1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/Module.h" 22 #include "llvm/Pass.h" 23 #include "llvm/Analysis/Dominators.h" 24 #include "llvm/Analysis/DominatorInternals.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/Verifier.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Compiler.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include <algorithm> 33 #include <set> 34 using namespace llvm; 35 36 // Provide a command-line option to aggregate function arguments into a struct 37 // for functions produced by the code extrator. This is useful when converting 38 // extracted functions to pthread-based code, as only one argument (void*) can 39 // be passed in to pthread_create(). 40 static cl::opt<bool> 41 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 42 cl::desc("Aggregate arguments to code-extracted functions")); 43 44 namespace { 45 class VISIBILITY_HIDDEN CodeExtractor { 46 typedef std::vector<Value*> Values; 47 std::set<BasicBlock*> BlocksToExtract; 48 DominatorTree* DT; 49 bool AggregateArgs; 50 unsigned NumExitBlocks; 51 const Type *RetTy; 52 public: 53 CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false) 54 : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {} 55 56 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 57 58 bool isEligible(const std::vector<BasicBlock*> &code); 59 60 private: 61 /// definedInRegion - Return true if the specified value is defined in the 62 /// extracted region. 63 bool definedInRegion(Value *V) const { 64 if (Instruction *I = dyn_cast<Instruction>(V)) 65 if (BlocksToExtract.count(I->getParent())) 66 return true; 67 return false; 68 } 69 70 /// definedInCaller - Return true if the specified value is defined in the 71 /// function being code extracted, but not in the region being extracted. 72 /// These values must be passed in as live-ins to the function. 73 bool definedInCaller(Value *V) const { 74 if (isa<Argument>(V)) return true; 75 if (Instruction *I = dyn_cast<Instruction>(V)) 76 if (!BlocksToExtract.count(I->getParent())) 77 return true; 78 return false; 79 } 80 81 void severSplitPHINodes(BasicBlock *&Header); 82 void splitReturnBlocks(); 83 void findInputsOutputs(Values &inputs, Values &outputs); 84 85 Function *constructFunction(const Values &inputs, 86 const Values &outputs, 87 BasicBlock *header, 88 BasicBlock *newRootNode, BasicBlock *newHeader, 89 Function *oldFunction, Module *M); 90 91 void moveCodeToFunction(Function *newFunction); 92 93 void emitCallAndSwitchStatement(Function *newFunction, 94 BasicBlock *newHeader, 95 Values &inputs, 96 Values &outputs); 97 98 }; 99 } 100 101 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 102 /// region, we need to split the entry block of the region so that the PHI node 103 /// is easier to deal with. 104 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 105 bool HasPredsFromRegion = false; 106 unsigned NumPredsOutsideRegion = 0; 107 108 if (Header != &Header->getParent()->getEntryBlock()) { 109 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 110 if (!PN) return; // No PHI nodes. 111 112 // If the header node contains any PHI nodes, check to see if there is more 113 // than one entry from outside the region. If so, we need to sever the 114 // header block into two. 115 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 116 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 117 HasPredsFromRegion = true; 118 else 119 ++NumPredsOutsideRegion; 120 121 // If there is one (or fewer) predecessor from outside the region, we don't 122 // need to do anything special. 123 if (NumPredsOutsideRegion <= 1) return; 124 } 125 126 // Otherwise, we need to split the header block into two pieces: one 127 // containing PHI nodes merging values from outside of the region, and a 128 // second that contains all of the code for the block and merges back any 129 // incoming values from inside of the region. 130 BasicBlock::iterator AfterPHIs = Header->begin(); 131 while (isa<PHINode>(AfterPHIs)) ++AfterPHIs; 132 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 133 Header->getName()+".ce"); 134 135 // We only want to code extract the second block now, and it becomes the new 136 // header of the region. 137 BasicBlock *OldPred = Header; 138 BlocksToExtract.erase(OldPred); 139 BlocksToExtract.insert(NewBB); 140 Header = NewBB; 141 142 // Okay, update dominator sets. The blocks that dominate the new one are the 143 // blocks that dominate TIBB plus the new block itself. 