1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/IntrinsicInst.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Function.h" 23 #include "llvm/LLVMContext.h" 24 #include "llvm/Metadata.h" 25 #include "llvm/Support/CFG.h" 26 #include "llvm/Transforms/Utils/ValueMapper.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/DebugInfo.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include <map> 31 using namespace llvm; 32 33 // CloneBasicBlock - See comments in Cloning.h 34 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 35 ValueToValueMapTy &VMap, 36 const Twine &NameSuffix, Function *F, 37 ClonedCodeInfo *CodeInfo) { 38 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 39 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 40 41 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 42 43 // Loop over all instructions, and copy them over. 44 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 45 II != IE; ++II) { 46 Instruction *NewInst = II->clone(); 47 if (II->hasName()) 48 NewInst->setName(II->getName()+NameSuffix); 49 NewBB->getInstList().push_back(NewInst); 50 VMap[II] = NewInst; // Add instruction map to value. 51 52 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 53 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 54 if (isa<ConstantInt>(AI->getArraySize())) 55 hasStaticAllocas = true; 56 else 57 hasDynamicAllocas = true; 58 } 59 } 60 61 if (CodeInfo) { 62 CodeInfo->ContainsCalls |= hasCalls; 63 CodeInfo->ContainsUnwinds |= isa<UnwindInst>(BB->getTerminator()); 64 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 65 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 66 BB != &BB->getParent()->getEntryBlock(); 67 } 68 return NewBB; 69 } 70 71 // Clone OldFunc into NewFunc, transforming the old arguments into references to 72 // VMap values. 73 // 74 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 75 ValueToValueMapTy &VMap, 76 bool ModuleLevelChanges, 77 SmallVectorImpl<ReturnInst*> &Returns, 78 const char *NameSuffix, ClonedCodeInfo *CodeInfo) { 79 assert(NameSuffix && "NameSuffix cannot be null!"); 80 81 #ifndef NDEBUG 82 for (Function::const_arg_iterator I = OldFunc->arg_begin(), 83 E = OldFunc->arg_end(); I != E; ++I) 84 assert(VMap.count(I) && "No mapping from source argument specified!"); 85 #endif 86 87 // Clone any attributes. 88 if (NewFunc->arg_size() == OldFunc->arg_size()) 89 NewFunc->copyAttributesFrom(OldFunc); 90 else { 91 //Some arguments were deleted with the VMap. Copy arguments one by one 92 for (Function::const_arg_iterator I = OldFunc->arg_begin(), 93 E = OldFunc->arg_end(); I != E; ++I) 94 if (Argument* Anew = dyn_cast<Argument>(VMap[I])) 95 Anew->addAttr( OldFunc->getAttributes() 96 .getParamAttributes(I->getArgNo() + 1)); 97 NewFunc->setAttributes(NewFunc->getAttributes() 98 .addAttr(0, OldFunc->getAttributes() 99 .getRetAttributes())); 100 NewFunc->setAttributes(NewFunc->getAttributes() 101 .addAttr(~0, OldFunc->getAttributes() 102 .getFnAttributes())); 103 104 } 105 106 // Loop over all of the basic blocks in the function, cloning them as 107 // appropriate. Note that we save BE this way in order to handle cloning of 108 // recursive functions into themselves. 109 // 110 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 111 BI != BE; ++BI) { 112 const BasicBlock &BB = *BI; 113 114 // Create a new basic block and copy instructions into it! 115 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 116 117 // Add basic block mapping. 118 VMap[&BB] = CBB; 119 120 // It is only legal to clone a function if a block address within that 121 // function is never referenced outside of the function. Given that, we 122 // want to map block addresses from the old function to block addresses in 123 // the clone. (This is different from the generic ValueMapper 124 // implementation, which generates an invalid blockaddress when 125 // cloning a function.) 126 if (BB.hasAddressTaken()) { 127 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 128 const_cast<BasicBlock*>(&BB)); 129 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 130 } 131 132 // Note return instructions for the caller. 