1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/IR/CFG.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DebugInfo.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Utils/ValueMapper.h" 36 #include <map> 37 using namespace llvm; 38 39 /// See comments in Cloning.h. 40 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 41 ValueToValueMapTy &VMap, 42 const Twine &NameSuffix, Function *F, 43 ClonedCodeInfo *CodeInfo) { 44 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 45 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 46 47 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 48 49 // Loop over all instructions, and copy them over. 50 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 51 II != IE; ++II) { 52 Instruction *NewInst = II->clone(); 53 if (II->hasName()) 54 NewInst->setName(II->getName()+NameSuffix); 55 NewBB->getInstList().push_back(NewInst); 56 VMap[&*II] = NewInst; // Add instruction map to value. 57 58 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 59 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 60 if (isa<ConstantInt>(AI->getArraySize())) 61 hasStaticAllocas = true; 62 else 63 hasDynamicAllocas = true; 64 } 65 } 66 67 if (CodeInfo) { 68 CodeInfo->ContainsCalls |= hasCalls; 69 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 70 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 71 BB != &BB->getParent()->getEntryBlock(); 72 } 73 return NewBB; 74 } 75 76 // Clone OldFunc into NewFunc, transforming the old arguments into references to 77 // VMap values. 78 // 79 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 80 ValueToValueMapTy &VMap, 81 bool ModuleLevelChanges, 82 SmallVectorImpl<ReturnInst*> &Returns, 83 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 84 ValueMapTypeRemapper *TypeMapper, 85 ValueMaterializer *Materializer) { 86 assert(NameSuffix && "NameSuffix cannot be null!"); 87 88 #ifndef NDEBUG 89 for (const Argument &I : OldFunc->args()) 90 assert(VMap.count(&I) && "No mapping from source argument specified!"); 91 #endif 92 93 // Copy all attributes other than those stored in the AttributeList. We need 94 // to remap the parameter indices of the AttributeList. 95 AttributeList NewAttrs = NewFunc->getAttributes(); 96 NewFunc->copyAttributesFrom(OldFunc); 97 NewFunc->setAttributes(NewAttrs); 98 99 // Fix up the personality function that got copied over. 100 if (OldFunc->hasPersonalityFn()) 101 NewFunc->setPersonalityFn( 102 MapValue(OldFunc->getPersonalityFn(), VMap, 103 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 104 TypeMapper, Materializer)); 105 106 SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size()); 107 AttributeList OldAttrs = OldFunc->getAttributes(); 108 109 // Clone any argument attributes that are present in the VMap. 110 for (const Argument &OldArg : OldFunc->args()) { 111 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 112 NewArgAttrs[NewArg->getArgNo()] = 113 OldAttrs.getParamAttributes(OldArg.getArgNo()); 114 } 115 } 116 117 NewFunc->setAttributes( 118 AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(), 119 OldAttrs.getRetAttributes(), NewArgAttrs)); 120 121 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 122 OldFunc->getAllMetadata(MDs); 123 for (auto MD : MDs) 124 NewFunc->addMetadata( 125 MD.first, 126 *MapMetadata(MD.second, VMap, 127 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 128 TypeMapper, Materializer)); 129 130 // Loop over all of the basic blocks in the function, cloning them as 131 // appropriate. Note that we save BE this way in order to handle cloning of 132 // recursive functions into themselves. 133 // 134 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 135 BI != BE; ++BI) { 136 const BasicBlock &BB = *BI; 137 138 // Create a new basic block and copy instructions into it! 139 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 140 141 // Add basic block mapping. 142 VMap[&BB] = CBB; 143 144 // It is only legal to clone a function if a block address within that 145 // function is never referenced outside of the function. Given that, we 146 // want to map block addresses from the old function to block addresses in 147 // the clone. (This is different from the generic ValueMapper 148 // implementation, which generates an invalid blockaddress when 149 // cloning a function.) 150 if (BB.hasAddressTaken()) { 151 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 152 const_cast<BasicBlock*>(&BB)); 153 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 154 } 155 156 // Note return instructions for the caller. 