1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/Verifier.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/BlockFrequency.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <map>
66 #include <set>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 using namespace llvm::PatternMatch;
72 using ProfileCount = Function::ProfileCount;
73 
74 #define DEBUG_TYPE "code-extractor"
75 
76 // Provide a command-line option to aggregate function arguments into a struct
77 // for functions produced by the code extractor. This is useful when converting
78 // extracted functions to pthread-based code, as only one argument (void*) can
79 // be passed in to pthread_create().
80 static cl::opt<bool>
81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
82                  cl::desc("Aggregate arguments to code-extracted functions"));
83 
84 /// Test whether a block is valid for extraction.
85 static bool isBlockValidForExtraction(const BasicBlock &BB,
86                                       const SetVector<BasicBlock *> &Result,
87                                       bool AllowVarArgs, bool AllowAlloca) {
88   // taking the address of a basic block moved to another function is illegal
89   if (BB.hasAddressTaken())
90     return false;
91 
92   // don't hoist code that uses another basicblock address, as it's likely to
93   // lead to unexpected behavior, like cross-function jumps
94   SmallPtrSet<User const *, 16> Visited;
95   SmallVector<User const *, 16> ToVisit;
96 
97   for (Instruction const &Inst : BB)
98     ToVisit.push_back(&Inst);
99 
100   while (!ToVisit.empty()) {
101     User const *Curr = ToVisit.pop_back_val();
102     if (!Visited.insert(Curr).second)
103       continue;
104     if (isa<BlockAddress const>(Curr))
105       return false; // even a reference to self is likely to be not compatible
106 
107     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
108       continue;
109 
110     for (auto const &U : Curr->operands()) {
111       if (auto *UU = dyn_cast<User>(U))
112         ToVisit.push_back(UU);
113     }
114   }
115 
116   // If explicitly requested, allow vastart and alloca. For invoke instructions
117   // verify that extraction is valid.
118   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
119     if (isa<AllocaInst>(I)) {
120        if (!AllowAlloca)
121          return false;
122        continue;
123     }
124 
125     if (const auto *II = dyn_cast<InvokeInst>(I)) {
126       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
127       // must be a part of the subgraph which is being extracted.
128       if (auto *UBB = II->getUnwindDest())
129         if (!Result.count(UBB))
130           return false;
131       continue;
132     }
133 
134     // All catch handlers of a catchswitch instruction as well as the unwind
135     // destination must be in the subgraph.
136     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
137       if (auto *UBB = CSI->getUnwindDest())
138         if (!Result.count(UBB))
139           return false;
140       for (auto *HBB : CSI->handlers())
141         if (!Result.count(const_cast<BasicBlock*>(HBB)))
142           return false;
143       continue;
144     }
145 
146     // Make sure that entire catch handler is within subgraph. It is sufficient
147     // to check that catch return's block is in the list.
148     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
149       for (const auto *U : CPI->users())
150         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
151           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
152             return false;
153       continue;
154     }
155 
156     // And do similar checks for cleanup handler - the entire handler must be
157     // in subgraph which is going to be extracted. For cleanup return should
158     // additionally check that the unwind destination is also in the subgraph.
159     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
160       for (const auto *U : CPI->users())
161         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
162           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
163             return false;
164       continue;
165     }
166     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
167       if (auto *UBB = CRI->getUnwindDest())
168         if (!Result.count(UBB))
169           return false;
170       continue;
171     }
172 
173     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
174       if (const Function *F = CI->getCalledFunction()) {
175         auto IID = F->getIntrinsicID();
176         if (IID == Intrinsic::vastart) {
177           if (AllowVarArgs)
178             continue;
179           else
180             return false;
181         }
182 
183         // Currently, we miscompile outlined copies of eh_typid_for. There are
184         // proposals for fixing this in llvm.org/PR39545.
185         if (IID == Intrinsic::eh_typeid_for)
186           return false;
187       }
188     }
189   }
190 
191   return true;
192 }
193 
194 /// Build a set of blocks to extract if the input blocks are viable.
195 static SetVector<BasicBlock *>
196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
197                         bool AllowVarArgs, bool AllowAlloca) {
198   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199   SetVector<BasicBlock *> Result;
200 
201   // Loop over the blocks, adding them to our set-vector, and aborting with an
202   // empty set if we encounter invalid blocks.
203   for (BasicBlock *BB : BBs) {
204     // If this block is dead, don't process it.
205     if (DT && !DT->isReachableFromEntry(BB))
206       continue;
207 
208     if (!Result.insert(BB))
209       llvm_unreachable("Repeated basic blocks in extraction input");
210   }
211 
212   for (auto *BB : Result) {
213     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
214       return {};
215 
216     // Make sure that the first block is not a landing pad.
217     if (BB == Result.front()) {
218       if (BB->isEHPad()) {
219         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
220         return {};
221       }
222       continue;
223     }
224 
225     // All blocks other than the first must not have predecessors outside of
226     // the subgraph which is being extracted.
227     for (auto *PBB : predecessors(BB))
228       if (!Result.count(PBB)) {
229         LLVM_DEBUG(
230             dbgs() << "No blocks in this region may have entries from "
231                       "outside the region except for the first block!\n");
232         return {};
233       }
234   }
235 
236   return Result;
237 }
238 
239 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
240                              bool AggregateArgs, BlockFrequencyInfo *BFI,
241                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
242                              bool AllowVarArgs, bool AllowAlloca,
243                              std::string Suffix)
244     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
245       BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
246       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
247       Suffix(Suffix) {}
248 
249 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
250                              BlockFrequencyInfo *BFI,
251                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
252                              std::string Suffix)
253     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
254       BPI(BPI), AC(AC), AllowVarArgs(false),
255       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
256                                      /* AllowVarArgs */ false,
257                                      /* AllowAlloca */ false)),
258       Suffix(Suffix) {}
259 
260 /// definedInRegion - Return true if the specified value is defined in the
261 /// extracted region.
262 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
263   if (Instruction *I = dyn_cast<Instruction>(V))
264     if (Blocks.count(I->getParent()))
265       return true;
266   return false;
267 }
268 
269 /// definedInCaller - Return true if the specified value is defined in the
270 /// function being code extracted, but not in the region being extracted.