133 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 134 Returns.push_back(RI); 135 } 136 137 // Loop over all of the instructions in the function, fixing up operand 138 // references as we go. This uses VMap to do all the hard work. 139 for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]), 140 BE = NewFunc->end(); BB != BE; ++BB) 141 // Loop over all instructions, fixing each one as we find it... 142 for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) 143 RemapInstruction(II, VMap, 144 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 145 } 146 147 /// CloneFunction - Return a copy of the specified function, but without 148 /// embedding the function into another module. Also, any references specified 149 /// in the VMap are changed to refer to their mapped value instead of the 150 /// original one. If any of the arguments to the function are in the VMap, 151 /// the arguments are deleted from the resultant function. The VMap is 152 /// updated to include mappings from all of the instructions and basicblocks in 153 /// the function from their old to new values. 154 /// 155 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap, 156 bool ModuleLevelChanges, 157 ClonedCodeInfo *CodeInfo) { 158 std::vector<Type*> ArgTypes; 159 160 // The user might be deleting arguments to the function by specifying them in 161 // the VMap. If so, we need to not add the arguments to the arg ty vector 162 // 163 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 164 I != E; ++I) 165 if (VMap.count(I) == 0) // Haven't mapped the argument to anything yet? 166 ArgTypes.push_back(I->getType()); 167 168 // Create a new function type... 169 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 170 ArgTypes, F->getFunctionType()->isVarArg()); 171 172 // Create the new function... 173 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName()); 174 175 // Loop over the arguments, copying the names of the mapped arguments over... 176 Function::arg_iterator DestI = NewF->arg_begin(); 177 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 178 I != E; ++I) 179 if (VMap.count(I) == 0) { // Is this argument preserved? 180 DestI->setName(I->getName()); // Copy the name over... 181 VMap[I] = DestI++; // Add mapping to VMap 182 } 183 184 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 185 CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo); 186 return NewF; 187 } 188 189 190 191 namespace { 192 /// PruningFunctionCloner - This class is a private class used to implement 193 /// the CloneAndPruneFunctionInto method. 194 struct PruningFunctionCloner { 195 Function *NewFunc; 196 const Function *OldFunc; 197 ValueToValueMapTy &VMap; 198 bool ModuleLevelChanges; 199 SmallVectorImpl<ReturnInst*> &Returns; 200 const char *NameSuffix; 201 ClonedCodeInfo *CodeInfo; 202 const TargetData *TD; 203 public: 204 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 205 ValueToValueMapTy &valueMap, 206 bool moduleLevelChanges, 207 SmallVectorImpl<ReturnInst*> &returns, 208 const char *nameSuffix, 209 ClonedCodeInfo *codeInfo, 210 const TargetData *td) 211 : NewFunc(newFunc), OldFunc(oldFunc), 212 VMap(valueMap), ModuleLevelChanges(moduleLevelChanges), 213 Returns(returns), NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) { 214 } 215 216 /// CloneBlock - The specified block is found to be reachable, clone it and 217 /// anything that it can reach. 218 void CloneBlock(const BasicBlock *BB, 219 std::vector<const BasicBlock*> &ToClone); 220 221 public: 222 /// ConstantFoldMappedInstruction - Constant fold the specified instruction, 223 /// mapping its operands through VMap if they are available. 224 Constant *ConstantFoldMappedInstruction(const Instruction *I); 225 }; 226 } 227 228 /// CloneBlock - The specified block is found to be reachable, clone it and 229 /// anything that it can reach. 230 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 231 std::vector<const BasicBlock*> &ToClone){ 232 TrackingVH<Value> &BBEntry = VMap[BB]; 233 234 // Have we already cloned this block? 235 if (BBEntry) return; 236 237 // Nope, clone it now. 238 BasicBlock *NewBB; 239 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 240 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 241 242 // It is only legal to clone a function if a block address within that 243 // function is never referenced outside of the function. Given that, we 244 // want to map block addresses from the old function to block addresses in 245 // the clone. (This is different from the generic ValueMapper 246 // implementation, which generates an invalid blockaddress when 247 // cloning a function.) 