157 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 158 Returns.push_back(RI); 159 } 160 161 // Loop over all of the instructions in the function, fixing up operand 162 // references as we go. This uses VMap to do all the hard work. 163 for (Function::iterator BB = 164 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 165 BE = NewFunc->end(); 166 BB != BE; ++BB) 167 // Loop over all instructions, fixing each one as we find it... 168 for (Instruction &II : *BB) 169 RemapInstruction(&II, VMap, 170 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 171 TypeMapper, Materializer); 172 } 173 174 /// Return a copy of the specified function and add it to that function's 175 /// module. Also, any references specified in the VMap are changed to refer to 176 /// their mapped value instead of the original one. If any of the arguments to 177 /// the function are in the VMap, the arguments are deleted from the resultant 178 /// function. The VMap is updated to include mappings from all of the 179 /// instructions and basicblocks in the function from their old to new values. 180 /// 181 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, 182 ClonedCodeInfo *CodeInfo) { 183 std::vector<Type*> ArgTypes; 184 185 // The user might be deleting arguments to the function by specifying them in 186 // the VMap. If so, we need to not add the arguments to the arg ty vector 187 // 188 for (const Argument &I : F->args()) 189 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 190 ArgTypes.push_back(I.getType()); 191 192 // Create a new function type... 193 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 194 ArgTypes, F->getFunctionType()->isVarArg()); 195 196 // Create the new function... 197 Function *NewF = 198 Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent()); 199 200 // Loop over the arguments, copying the names of the mapped arguments over... 201 Function::arg_iterator DestI = NewF->arg_begin(); 202 for (const Argument & I : F->args()) 203 if (VMap.count(&I) == 0) { // Is this argument preserved? 204 DestI->setName(I.getName()); // Copy the name over... 205 VMap[&I] = &*DestI++; // Add mapping to VMap 206 } 207 208 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 209 CloneFunctionInto(NewF, F, VMap, /*ModuleLevelChanges=*/false, Returns, "", 210 CodeInfo); 211 212 return NewF; 213 } 214 215 216 217 namespace { 218 /// This is a private class used to implement CloneAndPruneFunctionInto. 219 struct PruningFunctionCloner { 220 Function *NewFunc; 221 const Function *OldFunc; 222 ValueToValueMapTy &VMap; 223 bool ModuleLevelChanges; 224 const char *NameSuffix; 225 ClonedCodeInfo *CodeInfo; 226 227 public: 228 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 229 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 230 const char *nameSuffix, ClonedCodeInfo *codeInfo) 231 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 232 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 233 CodeInfo(codeInfo) {} 234 235 /// The specified block is found to be reachable, clone it and 236 /// anything that it can reach. 237 void CloneBlock(const BasicBlock *BB, 238 BasicBlock::const_iterator StartingInst, 239 std::vector<const BasicBlock*> &ToClone); 240 }; 241 } 242 243 /// The specified block is found to be reachable, clone it and 244 /// anything that it can reach. 245 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 246 BasicBlock::const_iterator StartingInst, 247 std::vector<const BasicBlock*> &ToClone){ 248 WeakVH &BBEntry = VMap[BB]; 249 250 // Have we already cloned this block? 251 if (BBEntry) return; 252 253 // Nope, clone it now. 254 BasicBlock *NewBB; 255 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 256 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 257 258 // It is only legal to clone a function if a block address within that 259 // function is never referenced outside of the function. Given that, we 260 // want to map block addresses from the old function to block addresses in 261 // the clone. (This is different from the generic ValueMapper 262 // implementation, which generates an invalid blockaddress when 263 // cloning a function.) 264 // 265 // Note that we don't need to fix the mapping for unreachable blocks; 266 // the default mapping there is safe. 267 if (BB->hasAddressTaken()) { 268 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 269 const_cast<BasicBlock*>(BB)); 270 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 271 } 272 273 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 274 275 // Loop over all instructions, and copy them over, DCE'ing as we go. This 276 // loop doesn't include the terminator. 