271 /// These values must be passed in as live-ins to the function.
272 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
273   if (isa<Argument>(V)) return true;
274   if (Instruction *I = dyn_cast<Instruction>(V))
275     if (!Blocks.count(I->getParent()))
276       return true;
277   return false;
278 }
279 
280 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
281   BasicBlock *CommonExitBlock = nullptr;
282   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
283     for (auto *Succ : successors(Block)) {
284       // Internal edges, ok.
285       if (Blocks.count(Succ))
286         continue;
287       if (!CommonExitBlock) {
288         CommonExitBlock = Succ;
289         continue;
290       }
291       if (CommonExitBlock == Succ)
292         continue;
293 
294       return true;
295     }
296     return false;
297   };
298 
299   if (any_of(Blocks, hasNonCommonExitSucc))
300     return nullptr;
301 
302   return CommonExitBlock;
303 }
304 
305 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
306     Instruction *Addr) const {
307   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
308   Function *Func = (*Blocks.begin())->getParent();
309   for (BasicBlock &BB : *Func) {
310     if (Blocks.count(&BB))
311       continue;
312     for (Instruction &II : BB) {
313       if (isa<DbgInfoIntrinsic>(II))
314         continue;
315 
316       unsigned Opcode = II.getOpcode();
317       Value *MemAddr = nullptr;
318       switch (Opcode) {
319       case Instruction::Store:
320       case Instruction::Load: {
321         if (Opcode == Instruction::Store) {
322           StoreInst *SI = cast<StoreInst>(&II);
323           MemAddr = SI->getPointerOperand();
324         } else {
325           LoadInst *LI = cast<LoadInst>(&II);
326           MemAddr = LI->getPointerOperand();
327         }
328         // Global variable can not be aliased with locals.
329         if (dyn_cast<Constant>(MemAddr))
330           break;
331         Value *Base = MemAddr->stripInBoundsConstantOffsets();
332         if (!dyn_cast<AllocaInst>(Base) || Base == AI)
333           return false;
334         break;
335       }
336       default: {
337         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
338         if (IntrInst) {
339           if (IntrInst->isLifetimeStartOrEnd())
340             break;
341           return false;
342         }
343         // Treat all the other cases conservatively if it has side effects.
344         if (II.mayHaveSideEffects())
345           return false;
346       }
347       }
348     }
349   }
350 
351   return true;
352 }
353 
354 BasicBlock *
355 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
356   BasicBlock *SinglePredFromOutlineRegion = nullptr;
357   assert(!Blocks.count(CommonExitBlock) &&
358          "Expect a block outside the region!");
359   for (auto *Pred : predecessors(CommonExitBlock)) {
360     if (!Blocks.count(Pred))
361       continue;
362     if (!SinglePredFromOutlineRegion) {
363       SinglePredFromOutlineRegion = Pred;
364     } else if (SinglePredFromOutlineRegion != Pred) {
365       SinglePredFromOutlineRegion = nullptr;
366       break;
367     }
368   }
369 
370   if (SinglePredFromOutlineRegion)
371     return SinglePredFromOutlineRegion;
372 
373 #ifndef NDEBUG
374   auto getFirstPHI = [](BasicBlock *BB) {
375     BasicBlock::iterator I = BB->begin();
376     PHINode *FirstPhi = nullptr;
377     while (I != BB->end()) {
378       PHINode *Phi = dyn_cast<PHINode>(I);
379       if (!Phi)
380         break;
381       if (!FirstPhi) {
382         FirstPhi = Phi;
383         break;
384       }
385     }
386     return FirstPhi;
387   };
388   // If there are any phi nodes, the single pred either exists or has already
389   // be created before code extraction.
390   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
391 #endif
392 
393   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
394       CommonExitBlock->getFirstNonPHI()->getIterator());
395 
396   for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
397        PI != PE;) {
398     BasicBlock *Pred = *PI++;
399     if (Blocks.count(Pred))
400       continue;
401     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
402   }
403   // Now add the old exit block to the outline region.
404   Blocks.insert(CommonExitBlock);
405   return CommonExitBlock;
406 }
407 
408 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands,
409                                 BasicBlock *&ExitBlock) const {
410   Function *Func = (*Blocks.begin())->getParent();
411   ExitBlock = getCommonExitBlock(Blocks);
412 
413   for (BasicBlock &BB : *Func) {
414     if (Blocks.count(&BB))
415       continue;
416     for (Instruction &II : BB) {
417       auto *AI = dyn_cast<AllocaInst>(&II);
418       if (!AI)
419         continue;
420 
421       // Find the pair of life time markers for address 'Addr' that are either
422       // defined inside the outline region or can legally be shrinkwrapped into
423       // the outline region. If there are not other untracked uses of the
424       // address, return the pair of markers if found; otherwise return a pair
425       // of nullptr.
426       auto GetLifeTimeMarkers =
427           [&](Instruction *Addr, bool &SinkLifeStart,
428               bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> {
429         Instruction *LifeStart = nullptr, *LifeEnd = nullptr;
430 
431         for (User *U : Addr->users()) {
432           IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
433           if (IntrInst) {
434             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
435               // Do not handle the case where AI has multiple start markers.
436               if (LifeStart)
437                 return std::make_pair<Instruction *>(nullptr, nullptr);
438               LifeStart = IntrInst;
439             }
440             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
441               if (LifeEnd)
442                 return std::make_pair<Instruction *>(nullptr, nullptr);
443               LifeEnd = IntrInst;
444             }
445             continue;
446           }
447           // Find untracked uses of the address, bail.
448           if (!definedInRegion(Blocks, U))
449             return std::make_pair<Instruction *>(nullptr, nullptr);
450         }
451 
452         if (!LifeStart || !LifeEnd)
453           return std::make_pair<Instruction *>(nullptr, nullptr);
454 
455         SinkLifeStart = !definedInRegion(Blocks, LifeStart);
456         HoistLifeEnd = !definedInRegion(Blocks, LifeEnd);
457         // Do legality Check.