248 // 249 // Note that we don't need to fix the mapping for unreachable blocks; 250 // the default mapping there is safe. 251 if (BB->hasAddressTaken()) { 252 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 253 const_cast<BasicBlock*>(BB)); 254 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 255 } 256 257 258 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 259 260 // Loop over all instructions, and copy them over, DCE'ing as we go. This 261 // loop doesn't include the terminator. 262 for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end(); 263 II != IE; ++II) { 264 // If this instruction constant folds, don't bother cloning the instruction, 265 // instead, just add the constant to the value map. 266 if (Constant *C = ConstantFoldMappedInstruction(II)) { 267 VMap[II] = C; 268 continue; 269 } 270 271 Instruction *NewInst = II->clone(); 272 if (II->hasName()) 273 NewInst->setName(II->getName()+NameSuffix); 274 NewBB->getInstList().push_back(NewInst); 275 VMap[II] = NewInst; // Add instruction map to value. 276 277 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 278 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 279 if (isa<ConstantInt>(AI->getArraySize())) 280 hasStaticAllocas = true; 281 else 282 hasDynamicAllocas = true; 283 } 284 } 285 286 // Finally, clone over the terminator. 287 const TerminatorInst *OldTI = BB->getTerminator(); 288 bool TerminatorDone = false; 289 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 290 if (BI->isConditional()) { 291 // If the condition was a known constant in the callee... 292 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 293 // Or is a known constant in the caller... 294 if (Cond == 0) { 295 Value *V = VMap[BI->getCondition()]; 296 Cond = dyn_cast_or_null<ConstantInt>(V); 297 } 298 299 // Constant fold to uncond branch! 300 if (Cond) { 301 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 302 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 303 ToClone.push_back(Dest); 304 TerminatorDone = true; 305 } 306 } 307 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 308 // If switching on a value known constant in the caller. 309 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 310 if (Cond == 0) { // Or known constant after constant prop in the callee... 311 Value *V = VMap[SI->getCondition()]; 312 Cond = dyn_cast_or_null<ConstantInt>(V); 313 } 314 if (Cond) { // Constant fold to uncond branch! 315 BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond)); 316 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 317 ToClone.push_back(Dest); 318 TerminatorDone = true; 319 } 320 } 321 322 if (!TerminatorDone) { 323 Instruction *NewInst = OldTI->clone(); 324 if (OldTI->hasName()) 325 NewInst->setName(OldTI->getName()+NameSuffix); 326 NewBB->getInstList().push_back(NewInst); 327 VMap[OldTI] = NewInst; // Add instruction map to value. 328 329 // Recursively clone any reachable successor blocks. 330 const TerminatorInst *TI = BB->getTerminator(); 331 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 332 ToClone.push_back(TI->getSuccessor(i)); 333 } 334 335 if (CodeInfo) { 336 CodeInfo->ContainsCalls |= hasCalls; 337 CodeInfo->ContainsUnwinds |= isa<UnwindInst>(OldTI); 338 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 339 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 340 BB != &BB->getParent()->front(); 341 } 342 343 if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator())) 344 Returns.push_back(RI); 345 } 346 347 /// ConstantFoldMappedInstruction - Constant fold the specified instruction, 348 /// mapping its operands through VMap if they are available. 349 Constant *PruningFunctionCloner:: 350 ConstantFoldMappedInstruction(const Instruction *I) { 351 SmallVector<Constant*, 8> Ops; 352 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 353 if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i), 354 VMap, 355 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges))) 356 Ops.push_back(Op); 357 else 358 return 0; // All operands not constant! 