144 if (DT) 145 DT->splitBlock(NewBB); 146 147 // Okay, now we need to adjust the PHI nodes and any branches from within the 148 // region to go to the new header block instead of the old header block. 149 if (HasPredsFromRegion) { 150 PHINode *PN = cast<PHINode>(OldPred->begin()); 151 // Loop over all of the predecessors of OldPred that are in the region, 152 // changing them to branch to NewBB instead. 153 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 154 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 155 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 156 TI->replaceUsesOfWith(OldPred, NewBB); 157 } 158 159 // Okay, everthing within the region is now branching to the right block, we 160 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 161 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 162 PHINode *PN = cast<PHINode>(AfterPHIs); 163 // Create a new PHI node in the new region, which has an incoming value 164 // from OldPred of PN. 165 PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".ce", 166 NewBB->begin()); 167 NewPN->addIncoming(PN, OldPred); 168 169 // Loop over all of the incoming value in PN, moving them to NewPN if they 170 // are from the extracted region. 171 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 172 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 173 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 174 PN->removeIncomingValue(i); 175 --i; 176 } 177 } 178 } 179 } 180 } 181 182 void CodeExtractor::splitReturnBlocks() { 183 for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(), 184 E = BlocksToExtract.end(); I != E; ++I) 185 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) 186 (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 187 } 188 189 // findInputsOutputs - Find inputs to, outputs from the code region. 190 // 191 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 192 std::set<BasicBlock*> ExitBlocks; 193 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 194 ce = BlocksToExtract.end(); ci != ce; ++ci) { 195 BasicBlock *BB = *ci; 196 197 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 198 // If a used value is defined outside the region, it's an input. If an 199 // instruction is used outside the region, it's an output. 200 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 201 if (definedInCaller(*O)) 202 inputs.push_back(*O); 203 204 // Consider uses of this instruction (outputs). 205 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 206 UI != E; ++UI) 207 if (!definedInRegion(*UI)) { 208 outputs.push_back(I); 209 break; 210 } 211 } // for: insts 212 213 // Keep track of the exit blocks from the region. 214 TerminatorInst *TI = BB->getTerminator(); 215 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 216 if (!BlocksToExtract.count(TI->getSuccessor(i))) 217 ExitBlocks.insert(TI->getSuccessor(i)); 218 } // for: basic blocks 219 220 NumExitBlocks = ExitBlocks.size(); 221 222 // Eliminate duplicates. 223 std::sort(inputs.begin(), inputs.end()); 224 inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end()); 225 std::sort(outputs.begin(), outputs.end()); 226 outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end()); 227 } 228 229 /// constructFunction - make a function based on inputs and outputs, as follows: 230 /// f(in0, ..., inN, out0, ..., outN) 231 /// 232 Function *CodeExtractor::constructFunction(const Values &inputs, 233 const Values &outputs, 234 BasicBlock *header, 235 BasicBlock *newRootNode, 236 BasicBlock *newHeader, 237 Function *oldFunction, 238 Module *M) { 239 DOUT << "inputs: " << inputs.size() << "\n"; 240 DOUT << "outputs: " << outputs.size() << "\n"; 241 242 // This function returns unsigned, outputs will go back by reference. 