458         if ((SinkLifeStart || HoistLifeEnd) &&
459             !isLegalToShrinkwrapLifetimeMarkers(Addr))
460           return std::make_pair<Instruction *>(nullptr, nullptr);
461 
462         // Check to see if we have a place to do hoisting, if not, bail.
463         if (HoistLifeEnd && !ExitBlock)
464           return std::make_pair<Instruction *>(nullptr, nullptr);
465 
466         return std::make_pair(LifeStart, LifeEnd);
467       };
468 
469       bool SinkLifeStart = false, HoistLifeEnd = false;
470       auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd);
471 
472       if (Markers.first) {
473         if (SinkLifeStart)
474           SinkCands.insert(Markers.first);
475         SinkCands.insert(AI);
476         if (HoistLifeEnd)
477           HoistCands.insert(Markers.second);
478         continue;
479       }
480 
481       // Follow the bitcast.
482       Instruction *MarkerAddr = nullptr;
483       for (User *U : AI->users()) {
484         if (U->stripInBoundsConstantOffsets() == AI) {
485           SinkLifeStart = false;
486           HoistLifeEnd = false;
487           Instruction *Bitcast = cast<Instruction>(U);
488           Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd);
489           if (Markers.first) {
490             MarkerAddr = Bitcast;
491             continue;
492           }
493         }
494 
495         // Found unknown use of AI.
496         if (!definedInRegion(Blocks, U)) {
497           MarkerAddr = nullptr;
498           break;
499         }
500       }
501 
502       if (MarkerAddr) {
503         if (SinkLifeStart)
504           SinkCands.insert(Markers.first);
505         if (!definedInRegion(Blocks, MarkerAddr))
506           SinkCands.insert(MarkerAddr);
507         SinkCands.insert(AI);
508         if (HoistLifeEnd)
509           HoistCands.insert(Markers.second);
510       }
511     }
512   }
513 }
514 
515 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
516                                       const ValueSet &SinkCands) const {
517   for (BasicBlock *BB : Blocks) {
518     // If a used value is defined outside the region, it's an input.  If an
519     // instruction is used outside the region, it's an output.
520     for (Instruction &II : *BB) {
521       for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
522            ++OI) {
523         Value *V = *OI;
524         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
525           Inputs.insert(V);
526       }
527 
528       for (User *U : II.users())
529         if (!definedInRegion(Blocks, U)) {
530           Outputs.insert(&II);
531           break;
532         }
533     }
534   }
535 }
536 
537 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
538 /// of the region, we need to split the entry block of the region so that the
539 /// PHI node is easier to deal with.
540 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
541   unsigned NumPredsFromRegion = 0;
542   unsigned NumPredsOutsideRegion = 0;
543 
544   if (Header != &Header->getParent()->getEntryBlock()) {
545     PHINode *PN = dyn_cast<PHINode>(Header->begin());
546     if (!PN) return;  // No PHI nodes.
547 
548     // If the header node contains any PHI nodes, check to see if there is more
549     // than one entry from outside the region.  If so, we need to sever the
550     // header block into two.
551     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
552       if (Blocks.count(PN->getIncomingBlock(i)))
553         ++NumPredsFromRegion;
554       else
555         ++NumPredsOutsideRegion;
556 
557     // If there is one (or fewer) predecessor from outside the region, we don't
558     // need to do anything special.
559     if (NumPredsOutsideRegion <= 1) return;
560   }
561 
562   // Otherwise, we need to split the header block into two pieces: one
563   // containing PHI nodes merging values from outside of the region, and a
564   // second that contains all of the code for the block and merges back any
565   // incoming values from inside of the region.
566   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
567 
568   // We only want to code extract the second block now, and it becomes the new
569   // header of the region.
570   BasicBlock *OldPred = Header;
571   Blocks.remove(OldPred);
572   Blocks.insert(NewBB);
573   Header = NewBB;
574 
575   // Okay, now we need to adjust the PHI nodes and any branches from within the
576   // region to go to the new header block instead of the old header block.
577   if (NumPredsFromRegion) {
578     PHINode *PN = cast<PHINode>(OldPred->begin());
579     // Loop over all of the predecessors of OldPred that are in the region,
580     // changing them to branch to NewBB instead.
581     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
582       if (Blocks.count(PN->getIncomingBlock(i))) {
583         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
584         TI->replaceUsesOfWith(OldPred, NewBB);
585       }
586 
587     // Okay, everything within the region is now branching to the right block, we
588     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
589     BasicBlock::iterator AfterPHIs;
590     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
591       PHINode *PN = cast<PHINode>(AfterPHIs);
592       // Create a new PHI node in the new region, which has an incoming value
593       // from OldPred of PN.
594       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
595                                        PN->getName() + ".ce", &NewBB->front());
596       PN->replaceAllUsesWith(NewPN);
597       NewPN->addIncoming(PN, OldPred);
598 
599       // Loop over all of the incoming value in PN, moving them to NewPN if they
600       // are from the extracted region.
601       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
602         if (Blocks.count(PN->getIncomingBlock(i))) {
603           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
604           PN->removeIncomingValue(i);
605           --i;
606         }
607       }
608     }
609   }
610 }
611 
612 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
613 /// outlined region, we split these PHIs on two: one with inputs from region
614 /// and other with remaining incoming blocks; then first PHIs are placed in
615 /// outlined region.
616 void CodeExtractor::severSplitPHINodesOfExits(
617     const SmallPtrSetImpl<BasicBlock *> &Exits) {
618   for (BasicBlock *ExitBB : Exits) {
619     BasicBlock *NewBB = nullptr;
620 
621     for (PHINode &PN : ExitBB->phis()) {
622       // Find all incoming values from the outlining region.
623       SmallVector<unsigned, 2> IncomingVals;
624       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
625         if (Blocks.count(PN.getIncomingBlock(i)))
626           IncomingVals.push_back(i);
627 
628       // Do not process PHI if there is one (or fewer) predecessor from region.
629       // If PHI has exactly one predecessor from region, only this one incoming
630       // will be replaced on codeRepl block, so it should be safe to skip PHI.
631       if (IncomingVals.size() <= 1)
632         continue;
633 
634       // Create block for new PHIs and add it to the list of outlined if it
635       // wasn't done before.