359 360 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 361 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], 362 TD); 363 364 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 365 if (!LI->isVolatile()) 366 return ConstantFoldLoadFromConstPtr(Ops[0], TD); 367 368 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD); 369 } 370 371 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto, 372 /// except that it does some simple constant prop and DCE on the fly. The 373 /// effect of this is to copy significantly less code in cases where (for 374 /// example) a function call with constant arguments is inlined, and those 375 /// constant arguments cause a significant amount of code in the callee to be 376 /// dead. Since this doesn't produce an exact copy of the input, it can't be 377 /// used for things like CloneFunction or CloneModule. 378 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 379 ValueToValueMapTy &VMap, 380 bool ModuleLevelChanges, 381 SmallVectorImpl<ReturnInst*> &Returns, 382 const char *NameSuffix, 383 ClonedCodeInfo *CodeInfo, 384 const TargetData *TD, 385 Instruction *TheCall) { 386 assert(NameSuffix && "NameSuffix cannot be null!"); 387 388 #ifndef NDEBUG 389 for (Function::const_arg_iterator II = OldFunc->arg_begin(), 390 E = OldFunc->arg_end(); II != E; ++II) 391 assert(VMap.count(II) && "No mapping from source argument specified!"); 392 #endif 393 394 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 395 Returns, NameSuffix, CodeInfo, TD); 396 397 // Clone the entry block, and anything recursively reachable from it. 398 std::vector<const BasicBlock*> CloneWorklist; 399 CloneWorklist.push_back(&OldFunc->getEntryBlock()); 400 while (!CloneWorklist.empty()) { 401 const BasicBlock *BB = CloneWorklist.back(); 402 CloneWorklist.pop_back(); 403 PFC.CloneBlock(BB, CloneWorklist); 404 } 405 406 // Loop over all of the basic blocks in the old function. If the block was 407 // reachable, we have cloned it and the old block is now in the value map: 408 // insert it into the new function in the right order. If not, ignore it. 409 // 410 // Defer PHI resolution until rest of function is resolved. 411 SmallVector<const PHINode*, 16> PHIToResolve; 412 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 413 BI != BE; ++BI) { 414 Value *V = VMap[BI]; 415 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 416 if (NewBB == 0) continue; // Dead block. 417 418 // Add the new block to the new function. 419 NewFunc->getBasicBlockList().push_back(NewBB); 420 421 // Loop over all of the instructions in the block, fixing up operand 422 // references as we go. This uses VMap to do all the hard work. 423 // 424 BasicBlock::iterator I = NewBB->begin(); 425 426 DebugLoc TheCallDL; 427 if (TheCall) 428 TheCallDL = TheCall->getDebugLoc(); 429 430 // Handle PHI nodes specially, as we have to remove references to dead 431 // blocks. 432 if (PHINode *PN = dyn_cast<PHINode>(I)) { 433 // Skip over all PHI nodes, remembering them for later. 434 BasicBlock::const_iterator OldI = BI->begin(); 435 for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI) 436 PHIToResolve.push_back(cast<PHINode>(OldI)); 437 } 438 439 // Otherwise, remap the rest of the instructions normally. 440 for (; I != NewBB->end(); ++I) 441 RemapInstruction(I, VMap, 442 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 443 } 444 445 // Defer PHI resolution until rest of function is resolved, PHI resolution 446 // requires the CFG to be up-to-date. 447 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 448 const PHINode *OPN = PHIToResolve[phino]; 449 unsigned NumPreds = OPN->getNumIncomingValues(); 450 const BasicBlock *OldBB = OPN->getParent(); 451 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 452 453 // Map operands for blocks that are live and remove operands for blocks 454 // that are dead. 455 for (; phino != PHIToResolve.size() && 456 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 457 OPN = PHIToResolve[phino]; 458 PHINode *PN = cast<PHINode>(VMap[OPN]); 459 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 460 Value *V = VMap[PN->getIncomingBlock(pred)]; 461 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 462 Value *InVal = MapValue(PN->getIncomingValue(pred), 463 VMap, 464 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 465 assert(InVal && "Unknown input value?"); 466 PN->setIncomingValue(pred, InVal); 467 PN->setIncomingBlock(pred, MappedBlock); 468 } else { 469 PN->removeIncomingValue(pred, false); 470 --pred, --e; // Revisit the next entry. 