243 switch (NumExitBlocks) { 244 case 0: 245 case 1: RetTy = Type::VoidTy; break; 246 case 2: RetTy = Type::Int1Ty; break; 247 default: RetTy = Type::Int16Ty; break; 248 } 249 250 std::vector<const Type*> paramTy; 251 252 // Add the types of the input values to the function's argument list 253 for (Values::const_iterator i = inputs.begin(), 254 e = inputs.end(); i != e; ++i) { 255 const Value *value = *i; 256 DOUT << "value used in func: " << *value << "\n"; 257 paramTy.push_back(value->getType()); 258 } 259 260 // Add the types of the output values to the function's argument list. 261 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 262 I != E; ++I) { 263 DOUT << "instr used in func: " << **I << "\n"; 264 if (AggregateArgs) 265 paramTy.push_back((*I)->getType()); 266 else 267 paramTy.push_back(PointerType::get((*I)->getType())); 268 } 269 270 DOUT << "Function type: " << *RetTy << " f("; 271 for (std::vector<const Type*>::iterator i = paramTy.begin(), 272 e = paramTy.end(); i != e; ++i) 273 DOUT << **i << ", "; 274 DOUT << ")\n"; 275 276 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 277 PointerType *StructPtr = PointerType::get(StructType::get(paramTy)); 278 paramTy.clear(); 279 paramTy.push_back(StructPtr); 280 } 281 const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false); 282 283 // Create the new function 284 Function *newFunction = new Function(funcType, 285 GlobalValue::InternalLinkage, 286 oldFunction->getName() + "_" + 287 header->getName(), M); 288 newFunction->getBasicBlockList().push_back(newRootNode); 289 290 // Create an iterator to name all of the arguments we inserted. 291 Function::arg_iterator AI = newFunction->arg_begin(); 292 293 // Rewrite all users of the inputs in the extracted region to use the 294 // arguments (or appropriate addressing into struct) instead. 295 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 296 Value *RewriteVal; 297 if (AggregateArgs) { 298 Value *Idx[2]; 299 Idx[0] = Constant::getNullValue(Type::Int32Ty); 300 Idx[1] = ConstantInt::get(Type::Int32Ty, i); 301 std::string GEPname = "gep_" + inputs[i]->getName(); 302 TerminatorInst *TI = newFunction->begin()->getTerminator(); 303 GetElementPtrInst *GEP = new GetElementPtrInst(AI, Idx, Idx+2, 304 GEPname, TI); 305 RewriteVal = new LoadInst(GEP, "load" + GEPname, TI); 306 } else 307 RewriteVal = AI++; 308 309 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 310 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 311 use != useE; ++use) 312 if (Instruction* inst = dyn_cast<Instruction>(*use)) 313 if (BlocksToExtract.count(inst->getParent())) 314 inst->replaceUsesOfWith(inputs[i], RewriteVal); 315 } 316 317 // Set names for input and output arguments. 318 if (!AggregateArgs) { 319 AI = newFunction->arg_begin(); 320 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 321 AI->setName(inputs[i]->getName()); 322 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 323 AI->setName(outputs[i]->getName()+".out"); 324 } 325 326 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 327 // within the new function. This must be done before we lose track of which 328 // blocks were originally in the code region. 329 std::vector<User*> Users(header->use_begin(), header->use_end()); 330 for (unsigned i = 0, e = Users.size(); i != e; ++i) 331 // The BasicBlock which contains the branch is not in the region 332 // modify the branch target to a new block 333 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 334 if (!BlocksToExtract.count(TI->getParent()) && 335 TI->getParent()->getParent() == oldFunction) 336 TI->replaceUsesOfWith(header, newHeader); 337 338 return newFunction; 339 } 340 341 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 342 /// the call instruction, splitting any PHI nodes in the header block as 343 /// necessary. 344 void CodeExtractor:: 345 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 346 Values &inputs, Values &outputs) { 347 // Emit a call to the new function, passing in: *pointer to struct (if 348 // aggregating parameters), or plan inputs and allocated memory for outputs 349 std::vector<Value*> params, StructValues, ReloadOutputs; 350 351 // Add inputs as params, or to be filled into the struct 352 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 353 if (AggregateArgs) 354 StructValues.push_back(*i); 355 else 356 params.push_back(*i); 357 358 // Create allocas for the outputs 359 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 360 if (AggregateArgs) { 361 StructValues.push_back(*i); 362 } else { 363 AllocaInst *alloca = 364 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 365 codeReplacer->getParent()->begin()->begin()); 366 ReloadOutputs.push_back(alloca); 367 params.push_back(alloca); 368 } 369 } 370 371 AllocaInst *Struct = 0; 372 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 373 std::vector<const Type*> ArgTypes; 374 for (Values::iterator v = StructValues.begin(), 375 ve = StructValues.end(); v != ve; ++v) 376 ArgTypes.push_back((*v)->getType()); 377 378 // Allocate a struct at the