277 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 278 II != IE; ++II) { 279 280 Instruction *NewInst = II->clone(); 281 282 // Eagerly remap operands to the newly cloned instruction, except for PHI 283 // nodes for which we defer processing until we update the CFG. 284 if (!isa<PHINode>(NewInst)) { 285 RemapInstruction(NewInst, VMap, 286 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 287 288 // If we can simplify this instruction to some other value, simply add 289 // a mapping to that value rather than inserting a new instruction into 290 // the basic block. 291 if (Value *V = 292 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 293 // On the off-chance that this simplifies to an instruction in the old 294 // function, map it back into the new function. 295 if (Value *MappedV = VMap.lookup(V)) 296 V = MappedV; 297 298 if (!NewInst->mayHaveSideEffects()) { 299 VMap[&*II] = V; 300 delete NewInst; 301 continue; 302 } 303 } 304 } 305 306 if (II->hasName()) 307 NewInst->setName(II->getName()+NameSuffix); 308 VMap[&*II] = NewInst; // Add instruction map to value. 309 NewBB->getInstList().push_back(NewInst); 310 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 311 312 if (CodeInfo) 313 if (auto CS = ImmutableCallSite(&*II)) 314 if (CS.hasOperandBundles()) 315 CodeInfo->OperandBundleCallSites.push_back(NewInst); 316 317 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 318 if (isa<ConstantInt>(AI->getArraySize())) 319 hasStaticAllocas = true; 320 else 321 hasDynamicAllocas = true; 322 } 323 } 324 325 // Finally, clone over the terminator. 326 const TerminatorInst *OldTI = BB->getTerminator(); 327 bool TerminatorDone = false; 328 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 329 if (BI->isConditional()) { 330 // If the condition was a known constant in the callee... 331 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 332 // Or is a known constant in the caller... 333 if (!Cond) { 334 Value *V = VMap.lookup(BI->getCondition()); 335 Cond = dyn_cast_or_null<ConstantInt>(V); 336 } 337 338 // Constant fold to uncond branch! 339 if (Cond) { 340 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 341 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 342 ToClone.push_back(Dest); 343 TerminatorDone = true; 344 } 345 } 346 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 347 // If switching on a value known constant in the caller. 348 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 349 if (!Cond) { // Or known constant after constant prop in the callee... 350 Value *V = VMap.lookup(SI->getCondition()); 351 Cond = dyn_cast_or_null<ConstantInt>(V); 352 } 353 if (Cond) { // Constant fold to uncond branch! 354 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); 355 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 356 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 357 ToClone.push_back(Dest); 358 TerminatorDone = true; 359 } 360 } 361 362 if (!TerminatorDone) { 363 Instruction *NewInst = OldTI->clone(); 364 if (OldTI->hasName()) 365 NewInst->setName(OldTI->getName()+NameSuffix); 366 NewBB->getInstList().push_back(NewInst); 367 VMap[OldTI] = NewInst; // Add instruction map to value. 368 369 if (CodeInfo) 370 if (auto CS = ImmutableCallSite(OldTI)) 371 if (CS.hasOperandBundles()) 372 CodeInfo->OperandBundleCallSites.push_back(NewInst); 373 374 // Recursively clone any reachable successor blocks. 375 const TerminatorInst *TI = BB->getTerminator(); 376 for (const BasicBlock *Succ : TI->successors()) 377 ToClone.push_back(Succ); 378 } 379 380 if (CodeInfo) { 381 CodeInfo->ContainsCalls |= hasCalls; 382 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 383 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 384 BB != &BB->getParent()->front(); 385 } 386 } 387 388 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 389 /// entire function. Instead it starts at an instruction provided by the caller 390 /// and copies (and prunes) only the code reachable from that instruction. 391 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 392 const Instruction *StartingInst, 393 ValueToValueMapTy &VMap, 394 bool ModuleLevelChanges, 395 SmallVectorImpl<ReturnInst *> &Returns, 396 const char *NameSuffix, 397 ClonedCodeInfo *CodeInfo) { 398 assert(NameSuffix && "NameSuffix cannot be null!"); 399 400 ValueMapTypeRemapper *TypeMapper = nullptr; 401 ValueMaterializer *Materializer = nullptr; 402 403 #ifndef NDEBUG 404 // If the cloning starts at the beginning of the function, verify that 405 // the function arguments are mapped. 