471 } 472 } 473 } 474 475 // The loop above has removed PHI entries for those blocks that are dead 476 // and has updated others. However, if a block is live (i.e. copied over) 477 // but its terminator has been changed to not go to this block, then our 478 // phi nodes will have invalid entries. Update the PHI nodes in this 479 // case. 480 PHINode *PN = cast<PHINode>(NewBB->begin()); 481 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 482 if (NumPreds != PN->getNumIncomingValues()) { 483 assert(NumPreds < PN->getNumIncomingValues()); 484 // Count how many times each predecessor comes to this block. 485 std::map<BasicBlock*, unsigned> PredCount; 486 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 487 PI != E; ++PI) 488 --PredCount[*PI]; 489 490 // Figure out how many entries to remove from each PHI. 491 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 492 ++PredCount[PN->getIncomingBlock(i)]; 493 494 // At this point, the excess predecessor entries are positive in the 495 // map. Loop over all of the PHIs and remove excess predecessor 496 // entries. 497 BasicBlock::iterator I = NewBB->begin(); 498 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 499 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(), 500 E = PredCount.end(); PCI != E; ++PCI) { 501 BasicBlock *Pred = PCI->first; 502 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove) 503 PN->removeIncomingValue(Pred, false); 504 } 505 } 506 } 507 508 // If the loops above have made these phi nodes have 0 or 1 operand, 509 // replace them with undef or the input value. We must do this for 510 // correctness, because 0-operand phis are not valid. 511 PN = cast<PHINode>(NewBB->begin()); 512 if (PN->getNumIncomingValues() == 0) { 513 BasicBlock::iterator I = NewBB->begin(); 514 BasicBlock::const_iterator OldI = OldBB->begin(); 515 while ((PN = dyn_cast<PHINode>(I++))) { 516 Value *NV = UndefValue::get(PN->getType()); 517 PN->replaceAllUsesWith(NV); 518 assert(VMap[OldI] == PN && "VMap mismatch"); 519 VMap[OldI] = NV; 520 PN->eraseFromParent(); 521 ++OldI; 522 } 523 } 524 // NOTE: We cannot eliminate single entry phi nodes here, because of 525 // VMap. Single entry phi nodes can have multiple VMap entries 526 // pointing at them. Thus, deleting one would require scanning the VMap 527 // to update any entries in it that would require that. This would be 528 // really slow. 529 } 530 531 // Now that the inlined function body has been fully constructed, go through 532 // and zap unconditional fall-through branches. This happen all the time when 533 // specializing code: code specialization turns conditional branches into 534 // uncond branches, and this code folds them. 535 Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]); 536 while (I != NewFunc->end()) { 537 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 538 if (!BI || BI->isConditional()) { ++I; continue; } 539 540 // Note that we can't eliminate uncond branches if the destination has 541 // single-entry PHI nodes. Eliminating the single-entry phi nodes would 542 // require scanning the VMap to update any entries that point to the phi 543 // node. 544 BasicBlock *Dest = BI->getSuccessor(0); 545 if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) { 546 ++I; continue; 547 } 548 549 // We know all single-entry PHI nodes in the inlined function have been 550 // removed, so we just need to splice the blocks. 551 BI->eraseFromParent(); 552 553 // Make all PHI nodes that referred to Dest now refer to I as their source. 554 Dest->replaceAllUsesWith(I); 555 556 // Move all the instructions in the succ to the pred. 557 I->getInstList().splice(I->end(), Dest->getInstList()); 558 559 // Remove the dest block. 560 Dest->eraseFromParent(); 561 562 // Do not increment I, iteratively merge all things this block branches to. 563 } 564 } 565