636       if (!NewBB) {
637         NewBB = BasicBlock::Create(ExitBB->getContext(),
638                                    ExitBB->getName() + ".split",
639                                    ExitBB->getParent(), ExitBB);
640         SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB),
641                                            pred_end(ExitBB));
642         for (BasicBlock *PredBB : Preds)
643           if (Blocks.count(PredBB))
644             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
645         BranchInst::Create(ExitBB, NewBB);
646         Blocks.insert(NewBB);
647       }
648 
649       // Split this PHI.
650       PHINode *NewPN =
651           PHINode::Create(PN.getType(), IncomingVals.size(),
652                           PN.getName() + ".ce", NewBB->getFirstNonPHI());
653       for (unsigned i : IncomingVals)
654         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
655       for (unsigned i : reverse(IncomingVals))
656         PN.removeIncomingValue(i, false);
657       PN.addIncoming(NewPN, NewBB);
658     }
659   }
660 }
661 
662 void CodeExtractor::splitReturnBlocks() {
663   for (BasicBlock *Block : Blocks)
664     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
665       BasicBlock *New =
666           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
667       if (DT) {
668         // Old dominates New. New node dominates all other nodes dominated
669         // by Old.
670         DomTreeNode *OldNode = DT->getNode(Block);
671         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
672                                                OldNode->end());
673 
674         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
675 
676         for (DomTreeNode *I : Children)
677           DT->changeImmediateDominator(I, NewNode);
678       }
679     }
680 }
681 
682 /// constructFunction - make a function based on inputs and outputs, as follows:
683 /// f(in0, ..., inN, out0, ..., outN)
684 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
685                                            const ValueSet &outputs,
686                                            BasicBlock *header,
687                                            BasicBlock *newRootNode,
688                                            BasicBlock *newHeader,
689                                            Function *oldFunction,
690                                            Module *M) {
691   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
692   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
693 
694   // This function returns unsigned, outputs will go back by reference.
695   switch (NumExitBlocks) {
696   case 0:
697   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
698   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
699   default: RetTy = Type::getInt16Ty(header->getContext()); break;
700   }
701 
702   std::vector<Type *> paramTy;
703 
704   // Add the types of the input values to the function's argument list
705   for (Value *value : inputs) {
706     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
707     paramTy.push_back(value->getType());
708   }
709 
710   // Add the types of the output values to the function's argument list.
711   for (Value *output : outputs) {
712     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
713     if (AggregateArgs)
714       paramTy.push_back(output->getType());
715     else
716       paramTy.push_back(PointerType::getUnqual(output->getType()));
717   }
718 
719   LLVM_DEBUG({
720     dbgs() << "Function type: " << *RetTy << " f(";
721     for (Type *i : paramTy)
722       dbgs() << *i << ", ";
723     dbgs() << ")\n";
724   });
725 
726   StructType *StructTy;
727   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
728     StructTy = StructType::get(M->getContext(), paramTy);
729     paramTy.clear();
730     paramTy.push_back(PointerType::getUnqual(StructTy));
731   }
732   FunctionType *funcType =
733                   FunctionType::get(RetTy, paramTy,
734                                     AllowVarArgs && oldFunction->isVarArg());
735 
736   std::string SuffixToUse =
737       Suffix.empty()
738           ? (header->getName().empty() ? "extracted" : header->getName().str())
739           : Suffix;
740   // Create the new function
741   Function *newFunction = Function::Create(
742       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
743       oldFunction->getName() + "." + SuffixToUse, M);
744   // If the old function is no-throw, so is the new one.
745   if (oldFunction->doesNotThrow())
746     newFunction->setDoesNotThrow();
747 
748   // Inherit the uwtable attribute if we need to.
749   if (oldFunction->hasUWTable())
750     newFunction->setHasUWTable();
751 
752   // Inherit all of the target dependent attributes and white-listed
753   // target independent attributes.
754   //  (e.g. If the extracted region contains a call to an x86.sse
755   //  instruction we need to make sure that the extracted region has the
756   //  "target-features" attribute allowing it to be lowered.
757   // FIXME: This should be changed to check to see if a specific
758   //           attribute can not be inherited.
759   for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
760     if (Attr.isStringAttribute()) {
761       if (Attr.getKindAsString() == "thunk")
762         continue;
763     } else
764       switch (Attr.getKindAsEnum()) {
765       // Those attributes cannot be propagated safely. Explicitly list them
766       // here so we get a warning if new attributes are added. This list also
767       // includes non-function attributes.
768       case Attribute::Alignment:
769       case Attribute::AllocSize:
770       case Attribute::ArgMemOnly:
771       case Attribute::Builtin:
772       case Attribute::ByVal:
773       case Attribute::Convergent:
774       case Attribute::Dereferenceable:
775       case Attribute::DereferenceableOrNull:
776       case Attribute::InAlloca:
777       case Attribute::InReg:
778       case Attribute::InaccessibleMemOnly:
779       case Attribute::InaccessibleMemOrArgMemOnly:
780       case Attribute::JumpTable:
781       case Attribute::Naked:
782       case Attribute::Nest:
783       case Attribute::NoAlias:
784       case Attribute::NoBuiltin:
785       case Attribute::NoCapture:
786       case Attribute::NoReturn:
787       case Attribute::None:
788       case Attribute::NonNull:
789       case Attribute::ReadNone:
790       case Attribute::ReadOnly:
791       case Attribute::Returned:
792       case Attribute::ReturnsTwice:
793       case Attribute::SExt:
794       case Attribute::Speculatable:
795       case Attribute::StackAlignment:
796       case Attribute::StructRet:
797       case Attribute::SwiftError:
798       case Attribute::SwiftSelf:
799       case Attribute::WriteOnly:
800       case Attribute::ZExt:
801       case Attribute::EndAttrKinds:
802         continue;
803       // Those attributes should be safe to propagate to the extracted function.