beginning of this function 379 Type *StructArgTy = StructType::get(ArgTypes); 380 Struct = 381 new AllocaInst(StructArgTy, 0, "structArg", 382 codeReplacer->getParent()->begin()->begin()); 383 params.push_back(Struct); 384 385 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 386 Value *Idx[2]; 387 Idx[0] = Constant::getNullValue(Type::Int32Ty); 388 Idx[1] = ConstantInt::get(Type::Int32Ty, i); 389 GetElementPtrInst *GEP = 390 new GetElementPtrInst(Struct, Idx, Idx + 2, 391 "gep_" + StructValues[i]->getName()); 392 codeReplacer->getInstList().push_back(GEP); 393 StoreInst *SI = new StoreInst(StructValues[i], GEP); 394 codeReplacer->getInstList().push_back(SI); 395 } 396 } 397 398 // Emit the call to the function 399 CallInst *call = new CallInst(newFunction, params.begin(), params.end(), 400 NumExitBlocks > 1 ? "targetBlock" : ""); 401 codeReplacer->getInstList().push_back(call); 402 403 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 404 unsigned FirstOut = inputs.size(); 405 if (!AggregateArgs) 406 std::advance(OutputArgBegin, inputs.size()); 407 408 // Reload the outputs passed in by reference 409 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 410 Value *Output = 0; 411 if (AggregateArgs) { 412 Value *Idx[2]; 413 Idx[0] = Constant::getNullValue(Type::Int32Ty); 414 Idx[1] = ConstantInt::get(Type::Int32Ty, FirstOut + i); 415 GetElementPtrInst *GEP 416 = new GetElementPtrInst(Struct, Idx, Idx + 2, 417 "gep_reload_" + outputs[i]->getName()); 418 codeReplacer->getInstList().push_back(GEP); 419 Output = GEP; 420 } else { 421 Output = ReloadOutputs[i]; 422 } 423 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 424 codeReplacer->getInstList().push_back(load); 425 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 426 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 427 Instruction *inst = cast<Instruction>(Users[u]); 428 if (!BlocksToExtract.count(inst->getParent())) 429 inst->replaceUsesOfWith(outputs[i], load); 430 } 431 } 432 433 // Now we can emit a switch statement using the call as a value. 434 SwitchInst *TheSwitch = 435 new SwitchInst(ConstantInt::getNullValue(Type::Int16Ty), 436 codeReplacer, 0, codeReplacer); 437 438 // Since there may be multiple exits from the original region, make the new 439 // function return an unsigned, switch on that number. This loop iterates 440 // over all of the blocks in the extracted region, updating any terminator 441 // instructions in the to-be-extracted region that branch to blocks that are 442 // not in the region to be extracted. 443 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 444 445 unsigned switchVal = 0; 446 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 447 e = BlocksToExtract.end(); i != e; ++i) { 448 TerminatorInst *TI = (*i)->getTerminator(); 449 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 450 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 451 BasicBlock *OldTarget = TI->getSuccessor(i); 452 // add a new basic block which returns the appropriate value 453 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 454 if (!NewTarget) { 455 // If we don't already have an exit stub for this non-extracted 456 // destination, create one now! 457 NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", 458 newFunction); 459 unsigned SuccNum = switchVal++; 460 461 Value *brVal = 0; 462 switch (NumExitBlocks) { 463 case 0: 464 case 1: break; // No value needed. 465 case 2: // Conditional branch, return a bool 466 brVal = ConstantInt::get(Type::Int1Ty, !SuccNum); 467 break; 468 default: 469 brVal = ConstantInt::get(Type::Int16Ty, SuccNum); 470 break; 471 } 472 473 ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); 474 475 // Update the switch instruction. 476 TheSwitch->addCase(ConstantInt::get(Type::Int16Ty, SuccNum), 477 OldTarget); 478 479 // Restore values just before we exit 480 Function::arg_iterator OAI = OutputArgBegin; 481 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 482 // For an invoke, the normal destination is the only one that is 483 // dominated by the result of the invocation 484 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 485 486 bool DominatesDef = true; 487 488 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 489 DefBlock = Invoke->getNormalDest(); 490 491 // Make sure we are looking at the original successor block, not 492 // at a newly inserted exit block, which won't be in the dominator 493 // info. 494 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 495 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 496 if (DefBlock == I->second) { 497 DefBlock = I->first; 498 break; 499 } 500 501 // In the extract block case, if the block we are extracting ends 502 // with an invoke instruction, make sure that we don't emit a 503 // store of the invoke value for the unwind block. 