406 if (!StartingInst) 407 for (const Argument &II : OldFunc->args()) 408 assert(VMap.count(&II) && "No mapping from source argument specified!"); 409 #endif 410 411 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 412 NameSuffix, CodeInfo); 413 const BasicBlock *StartingBB; 414 if (StartingInst) 415 StartingBB = StartingInst->getParent(); 416 else { 417 StartingBB = &OldFunc->getEntryBlock(); 418 StartingInst = &StartingBB->front(); 419 } 420 421 // Clone the entry block, and anything recursively reachable from it. 422 std::vector<const BasicBlock*> CloneWorklist; 423 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 424 while (!CloneWorklist.empty()) { 425 const BasicBlock *BB = CloneWorklist.back(); 426 CloneWorklist.pop_back(); 427 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 428 } 429 430 // Loop over all of the basic blocks in the old function. If the block was 431 // reachable, we have cloned it and the old block is now in the value map: 432 // insert it into the new function in the right order. If not, ignore it. 433 // 434 // Defer PHI resolution until rest of function is resolved. 435 SmallVector<const PHINode*, 16> PHIToResolve; 436 for (const BasicBlock &BI : *OldFunc) { 437 Value *V = VMap.lookup(&BI); 438 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 439 if (!NewBB) continue; // Dead block. 440 441 // Add the new block to the new function. 442 NewFunc->getBasicBlockList().push_back(NewBB); 443 444 // Handle PHI nodes specially, as we have to remove references to dead 445 // blocks. 446 for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) { 447 // PHI nodes may have been remapped to non-PHI nodes by the caller or 448 // during the cloning process. 449 if (const PHINode *PN = dyn_cast<PHINode>(I)) { 450 if (isa<PHINode>(VMap[PN])) 451 PHIToResolve.push_back(PN); 452 else 453 break; 454 } else { 455 break; 456 } 457 } 458 459 // Finally, remap the terminator instructions, as those can't be remapped 460 // until all BBs are mapped. 461 RemapInstruction(NewBB->getTerminator(), VMap, 462 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 463 TypeMapper, Materializer); 464 } 465 466 // Defer PHI resolution until rest of function is resolved, PHI resolution 467 // requires the CFG to be up-to-date. 468 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 469 const PHINode *OPN = PHIToResolve[phino]; 470 unsigned NumPreds = OPN->getNumIncomingValues(); 471 const BasicBlock *OldBB = OPN->getParent(); 472 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 473 474 // Map operands for blocks that are live and remove operands for blocks 475 // that are dead. 476 for (; phino != PHIToResolve.size() && 477 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 478 OPN = PHIToResolve[phino]; 479 PHINode *PN = cast<PHINode>(VMap[OPN]); 480 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 481 Value *V = VMap.lookup(PN->getIncomingBlock(pred)); 482 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 483 Value *InVal = MapValue(PN->getIncomingValue(pred), 484 VMap, 485 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 486 assert(InVal && "Unknown input value?"); 487 PN->setIncomingValue(pred, InVal); 488 PN->setIncomingBlock(pred, MappedBlock); 489 } else { 490 PN->removeIncomingValue(pred, false); 491 --pred; // Revisit the next entry. 492 --e; 493 } 494 } 495 } 496 497 // The loop above has removed PHI entries for those blocks that are dead 498 // and has updated others. However, if a block is live (i.e. copied over) 499 // but its terminator has been changed to not go to this block, then our 500 // phi nodes will have invalid entries. Update the PHI nodes in this 501 // case. 502 PHINode *PN = cast<PHINode>(NewBB->begin()); 503 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 504 if (NumPreds != PN->getNumIncomingValues()) { 505 assert(NumPreds < PN->getNumIncomingValues()); 506 // Count how many times each predecessor comes to this block. 507 std::map<BasicBlock*, unsigned> PredCount; 508 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 509 PI != E; ++PI) 510 --PredCount[*PI]; 511 512 // Figure out how many entries to remove from each PHI. 513 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 514 ++PredCount[PN->getIncomingBlock(i)]; 515 516 // At this point, the excess predecessor entries are positive in the 517 // map. Loop over all of the PHIs and remove excess predecessor 518 // entries. 519 BasicBlock::iterator I = NewBB->begin(); 520 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 521 for (const auto &PCI : PredCount) { 522 BasicBlock *Pred = PCI.first; 523 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) 524 PN->removeIncomingValue(Pred, false); 525 } 526 } 527 } 528 529 // If the loops above have made these phi nodes have 0 or 1 operand, 530 // replace them with undef or the input value. We must do this for 531 // correctness, because 0-operand phis are not valid. 