804       case Attribute::AlwaysInline:
805       case Attribute::Cold:
806       case Attribute::NoRecurse:
807       case Attribute::InlineHint:
808       case Attribute::MinSize:
809       case Attribute::NoDuplicate:
810       case Attribute::NoImplicitFloat:
811       case Attribute::NoInline:
812       case Attribute::NonLazyBind:
813       case Attribute::NoRedZone:
814       case Attribute::NoUnwind:
815       case Attribute::OptForFuzzing:
816       case Attribute::OptimizeNone:
817       case Attribute::OptimizeForSize:
818       case Attribute::SafeStack:
819       case Attribute::ShadowCallStack:
820       case Attribute::SanitizeAddress:
821       case Attribute::SanitizeMemory:
822       case Attribute::SanitizeThread:
823       case Attribute::SanitizeHWAddress:
824       case Attribute::SpeculativeLoadHardening:
825       case Attribute::StackProtect:
826       case Attribute::StackProtectReq:
827       case Attribute::StackProtectStrong:
828       case Attribute::StrictFP:
829       case Attribute::UWTable:
830       case Attribute::NoCfCheck:
831         break;
832       }
833 
834     newFunction->addFnAttr(Attr);
835   }
836   newFunction->getBasicBlockList().push_back(newRootNode);
837 
838   // Create an iterator to name all of the arguments we inserted.
839   Function::arg_iterator AI = newFunction->arg_begin();
840 
841   // Rewrite all users of the inputs in the extracted region to use the
842   // arguments (or appropriate addressing into struct) instead.
843   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
844     Value *RewriteVal;
845     if (AggregateArgs) {
846       Value *Idx[2];
847       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
848       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
849       Instruction *TI = newFunction->begin()->getTerminator();
850       GetElementPtrInst *GEP = GetElementPtrInst::Create(
851           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
852       RewriteVal = new LoadInst(StructTy->getElementType(i), GEP,
853                                 "loadgep_" + inputs[i]->getName(), TI);
854     } else
855       RewriteVal = &*AI++;
856 
857     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
858     for (User *use : Users)
859       if (Instruction *inst = dyn_cast<Instruction>(use))
860         if (Blocks.count(inst->getParent()))
861           inst->replaceUsesOfWith(inputs[i], RewriteVal);
862   }
863 
864   // Set names for input and output arguments.
865   if (!AggregateArgs) {
866     AI = newFunction->arg_begin();
867     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
868       AI->setName(inputs[i]->getName());
869     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
870       AI->setName(outputs[i]->getName()+".out");
871   }
872 
873   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
874   // within the new function. This must be done before we lose track of which
875   // blocks were originally in the code region.
876   std::vector<User *> Users(header->user_begin(), header->user_end());
877   for (unsigned i = 0, e = Users.size(); i != e; ++i)
878     // The BasicBlock which contains the branch is not in the region
879     // modify the branch target to a new block
880     if (Instruction *I = dyn_cast<Instruction>(Users[i]))
881       if (I->isTerminator() && !Blocks.count(I->getParent()) &&
882           I->getParent()->getParent() == oldFunction)
883         I->replaceUsesOfWith(header, newHeader);
884 
885   return newFunction;
886 }
887 
888 /// Erase lifetime.start markers which reference inputs to the extraction
889 /// region, and insert the referenced memory into \p LifetimesStart.
890 ///
891 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
892 /// of allocas which will be moved from the caller function into the extracted
893 /// function (\p SunkAllocas).
894 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
895                                          const SetVector<Value *> &SunkAllocas,
896                                          SetVector<Value *> &LifetimesStart) {
897   for (BasicBlock *BB : Blocks) {
898     for (auto It = BB->begin(), End = BB->end(); It != End;) {
899       auto *II = dyn_cast<IntrinsicInst>(&*It);
900       ++It;
901       if (!II || !II->isLifetimeStartOrEnd())
902         continue;
903 
904       // Get the memory operand of the lifetime marker. If the underlying
905       // object is a sunk alloca, or is otherwise defined in the extraction
906       // region, the lifetime marker must not be erased.
907       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
908       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
909         continue;
910 
911       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
912         LifetimesStart.insert(Mem);
913       II->eraseFromParent();
914     }
915   }
916 }
917 
918 /// Insert lifetime start/end markers surrounding the call to the new function
919 /// for objects defined in the caller.
920 static void insertLifetimeMarkersSurroundingCall(
921     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
922     CallInst *TheCall) {
923   LLVMContext &Ctx = M->getContext();
924   auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
925   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
926   Instruction *Term = TheCall->getParent()->getTerminator();
927 
928   // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
929   // needed to satisfy this requirement so they may be reused.
930   DenseMap<Value *, Value *> Bitcasts;
931 
932   // Emit lifetime markers for the pointers given in \p Objects. Insert the
933   // markers before the call if \p InsertBefore, and after the call otherwise.
934   auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
935                            bool InsertBefore) {
936     for (Value *Mem : Objects) {
937       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
938                                             TheCall->getFunction()) &&
939              "Input memory not defined in original function");
940       Value *&MemAsI8Ptr = Bitcasts[Mem];
941       if (!MemAsI8Ptr) {
942         if (Mem->getType() == Int8PtrTy)
943           MemAsI8Ptr = Mem;
944         else
945           MemAsI8Ptr =
946               CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
947       }
948 
949       auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
950       if (InsertBefore)
951         Marker->insertBefore(TheCall);
952       else
953         Marker->insertBefore(Term);
954     }
955   };
956 
957   if (!LifetimesStart.empty()) {
958     auto StartFn = llvm::Intrinsic::getDeclaration(
959         M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
960     insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
961   }
962 
963   if (!LifetimesEnd.empty()) {
964     auto EndFn = llvm::Intrinsic::getDeclaration(
965         M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
966     insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
967   }
968 }
969 
970 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
971 /// the call instruction, splitting any PHI nodes in the header block as
972 /// necessary.