504 if (!DT && DefBlock != OldTarget) 505 DominatesDef = false; 506 } 507 508 if (DT) 509 DominatesDef = DT->dominates(DefBlock, OldTarget); 510 511 if (DominatesDef) { 512 if (AggregateArgs) { 513 Value *Idx[2]; 514 Idx[0] = Constant::getNullValue(Type::Int32Ty); 515 Idx[1] = ConstantInt::get(Type::Int32Ty,FirstOut+out); 516 GetElementPtrInst *GEP = 517 new GetElementPtrInst(OAI, Idx, Idx + 2, 518 "gep_" + outputs[out]->getName(), 519 NTRet); 520 new StoreInst(outputs[out], GEP, NTRet); 521 } else { 522 new StoreInst(outputs[out], OAI, NTRet); 523 } 524 } 525 // Advance output iterator even if we don't emit a store 526 if (!AggregateArgs) ++OAI; 527 } 528 } 529 530 // rewrite the original branch instruction with this new target 531 TI->setSuccessor(i, NewTarget); 532 } 533 } 534 535 // Now that we've done the deed, simplify the switch instruction. 536 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 537 switch (NumExitBlocks) { 538 case 0: 539 // There are no successors (the block containing the switch itself), which 540 // means that previously this was the last part of the function, and hence 541 // this should be rewritten as a `ret' 542 543 // Check if the function should return a value 544 if (OldFnRetTy == Type::VoidTy) { 545 new ReturnInst(0, TheSwitch); // Return void 546 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 547 // return what we have 548 new ReturnInst(TheSwitch->getCondition(), TheSwitch); 549 } else { 550 // Otherwise we must have code extracted an unwind or something, just 551 // return whatever we want. 552 new ReturnInst(Constant::getNullValue(OldFnRetTy), TheSwitch); 553 } 554 555 TheSwitch->getParent()->getInstList().erase(TheSwitch); 556 break; 557 case 1: 558 // Only a single destination, change the switch into an unconditional 559 // branch. 560 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch); 561 TheSwitch->getParent()->getInstList().erase(TheSwitch); 562 break; 563 case 2: 564 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 565 call, TheSwitch); 566 TheSwitch->getParent()->getInstList().erase(TheSwitch); 567 break; 568 default: 569 // Otherwise, make the default destination of the switch instruction be one 570 // of the other successors. 571 TheSwitch->setOperand(0, call); 572 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 573 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 574 break; 575 } 576 } 577 578 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 579 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 580 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 581 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 582 583 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 584 e = BlocksToExtract.end(); i != e; ++i) { 585 // Delete the basic block from the old function, and the list of blocks 586 oldBlocks.remove(*i); 587 588 // Insert this basic block into the new function 589 newBlocks.push_back(*i); 590 } 591 } 592 593 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 594 /// new function. Returns pointer to the new function. 595 /// 596 /// algorithm: 597 /// 598 /// find inputs and outputs for the region 599 /// 600 /// for inputs: add to function as args, map input instr* to arg# 601 /// for outputs: add allocas for scalars, 602 /// add to func as args, map output instr* to arg# 603 /// 604 /// rewrite func to use argument #s instead of instr* 605 /// 606 /// for each scalar output in the function: at every exit, store intermediate 607 /// computed result back into memory. 608 /// 609 Function *CodeExtractor:: 610 ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 611 if (!isEligible(code)) 612 return 0; 613 614 // 1) Find inputs, outputs 615 // 2) Construct new function 616 // * Add allocas for defs, pass as args by reference 617 // * Pass in uses as args 618 // 3) Move code region, add call instr to func 619 // 620 BlocksToExtract.insert(code.begin(), code.end()); 621 622 Values inputs, outputs; 623 624 // Assumption: this is a single-entry code region, and the header is the first 625 // block in the region. 