front().front()); 463 ReloadOutputs.push_back(alloca); 464 params.push_back(alloca); 465 } 466 } 467 468 StructType *StructArgTy = nullptr; 469 AllocaInst *Struct = nullptr; 470 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 471 std::vector<Type*> ArgTypes; 472 for (ValueSet::iterator v = StructValues.begin(), 473 ve = StructValues.end(); v != ve; ++v) 474 ArgTypes.push_back((*v)->getType()); 475 476 // Allocate a struct at the beginning of this function 477 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 478 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 479 "structArg", 480 &codeReplacer->getParent()->front().front()); 481 params.push_back(Struct); 482 483 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 484 Value *Idx[2]; 485 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 486 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 487 GetElementPtrInst *GEP = GetElementPtrInst::Create( 488 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 489 codeReplacer->getInstList().push_back(GEP); 490 StoreInst *SI = new StoreInst(StructValues[i], GEP); 491 codeReplacer->getInstList().push_back(SI); 492 } 493 } 494 495 // Emit the call to the function 496 CallInst *call = CallInst::Create(newFunction, params, 497 NumExitBlocks > 1 ? "targetBlock" : ""); 498 codeReplacer->getInstList().push_back(call); 499 500 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 501 unsigned FirstOut = inputs.size(); 502 if (!AggregateArgs) 503 std::advance(OutputArgBegin, inputs.size()); 504 505 // Reload the outputs passed in by reference 506 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 507 Value *Output = nullptr; 508 if (AggregateArgs) { 509 Value *Idx[2]; 510 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 511 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 512 GetElementPtrInst *GEP = GetElementPtrInst::Create( 513 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 514 codeReplacer->getInstList().push_back(GEP); 515 Output = GEP; 516 } else { 517 Output = ReloadOutputs[i]; 518 } 519 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 520 Reloads.push_back(load); 521 codeReplacer->getInstList().push_back(load); 522 std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 523 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 524 Instruction *inst = cast<Instruction>(Users[u]); 525 if (!Blocks.count(inst->getParent())) 526 inst->replaceUsesOfWith(outputs[i], load); 527 } 528 } 529 530 // Now we can emit a switch statement using the call as a value. 531 SwitchInst *TheSwitch = 532 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 533 codeReplacer, 0, codeReplacer); 534 535 // Since there may be multiple exits from the original region, make the new 536 // function return an unsigned, switch on that number. This loop iterates 537 // over all of the blocks in the extracted region, updating any terminator 538 // instructions in the to-be-extracted region that branch to blocks that are 539 // not in the region to be extracted. 540 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 541 542 unsigned switchVal = 0; 543 for (BasicBlock *Block : Blocks) { 544 TerminatorInst *TI = Block->getTerminator(); 545 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 546 if (!Blocks.count(TI->getSuccessor(i))) { 547 BasicBlock *OldTarget = TI->getSuccessor(i); 548 // add a new basic block which returns the appropriate value 549 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 550 if (!NewTarget) { 551 // If we don't already have an exit stub for this non-extracted 552 // destination, create one now! 553 NewTarget = BasicBlock::Create(Context, 554 OldTarget->getName() + ".exitStub", 555 newFunction); 556 unsigned SuccNum = switchVal++; 557 558 Value *brVal = nullptr; 559 switch (NumExitBlocks) { 560 case 0: 561 case 1: break; // No value needed. 562 case 2: // Conditional branch, return a bool 563 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 564 break; 565 default: 566 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 567 break; 568 } 569 570 ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget); 571 572 // Update the switch instruction. 573 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 574 SuccNum), 575 OldTarget); 576 577 // Restore values just before we exit 578 Function::arg_iterator OAI = OutputArgBegin; 579 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 580 // For an invoke, the normal destination is the only one that is 581 // dominated by the result of the invocation 582 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 583 584 bool DominatesDef = true; 585 586 BasicBlock *NormalDest = nullptr; 587 if (auto *Invoke = dyn_cast<InvokeInst>(outputs[out])) 588 NormalDest = Invoke->getNormalDest(); 589 590 if (NormalDest) { 591 DefBlock = NormalDest; 592 593 // Make sure we are looking at the original successor block, not 594 // at a newly inserted exit block, which won't be in the dominator 595 // info. 596 for (const auto &I : ExitBlockMap) 597 if (DefBlock == I.second) { 598 DefBlock = I.first; 599 break; 600 } 601 602 // In the extract block case, if the block we are extracting ends 603 // with an invoke instruction, make sure that we don't emit a 604 // store of the invoke value for the unwind block. 