973 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
974                                                     BasicBlock *codeReplacer,
975                                                     ValueSet &inputs,
976                                                     ValueSet &outputs) {
977   // Emit a call to the new function, passing in: *pointer to struct (if
978   // aggregating parameters), or plan inputs and allocated memory for outputs
979   std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
980 
981   Module *M = newFunction->getParent();
982   LLVMContext &Context = M->getContext();
983   const DataLayout &DL = M->getDataLayout();
984   CallInst *call = nullptr;
985 
986   // Add inputs as params, or to be filled into the struct
987   unsigned ArgNo = 0;
988   SmallVector<unsigned, 1> SwiftErrorArgs;
989   for (Value *input : inputs) {
990     if (AggregateArgs)
991       StructValues.push_back(input);
992     else {
993       params.push_back(input);
994       if (input->isSwiftError())
995         SwiftErrorArgs.push_back(ArgNo);
996     }
997     ++ArgNo;
998   }
999 
1000   // Create allocas for the outputs
1001   for (Value *output : outputs) {
1002     if (AggregateArgs) {
1003       StructValues.push_back(output);
1004     } else {
1005       AllocaInst *alloca =
1006         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1007                        nullptr, output->getName() + ".loc",
1008                        &codeReplacer->getParent()->front().front());
1009       ReloadOutputs.push_back(alloca);
1010       params.push_back(alloca);
1011     }
1012   }
1013 
1014   StructType *StructArgTy = nullptr;
1015   AllocaInst *Struct = nullptr;
1016   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
1017     std::vector<Type *> ArgTypes;
1018     for (ValueSet::iterator v = StructValues.begin(),
1019            ve = StructValues.end(); v != ve; ++v)
1020       ArgTypes.push_back((*v)->getType());
1021 
1022     // Allocate a struct at the beginning of this function
1023     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1024     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1025                             "structArg",
1026                             &codeReplacer->getParent()->front().front());
1027     params.push_back(Struct);
1028 
1029     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
1030       Value *Idx[2];
1031       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1032       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1033       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1034           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1035       codeReplacer->getInstList().push_back(GEP);
1036       StoreInst *SI = new StoreInst(StructValues[i], GEP);
1037       codeReplacer->getInstList().push_back(SI);
1038     }
1039   }
1040 
1041   // Emit the call to the function
1042   call = CallInst::Create(newFunction, params,
1043                           NumExitBlocks > 1 ? "targetBlock" : "");
1044   // Add debug location to the new call, if the original function has debug
1045   // info. In that case, the terminator of the entry block of the extracted
1046   // function contains the first debug location of the extracted function,
1047   // set in extractCodeRegion.
1048   if (codeReplacer->getParent()->getSubprogram()) {
1049     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1050       call->setDebugLoc(DL);
1051   }
1052   codeReplacer->getInstList().push_back(call);
1053 
1054   // Set swifterror parameter attributes.
1055   for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1056     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1057     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1058   }
1059 
1060   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
1061   unsigned FirstOut = inputs.size();
1062   if (!AggregateArgs)
1063     std::advance(OutputArgBegin, inputs.size());
1064 
1065   // Reload the outputs passed in by reference.
1066   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1067     Value *Output = nullptr;
1068     if (AggregateArgs) {
1069       Value *Idx[2];
1070       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1071       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1072       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1073           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1074       codeReplacer->getInstList().push_back(GEP);
1075       Output = GEP;
1076     } else {
1077       Output = ReloadOutputs[i];
1078     }
1079     LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1080                                   outputs[i]->getName() + ".reload");
1081     Reloads.push_back(load);
1082     codeReplacer->getInstList().push_back(load);
1083     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1084     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1085       Instruction *inst = cast<Instruction>(Users[u]);
1086       if (!Blocks.count(inst->getParent()))
1087         inst->replaceUsesOfWith(outputs[i], load);
1088     }
1089   }
1090 
1091   // Now we can emit a switch statement using the call as a value.
1092   SwitchInst *TheSwitch =
1093       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1094                          codeReplacer, 0, codeReplacer);
1095 
1096   // Since there may be multiple exits from the original region, make the new
1097   // function return an unsigned, switch on that number.  This loop iterates
1098   // over all of the blocks in the extracted region, updating any terminator
1099   // instructions in the to-be-extracted region that branch to blocks that are
1100   // not in the region to be extracted.
1101   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1102 
1103   unsigned switchVal = 0;
1104   for (BasicBlock *Block : Blocks) {
1105     Instruction *TI = Block->getTerminator();
1106     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1107       if (!Blocks.count(TI->getSuccessor(i))) {
1108         BasicBlock *OldTarget = TI->getSuccessor(i);
1109         // add a new basic block which returns the appropriate value
1110         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1111         if (!NewTarget) {
1112           // If we don't already have an exit stub for this non-extracted
1113           // destination, create one now!
1114           NewTarget = BasicBlock::Create(Context,
1115                                          OldTarget->getName() + ".exitStub",
1116                                          newFunction);
1117           unsigned SuccNum = switchVal++;
1118 
1119           Value *brVal = nullptr;
1120           switch (NumExitBlocks) {
1121           case 0:
1122           case 1: break;  // No value needed.
1123           case 2:         // Conditional branch, return a bool
1124             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1125             break;
1126           default:
1127             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1128             break;
1129           }
1130 
1131           ReturnInst::Create(Context, brVal, NewTarget);
1132 
1133           // Update the switch instruction.
1134           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1135                                               SuccNum),
1136                              OldTarget);
1137         }
1138 
1139         // rewrite the original branch instruction with this new target
1140         TI->setSuccessor(i, NewTarget);
1141       }
1142   }
1143 
1144   // Store the arguments right after the definition of output value.
1145   // This should be proceeded after creating exit stubs to be ensure that invoke
1146   // result restore will be placed in the outlined function.
1147   Function::arg_iterator OAI = OutputArgBegin;
1148   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1149     auto *OutI = dyn_cast<Instruction>(outputs[i]);
1150     if (!OutI)
1151       continue;
1152 
1153     // Find proper insertion point.
1154     BasicBlock::iterator InsertPt;
1155     // In case OutI is an invoke, we insert the store at the beginning in the
1156     // 'normal destination' BB. Otherwise we insert the store right after OutI.