626 BasicBlock *header = code[0]; 627 628 for (unsigned i = 1, e = code.size(); i != e; ++i) 629 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 630 PI != E; ++PI) 631 assert(BlocksToExtract.count(*PI) && 632 "No blocks in this region may have entries from outside the region" 633 " except for the first block!"); 634 635 // If we have to split PHI nodes or the entry block, do so now. 636 severSplitPHINodes(header); 637 638 // If we have any return instructions in the region, split those blocks so 639 // that the return is not in the region. 640 splitReturnBlocks(); 641 642 Function *oldFunction = header->getParent(); 643 644 // This takes place of the original loop 645 BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction, header); 646 647 // The new function needs a root node because other nodes can branch to the 648 // head of the region, but the entry node of a function cannot have preds. 649 BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); 650 newFuncRoot->getInstList().push_back(new BranchInst(header)); 651 652 // Find inputs to, outputs from the code region. 653 findInputsOutputs(inputs, outputs); 654 655 // Construct new function based on inputs/outputs & add allocas for all defs. 656 Function *newFunction = constructFunction(inputs, outputs, header, 657 newFuncRoot, 658 codeReplacer, oldFunction, 659 oldFunction->getParent()); 660 661 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 662 663 moveCodeToFunction(newFunction); 664 665 // Loop over all of the PHI nodes in the header block, and change any 666 // references to the old incoming edge to be the new incoming edge. 667 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 668 PHINode *PN = cast<PHINode>(I); 669 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 670 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 671 PN->setIncomingBlock(i, newFuncRoot); 672 } 673 674 // Look at all successors of the codeReplacer block. If any of these blocks 675 // had PHI nodes in them, we need to update the "from" block to be the code 676 // replacer, not the original block in the extracted region. 677 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 678 succ_end(codeReplacer)); 679 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 680 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 681 PHINode *PN = cast<PHINode>(I); 682 std::set<BasicBlock*> ProcessedPreds; 683 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 684 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 685 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 686 PN->setIncomingBlock(i, codeReplacer); 687 else { 688 // There were multiple entries in the PHI for this block, now there 689 // is only one, so remove the duplicated entries. 690 PN->removeIncomingValue(i, false); 691 --i; --e; 692 } 693 } 694 695 //cerr << "NEW FUNCTION: " << *newFunction; 696 // verifyFunction(*newFunction); 697 698 // cerr << "OLD FUNCTION: " << *oldFunction; 699 // verifyFunction(*oldFunction); 700 701 DEBUG(if (verifyFunction(*newFunction)) abort()); 702 return newFunction; 703 } 704 705 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 706 // Deny code region if it contains allocas or vastarts. 707 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 708 BB != e; ++BB) 709 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 710 I != Ie; ++I) 711 if (isa<AllocaInst>(*I)) 712 return false; 713 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 714 if (const Function *F = CI->getCalledFunction()) 715 if (F->getIntrinsicID() == Intrinsic::vastart) 716 return false; 717 return true; 718 } 719 720 721 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 722 /// function 723 /// 724 Function* llvm::ExtractCodeRegion(DominatorTree &DT, 725 const std::vector<BasicBlock*> &code, 726 bool AggregateArgs) { 727 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code); 728 } 729 730 /// ExtractBasicBlock - slurp a natural loop into a brand new function 731 /// 732 Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) { 733 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 734 } 735 736 /// ExtractBasicBlock - slurp a basic block into a brand new function 737 /// 738 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 739 std::vector<BasicBlock*> Blocks; 740 Blocks.push_back(BB); 741 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 742 } 743