605 if (!DT && DefBlock != OldTarget) 606 DominatesDef = false; 607 } 608 609 if (DT) { 610 DominatesDef = DT->dominates(DefBlock, OldTarget); 611 612 // If the output value is used by a phi in the target block, 613 // then we need to test for dominance of the phi's predecessor 614 // instead. Unfortunately, this a little complicated since we 615 // have already rewritten uses of the value to uses of the reload. 616 BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out], 617 OldTarget); 618 if (pred && DT && DT->dominates(DefBlock, pred)) 619 DominatesDef = true; 620 } 621 622 if (DominatesDef) { 623 if (AggregateArgs) { 624 Value *Idx[2]; 625 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 626 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), 627 FirstOut+out); 628 GetElementPtrInst *GEP = GetElementPtrInst::Create( 629 StructArgTy, &*OAI, Idx, "gep_" + outputs[out]->getName(), 630 NTRet); 631 new StoreInst(outputs[out], GEP, NTRet); 632 } else { 633 new StoreInst(outputs[out], &*OAI, NTRet); 634 } 635 } 636 // Advance output iterator even if we don't emit a store 637 if (!AggregateArgs) ++OAI; 638 } 639 } 640 641 // rewrite the original branch instruction with this new target 642 TI->setSuccessor(i, NewTarget); 643 } 644 } 645 646 // Now that we've done the deed, simplify the switch instruction. 647 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 648 switch (NumExitBlocks) { 649 case 0: 650 // There are no successors (the block containing the switch itself), which 651 // means that previously this was the last part of the function, and hence 652 // this should be rewritten as a `ret' 653 654 // Check if the function should return a value 655 if (OldFnRetTy->isVoidTy()) { 656 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 657 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 658 // return what we have 659 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 660 } else { 661 // Otherwise we must have code extracted an unwind or something, just 662 // return whatever we want. 663 ReturnInst::Create(Context, 664 Constant::getNullValue(OldFnRetTy), TheSwitch); 665 } 666 667 TheSwitch->eraseFromParent(); 668 break; 669 case 1: 670 // Only a single destination, change the switch into an unconditional 671 // branch. 672 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 673 TheSwitch->eraseFromParent(); 674 break; 675 case 2: 676 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 677 call, TheSwitch); 678 TheSwitch->eraseFromParent(); 679 break; 680 default: 681 // Otherwise, make the default destination of the switch instruction be one 682 // of the other successors. 683 TheSwitch->setCondition(call); 684 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 685 // Remove redundant case 686 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 687 break; 688 } 689 } 690 691 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 692 Function *oldFunc = (*Blocks.begin())->getParent(); 693 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 694 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 695 696 for (BasicBlock *Block : Blocks) { 697 // Delete the basic block from the old function, and the list of blocks 698 oldBlocks.remove(Block); 699 700 // Insert this basic block into the new function 701 newBlocks.push_back(Block); 702 } 703 } 704 705 void CodeExtractor::calculateNewCallTerminatorWeights( 706 BasicBlock *CodeReplacer, 707 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 708 BranchProbabilityInfo *BPI) { 709 typedef BlockFrequencyInfoImplBase::Distribution Distribution; 710 typedef BlockFrequencyInfoImplBase::BlockNode BlockNode; 711 712 // Update the branch weights for the exit block. 713 TerminatorInst *TI = CodeReplacer->getTerminator(); 714 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 715 716 // Block Frequency distribution with dummy node. 717 Distribution BranchDist; 718 719 // Add each of the frequencies of the successors. 720 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 721 BlockNode ExitNode(i); 722 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 723 if (ExitFreq != 0) 724 BranchDist.addExit(ExitNode, ExitFreq); 725 else 726 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); 727 } 728 729 // Check for no total weight. 730 if (BranchDist.Total == 0) 731 return; 732 733 // Normalize the distribution so that they can fit in unsigned. 734 BranchDist.normalize(); 735 736 // Create normalized branch weights and set the metadata. 