1157     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1158       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1159     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1160       InsertPt = Phi->getParent()->getFirstInsertionPt();
1161     else
1162       InsertPt = std::next(OutI->getIterator());
1163 
1164     Instruction *InsertBefore = &*InsertPt;
1165     assert((InsertBefore->getFunction() == newFunction ||
1166             Blocks.count(InsertBefore->getParent())) &&
1167            "InsertPt should be in new function");
1168     assert(OAI != newFunction->arg_end() &&
1169            "Number of output arguments should match "
1170            "the amount of defined values");
1171     if (AggregateArgs) {
1172       Value *Idx[2];
1173       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1174       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1175       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1176           StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(),
1177           InsertBefore);
1178       new StoreInst(outputs[i], GEP, InsertBefore);
1179       // Since there should be only one struct argument aggregating
1180       // all the output values, we shouldn't increment OAI, which always
1181       // points to the struct argument, in this case.
1182     } else {
1183       new StoreInst(outputs[i], &*OAI, InsertBefore);
1184       ++OAI;
1185     }
1186   }
1187 
1188   // Now that we've done the deed, simplify the switch instruction.
1189   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1190   switch (NumExitBlocks) {
1191   case 0:
1192     // There are no successors (the block containing the switch itself), which
1193     // means that previously this was the last part of the function, and hence
1194     // this should be rewritten as a `ret'
1195 
1196     // Check if the function should return a value
1197     if (OldFnRetTy->isVoidTy()) {
1198       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1199     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1200       // return what we have
1201       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1202     } else {
1203       // Otherwise we must have code extracted an unwind or something, just
1204       // return whatever we want.
1205       ReturnInst::Create(Context,
1206                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1207     }
1208 
1209     TheSwitch->eraseFromParent();
1210     break;
1211   case 1:
1212     // Only a single destination, change the switch into an unconditional
1213     // branch.
1214     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1215     TheSwitch->eraseFromParent();
1216     break;
1217   case 2:
1218     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1219                        call, TheSwitch);
1220     TheSwitch->eraseFromParent();
1221     break;
1222   default:
1223     // Otherwise, make the default destination of the switch instruction be one
1224     // of the other successors.
1225     TheSwitch->setCondition(call);
1226     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1227     // Remove redundant case
1228     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1229     break;
1230   }
1231 
1232   // Insert lifetime markers around the reloads of any output values. The
1233   // allocas output values are stored in are only in-use in the codeRepl block.
1234   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1235 
1236   return call;
1237 }
1238 
1239 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1240   Function *oldFunc = (*Blocks.begin())->getParent();
1241   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1242   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1243 
1244   for (BasicBlock *Block : Blocks) {
1245     // Delete the basic block from the old function, and the list of blocks
1246     oldBlocks.remove(Block);
1247 
1248     // Insert this basic block into the new function
1249     newBlocks.push_back(Block);
1250 
1251     // Remove @llvm.assume calls that were moved to the new function from the
1252     // old function's assumption cache.
1253     if (AC)
1254       for (auto &I : *Block)
1255         if (match(&I, m_Intrinsic<Intrinsic::assume>()))
1256           AC->unregisterAssumption(cast<CallInst>(&I));
1257   }
1258 }
1259 
1260 void CodeExtractor::calculateNewCallTerminatorWeights(
1261     BasicBlock *CodeReplacer,
1262     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1263     BranchProbabilityInfo *BPI) {
1264   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1265   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1266 
1267   // Update the branch weights for the exit block.
1268   Instruction *TI = CodeReplacer->getTerminator();
1269   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1270 
1271   // Block Frequency distribution with dummy node.
1272   Distribution BranchDist;
1273 
1274   // Add each of the frequencies of the successors.
1275   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1276     BlockNode ExitNode(i);
1277     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1278     if (ExitFreq != 0)
1279       BranchDist.addExit(ExitNode, ExitFreq);
1280     else
1281       BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
1282   }
1283 
1284   // Check for no total weight.
1285   if (BranchDist.Total == 0)
1286     return;
1287 
1288   // Normalize the distribution so that they can fit in unsigned.
1289   BranchDist.normalize();
1290 
1291   // Create normalized branch weights and set the metadata.
1292   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1293     const auto &Weight = BranchDist.Weights[I];
1294 
1295     // Get the weight and update the current BFI.
1296     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1297     BranchProbability BP(Weight.Amount, BranchDist.Total);
1298     BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
1299   }
1300   TI->setMetadata(
1301       LLVMContext::MD_prof,
1302       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1303 }
1304 
1305 Function *CodeExtractor::extractCodeRegion() {
1306   if (!isEligible())
1307     return nullptr;
1308 
1309   // Assumption: this is a single-entry code region, and the header is the first
1310   // block in the region.
1311   BasicBlock *header = *Blocks.begin();
1312   Function *oldFunction = header->getParent();
1313 
1314   // For functions with varargs, check that varargs handling is only done in the
1315   // outlined function, i.e vastart and vaend are only used in outlined blocks.
1316   if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) {
1317     auto containsVarArgIntrinsic = [](Instruction &I) {
1318       if (const CallInst *CI = dyn_cast<CallInst>(&I))
1319         if (const Function *F = CI->getCalledFunction())
1320           return F->getIntrinsicID() == Intrinsic::vastart ||
1321                  F->getIntrinsicID() == Intrinsic::vaend;
1322       return false;
1323     };
1324 
1325     for (auto &BB : *oldFunction) {
1326       if (Blocks.count(&BB))
1327         continue;
1328       if (llvm::any_of(BB, containsVarArgIntrinsic))
1329         return nullptr;
1330     }
1331   }
1332   ValueSet inputs, outputs, SinkingCands, HoistingCands;
1333   BasicBlock *CommonExit = nullptr;
1334 
1335   // Calculate the entry frequency of the new function before we change the root
1336   //   block.
1337   BlockFrequency EntryFreq;
1338   if (BFI) {
1339     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1340     for (BasicBlock *Pred : predecessors(header)) {
1341       if (Blocks.count(Pred))
1342         continue;
1343       EntryFreq +=
1344           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1345     }
1346   }
1347 
1348   // If we have any return instructions in the region, split those blocks so
1349   // that the return is not in the region.
1350   splitReturnBlocks();
1351 
1352   // Calculate the exit blocks for the extracted region and the total exit
1353   // weights for each of those blocks.