532 PN = cast<PHINode>(NewBB->begin()); 533 if (PN->getNumIncomingValues() == 0) { 534 BasicBlock::iterator I = NewBB->begin(); 535 BasicBlock::const_iterator OldI = OldBB->begin(); 536 while ((PN = dyn_cast<PHINode>(I++))) { 537 Value *NV = UndefValue::get(PN->getType()); 538 PN->replaceAllUsesWith(NV); 539 assert(VMap[&*OldI] == PN && "VMap mismatch"); 540 VMap[&*OldI] = NV; 541 PN->eraseFromParent(); 542 ++OldI; 543 } 544 } 545 } 546 547 // Make a second pass over the PHINodes now that all of them have been 548 // remapped into the new function, simplifying the PHINode and performing any 549 // recursive simplifications exposed. This will transparently update the 550 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce 551 // two PHINodes, the iteration over the old PHIs remains valid, and the 552 // mapping will just map us to the new node (which may not even be a PHI 553 // node). 554 const DataLayout &DL = NewFunc->getParent()->getDataLayout(); 555 SmallSetVector<const Value *, 8> Worklist; 556 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 557 if (isa<PHINode>(VMap[PHIToResolve[Idx]])) 558 Worklist.insert(PHIToResolve[Idx]); 559 560 // Note that we must test the size on each iteration, the worklist can grow. 561 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 562 const Value *OrigV = Worklist[Idx]; 563 auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV)); 564 if (!I) 565 continue; 566 567 // Skip over non-intrinsic callsites, we don't want to remove any nodes from 568 // the CGSCC. 569 CallSite CS = CallSite(I); 570 if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic()) 571 continue; 572 573 // See if this instruction simplifies. 574 Value *SimpleV = SimplifyInstruction(I, DL); 575 if (!SimpleV) 576 continue; 577 578 // Stash away all the uses of the old instruction so we can check them for 579 // recursive simplifications after a RAUW. This is cheaper than checking all 580 // uses of To on the recursive step in most cases. 581 for (const User *U : OrigV->users()) 582 Worklist.insert(cast<Instruction>(U)); 583 584 // Replace the instruction with its simplified value. 585 I->replaceAllUsesWith(SimpleV); 586 587 // If the original instruction had no side effects, remove it. 588 if (isInstructionTriviallyDead(I)) 589 I->eraseFromParent(); 590 else 591 VMap[OrigV] = I; 592 } 593 594 // Now that the inlined function body has been fully constructed, go through 595 // and zap unconditional fall-through branches. This happens all the time when 596 // specializing code: code specialization turns conditional branches into 597 // uncond branches, and this code folds them. 598 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 599 Function::iterator I = Begin; 600 while (I != NewFunc->end()) { 601 // Check if this block has become dead during inlining or other 602 // simplifications. Note that the first block will appear dead, as it has 603 // not yet been wired up properly. 604 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || 605 I->getSinglePredecessor() == &*I)) { 606 BasicBlock *DeadBB = &*I++; 607 DeleteDeadBlock(DeadBB); 608 continue; 609 } 610 611 // We need to simplify conditional branches and switches with a constant 612 // operand. We try to prune these out when cloning, but if the 613 // simplification required looking through PHI nodes, those are only 614 // available after forming the full basic block. That may leave some here, 615 // and we still want to prune the dead code as early as possible. 616 ConstantFoldTerminator(&*I); 617 618 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 619 if (!BI || BI->isConditional()) { ++I; continue; } 620 621 BasicBlock *Dest = BI->getSuccessor(0); 622 if (!Dest->getSinglePredecessor()) { 623 ++I; continue; 624 } 625 626 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 627 // above should have zapped all of them.. 628 assert(!isa<PHINode>(Dest->begin())); 629 630 // We know all single-entry PHI nodes in the inlined function have been 631 // removed, so we just need to splice the blocks. 632 BI->eraseFromParent(); 633 634 // Make all PHI nodes that referred to Dest now refer to I as their source. 635 Dest->replaceAllUsesWith(&*I); 636 637 // Move all the instructions in the succ to the pred. 638 I->getInstList().splice(I->end(), Dest->getInstList()); 639 640 // Remove the dest block. 641 Dest->eraseFromParent(); 642 643 // Do not increment I, iteratively merge all things this block branches to. 644 } 645 646 // Make a final pass over the basic blocks from the old function to gather 647 // any return instructions which survived folding. We have to do this here 648 // because we can iteratively remove and merge returns above. 