737 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 738 const auto &Weight = BranchDist.Weights[I]; 739 740 // Get the weight and update the current BFI. 741 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 742 BranchProbability BP(Weight.Amount, BranchDist.Total); 743 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); 744 } 745 TI->setMetadata( 746 LLVMContext::MD_prof, 747 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 748 } 749 750 Function *CodeExtractor::extractCodeRegion() { 751 if (!isEligible()) 752 return nullptr; 753 754 ValueSet inputs, outputs; 755 756 // Assumption: this is a single-entry code region, and the header is the first 757 // block in the region. 758 BasicBlock *header = *Blocks.begin(); 759 760 // Calculate the entry frequency of the new function before we change the root 761 // block. 762 BlockFrequency EntryFreq; 763 if (BFI) { 764 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 765 for (BasicBlock *Pred : predecessors(header)) { 766 if (Blocks.count(Pred)) 767 continue; 768 EntryFreq += 769 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 770 } 771 } 772 773 // If we have to split PHI nodes or the entry block, do so now. 774 severSplitPHINodes(header); 775 776 // If we have any return instructions in the region, split those blocks so 777 // that the return is not in the region. 778 splitReturnBlocks(); 779 780 Function *oldFunction = header->getParent(); 781 782 // This takes place of the original loop 783 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 784 "codeRepl", oldFunction, 785 header); 786 787 // The new function needs a root node because other nodes can branch to the 788 // head of the region, but the entry node of a function cannot have preds. 789 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 790 "newFuncRoot"); 791 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 792 793 // Find inputs to, outputs from the code region. 794 findInputsOutputs(inputs, outputs); 795 796 // Calculate the exit blocks for the extracted region and the total exit 797 // weights for each of those blocks. 798 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 799 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 800 for (BasicBlock *Block : Blocks) { 801 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 802 ++SI) { 803 if (!Blocks.count(*SI)) { 804 // Update the branch weight for this successor. 805 if (BFI) { 806 BlockFrequency &BF = ExitWeights[*SI]; 807 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 808 } 809 ExitBlocks.insert(*SI); 810 } 811 } 812 } 813 NumExitBlocks = ExitBlocks.size(); 814 815 // Construct new function based on inputs/outputs & add allocas for all defs. 816 Function *newFunction = constructFunction(inputs, outputs, header, 817 newFuncRoot, 818 codeReplacer, oldFunction, 819 oldFunction->getParent()); 820 821 // Update the entry count of the function. 822 if (BFI) { 823 Optional<uint64_t> EntryCount = 824 BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 825 if (EntryCount.hasValue()) 826 newFunction->setEntryCount(EntryCount.getValue()); 827 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 828 } 829 830 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 831 832 moveCodeToFunction(newFunction); 833 834 // Update the branch weights for the exit block. 835 if (BFI && NumExitBlocks > 1) 836 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 837 838 // Loop over all of the PHI nodes in the header block, and change any 839 // references to the old incoming edge to be the new incoming edge. 840 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 841 PHINode *PN = cast<PHINode>(I); 842 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 843 if (!Blocks.count(PN->getIncomingBlock(i))) 844 PN->setIncomingBlock(i, newFuncRoot); 845 } 846 847 // Look at all successors of the codeReplacer block. If any of these blocks 848 // had PHI nodes in them, we need to update the "from" block to be the code 849 // replacer, not the original block in the extracted region. 850 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 851 succ_end(codeReplacer)); 852 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 853 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 854 PHINode *PN = cast<PHINode>(I); 855 std::set<BasicBlock*> ProcessedPreds; 856 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 857 if (Blocks.count(PN->getIncomingBlock(i))) { 858 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 859 PN->setIncomingBlock(i, codeReplacer); 860 else { 861 // There were multiple entries in the PHI for this block, now there 862 // is only one, so remove the duplicated entries. 863 PN->removeIncomingValue(i, false); 864 --i; --e; 865 } 866 } 867 } 868 869 //cerr << "NEW FUNCTION: " << *newFunction; 870 // verifyFunction(*newFunction); 871 872 // cerr << "OLD FUNCTION: " << *oldFunction; 873 // verifyFunction(*oldFunction); 874 875 DEBUG(if (verifyFunction(*newFunction)) 876 report_fatal_error("verifyFunction failed!")); 877 return newFunction; 878 } 879