1354   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1355   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1356   for (BasicBlock *Block : Blocks) {
1357     for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1358          ++SI) {
1359       if (!Blocks.count(*SI)) {
1360         // Update the branch weight for this successor.
1361         if (BFI) {
1362           BlockFrequency &BF = ExitWeights[*SI];
1363           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1364         }
1365         ExitBlocks.insert(*SI);
1366       }
1367     }
1368   }
1369   NumExitBlocks = ExitBlocks.size();
1370 
1371   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1372   severSplitPHINodesOfEntry(header);
1373   severSplitPHINodesOfExits(ExitBlocks);
1374 
1375   // This takes place of the original loop
1376   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1377                                                 "codeRepl", oldFunction,
1378                                                 header);
1379 
1380   // The new function needs a root node because other nodes can branch to the
1381   // head of the region, but the entry node of a function cannot have preds.
1382   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1383                                                "newFuncRoot");
1384   auto *BranchI = BranchInst::Create(header);
1385   // If the original function has debug info, we have to add a debug location
1386   // to the new branch instruction from the artificial entry block.
1387   // We use the debug location of the first instruction in the extracted
1388   // blocks, as there is no other equivalent line in the source code.
1389   if (oldFunction->getSubprogram()) {
1390     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1391       return any_of(*BB, [&BranchI](const Instruction &I) {
1392         if (!I.getDebugLoc())
1393           return false;
1394         BranchI->setDebugLoc(I.getDebugLoc());
1395         return true;
1396       });
1397     });
1398   }
1399   newFuncRoot->getInstList().push_back(BranchI);
1400 
1401   findAllocas(SinkingCands, HoistingCands, CommonExit);
1402   assert(HoistingCands.empty() || CommonExit);
1403 
1404   // Find inputs to, outputs from the code region.
1405   findInputsOutputs(inputs, outputs, SinkingCands);
1406 
1407   // Now sink all instructions which only have non-phi uses inside the region
1408   for (auto *II : SinkingCands)
1409     cast<Instruction>(II)->moveBefore(*newFuncRoot,
1410                                       newFuncRoot->getFirstInsertionPt());
1411 
1412   if (!HoistingCands.empty()) {
1413     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1414     Instruction *TI = HoistToBlock->getTerminator();
1415     for (auto *II : HoistingCands)
1416       cast<Instruction>(II)->moveBefore(TI);
1417   }
1418 
1419   // Collect objects which are inputs to the extraction region and also
1420   // referenced by lifetime start markers within it. The effects of these
1421   // markers must be replicated in the calling function to prevent the stack
1422   // coloring pass from merging slots which store input objects.
1423   ValueSet LifetimesStart;
1424   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1425 
1426   // Construct new function based on inputs/outputs & add allocas for all defs.
1427   Function *newFunction =
1428       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1429                         oldFunction, oldFunction->getParent());
1430 
1431   // Update the entry count of the function.
1432   if (BFI) {
1433     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1434     if (Count.hasValue())
1435       newFunction->setEntryCount(
1436           ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1437     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1438   }
1439 
1440   CallInst *TheCall =
1441       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1442 
1443   moveCodeToFunction(newFunction);
1444 
1445   // Replicate the effects of any lifetime start/end markers which referenced
1446   // input objects in the extraction region by placing markers around the call.
1447   insertLifetimeMarkersSurroundingCall(
1448       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1449 
1450   // Propagate personality info to the new function if there is one.
1451   if (oldFunction->hasPersonalityFn())
1452     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1453 
1454   // Update the branch weights for the exit block.
1455   if (BFI && NumExitBlocks > 1)
1456     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1457 
1458   // Loop over all of the PHI nodes in the header and exit blocks, and change
1459   // any references to the old incoming edge to be the new incoming edge.
1460   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1461     PHINode *PN = cast<PHINode>(I);
1462     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1463       if (!Blocks.count(PN->getIncomingBlock(i)))
1464         PN->setIncomingBlock(i, newFuncRoot);
1465   }
1466 
1467   for (BasicBlock *ExitBB : ExitBlocks)
1468     for (PHINode &PN : ExitBB->phis()) {
1469       Value *IncomingCodeReplacerVal = nullptr;
1470       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1471         // Ignore incoming values from outside of the extracted region.
1472         if (!Blocks.count(PN.getIncomingBlock(i)))
1473           continue;
1474 
1475         // Ensure that there is only one incoming value from codeReplacer.
1476         if (!IncomingCodeReplacerVal) {
1477           PN.setIncomingBlock(i, codeReplacer);
1478           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1479         } else
1480           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1481                  "PHI has two incompatbile incoming values from codeRepl");
1482       }
1483     }
1484 
1485   // Erase debug info intrinsics. Variable updates within the new function are
1486   // invisible to debuggers. This could be improved by defining a DISubprogram
1487   // for the new function.
1488   for (BasicBlock &BB : *newFunction) {
1489     auto BlockIt = BB.begin();
1490     // Remove debug info intrinsics from the new function.
1491     while (BlockIt != BB.end()) {
1492       Instruction *Inst = &*BlockIt;
1493       ++BlockIt;
1494       if (isa<DbgInfoIntrinsic>(Inst))
1495         Inst->eraseFromParent();
1496     }
1497     // Remove debug info intrinsics which refer to values in the new function
1498     // from the old function.
1499     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1500     for (Instruction &I : BB)
1501       findDbgUsers(DbgUsers, &I);
1502     for (DbgVariableIntrinsic *DVI : DbgUsers)
1503       DVI->eraseFromParent();
1504   }
1505 
1506   // Mark the new function `noreturn` if applicable. Terminators which resume
1507   // exception propagation are treated as returning instructions. This is to
1508   // avoid inserting traps after calls to outlined functions which unwind.
1509   bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1510     const Instruction *Term = BB.getTerminator();
1511     return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1512   });
1513   if (doesNotReturn)
1514     newFunction->setDoesNotReturn();
1515 
1516   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1517     newFunction->dump();
1518     report_fatal_error("verification of newFunction failed!");
1519   });
1520   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1521              report_fatal_error("verification of oldFunction failed!"));
1522   return newFunction;
1523 }
1524