649 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 650 E = NewFunc->end(); 651 I != E; ++I) 652 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 653 Returns.push_back(RI); 654 } 655 656 657 /// This works exactly like CloneFunctionInto, 658 /// except that it does some simple constant prop and DCE on the fly. The 659 /// effect of this is to copy significantly less code in cases where (for 660 /// example) a function call with constant arguments is inlined, and those 661 /// constant arguments cause a significant amount of code in the callee to be 662 /// dead. Since this doesn't produce an exact copy of the input, it can't be 663 /// used for things like CloneFunction or CloneModule. 664 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 665 ValueToValueMapTy &VMap, 666 bool ModuleLevelChanges, 667 SmallVectorImpl<ReturnInst*> &Returns, 668 const char *NameSuffix, 669 ClonedCodeInfo *CodeInfo, 670 Instruction *TheCall) { 671 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 672 ModuleLevelChanges, Returns, NameSuffix, CodeInfo); 673 } 674 675 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap. 676 void llvm::remapInstructionsInBlocks( 677 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 678 // Rewrite the code to refer to itself. 679 for (auto *BB : Blocks) 680 for (auto &Inst : *BB) 681 RemapInstruction(&Inst, VMap, 682 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 683 } 684 685 /// \brief Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 686 /// Blocks. 687 /// 688 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 689 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 690 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 691 Loop *OrigLoop, ValueToValueMapTy &VMap, 692 const Twine &NameSuffix, LoopInfo *LI, 693 DominatorTree *DT, 694 SmallVectorImpl<BasicBlock *> &Blocks) { 695 assert(OrigLoop->getSubLoops().empty() && 696 "Loop to be cloned cannot have inner loop"); 697 Function *F = OrigLoop->getHeader()->getParent(); 698 Loop *ParentLoop = OrigLoop->getParentLoop(); 699 700 Loop *NewLoop = new Loop(); 701 if (ParentLoop) 702 ParentLoop->addChildLoop(NewLoop); 703 else 704 LI->addTopLevelLoop(NewLoop); 705 706 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 707 assert(OrigPH && "No preheader"); 708 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 709 // To rename the loop PHIs. 710 VMap[OrigPH] = NewPH; 711 Blocks.push_back(NewPH); 712 713 // Update LoopInfo. 714 if (ParentLoop) 715 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 716 717 // Update DominatorTree. 718 DT->addNewBlock(NewPH, LoopDomBB); 719 720 for (BasicBlock *BB : OrigLoop->getBlocks()) { 721 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 722 VMap[BB] = NewBB; 723 724 // Update LoopInfo. 725 NewLoop->addBasicBlockToLoop(NewBB, *LI); 726 727 // Add DominatorTree node. After seeing all blocks, update to correct IDom. 728 DT->addNewBlock(NewBB, NewPH); 729 730 Blocks.push_back(NewBB); 731 } 732 733 for (BasicBlock *BB : OrigLoop->getBlocks()) { 734 // Update DominatorTree. 735 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 736 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), 737 cast<BasicBlock>(VMap[IDomBB])); 738 } 739 740 // Move them physically from the end of the block list. 741 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 742 NewPH); 743 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 744 NewLoop->getHeader()->getIterator(), F->end()); 745 746 return NewLoop; 747 } 748 749 /// \brief Duplicate non-Phi instructions from the beginning of block up to 750 /// StopAt instruction into a split block between BB and its predecessor. 751 BasicBlock * 752 llvm::DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB, 753 Instruction *StopAt, 754 ValueToValueMapTy &ValueMapping) { 755 // We are going to have to map operands from the original BB block to the new 756 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 757 // account for entry from PredBB. 758 BasicBlock::iterator BI = BB->begin(); 759 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 760 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 761 762 BasicBlock *NewBB = SplitEdge(PredBB, BB); 763 NewBB->setName(PredBB->getName() + ".split"); 764 Instruction *NewTerm = NewBB->getTerminator(); 765 766 // Clone the non-phi instructions of BB into NewBB, keeping track of the 767 // mapping and using it to remap operands in the cloned instructions. 768 for (; StopAt != &*BI; ++BI) { 769 Instruction *New = BI->clone(); 770 New->setName(BI->getName()); 771 New->insertBefore(NewTerm); 772 ValueMapping[&*BI] = New; 773 774 // Remap operands to patch up intra-block references. 775 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 776 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 777 auto I = ValueMapping.find(Inst); 778 if (I != ValueMapping.end()) 779 New->setOperand(i, I->second); 780 } 781 } 782 783 return NewBB; 784 } 785